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Abstract—Developing robust autonomous agents require com-
plex execution architectures operating at several levels of ab-
straction in order to keep the acting problem tractable. While
there is a growing body of work focused on learning models
at the sensory-motor level, the same cannot be said for high-
level models enabling deliberative functions. In this paper, we
identify the possibilities that can be offered by a learning system
integrating human input for learning hierarchical operational
models and present a learning algorithm that could provide a
missing component for such a system.

I. INTRODUCTION

For achieving complex and high-level tasks, autonomous
robots typically need to combine a set of elementary skills,
where each skill abstracts over motor primitives for elementary
operations, such as picking up something. These elementary
skills themselves may have to be slightly different depending
on the context (e.g. the movement to open a door depends on
the handle type). To alleviate the difficulty of designing such
skills by hand, several approaches have focused on learning
them [1–5].

The high level tasks require acting deliberately, considering
the effects of individual actions on the global activity while
unexpected events require flexibility and reactivity. Existing
execution systems have addressed these compromise for sev-
eral decades [6–10], leveraging planning techniques to handle
new contexts or new tasks to achieve while still attempting to
keep deliberation time reasonable.

However, most execution system still rely on manually
written “programs” – called operational models – even though
they are cumbersome to design, requiring human experts
with application specific domain knowledge as well as some
familiarity with planning languages. Thanks to the advances
in action and activity recognition [11,12], we can envision
a human tutor teaching an agent through a small set of
demonstrations from which to generalize.

For learning hierarchical operational models, there has been
approaches focusing on learning Behavior Trees (BTs) [13,14]
and hierarchical policies [15]. However, these approaches
are focusing on learning reactive models, providing limited
lookahead capabilities compared to hierarchical planning mod-
els such as Hierarchical Task Networks (HTNs) [16]. While
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there has been attempts at learning planning models from
demonstrations, many of these approaches are focused on non-
hierarchical models, focusing on partial traces observability
[17], non-deterministic environments [18,19] or even taking
into account noisy observations [20].

In the context of hierarchical models, several approaches
have been developed, such as HTN-MAKER for use in
fully observable deterministic environments[21], and non-
deterministic ones [22]. This technique relies on annotated
tasks with pre- and post-conditions to extract sequences allow-
ing to achieve the tasks but is limited in terms of abstraction
capabilities. HTNLearn [23] also learns hierarchical models
from similarly annotated tasks by converting the learning
problem into one of constraint satisfaction, but is limited to
deterministic environments.

Recently, unsupervised learning techniques have been used
to learn Hierarchical Goal Networks (HGNs) [24]. Approaches
have also been developed to learn Combinatory Categorial
Grammar (CCG) [25,26], which share a similar structure,
mainly in the context of plan recognition.

Most of these methods suffer from some limitation in the
expressiveness of the learned models and most importantly,
they do not offer a mechanism to reuse previously learned
information for subsequent learning.

II. INTEGRATING A HUMAN IN THE LEARNING PROCESS

We involve the human in the learning process as a tutor,
in charge of designing and carrying out demonstrations of
desirable behavior to achieve a set of tasks. In general, we
assume that each skill exploited in the tutor’s demonstration
has a corresponding skill in the agent’s capabilities, which may
require the tutor to place its demonstration at the appropriate
level of abstraction to smooth out any difference between their
capabilities (e.g. wheels vs legs).

Once learned, a task could be leveraged in further demon-
strations, exploiting this common vocabulary to decouple the
learning of high-level behavior from the much more fine-
grained details. Indeed, such tasks could then be viewed as
a new skill shared by the agent and the tutor, allowing for
more efficient demonstrations down the line.

A learner able to incorporate abstract tasks in its demon-
strations would be able to incrementally learn complex tasks
by reusing previously learned behaviors. This idea is similar



to the notion of learning from a curriculum instead of arbitrary
demonstrations, which has been explored for use in learning
hierarchical models [27] and recently HTNs [28].

III. LEARNING PROBLEM AND DEFINITIONS

Considering a set of demonstrations from a tutor, we want
to learn operational models able to reproduce and generalize
the demonstrated behaviors.

A. Inputs to the Learning Problem

We consider as input to our learning problem the set of
skills common to the tutor and the agent, each represented
as a primitive action a composed of an identifier and a set
of parameters, such as a = action name(arg1, . . . , argn). We
refer to the set of primitive actions as A.

The tutor and learner also share a vocabulary of non-
primitive tasks TI with known parameters, representing the
high-level activities to be demonstrated.

For each task tI ∈ TI , the agent is given a set DtI of demon-
stration traces from the tutor. Each trace d ∈ DtI is an alter-
nating sequence of states and parameterized tasks {ti | ti ∈
{TI∪A}} such as d = {s0 → t0 → s1 → · · · → tn−1 → sn}.
States are a compact representation of the world at any given
time.

B. Operational Model

Operational models represent the knowledge an agent has
regarding how it may achieve some activity in its environment
[29]. We define them as in [30], but will recall some definitions
here for simplicity.

We define an operational model O as an HTN-like structure
which can be written as a tuple O = (T,A,M) where T is a
set of abstract tasks, A a set of primitive actions and M a set of
possible methods decomposing the tasks t ∈ T into subtasks
{td | td ∈ {T ∪A}}. An example of such structure is given in
Figure 1. Using such a model, the task serve_drink(cup1)
could be decomposed as grab(cup1) → place(cup1) →
pour_coffee(cup1) while serve_drink(cup2) could
be decomposed as grab(cup2) → place(cup2) →
pour_orange_juice(cup2).

serve drink(cup)

method1

place(cup)grab(cup) pour drink(cup)

method2

pour coffee(cup)
method3

pour orange juice(cup)

Fig. 1: Example of a simplified operational model structure.

More formally, a method m ∈ Mt is a tuple m =
(Prem, Nm), where Prem are the preconditions of the
method, and Nm is a sequence of tasks and actions defining a
way to decompose t. A method is applicable in a given state
s iff its preconditions hold in this state.

When considering an acting problem, these models are “ex-
ecuted” to generate a behavior leading to the achievement of a
task. In a nutshell, this behavior is generated by systematically

replacing a high level task with a method body, until reaching
a sequence of primitive actions.

IV. PROPOSED APPROACH

In our approach, we focus on developing the learning algo-
rithm which would be part of the learning system described
in section II, that is, the generation of complete and efficient
operational models from demonstration traces. Building a full
pipeline – which would notably require the integration with
existing methods for perception, action and intent recognition
– is beyond the scope of this paper.

It is based on a learning procedure where an initial model
(possibly the result from a previous learning experience) is
iteratively refined through the exploration of similar models,
extending the work presented in [30].

Each iteration of this procedure starts by generating similar
structures from the initial model by adding, removing or
reordering branches of the decomposition tree. Parameters are
not considered during this first step of the process. Every gen-
erated structure is then parameterized, and the model quality
is finally evaluated with regard to its ability to “simplify” the
given demonstrations.

A. Model Structure Generation

To explore the space of possible model structures, we
currently use a descent algorithm, the neighbors of the base
model being generated through the changes made to the
branches of the decomposition tree. To better escape local
minima, we intend to replace the basic descent algorithm with
a metaheuristic. In particular, genetic algorithms have been
successfully used for learning hierarchical model structures
[13,14].

This structure now needs to be parameterized. In the model
presented in Figure 1, we would need to know that the
parameter cup in the action pour_coffee(cup) is the same
as the one in serve_drink(cup). In addition, we need to
establish a correspondence between the parameters appearing
in demonstrations (e.g. cup1) and the ones appearing in the
operational model (e.g. cup).

B. Model Parameterization

To parameterize the structure, we first consider an initial
model where each method has exactly one parameter for each
parameter in its underlying sub-actions and sub-tasks. This
naı̈ve guess obviously lead to many duplicated parameters
that eventually need to be unified. We cast this problem
as MAX-SMT [31] with equality logic, under the objective
of minimizing the number of parameters in the model and
requiring that each demonstration trace remains a possible
output of the final operational model.

C. Parameterized Model Quality Metric

To evaluate the quality of the learned model, we use the
metric described in [30], based on the Minimum Description
Length (MDL) principle [32]. This metric exploits data com-
pression as a way to drive the model search towards abstracting
redundant parts in the demonstrations.
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[11] V. Krüger, D. Kragic, A. Ude, and C. Geib, “The meaning of action: A
review on action recognition and mapping,” Advanced Robotics, vol. 21,
no. 13, pp. 1473–1501, Jan. 2007.
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