
HAL Id: hal-04016861
https://hal.science/hal-04016861

Submitted on 6 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Teaching High-Level Behaviors to a Robotic
Agent

Philippe Hérail, Arthur Bit-Monnot

To cite this version:
Philippe Hérail, Arthur Bit-Monnot. Towards Teaching High-Level Behaviors to a Robotic Agent. HRI
Human-Interactive Robot Learning Workshop (HIRL), Mar 2023, Stockholm, Sweden. �hal-04016861�

https://hal.science/hal-04016861
https://hal.archives-ouvertes.fr


Towards Teaching High-Level Behaviors to a
Robotic Agent

Philippe Hérail
LAAS-CNRS, Université de Toulouse, INSA, CNRS

Toulouse, France
philippe.herail@laas.fr

Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, INSA, CNRS

Toulouse, France
abitmonnot@laas.fr

Abstract—Developing robust autonomous agents require com-
plex execution architectures operating at several levels of ab-
straction in order to keep the acting problem tractable. While
there is a growing body of work focused on learning models
at the sensory-motor level, the same cannot be said for high-
level models enabling deliberative functions. In this paper, we
identify the possibilities that can be offered by a learning system
integrating human input for learning hierarchical operational
models and present a learning algorithm that could provide a
missing component for such a system.

I. INTRODUCTION

For achieving complex and high-level tasks, autonomous
robots typically need to combine a set of elementary skills,
where each skill abstracts over motor primitives for elementary
operations, such as picking up something. These elementary
skills themselves may have to be slightly different depending
on the context (e.g. the movement to open a door depends on
the handle type). To alleviate the difficulty of designing such
skills by hand, several approaches have focused on learning
them [1–5].

The high level tasks require acting deliberately, considering
the effects of individual actions on the global activity while
unexpected events require flexibility and reactivity. Existing
execution systems have addressed these compromise for sev-
eral decades [6–10], leveraging planning techniques to handle
new contexts or new tasks to achieve while still attempting to
keep deliberation time reasonable.

However, most execution system still rely on manually
written “programs” – called operational models – even though
they are cumbersome to design, requiring human experts
with application specific domain knowledge as well as some
familiarity with planning languages. Thanks to the advances
in action and activity recognition [11,12], we can envision
a human tutor teaching an agent through a small set of
demonstrations from which to generalize.

For learning hierarchical operational models, there has been
approaches focusing on learning Behavior Trees (BTs) [13,14]
and hierarchical policies [15]. However, these approaches
are focusing on learning reactive models, providing limited
lookahead capabilities compared to hierarchical planning mod-
els such as Hierarchical Task Networks (HTNs) [16]. While

This work has been partially supported by AIPlan4EU, a project funded by
EU Horizon 2020 research and innovation program under GA n.101016442.

there has been attempts at learning planning models from
demonstrations, many of these approaches are focused on non-
hierarchical models, focusing on partial traces observability
[17], non-deterministic environments [18,19] or even taking
into account noisy observations [20].

In the context of hierarchical models, several approaches
have been developed, such as HTN-MAKER for use in
fully observable deterministic environments[21], and non-
deterministic ones [22]. This technique relies on annotated
tasks with pre- and post-conditions to extract sequences allow-
ing to achieve the tasks but is limited in terms of abstraction
capabilities. HTNLearn [23] also learns hierarchical models
from similarly annotated tasks by converting the learning
problem into one of constraint satisfaction, but is limited to
deterministic environments.

Recently, unsupervised learning techniques have been used
to learn Hierarchical Goal Networks (HGNs) [24]. Approaches
have also been developed to learn Combinatory Categorial
Grammar (CCG) [25,26], which share a similar structure,
mainly in the context of plan recognition.

Most of these methods suffer from some limitation in the
expressiveness of the learned models and most importantly,
they do not offer a mechanism to reuse previously learned
information for subsequent learning.

II. INTEGRATING A HUMAN IN THE LEARNING PROCESS

We involve the human in the learning process as a tutor,
in charge of designing and carrying out demonstrations of
desirable behavior to achieve a set of tasks. In general, we
assume that each skill exploited in the tutor’s demonstration
has a corresponding skill in the agent’s capabilities, which may
require the tutor to place its demonstration at the appropriate
level of abstraction to smooth out any difference between their
capabilities (e.g. wheels vs legs).

Once learned, a task could be leveraged in further demon-
strations, exploiting this common vocabulary to decouple the
learning of high-level behavior from the much more fine-
grained details. Indeed, such tasks could then be viewed as
a new skill shared by the agent and the tutor, allowing for
more efficient demonstrations down the line.

A learner able to incorporate abstract tasks in its demon-
strations would be able to incrementally learn complex tasks
by reusing previously learned behaviors. This idea is similar



to the notion of learning from a curriculum instead of arbitrary
demonstrations, which has been explored for use in learning
hierarchical models [27] and recently HTNs [28].

III. LEARNING PROBLEM AND DEFINITIONS

Considering a set of demonstrations from a tutor, we want
to learn operational models able to reproduce and generalize
the demonstrated behaviors.

A. Inputs to the Learning Problem

We consider as input to our learning problem the set of
skills common to the tutor and the agent, each represented
as a primitive action a composed of an identifier and a set
of parameters, such as a = action name(arg1, . . . , argn). We
refer to the set of primitive actions as A.

The tutor and learner also share a vocabulary of non-
primitive tasks TI with known parameters, representing the
high-level activities to be demonstrated.

For each task tI ∈ TI , the agent is given a set DtI of demon-
stration traces from the tutor. Each trace d ∈ DtI is an alter-
nating sequence of states and parameterized tasks {ti | ti ∈
{TI∪A}} such as d = {s0 → t0 → s1 → · · · → tn−1 → sn}.
States are a compact representation of the world at any given
time.

B. Operational Model

Operational models represent the knowledge an agent has
regarding how it may achieve some activity in its environment
[29]. We define them as in [30], but will recall some definitions
here for simplicity.

We define an operational model O as an HTN-like structure
which can be written as a tuple O = (T,A,M) where T is a
set of abstract tasks, A a set of primitive actions and M a set of
possible methods decomposing the tasks t ∈ T into subtasks
{td | td ∈ {T ∪A}}. An example of such structure is given in
Figure 1. Using such a model, the task serve_drink(cup1)
could be decomposed as grab(cup1) → place(cup1) →
pour_coffee(cup1) while serve_drink(cup2) could
be decomposed as grab(cup2) → place(cup2) →
pour_orange_juice(cup2).

serve drink(cup)

method1

place(cup)grab(cup) pour drink(cup)

method2

pour coffee(cup)
method3

pour orange juice(cup)

Fig. 1: Example of a simplified operational model structure.

More formally, a method m ∈ Mt is a tuple m =
(Prem, Nm), where Prem are the preconditions of the
method, and Nm is a sequence of tasks and actions defining a
way to decompose t. A method is applicable in a given state
s iff its preconditions hold in this state.

When considering an acting problem, these models are “ex-
ecuted” to generate a behavior leading to the achievement of a
task. In a nutshell, this behavior is generated by systematically

replacing a high level task with a method body, until reaching
a sequence of primitive actions.

IV. PROPOSED APPROACH

In our approach, we focus on developing the learning algo-
rithm which would be part of the learning system described
in section II, that is, the generation of complete and efficient
operational models from demonstration traces. Building a full
pipeline – which would notably require the integration with
existing methods for perception, action and intent recognition
– is beyond the scope of this paper.

It is based on a learning procedure where an initial model
(possibly the result from a previous learning experience) is
iteratively refined through the exploration of similar models,
extending the work presented in [30].

Each iteration of this procedure starts by generating similar
structures from the initial model by adding, removing or
reordering branches of the decomposition tree. Parameters are
not considered during this first step of the process. Every gen-
erated structure is then parameterized, and the model quality
is finally evaluated with regard to its ability to “simplify” the
given demonstrations.

A. Model Structure Generation

To explore the space of possible model structures, we
currently use a descent algorithm, the neighbors of the base
model being generated through the changes made to the
branches of the decomposition tree. To better escape local
minima, we intend to replace the basic descent algorithm with
a metaheuristic. In particular, genetic algorithms have been
successfully used for learning hierarchical model structures
[13,14].

This structure now needs to be parameterized. In the model
presented in Figure 1, we would need to know that the
parameter cup in the action pour_coffee(cup) is the same
as the one in serve_drink(cup). In addition, we need to
establish a correspondence between the parameters appearing
in demonstrations (e.g. cup1) and the ones appearing in the
operational model (e.g. cup).

B. Model Parameterization

To parameterize the structure, we first consider an initial
model where each method has exactly one parameter for each
parameter in its underlying sub-actions and sub-tasks. This
naı̈ve guess obviously lead to many duplicated parameters
that eventually need to be unified. We cast this problem
as MAX-SMT [31] with equality logic, under the objective
of minimizing the number of parameters in the model and
requiring that each demonstration trace remains a possible
output of the final operational model.

C. Parameterized Model Quality Metric

To evaluate the quality of the learned model, we use the
metric described in [30], based on the Minimum Description
Length (MDL) principle [32]. This metric exploits data com-
pression as a way to drive the model search towards abstracting
redundant parts in the demonstrations.



REFERENCES

[1] J. Kober and J. Peters, “Learning motor primitives for robotics,” in 2009
IEEE International Conference on Robotics and Automation, May 2009,
pp. 2112–2118.

[2] S. Levine, N. Wagener, and P. Abbeel, “Learning Contact-Rich Manip-
ulation Skills with Guided Policy Search,” arXiv:1501.05611 [cs], Feb.
2015.

[3] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-Shot Visual
Imitation Learning via Meta-Learning,” arXiv:1709.04905 [cs], Sep.
2017.

[4] L. Johannsmeier, M. Gerchow, and S. Haddadin, “A Framework for
Robot Manipulation: Skill Formalism, Meta Learning and Adaptive
Control,” in 2019 International Conference on Robotics and Automation
(ICRA), May 2019, pp. 5844–5850.

[5] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” The
Journal of Machine Learning Research, vol. 22, no. 1, pp. 30:1395–
30:1476, Jan. 2021.

[6] F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A high level
supervision and control language for autonomous mobile robots,” in Pro-
ceedings of IEEE International Conference on Robotics and Automation,
vol. 1, Apr. 1996, pp. 43–49 vol.1.

[7] O. Despouys and F. F. Ingrand, “Propice-Plan: Toward a Unified Frame-
work for Planning and Execution,” in Recent Advances in AI Planning,
ser. Lecture Notes in Computer Science, S. Biundo and M. Fox, Eds.
Berlin, Heidelberg: Springer, 2000, pp. 278–293.

[8] S. Sardina, L. de Silva, and L. Padgham, “Hierarchical planning in
BDI agent programming languages: A formal approach,” in Proceedings
of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, ser. AAMAS ’06. New York, NY, USA:
Association for Computing Machinery, May 2006, pp. 1001–1008.

[9] A. Mayima, A. Clodic, and R. Alami, “JAHRVIS, a Supervision System
for Human-Robot Collaboration,” in 2022 31st IEEE International
Conference on Robot and Human Interactive Communication (RO-
MAN), Aug. 2022, pp. 777–784.

[10] J. Turi and A. Bit-Monnot, “Guidance of a Refinement-based Acting
Engine with a Hierarchical Temporal Planner,” in ICAPS Workshop on
Integrated Planning, Acting, and Execution (IntEx), Jun. 2022.

[11] V. Krüger, D. Kragic, A. Ude, and C. Geib, “The meaning of action: A
review on action recognition and mapping,” Advanced Robotics, vol. 21,
no. 13, pp. 1473–1501, Jan. 2007.

[12] D. Höller, G. Behnke, P. Bercher, and S. Biundo, “Plan and Goal Recog-
nition as HTN Planning,” in 2018 IEEE 30th International Conference
on Tools with Artificial Intelligence (ICTAI), Nov. 2018, pp. 466–473.

[13] M. Colledanchise, R. Parasuraman, and P. Ögren, “Learning of Behavior
Trees for Autonomous Agents,” IEEE Transactions on Games, vol. 11,
no. 2, pp. 183–189, Mar. 2018.

[14] Q. Zhang, J. Yao, Q. Yin, and Y. Zha, “Learning Behavior Trees
for Autonomous Agents with Hybrid Constraints Evolution,” Applied
Sciences, vol. 8, no. 7, p. 1077, Jul. 2018.

[15] T. Silver, R. Chitnis, A. Ajay, J. Tenenbaum, and L. P. Kaelbling, “Learn-
ing skill hierarchies from predicate descriptions and self-supervision.”
in AAAI GenPlan Workshop, 2020.

[16] K. Erol, J. Hendler, and D. S. Nau, “Complexity results for HTN
planning,” Annals of Mathematics and Artificial Intelligence, vol. 18,
no. 1, pp. 69–93, Mar. 1996.

[17] D. Aineto, S. Jiménez Celorrio, and E. Onaindia, “Learning action
models with minimal observability,” Artificial Intelligence, vol. 275, pp.
104–137, Oct. 2019.

[18] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning Sym-
bolic Models of Stochastic Domains,” Journal of Artificial Intelligence
Research, vol. 29, pp. 309–352, Jul. 2007.

[19] B. Juba and R. Stern, “Learning Probably Approximately Complete and
Safe Action Models for Stochastic Worlds,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 9, pp. 9795–9804, Jun.
2022.

[20] H. H. Zhuo, J. Peng, and S. Kambhampati, “Learning Action Models
from Disordered and Noisy Plan Traces,” arXiv:1908.09800 [cs], Sep.
2019.

[21] C. Hogg, H. Muñoz-Avila, and U. Kuter, “HTN-MAKER: Learning
HTNs with minimal additional knowledge engineering required,” in
Proceedings of the 23rd National Conference on Artificial Intelligence

- Volume 2, ser. AAAI’08. Chicago, Illinois: AAAI Press, Jul. 2008,
pp. 950–956.

[22] C. Hogg, U. Kuter, and H. Muñoz-Avila, “Learning hierarchical task
networks for nondeterministic planning domains,” in IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial
Intelligence, Pasadena, California, USA, July 11-17, 2009, C. Boutilier,
Ed., 2009, pp. 1708–1714.

[23] H. H. Zhuo, H. Muñoz-Avila, and Q. Yang, “Learning hierarchical
task network domains from partially observed plan traces,” Artificial
Intelligence, vol. 212, pp. 134–157, Jul. 2014.

[24] M. Fine-Morris, M. W. Floyd, B. Auslander, G. Pennisi, K. Gupta,
M. Roberts, J. Heflin, and H. Muñoz-Avila, “Learning decomposition
methods with numeric landmarks and numeric preconditions,” in Pro-
ceedings of the 5th ICAPS Workshop on Hierarchical Planning (HPlan
2022), 2022, pp. 29–37.

[25] C. W. Geib and R. P. Goldman, “Recognizing plans with loops rep-
resented in a lexicalized grammar,” in Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011, W. Burgard and D. Roth, Eds.
AAAI Press, 2011.

[26] P. Kantharaju, S. Ontañón, and C. W. Geib, “Extracting CCGs for plan
recognition in RTS games,” in Proceedings of the 2nd Workshop on
Knowledge Extraction from Games Co-Located with 33rd AAAI Con-
ference on Artificial Intelligence, KEG@AAAI 2019, Honolulu, Hawaii,
January 27th, 2019, ser. CEUR Workshop Proceedings, M. Guzdial,
J. C. Osborn, and S. Snodgrass, Eds., vol. 2313. CEUR-WS.org, 2019,
pp. 9–16.

[27] P. Morere, L. Ott, and F. Ramos, “Learning to Plan Hierarchically From
Curriculum,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2815–2822, Jul. 2019.

[28] R. Li, M. Roberts, M. Fine-Morris, and D. Nau, “Teaching an HTN
learner,” in Proceedings of the 5th ICAPS Workshop on Hierarchical
Planning (HPlan 2022), 2022, pp. 68–72.

[29] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge: Cambridge University Press, 2014.

[30] P. Hérail and A. Bit-Monnot, “Learning Operational Models from
Demonstrations: Parameterization and Model Quality Evaluation,” in
ICAPS Hierarchical Planning Workshop (HPlan), Singapore (virtual),
Singapore, Jun. 2022.

[31] R. Nieuwenhuis and A. Oliveras, “On SAT Modulo Theories and
Optimization Problems,” in Theory and Applications of Satisfiability
Testing - SAT 2006, ser. Lecture Notes in Computer Science, A. Biere
and C. P. Gomes, Eds. Berlin, Heidelberg: Springer, 2006, pp. 156–169.

[32] P. Grünwald, “A minimum description length approach to grammar
inference,” in Connectionist, Statistical and Symbolic Approaches to
Learning for Natural Language Processing, J. G. Carbonell, J. Siek-
mann, G. Goos, J. Hartmanis, J. Leeuwen, S. Wermter, E. Riloff, and
G. Scheler, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
vol. 1040, pp. 203–216.


