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ROBUST OPTIMAL SHIP HULLS BASED ON MICHELL’S WAVE

RESISTANCE

SALAH-EDDINE ZERROUQ AND MORGAN PIERRE

Abstract. We seek the hull of a ship with a given volume which minimizes the
water resistance with uncertainties on the cruising speed. The water resistance is
based on Michell’s wave resistance functional and the speed is a random variable
whose probability distribution is known. We first handle the case where the sup-
port of the hull is given, and then we also optimize this support for a given area.
In each case, an optimal hull is shown to exist. The numerical simulations are
costly so we adapt to our problem Newton’s method for shape optimization. The
numerical results are compared to the case where the cruising speed is known.

Keywords: Michell’s wave resistance, Dirichlet energy, probability distribution, ro-
bust deterministic control, geometric shape optimization, Newton’s method, lumped
mass matrix.
Mathematics Subject Classification: 49J55, 49M15, 65K10, 76B20.

1. Introduction

In this paper, we are interested in optimizing the hydrodynamic properties of a
ship. In this regard, the most famous feature for minimizing the water resistance to
the motion of a ship is perhaps the bulbous bow, a protruding bulb at the front of
the ship, just beneath the waterline [12]. Schematically speaking, the wave created
by the bulb cancels the wave created by the bow of the ship; this reduces the wake
and the energy lost in creating it. However, a bulbous bow is generally optimized
for a cruising speed and it is generally not optimal for other speeds. Here, we want
to find a hull which is optimal for a range of speeds.

The starting point in our approach is a simplified model in which the water resis-
tance is the sum of a wave resistance (related to the wake of the ship) and of a viscous
resistance (related to friction between the water and the hull of the ship). Such a
decomposition is standard in ship hydrodynamics [5], but we focus here on a specific
model where, for a given form of the hull and for a given speed, the wave resistance
is computed by Michell’s formula [25] and the viscous resistance is proportional to
the wetted surface of the hull and to the square of the speed.

In Michell’s formula, which is based on a linear potential flow theory, a function
represents half of the wetted hull and the other half is obtained by symmetry. In [10],
the problem of finding a half hull function which minimizes the total resistance for a
given speed of the ship and a given volume of the hull was solved both theoretically
and numerically. In this case, the domain of definition of the hull function was also
given (for instance, a rectangle, as in the Wigley hulls [26]). This unified former
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2 ROBUST OPTIMAL SHIP HULLS

results from the literature. In particular, the existence and uniqueness result of
Krein and Sizov [21, 31] was extended to a Sobolev setting and the famous bulbous
bow was recovered numerically for moderate values of the speed, as in [20, 24].

In [8, 9], the more modern question of optimizing also the domain of definition of
the hull function, for a given area, was considered. An optimal support was proved
to exist, assuming for compactness that all the admissible supports belonged to a
bounded hold-all domain. Several numerical simulations showed again the presence
of a bulbous bow in a specific speed regime.

The simulations above pointed out that the shape of the bulb is very sensitive to
the speed of the ship. Our purpose here is to propose a more robust model in which
the variations or incertainties in the cruising speed are taken into account. Thus, we
assume that the speed is a random variable whose probability distribution is known
and we minimize the expectation of the total resistance for a given volume of the
hull. We shall use a deterministic algorithm to compute the minimizer. In control
theory, this approach is known as a robust deterministic control (see, e.g., [2, p.469,
case (d)]). As previously, we will consider two situations. First, we handle the case
where the domain of definition of the hull is fixed, and secondly we optimize this
domain of definition, for a given area.

We first explain our model based on Michell’s formula and on a given probability
distribution of the speed in Section 2. Then, in Section 3, we consider the situation
where the domain of definition of the hull function is fixed. We prove the existence
and uniqueness of an optimal hull with given volume. We also establish the regularity
of this optimal hull when the domain is a rectangle. Numerical simulations are given
for two different kinds of probability distributions. Because of the averaging process,
the bulbous bow is no longer present in the robust hull.

In Section 5, we optimize the support of the optimal hull for a given area. We prove
the existence of an optimal support and then we focus on numerical simulations. In
order to reduce the computational time, we adapt to our problem Newton’s method
for shape optimization. This is a technical matter because of the complex form of
second order shape derivatives, so we first explain our discretization on several model
problems in Section 4.

In the context of shape optimization, Newton’s method is scarce in the literature
because of its complexity. It was first implemented in [29], where the authors give
a discretization of the second order shape derivative as a full matrix. We also refer
to [17] where the author uses a conjugate gradient method to compute the inverse
of the Hessian matrix at every iteration. More recently, a level-set approach was
developed in [3, 37].

For our problem, we use a geometric shape optimization approach with a fitted
mesh and a P1 finite element discretization. The use of a trapezoidal rule for the
numerical integration on the boundary allows us to deal only with a diagonal Hessian
matrix. This diagonal matrix reminds the method of lumped masses used for the
finite element approximation of parabolic problems [34, Chapter 15]. It can also be
regarded as a quasi-Newton method. This is detailed in Section 4 for the Dirichlet
energy. A similar discretization is used for our optimal design problem in Section 5.
The numerical results show that the robust hull obtained by this approach still has
a bulbous bow, even if the averaging process has a smoothing effect on the geometry
of the hull.
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2. The formal optimal design problems

The total resistance of water to the motion of a ship is the force required to tow
the ship in calm water a constant speed. A traditional and simplified approach (see,
e.g., [5]) uses the decomposition

Rtotal = Rwave +Rviscous. (2.1)

The wave resistance reflects the energy that goes into creating the wave.
In 1898, Michell [25] gave a formula for the wave resistance, valid for any shape

of the hull, for a constant speed and in an infinite domain. Experiments starting
with Wigley in the 1920’s showed a reasonable good agreement between theory and
experiment (see the review by Gotman [14] and references therein). We first recall
Michell’s formula and then we give a simple formula for the viscous resistance.

Figure 1. The immerged hull: half of it is represented by a positive
function y = f(x, z). The other half hull is obtained by symmetry.

2.1. Michell’s wave resistance formula. Consider a ship moving with constant
speed U on the surface of an unbounded fluid. We assume that the coordinates xyz
are fixed to the ship: the xy-plane is the water surface and z is vertically downward.
The immerged half hull surface is represented by a continuous nonnegative function
(see Figure 1)

y = f(x, z) ≥ 0, (x, z) ∈ D.
The set D on which f is defined is split into three parts: its interior D (an open

subset of the upper half-plane with a Lipschitz boundary), in which f(x, z) > 0, its
boundary ΓN at the surface z = 0 and its boundary Γ0 under the surface, on which
f(x, z) = 0 (see Figure 2).

It is assumed that the fluid is incompressible, inviscid and that the flow is irrota-
tional. The motion has lasted long enough so that a steady state has been reached.

Michell’s formula [25] reads

Rwave =
4ρg2

πU2

∫ ∞
1

(I1(λ)2 + I2(λ)2)
λ2

√
λ2 − 1

dλ, (2.2)
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with

I1(λ) =

∫
D

∂f(x, z)

∂x
exp

(
−λ

2gz

U2

)
cos

(
λgx

U2

)
dxdz, (2.3)

I2(λ) =

∫
D

∂f(x, z)

∂x
exp

(
−λ

2gz

U2

)
sin

(
λgx

U2

)
dxdz. (2.4)

In this formula, U (in m · s−1) is the speed of the ship, ρ (in kg ·m−3) is the constant
density of the fluid and g (in m · s−2) is the standard gravity. The variables x, z and
f(x, z) are expressed in meters. Consequently, the integrals I1(λ) and I2(λ) are in
m2 and Rwave (in Newton) has the dimension of a force.

The integration parameter λ has no dimension: it can be interpreted as λ =
1/ cos θ, where θ is the angle between the ship’s path and the direction of wave
propagation [5, p. 310], [35]. For θ = 0 (λ = 1), waves follow the ship with their
crests aligned perpendicular to the ship’s course (transverse waves) and for θ = ±π/2
(λ = +∞), waves have crests parallel to the ship’s path.

We stress that Michell’s approach is a linear theory in which the ship is assumed to
be “thin”, which means that the angles made by the hull surface with the longitudinal
plane of symmetry are small, i.e.

0 ≤ f << 1,

∣∣∣∣∂f∂x
∣∣∣∣ << 1 and

∣∣∣∣∂f∂x
∣∣∣∣ << 1 in D. (2.5)

In our approach, we do not assume the conditions (2.5) a priori, but we will recover
them in a weak form by penalizing these constraints thanks to the viscous resistance.

Remark 2.1. In Michell’s model, the flow is irrotational and incompressible, so we
seek a potential in the form −Ux+ φ where φ is small and satisfies

−∆φ = 0 in R× R+ × R+ (a quarter space),

∂xxφ−
g

U2
∂zφ = 0 on z = 0,

∂yφ+ U∂xf = 0 on y = 0+.

(2.6)
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In (2.6), the first equation is the incompressibility condition whereas the third equa-
tion is a linearization of the impermeability condition on the hull. The second equa-
tion is known as the Neumann-Kelvin condition [22]. It is obtained by combining a
linearized no-slip condition and a linearized Bernoulli equation at the free surface.

In [25], Michell managed to compute a physical solution to problem (2.6) which
satisfies the condition limx→+∞ |∇φ| = 0. This means that in front of the ship, there
is no wake. The wave resistance is the drag force in this model and it is computed
as

−2

∫
R2

δp∂xf(x, z)dxdz,

where δp = ρU∂xφ(x, 0, z) stands for the difference of pressure due to the ship.
In [32], Sretensky solved problem (2.6) in the case of a finite depth H by means

of a Fourier transform. He recovered Michell’s wave resistance formula by letting H
tend to infinity.

2.2. The viscous resistance and the total resistance. In formula (2.1), a tra-
ditionnal approach is to express the viscous resistance as (see, e.g., [5])

Rviscous =
1

2
ρU2CF A . (2.7)

The viscous resistance Rviscous accounts for the effects of viscosity which are not
present in Michell’s model. In (2.7), CF is the viscous drag (or friction) dimensionless
coefficient and A (in m2) is the surface area of the ship’s wetted hull. The coefficient
CF can sometimes have a complicated form [5] but throughout this manuscript, we
assume that CF is a positive constant.

Since the graph of f represents the ship’s half-hull, A is given by:

A = 2

∫
D

√
1 + |∇f(x, z)|2 dxdz. (2.8)

For a thin ship, |∇f | is uniformly small (see (2.5)), and the integral above can be

approximated by performing a Taylor expansion of
√

1 + |∇f |2 at first order:

A = 2

∫
D

1dxdz +

∫
D
|∇f(x, z)|2 dxdz + o(||∇f ||2∞) . (2.9)

A good approximation of the viscous drag for small ∇f reads

Rviscous =
1

2
ρU2CF

(
2|D|+

∫
D
|∇f(x, z)|2 dxdz

)
, (2.10)

where |D| is the area of D.
Summing up, the total resistance for a ship hull defined by f reads

Rtotal = Rwave +Rviscous, (2.11)

whereRwave is defined by (2.2)-(2.4) andRviscous is defined by (2.10). In this formula,
the cruising speed of the ship, U , is constant.

2.3. The formal optimal design problems. The variables g and ρ are known
physical constants and we assume for simplicity that the viscous drag coefficient
CF is a given constant. Then the total resistance defined by (2.11), (2.2) and (2.10)
depends only on the function f : D → R and on the speed U , so we write Rtotal(f, U).
The half volume of the hull (a positive real number) is given and it is denoted by V .
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2.3.1. Robust optimization of the hull for a given domain. In [10], Dambrine, Pierre
and Rousseaux solved the following convex problem for a fixed domain D, by using
an appropriate H1 functional setting: for a given speed U > 0,Find the function fD which minimizes Rtotal(f, U) in the set{

f : D → R, f = 0 on Γ0 and
∫
D f(x, z)dxdz = V

}
.

(2.12)

The solution to this problem may be very sensitive to variations of U . In order
to have a more robust problem, we assume now that U is a random function with
realizations denoted by Uω and we consider the problem:Find the function f?D which minimizes E(Rtotal(f, U)) in the set{

f : D → R, f = 0 on Γ0 and
∫
D f(x, z)dxdz = V

}
.

(2.13)

It will be interesting to compare Rtotal(f
?
D, U) with Rtotal(fD, U).

The cost function Rtotal(f, U) can more generally be replaced by

J(f, U) = h(U)×Rtotal(f, U)

where h : (0,+∞) → (0,+∞) is a continuous function of U . For instance, we may
choose

• h(U) = UT where T is a time, in which case J(f, U) is an energy;
• h(U) = 1, in which case J(f, U) is the total resistance.

Remark 2.2. Since Michell’s wave resistance is computed for a steady state, this
model means that in the term E(h(U)Rtotal(f, U)), we neglect the transitory states
between two steady states.

Remark 2.3. It would be more natural to add the condition f ≥ 0 in the set of func-
tions for problem (2.12), in order to avoid self-crossing of the hull, as in [10]. Here,
we will check this condition numerically. That is, we first solve problem (2.12), a
quadratic-linear minimization problem which reduces to a linear problem (cf. (3.16)),
and we check a posteriori that fD ≥ 0 in D. The same approach holds for prob-
lem (2.13).

2.3.2. Robust optimization of the domain and of the hull. Next, we consider the do-
main D as a variable of the problem. The total resistance is written Rtotal(D, fD, U)
where for a given domain D and a given speed U > 0, fD is the solution to prob-
lem (2.12). We fix an area a > 0. In [8, 9], Dambrine and Pierre studied the following
shape optimization problem: for a given constant speed U ,

Find a set DU which minimizes Rtotal(D, fD, U)

among all bounded regular open subsets D of the lower half-plane

such that |D| = a.

(2.14)

Here and below, |D| is the area of the domain D. Let h be a positive continuous
function of U . Since U is fixed, h(U) is a constant and we may use the cost function
h(U)Rtotal(D, fD, U) in the problem above without changing its solution(s) DU .
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Now we assume again that U is a random function and we are interested in the
more robust problem:

Find a set D? which minimizes E [h(U)Rtotal(D, fD, U)]

among all bounded regular open subsets D of the lower half-plane

such that |D| = a.

(2.15)

For the numerical resolution of problem 2.15 in Section 5.2, we will compute the
first order and second order shape derivatives of the set functional. For its theoretical
resolution in Section 5.1, we will seek for an optimal support rather than an optimal
domain.

3. Robust optimal hull for a fixed domain

3.1. Functional setting. Let D be a bounded and connected open subset of the
upper half plane {(x, z) ∈ R2 : z > 0}. We assume that D has a Lipschitz boundary
∂D. For the sake of simplicity, we also assume throughout section 3 that the part
of ∂D which intersects the x-axis, namely ∂D ∩ (R× {0}), is a segment of the x-
axis (possibly empty). We let ΓN denote the relative interior of this segment and
Γ0 = ∂D \ ΓN .

We work with the Sobolev space

H(D) =
{
u ∈ H1(D) : u = 0 on Γ0 in the sense of traces

}
.

Let u ∈ H(D) (u is the hull function) and V > 0 (V is the speed of the ship). For
Michell’s wave resistance, we set

α =
g

V 2
(3.1)

and (2.2) becomes

Rwave(u, α) =
4ρgα

π

∫ ∞
1
|Su(λ)|2 λ2

√
λ2 − 1

dλ,

with (cf. (2.3)-(2.4))

Su(λ, u, α) =

∫
D

∂u

∂x
(x, z)e−iλαxe−λ

2αzdxdz.

The number α is known as the Kelvin wave number. The value 1/α (in m) is the
typical wavelength of the transverse waves. Transverse waves follow the ship with
their crests and troughs aligned perpendicular to the ship’s course and the wavelength
is the distance between two successive crests. Since the speed V of the ship can be
recovered from α through V =

√
g/α, knowing α is equivalent to knowing V . We

will use the variable α because it is more convenient.
Integrating Su by parts with respect to x and taking advantage of the boundary

condition u = 0 on ∂Ω, we find that

Rwave(u, α) =
4ρgα3

π

∫ ∞
1
|T (u, α, λ)|2 λ4

√
λ2 − 1

dλ, (3.2)

where, for all λ > 0,

T (u, α, λ) =

∫
D
u(x, z)e−iλαxe−λ

2αzdxdz.
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The viscous resistance (2.10) reads

Rviscous(u, α) =
ρg

2α
CF

(
2|D|+

∫
D
|∇u(x, z)|2 dxdz

)
.

The total resistance is

Rtotal(u, α) = Rviscous(u, α) +Rwave(u, α). (3.3)

We assume that the Kelvin wave number is a random variable ν : Ω → R on
a complete probability space (Ω,A,P). Moreover, we assume that the probability
distribution Pν of ν is a measure which has a compact support in (0,+∞). We recall
that the probability distribution of ν is defined for every Lebesgue-measurable set
B ⊂ R by

Pν(B) = P(ν ∈ B) = P ({w ∈ Ω : ν(ω) ∈ B}) .
Concerning the Kelvin wave number, ν denotes the random variable, whereas α is a
positive real number.

We recall that if X : Ω→ R is a random variable which is integrable with respect
to P, its expectation is defined by

E(X) =

∫
Ω
X(ω)dP(ω).

If ϕ : (0,+∞)→ R is a continuous function, then ϕ(ν) : Ω→ R is a random variable
and we have the well-known formula,

E[ϕ(ν)] =

∫
Ω
ϕ(ν(ω))dP(ω) =

∫
R
ϕ(s)dPν(s).

In view of (3.3), we consider the cost function

JD(u) = E
[
hρ,g,CF

(ν)
(
Rviscous(u, ν) +Rwave(u, ν)

)]
, (3.4)

where hρ,g,CF
: (0,+∞) → (0,+∞) is a continuous function which may depend on

the physical constants ρ, g and on the viscous coefficient CF . We note that it could
be interesting to consider CF as a random variable as well (possibly dependent on
α), but we assume for simplicity that CF is constant.

Following [9], we introduce the normalized viscous resistance functional

J0(u) =

∫
D
|∇u|2dxdz

and the normalized wave resistance functional

Jwave(u, α) =
8α4

π

∫ ∞
1
|T (u, α, λ)|2 λ4

√
λ2 − 1

dλ, (3.5)

where T is defined as previously for all u ∈ H(D), α > 0 and λ > 0 by

T (u, α, λ) =

∫
D
u(x, z)e−iλαxe−λ

2αzdxdz. (3.6)

The cost function (3.4) reads

JD(u) = E
[
hρ,g,CF

(ν)
ρg

2ν
CF

(
2|D|+ J0(u) +

1

CF
Jwave(u, ν)

)]
.

By setting

h̃(α) = hρ,g,CF
(α)

ρg

2α
CF , (3.7)
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we have

JD(u) = E
[
h̃(ν)

(
2|D|+ J0(u) +

1

CF
Jwave(u, ν)

)]
. (3.8)

We note that h̃ generally depends on the fixed parameters ρ, g and CF .
We let V > 0 denote the half-volume of the hull. We consider the set

HV (D) =

{
u ∈ H(D) :

∫
D
u dxdz = V

}
,

which is a closed affine subspace of H(D). Our robust optimization problem reads:

Find u?D ∈ HV (D) such that JD(u?D) = min {JD(u) : u ∈ HV (D)} . (3.9)

In (3.9), the set D is given and the positive parameters ρ, g , CF and V are fixed.

3.2. Theoretical results. The following result will prove useful.

Lemma 3.1. Let q ∈ (1,+∞) and let q′ = q/(q−1) ∈ (1,+∞) denote the conjugate

exponent of q. Assume that H ∈ Lq(D ×D). Then for all u, v ∈ Lq′(D), we have∫
D×D

|H(x, z, x′, z′)u(x, z)v(x′, z′)|dxdzdx′dz′ ≤ ‖H‖Lq(D×D)‖u‖Lq′ (D)‖v‖Lq′ (D).

(3.10)

Moreover, for each u ∈ Lq′(D), the function

(x, z) 7→
∫
D
H(x, z, x′, z′)u(x′, z′)dx′dz′ (3.11)

belongs to Lq(D).

Proof. Estimate (3.10) is a consequence of Hölder’s inequality. The claim on the
function (3.11) follows from (3.10), Fubini’s theorem and a duality argument. �

By formally switching the integrals in the expression (3.5)-(3.6), we see that
Michell’s normalized wave resistance can be written

Jwave(u, α) =

∫
D×D

kα(x, z, x′, z′)u(x, z)u(x′, z′)dxdzdx′dz′ (3.12)

where

kα(x, z, x′, z′) =
8α4

π
K(α(x− x′), α(z + z′)) (3.13)

and

K(X,Z) =

∫ ∞
1

e−λ
2Z cos(λX)

λ4

√
λ2 − 1

dλ. (3.14)

This formal calculation was rigorously proved in [8, Appendix A]. It was shown that

Michell’s kernel belongs to L5/4−ε(D × D) and that this estimate is optimal if D
contains a half-disk centered on the x-axis.

The results from [8, Appendix A] are summarized in the proposition below. We
first note that K is defined and continuous on R×(0,+∞), thanks to the exponential
term, so that kα is continuous on (R× (0,+∞))2.

Proposition 3.2. Let α > 0. Michell’s normalized wave resistance kernel kα (3.13)

belongs to Lq(D×D) for all 1 ≤ q < 5/4. For each q′ > 5 and for each u ∈ Lq′(D),
the formulations for Jwave(u) given by (3.5)-(3.6) and (3.12)-(3.13)-(3.14) are equal.
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Let q ∈ (1, 5/4) and let q′ = q/(q − 1) ∈ (5,+∞) be the conjugate exponent

of q. Since H1(D) is continuously imbedded in Lq
′
(D) for all q′ ∈ [1 + ∞) [1],

Proposition 3.2 and Lemma 3.1 show that for all u ∈ H(D), Jwave(u) < +∞.
The following result is proved in [9, Lemma 5.2 (ii)].

Lemma 3.3. For each u ∈ H(D), the map

α 7→ Jwave(u, α)

is continuous on (0,+∞).

Recall that Pν has a compact support in (0,+∞), so we may assume that its
support is included in [νmin, νmax] with 0 < νmin ≤ νmax < +∞. We define the
kernel

Hν(x, z, x′, z′) =

∫ νmax

νmin

h̃(s)ks(x, z, x
′, z′)dPν(s),

which has finite values for all (x, z, x′, z′) ∈ D ×D (since z + z′ > 0).

Proposition 3.4. The kernel Hν belongs to Lq(D×D) for all 1 ≤ q < 5/4 and for
all u ∈ H(D), we have

E
[
h̃(ν)Jwave(u, ν)

]
=

∫
D×D

Hν(x, z, x′, z′)u(x, z)u(x′, z′)dxdzdx′dz′. (3.15)

Proof. We choose q ∈ (1, 5/4) and we denote by q′ ∈ (5,+∞) the conjugate exponent

of q. Since the function t 7→ tq
′

is convex on [0,+∞), by Jensen’s inequality, we have∣∣Hν(x, z, x′, z′)
∣∣q′ ≤ ∫ νmax

νmin

h̃q
′
(s)|ks(x, z, x′, z′)|q

′
dPν(s).

Thus, by (3.13) and Fubini’s theorem,∫
D×D

∣∣Hν(x, z, x′, z′)
∣∣q′ dxdzdx′dz′

≤
∫ νmax

νmin

∫
D×D

ĥ(s)|K(s(x− x′), s(z + z′))|q′dxdzdx′dz′dPν(s),

where ĥ : (0,+∞)→ (0,+∞) is a continuous function, namely

ĥ(s) = h̃q
′
(s)

(
8s4

π

)q′
.

We perform the change of variable (x̃, z̃, x̃′, z̃′) = (sx, sz, sx′, sz′) and we find∫
D×D

∣∣Hν(x, z, x′, z′)
∣∣q′ dxdzdx′dz′

≤
∫
D×D

|K(x− x′, z + z′)|q′dxdzdx′dz′
∫ νmax

νmin

1

s4
ĥ(s)dPν(s),

In the right handside above, the first integral is finite thanks to Proposition 3.2. The
second integral is finite since [νmin, νmax] is compactly embedded in (0,+∞). This

proves that Hν belongs to Lq
′
(D ×D). For the computation of

E
[
h̃(ν)Jwave(u, ν)

]
,

we use the expression (3.12). The estimates above combined with Hölder’s inequality
(as in (3.10)) show that we may apply apply Fubini’s theorem. This yields (3.15). �
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Remark 3.1. Let α0 > 0 and assume that Pν is the Dirac delta function at α0, δα0 .
Then the kernel Hν is simply

Hν(x, z, x′, z′) = h̃(α0)kα0(x, z, x′, z′).

We are in position to prove:

Theorem 3.5. Problem (3.9) has a unique solution u?D which is also the unique
solution in H1(D) of the boundary value problem

−∆u(x, z) +
1

CFE
[
h̃(ν)

]∫
D×D

Hν(x, z, x′, z′)u(x′, z′)dx′dz′ = C, ∀(x, z) ∈ D,

∫
D u dxdz = V ,
u = 0 on Γ0,

∂u

∂n
= 0 on ΓN .

(3.16)

Proof. The functional T defined by (3.6) depends linearly on its first argument u,
so that for each α > 0, u 7→ Jwave(u, α) is a quadratic and convex functional on

H(D). Thus, u 7→ E(h̃(ν)Jwave(u, ν)) defined by (3.5) is convex on H(D). On the
other hand, the function J0 is stricly convex on H(D), thanks to the homogeneous
Dirichlet boundary condition on Γ0 and the Poincaré inequality. Thus, JD is stricly
convex on H(D) and since HV (D) is an affine subspace of H(D), problem (3.9) has
a most one solution in HV (D).

Let (un) be a minimizing sequence for problem (3.9) in HV (D). We have

JD(un) = E
[
h̃(ν)2|D|

]
+ E

[
h̃(ν)

]
J0(un) +

1

CF
E
[
h̃(ν)Jwave(un, ν)

]
.

Each one of the three terms in the right hand-side is nonnegative so JD(un) is
nonnegative and the sequence (un) is bounded in H1(D) (thanks to the term J0(un)
and the Poincaré inequality). Up to a subsequence, (un) converges weakly in H1(D)
to some u?D, which belongs to HV (D) since the latter is a closed convex subset of
H1(D). By lower semi-continuity of J0,

J0(u?D) ≤ lim inf
n

J0(un).

Now, let q′ ∈ (5,+∞). The space H1(D) is compactly embedded in Lq
′
(D) [1] so

(un) converges strongly to u?D in Lq
′
(D). By Proposition 3.4,

E
[
h̃(ν)Jwave(un, ν)

]
→ E

[
h̃(ν)Jwave(u

?
D, ν)

]
.

Thus, JD(u?D) ≤ lim infn JD(un). since (un) is a minimizing sequence, this proves
that u?D is a minimizer.

The Euler-Lagrange equation associated to problem (3.9) yields the boundary
value problem (3.16). The constant C in the first line is the Lagrange multiplier as-
sociated to the volume constraint

∫
D udxdz = V . Conversely, each solution to (3.16)

is a critical point of JD on HV (D) and by convexity, it is a minimizer. This concludes
the proof. �
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Remark 3.2. In particular, the statement of Theorem 3.5 is true if Pν = δα0 for some

α0 > 0. This means that the ship has a constant speed. In this case, Hν = h̃(α0)kα0

(see Remark 3.1). The same holds for Proposition 3.6 and Theorem 3.7 below.

Proposition 3.6. If D is symmetric with respect to z-axis, then u?D is even with
respect to x.

Proof. Since D is symmetric with respect to the z-axis, for all (x, z) ∈ D, we have
(−x, z) ∈ D. Let ǔ ∈ H(D) be defined by

ǔ(x, z) = u?D(−x, z), ∀(x, z) ∈ D.
Performing the change of variable x 7→ −x in T (ǔ, α, λ) (see (3.6)), we find that

T (ǔ, α, λ) =

∫
D
u?D(x, z)eiλαxe−λ

2αzdxdz.

Thus,
|T (ǔ, α, λ)| = |T (u?D, α, λ)|

and consequently, by (3.5),

Jwave(ǔ, α) = Jwave(u
?
D, α), ∀α > 0.

Similarly, we have J0(ǔ) = J0(u?D) and so

JD(ǔ) = JD(u?D).

Since ǔ belongs to HV (D), this shows that ǔ is a solution to problem (3.9). By
uniqueness of the solution, ǔ = u?D. �

Theorem 3.7. If D is a rectangle, then the solution u?D to problem (3.9) belongs to

W 2,5/4−ε(D) for all ε > 0 small enough.

Proof. Let q ∈ (1, 5/4). Since u?D belongs to H1(D) which is continously embedded

in Lq
′
(D), we deduce from (3.16), Proposition 3.4 and Lemma 3.1 that u?D solves

the PDE
−∆u?D + f = C in D,

where f belongs to Lq(D) and C is constant. The domain D is a rectangle and u?D
satisfies homogeneous Dirichlet boundary conditions on three sides and homogeneous
Neumann boundary conditions on one side. By elliptic regularity on polygons [15],
u?D belongs to W 2,q(D). �

3.3. Numerical simulations. In this section, we present numerical results for the
optimal hulls which minimize the expectation of the total resistance (3.3).

3.3.1. The two optimal design problems. The cost function is

JD(u) = E (Rtotal(u, ν))

= E (Rviscous(u, ν) +Rwave(u, ν)) .

In other words, we choose hρ,g,CF
(α) = 1 or equivalently (cf. (3.7))

h̃(α) =
ρg

2α
CF (3.17)

in the cost function JD defined by (3.8). The domain D is a rectangle whose upper
side is on the x-axis. We recall that the robust optimization problem (3.9) reads

Find u?D ∈ HV (D) such that JD(u?D) = min {JD(u) : u ∈ HV (D)} . (3.18)



ROBUST OPTIMAL SHIP HULLS 13

We shall compare the optimal hull u?D with the solution to the following (non robust)
optimization problem:

Find ūD ∈ HV (D) such that Rtotal(ūD, α) = min {Rtotal(u, α) : u ∈ HV (D)} ,
(3.19)

where the value α is set to α = E(ν). By Remark 3.2, problem (3.19) has a unique
solution. We shall also compare these optimal hulls with standard Wigley hulls (see,
e.g., [26]).

Problem (3.19) was investigated numerically in [10] (see also references therein).
We have also computed the optimal hull ūD for different values of α. The domain is
a rectangle with length L = 2.2 m and draft T = 0.3 m. The half volume of the hull
is V = 0.06 m3. The other parameters are

ρ = 1000 kg ·m−3, g = 9.81 m · s−1 and CF = 0.01. (3.20)

For the space discretization of the problem, we used a P1 finite element approach
(see Section 3.3.2). A triangulation of the rectangular domain into 1956 triangles
and 1075 vertices was used.

It is convenient to introduce the length Froude number

FrL =
V√
gL

=
1√
αL

, (3.21)

which is a dimensionless version of the speed V .
With these parameters, we have recovered the results from [10]. Namely, for

intermediate Froude numbers FrL ∈ [0.5, 1], the hull has the famous bulbous bow,
which reduces the contribution of the wave resistance in the total resistance. A
bulbous bow is seen in Figure 5 (bottom) for FrL = 0.6.

For large or small Froude numbers (FrL > 1 or FrL < 0.5), the influence of
Michell’s wave resistance is small and the optimal hull ūD mainly minimizes the
viscous resistance. Figure 3 (bottom) shows ūD for FrL = 0.277.

3.3.2. Numerical approximation. The expectation of the water resistance JD(u) is
given by

JD(u) = E
[
h̃(ν)

(
2|D|+ J0(u) +

1

CF
Jwave(u, ν)

)]
= 2E[h̃(ν)]|D|+ E[h̃(ν)]J0(u) +

1

CF
E[h̃(ν)Jwave(u, ν)].

By dropping the constant term, we see that minimizing J (u) is the same as mini-
mizing

J̃D(u) =

∫
D
|∇u|2dxdz +

1

CFE[h̃(ν)]

∫
D×D

Hν(x, z, x′, z′)u(x, z)u(x′, z′)dxdzdx′dz′.

(3.22)

By Theorem 3.5, a minimizer u?D of J̃D(u) in HV (D) is a solution to the linear
boundary value problem (3.16).

To solve this problem, we adopt a finite element approach, in the sense that the
optimal hull u?D is sought in a finite dimensional space

Vh ⊂ H(D) ⊂ H1(D).
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Given a basis of P1 (continuous and piecewise linear) finite elements {φ1, φ2, . . . , φn},
we can write

for all uh ∈ Vh, uh =
n∑
i=1

uiφi. (3.23)

Then we have the following discretization of J̃D(uh):

J̃D(uh) = U t
(
M0 +

1

CFE[h̃(ν)]
Mw

)
U, (3.24)

where U = (u1, . . . , un)t is the vector of the coordinates of uh and M0, Mw are

matrices approximating J0 and uh 7→ E[h̃(ν)Jwave(uh, ν)]. This yields the following
discrete optimization problem:

u?D = argmin

{
U t
(
M0 +

1

CFE[h̃(ν)]
Mw

)
U : uh ∈ Vh,

∫
D
uhdxdz = V

}
. (3.25)

The computation of the stiffness matrix

M0 =

(∫
D
∇φi · ∇φjdxdz

)
1≤i,j≤n

is standard. This matrix M0 is symmetric and positive definite. It is also sparse and
non-diagonal.

The matrix Mw is symmetric and positive semi-definite, but in contrast to M0,
Mw is a full matrix because it is related to a nonlocal operator. Let us explain briefly
how Mw is computed. Before discretizing, we write

E[h̃(ν)Jwave(u, ν)] = E[Rwave(u, ν)]

=
4ρg

π
E
[
ν3

∫ ∞
1
|T (u, ν, λ)|2 λ4

√
λ2 − 1

dλ

]
=

4ρg

π

∫ νmax

νmin

α3f(α)

∫ ∞
1
|T (u, α, λ)|2 λ4

√
λ2 − 1

dλdα

where T (u, α, λ) is given by (3.6) and f is the probability density function of ν on
the interval [νmin, νmax] ⊂ (0,+∞).

The approximation of the integral is done as follows. For a given (α, λ), the
integral

T (uh, α, λ) =

∫
D
uh(x, z) exp(−iλαx− λ2αz)dxdz

is computed by exact integration over each triangle of the mesh which approximates
the domain D. The integration over α is handled by a numerical integration (the
trapezoidal rule).

Concerning the density f , we consider two situations:

• A continuous uniform probability distribution for the Kelvin number on
[νmin, νmax], in which case

f(α) =
1

νmax − νmin
on [νmin, νmax]; (3.26)

• A continuous uniform probability distribution for the speed V =
√
g/α, as

in (3.30).
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For a given α > 0 and uh ∈ Vh, the approximation of the integral∫ ∞
1
|T (uh, α, λ)|2 λ4

√
λ2 − 1

dλ

is the same as in [10]. In particular, we use the value∫ 2

1

1√
λ2 − 1

= ln(2 +
√

3)

as in [33] to remove the singularity at λ = 1. The integral is also truncated at +∞
and we use an appropriate midpoint formula for the remainder of the integral.

3.3.3. Numerical results. The parameters L, T , V , ρ, g and CF are the same as in
Section 3.3.1. The probability distribution of the Kelvin wave number ν = g/V 2

has a compact support included in [νmin, νmax] with 0 < νmin < νmax < +∞. The
bounds νmin, νmax are chosen so that the corresponding length Froude numbers are
FrLmin = 0.2 and FrLmax = 1. Thus, we have

νmin =
1

Fr2
Lmax

L
= 0.45 and νmax =

1

Fr2
Lmin

L
= 11.36.

The case of a continuous uniform distribution of the Kelvin wave number.
In this case, the density f is given by (3.26). The mean value of ν is

E[ν] = (νmax + νmin)/2 = 5.90. (3.27)

This corresponds to a Froude number equal to FrL = 0.277. Since FrL is a decreas-
ing function of α (see (3.21)), the distribution of Froude numbers is concentrated
near 0.2.

Figure 3 gives the shapes of the computed optimal hulls u?D (middle) and ūD
(bottom). The top figure represents a Wigley hull w with triangular cross section
and parabolic horizontal section, which is defined by [26, 33]

f(x, z) =
B

2

(
1− z

T

)(
1− 4x2

L2

)
, (x, z) ∈ [−L/2, L/2]× [0, T ]. (3.28)

The beam B of w is chosen such that∫
D
w(x, z)dxdz =

BLT

6
= V . (3.29)

Namely, B = 6V /(LT ) = 0.5454 m.
The three hulls have a very similar shape. We also note that the optimal hulls

are symmetric back and front, in agreement with Proposition 3.6. However, they
perform quite differently. This can be seen in Figure 4 which represents, for each
hull, the total resistance (in Newton) on the range of Froude numbers [0.2, 1.0]. We

stress that the constant term 2h̃(α)|D| is not represented in this figure (see (3.22)).
For each hull, the expectation of the total resistance is also given.

As expected, u?D clearly has the best expectation on the total range [0.2, 1.0] (24 N
for u?D, 33 N for the Wigley hull w and 36 N for ūD).

In contrast, ūD has the minimal total resistance for the mean Froude number
FrL = 0.277. The hull ūD is even optimal among the three shapes for FrL ∈
[0.2, 0.31]. This is mainly due to a small contribution of the wave resistance in this
interval. Interestingly, the expectation of the Wigley hull w is slightly better than
the expectation of ūD: a bulbous bow is interesting only in a limited range of speeds.
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Figure 3. Mass distribution (left), and 3D results (right) of the
Wigley hull w (top), the optimal hull u?D (middle, optimized for a
uniform distribution of ν) and the optimal hull ūD (bottom, optimized
for α = E[ν] with ν uniform).

The case of a continuous uniform distribution of the speed. We consider now
a uniform distribution of the speed V on the interval [Vmin, Vmax], corresponding to
the Froude interval [0.2, 1]. Namely, we take

Vmin = 0.2
√

gL = 0.93 and Vmax =
√
gL = 4.64.

The mean value of the Froude number is obviously FrL = 0.6.
By an appropriate change of variables, we see that ν = g/V 2 has a probability

density given by

f(α) =

√
g/α

2α(Vmax − Vmin)
on [νmin, νmax]. (3.30)

Figure 5 shows the computed optimal hulls u?D, ūD and the Wigley hull w. There
is a striking difference between ūD, which has a bulbous bow, and u?D, which has no
bulbous bow and looks like a Wigley hull.

The hydrodynamic properties of each hull appear clearly in Figure 6 which rep-
resents, for each hull, the total resistance on the range of Froude numbers [0.2, 1.0]

(up to the constant term 2h̃(α)|D|). The expectation of the total resistance is best
for u?D (83 N), as expected. It is much better than for the Wigley hull w (128 N),
but it is surprisingly very close to the expectation of ūD (84 N).
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Figure 4. Total water resistance (in N) for the three hulls u?D, ūD
and w (case of a uniform distribution of ν).

For each hull, the total resistance is the sum of the viscous resistance and of the
wave resistance. Since the viscous resistance is proportional to V 2 (cf. (2.10)), it is
interesting to introduce for a given hull u the ratio

Cviscous(u) =
1

Fr2
L

(
Rviscous(u, α)− 2h̃(α)|D|

)
,

which does not depend on α.
We have

Cviscous(u
?
D) = 25 N, Cviscous(w) = 33 N and Cviscous(ūD) = 62 N.

Thus, ūD has the worst viscous resistance for every speed: a bulbous bow is clearly
not optimal at high speed (FrL close to 1). At the mean speed FrL = 0.6, ūD has a
better total resistance than u?D and w because it has a much better wave resistance.
For FrL ∈ [0.2, 0.4], u?D has a better total resistance than ūD and this is due to the
wave resistance since the difference in the viscous resistance between the two hulls is
less than (62−25)×0, 42 ≈ 6 N. For each hull, we notice the well-known oscillations
of Michell’s wave resistance for FrL < 0.4.

4. Newton’s method for shape optimization

In this section, we first explain Newton’s method for shape optimization in the
continuous version. Then, we describe its discretization along with numerical exem-
ples in the case of a PDE-fee example, before adapting it to the case of the Dirichlet
energy. This is known as an optimize-then-discretize approach.
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Figure 5. Mass distribution (left), and 3D results (right) of the
Wigley hull w (top), the optimal hull u?D (middle, optimized for a
uniform distribution of V ) and the optimal hull ūD (bottom, opti-
mized for α = E[ν] with V uniform).

4.1. The continuous version. For k ≥ 1, W k,∞(R2;R2) denotes the usual Sobolev
space based on L∞(R2;R2). In particular, W 1,∞(R2;R2) is the space of bounded
Lipschitz continuous functions from R2 into R2. In order to work with classical
derivatives, we consider for k ≥ 1 the space

Ck,∞(R2;R2) = Ck(R2;R2) ∩W k,∞(R2;R2),

endowed with the norm of W k,∞(R2;R2).
For k ∈ N, Ok is the set of bounded open subsets of R2 that are of class Ck. The

first order shape derivative is defined classically as follows [37, Definition 3.2.11].

Definition 4.1. Let k ≥ 1 and E(Ω) be a function from Ok into R. We define

E : Ck,∞(R2;R2) → R
θ 7→ E ((Id+ θ)(Ω)) .

The function E is said to be shape-differentiable at Ω if E is Fréchet-differentiable
at 0, that is, if there exists a continuous linear map E ′(0; ·) : Ck,∞(R2;R2)→ R such
that

E(θ) = E(0) + E ′(0; θ) + o
(
‖θ‖Ck,∞(R2;R2)

)
.

We denote E′(Ω; θ) = E ′(0; θ).

The second order shape derivative is defined as follows [37, Definition 3.2.12].
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Figure 6. Total water resistance (in N) for the hulls u?D, ūD and w
(case of a uniform distribution of the speed V ).

Definition 4.2. The function E of Definition 4.1 is said to be twice shape-differen-
tiable at Ω if E ′ is Fréchet-differentiable in a neighborhood U of 0 in Ck,∞(R2;R2)
and if the first derivative E ′ defined by

E ′ : U →
(
Ck,∞(R2;R2)

)′
θ 7→ E ′(θ; ·),

is Fréchet-differentiable at 0. We denote by E ′′(0; θ, ξ) the second Fréchet derivative
at 0, θ and ξ being respectively the first and second directions of derivation. We also
denote E′′(Ω; θ, ξ) := E ′′(0; θ, ξ).

A set Ω ∈ Ok is a critical shape if E′(Ω; θ) = 0 for all θ ∈ Ck,∞(R2;R2). In
particular, a minimizer of E in Ok is a critical shape.

Formally, Newton’s method for finding a critical shape reads as follows. Start
from a set Ω0 ∈ Ok and for p = 0, 1, 2, . . . until convergence:

• Find θp ∈ Ck,∞(R2;R2) such that

E
′′
(Ωp; θp, ξ) = −E′(Ωp; ξ), ∀ξ ∈ Ck,∞(R2;R2); (4.1)

• Set

Ωp+1 = (Id+ θp)(Ωp) (4.2)

If Ω ∈ Ok+1 and if E : Ok → R is shape differentiable at Ω, it is well-known since
Hadamard [16] that E′(Ω; θ) depends only on the trace of the normal component of
θ on the boundary Γ = ∂Ω (see, e.g., [19, Proposition 5.9.1]). Moreover, if Ω ∈ Ok+2,

then E
′′
(Ω; ·, ·) is not invertible because each vector field θ ∈ Ck,∞(R2;R2) which has
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compact support in R2 \Γ belongs to the kernel of E
′′
(Ω; ·, ·). This is a consequence

of the structure theorem of E
′′
(Ω; ·, ·) [28].

Thus, we solve equation (4.1) for vector fields θ, ξ defined on Γ. Since a small
perturbation of Γ is fully defined by a normal deformation, in Newton’s equation (4.1)
we will seek θp ∈ Ck,∞ such that its tangential component on Γ, denoted by θΓ, is
zero. Thus, (4.1) becomes{

find θ ∈ Ck,∞(R2;R2) such that θΓ = 0 and

E
′′
(Ω; θ, ξ) = −E′(Ω; ξ), ∀ξ ∈ Ck,∞(R2;R2) such that ξΓ = 0,

(4.3)

where we have omitted the subscript p for simplicity.
This approach simplifies E

′′
(Ω; θ, ξ) because it cancels the tangential components

of θ and ξ which are otherwise present if Ω is sufficiently regular [28]. Moreover,
this is a consistent approach. Indeed, the purpose is to converge to a critical shape
Ω? and for a critical shape, E

′′
(Ω?; θ, ξ) depends only on the normal components of

the traces of θ, ξ on Γ [19, Remark p. 246]. A related idea was used with Newton’s
algorithm for shape optimization in [3] in the context of a level-set discretization.

Thus, in order to solve problem (4.3), we first seek the normal component θ ·n on
Γ. Then, we extend θ on Ω with a Hilbertian extension-regularization technique as
described in [4, Section 5.2]. In our case, we used the inner product inherited from
linear elasticity.

4.2. PDE-free example. Let f ∈ C3(R2;R). We consider the minimization prob-
lem

inf
Ω∈O3

E(Ω) (4.4)

where

E(Ω) =

∫
Ω
f(x)dx

is the function to be minimized. With appropriate assumptions on f (see, e.g., [37,
Proposition 3.3.5]), an optimal shape Ω? is explicitly given by the set of negative
values of f ,

Ω? = {x ∈ R2 | f(x) < 0}. (4.5)

We seek to compute Ω? by Newton’s method, and we shall follow an optimize-then-
discretize approach.

Assume that Ω ∈ O3. Since f is smooth, the function E from Definition 4.1 is of
class C2 on C1,∞(R2;R2) and the shape derivatives of E(Ω) are given by [19]

E′(Ω; ξ) =

∫
Γ
(ξ · n)f,

E
′′
(Ω; θ, ξ) =

∫
Γ
(θ · n)(ξ · n)

(
Hf + ∂nf

)
+

∫
Γ
Zθ,ξf,

(4.6)

where Γ is the boundary of Ω, H is the mean curvature of Γ, and

Zθ,ξ = θΓ ·DΓn ξΓ − θΓ · ∇Γ(ξ · n)− ξΓ · ∇Γ(θ · n). (4.7)

For θ, ξ ∈ C1,∞(R2;R2) such that θΓ = 0 and ξΓ = 0, we have Zθ,ξ = 0. Thus,
Newton’s equation (4.3) reads: find θn ∈ C1(Γ) such that∫

Γ
θnξn

(
Hf + ∂nf

)
= −

∫
Γ
ξnf, ∀ξn ∈ C1(Γ). (4.8)
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This problem has to be properly discretized. We explain our approach which
allows to obtain a diagonal hessian matrix when working with P1 normal Lagrange
finite element deformation vectors.

4.2.1. Discretization of Newton’s equation. Given a conforming triangulation Th of a
polygonal domain Ωh which approximates the domain Ω, Γh denotes the boundary of
the mesh which consists of an ordered nbe-tuple of ordered vertices (x1, x2, . . . , xnbe

).
Let

Vh =
{
uh ∈ C(Ωh,R)

∣∣ ∀Ti ∈ Th, uh|Ti ∈ P1

}
be the Lagrange finite element space of continuous functions that are piecewise poly-
nomials of degree 1. We denote by (φi)1≤i≤Nh

the nodal basis of Vh defined by

∀ 1 ≤ i, j ≤ Nh, φi(aj) = δij ,

where Nh is the dimension of Vh and (aj)1≤j≤Nh
are the vertices of the triangulation

Th. We denote by nh(xi) the discrete normal vector to the boundary at the vertex

xi which is approximated as the rotate of the tangent at xi, τh(xi) =
−−−−−−→xi−1xi+1

‖−−−−−−→xi−1xi+1‖ as

shown in Figure 7.

Figure 7. Discrete setting around a vertex xi

We search for a descent direction θh : R2 → R2 defined on the vertices of Th.
Since (4.8) contains boundary integrals, we first compute the descent direction θh on
the boundary vertices x1, . . . , xnbe

before extending it to all of the triangulation Th
through Hilbertian extension techniques (see [4]). We assume that θh is normal to
the boundary Γh at every vertex xi, that is

∀i = 1, . . . , nbe, ∃αi ∈ R, θh(xi) = αinh(xi). (4.9)

We use the continuous piecewise linear (P1) extension of θh on Γh, namely

θh(x) =

nbe∑
i=1

αiϕi(x)nh(xi), (4.10)

where (ϕi)1≤i≤nbe
is the nodal basis of continuous and piecewise linear functions on

Γh defined by
∀1 ≤ i, j ≤ nbe, ϕi(xj) = δij . (4.11)
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Here and below, κ denotes the discrete curvature computed by a standard for-
mula (see, e.g., [38, Appendix A.3]). By choosing the normal deformation ξh(x) =
ϕi(x)nh(xi), the discrete version of Newton’s equation (4.8) is:

Find θh in the form (4.10) such that∫
Γh

θh(x) ·nh(xi)ϕi(x)
(
κ(x)f(x)+∂nh

f(x)
)

= −
∫

Γh

f(x)ϕi(x)nh(xi) ·nh(x), (4.12)

for i = 1, . . . , nbe. Here nh(x) =
∑nbe

i=1 ϕi(x)nh(xi) can be chosen as the P1 interpolate
of the normal.

Another issue is the discretization of the boundary integral on Γh. This can
be a major source of error and lack of consistency as noted in [37]. We choose a
trapezoidal rule, which is known to converge rapidly for periodic smooth functions.
In view of (4.11), equation (4.12) becomes

αi
(
κ(xi)f(xi) + ∂nh

f(xi)
)

= −f(xi), for i = 1, . . . , nbe, (4.13)

where we used that θh(xi) · nh(xi) = αi and where

∂nh
f(xi) = ∇f(xi) · nh(xi). (4.14)

Remark 4.1. Expression (4.14) requires the knowledge of ∇f . If we only know f ,
then we replace (4.14) with ∇hf(xi) ·nh(xi), where ∇hf ∈ Vh×Vh is the continuous
P1-valued derivative of f defined by local least square problems as explained in
Appendix A. We use this formula in the numerical examples which follow.

One can see that the system of equations (4.13) can be easily solved, since the
left-hand side has a diagonal matrix which is invertible as long as it contains no
zero entries. This reminds the method of lumped masses used for the finite element
approximation of parabolic problems [34, Chapter 15]. In our case, we also deal with
the normal deformations.

In conclusion, finding a discrete descent direction θh through Newton’s equation
boils down to solving the system of equations (4.13) for the values of αi at each
vertex, and taking

∀i = 1, . . . , nbe θ(xi) = αinh(xi). (4.15)

We stress that at each step (4.2) of Newton’s algorithm, a filtering of the boundary
mesh is necessary in order to compute correctly the discrete curvature. We used
Savitsky-Golay filters (see [38, Appendix A.3]).

4.2.2. Numerical examples. Next, we compute the optimal shapes for problem (4.4)
and for three different functions fi, namely

f1(x, y) = (x2 + y2)5 − 2a5(x5 − 10x3y2 + 5xy4) + a10 − b10,

with a = 0.95, b = 0.953,

f2(x, y) = ((x− 0.5)2 + y2)((x+ 0.5)2 + y2)− 0.514,

f3(x, y) = max(x2 − 0.62, y2 − 0.62).

These functions were inspired by [37, Section 12.1].
The initial shape is a unit disc that we successively deform using the discretization

(4.13) and a constant time step t = 1 (cf. (4.2)). The results are given in Figures 8-10.
One can see that the optimal shapes are easily computed after 7 iterations for f1

and f2. The convergence rate is very fast although it seems geometric rather than
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Figure 8. Optimal (right) and intermediate shapes (left and middle)
for minimizing E(Ω, f1)

Figure 9. Optimal (right) and intermediate shapes (left and middle)
for minimizing E(Ω, f2)

Figure 10. Optimal (right) and intermediate shapes (left and mid-
dle) for minimizing E(Ω, f3)

quadratic, as illustrated in Figure 11. Quadratic convergence rate has been observed
in some specific examples [38, Section 8.1.2]

Figure 10 helps to illustrate an important issue with the computation of optimal
shapes. The discretization (4.13) assumes that the optimal shapes are smooth, not
only to be able to define the different discrete quantities necessary for the algorithm
such as the normals to the boundary nh, but also the structure of the second order
shape derivative adopted in (4.6) is only valid for domains Ω that are at least C3.
Thus Newton’s algorithm will fail to capture optimal shapes that contain corners or
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Figure 11. The error to the best shape Ω? at every iteration of the
minimization process for the different functionals E(Ω, fi)

cusps. This is noticed in Figure 10 where the set of negative values f3 is clearly a
square, but the algorithm never captures the square and gets stuck oscillating around
shapes close to a square.

This oscillation can be seen in Figure 12 where we give the L∞(Ωh) norm of the
computed descent directions θh. We see that ‖θh‖∞ converges rapidly for E(Ω, f1)
and E(Ω, f2) after only 7 iterations. In contrast, for E(Ω, f3), where the optimal
shape is a square, we can see that while the value of the norms is low, it fails to
converge and keeps on oscillating.

Moreover, Figure 12 shows that the L∞ norm is constant around the optimal
shape. Our experiments suggest that this can be taken as a stopping criterion for
Newton’s algorithm. This contrasts with first order algorithms where ‖θh‖∞ tends
to oscillate around critical shapes.

4.3. The Dirichlet energy. We now consider a functional that depends on the
domain Ω through the solution u of a PDE. We consider the case of the Dirichlet
energy

E(Ω) =

∫
Ω
|∇u|2, (4.16)

where u is solution to the Dirichlet equation{
−∆u = 1 in Ω,

u = 0 on Γ.
(4.17)

It is well known (see for example [7, 30, 36]) that the following shape optimization
problem,

max
Ω∈O3
|Ω|=m

E(Ω), (4.18)
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Figure 12. The L∞(Ωh) norm of the computed descent direction
θh at every iteration of the minimization process for the different
functionals E(Ω, fi)

has a unique solution Ω? which is the disc of area m. Here |Ω| =
∫

Ω dx denotes the
area of Ω.

We seek to compute this optimal shape Ω? with our algorithm and to this end,
we need boundary expressions for the first and second order derivatives E′ and E

′′
.

These derivatives have been extensively studied in shape optimization literature (see
for example [19, 23] and references therein). Here, we give the expressions in a way
suited to our discretization (see [38, Section 8.2.1] or [19, Section 5.9.6]). We have:

Theorem 4.1. Let Ω ∈ O3. Then the Dirichlet energy E(Ω) defined in (4.16) is
twice shape differentiable, and for all θ, ξ ∈ C1,∞(R2;R2) we have

E′(Ω; ξ) =

∫
Γ
(ξ · n)(∂nu)2 (4.19)

and

E
′′
(Ω; θ, ξ) = 2

∫
Γ
(ξ · n)∇u′θ · ∇u+

∫
Γ
(θ · n)(ξ · n)

[
(∂n +H)|∇u|2

]
+

∫
Γ
Zθ,ξ|∇u|2, (4.20)

where Zθ,ξ is given by (4.7). The function u′θ is the shape derivative of the state
function u and is solution to the following problem:{

−∆u′θ = 0 in Ω,

u′θ = −(θ · n)∂nu on Γ.
(4.21)

The expression of the second order shape derivative E
′′

given by (4.20) may seem
costly for numerical applications since one needs to compute u′θ at every iteration.
We shall see below how to deal with this difficulty.
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Remark 4.2. Note that the first term in the right-hand side of (4.20) is bilinear and
symmetric since ∇u = (∂nu)n (recall that uΓ = 0) and so∫

Γ
(ξ · n)∇u′θ · ∇u =

∫
Γ
(ξ · n)∂nu∂nu

′
θ = −

∫
Γ
u′ξ∂nu

′
θ = −

∫
Ω
∇u′ξ · ∇u′θ.

Before proceeding with the discrete optimization problem, we need the first and
second order shape derivatives of the volume (area) constraint V (Ω) =

∫
Ω dx. The

following corollary is easily obtained by taking f(x, y) = 1 in (4.6).

Corollary 4.2. Let Ω ∈ O3. Then the area functional V (Ω) is twice shape differen-
tiable, and for all θ, ξ ∈ C1,∞(R2;R2) we have

V ′(Ω; ξ) =

∫
Γ
(ξ · n), (4.22)

and

V
′′
(Ω; θ, ξ) =

∫
Γ
H(θ · n)(ξ · n) +

∫
Γ
Zθ,ξ, (4.23)

where Zθ,ξ is given by (4.7).

4.3.1. Discretization of Newton’s equation with volume constraint. Let us now look
at the shape optimization problem (4.18). We now have to deal with the volume
constraint throughout the optimization process, and to do so we follow the results
in [6, chapter 14]. In general, for a given constraint c(Ω), the right approach is to
minimize the objective E(Ω) while keeping the constraint satisfied, which is called a
primal-dual method. To describe this, according to the first-order optimality condi-
tions, we know that when the constraint is qualified at a solution Ω?, there exists a
Lagrange multiplier λ∗ ∈ R such that{

E′(Ω?; ξ) + λ∗c
′(Ω?, ξ) = 0, ∀ξ,

c(Ω?) = 0.
(4.24)

Thus, introducing the Lagrangian

L(Ωp, λp) = E(Ωp) + λpc(Ωp), (4.25)

Newton’s method defines a step in (Ω, µ) at (Ωp, λp) by linearizing the system (4.24).
One finds (

L
′′
p ATp

Ap 0

)(
θp
µp

)
= −

(
L′p
cp

)
, (4.26)

where L
′′
p := L

′′
(Ωp; θ, ξ) and L′p := L

′
(Ωp; ξ) are the first and second order shape

derivatives of the Lagrangian L at Ωp (for a fixed λp), cp = c(Ωp) and Ap := c′(Ωp; ξ)
is the shape derivative of the constraint. Given a solution (θp, µp) to (4.26), Newton’s
method defines the next iterate (Ωp+1, λp+1) by

Ωp+1 = (I + θp)(Ωp) and λp+1 = λp + µp. (4.27)

We then proceed to build the left hand side of (4.26) using the discretization
described earlier in Section 4.2.1. Once again, we seek a continuous piecewise linear
vector field θh as in (4.10). By choosing the discrete normal vector field ξh(x) =
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ϕi(x)nh(xi) where ϕi is the hat function at xi, we obtain from (4.22) that Ap is the
row vector with entries

Ap[i] =

∫
Γh

ϕi(x)nh(xi) · nh(x)dx ≈
h−i + h+

i

2
nh(xi) · nh(xi) =

h−i + h+
i

2
.

As previously, we used the trapezoidal rule to evaluate the integral above. Moreover,
for each vertex xi, h

+
i and h−i are the lengths of the edges [xi−1, xi] and [xi, xi+1]

arriving at xi.
The matrix L

′′
p is the Hessian of the Lagrangian L. Using the expressions (4.20)

and (4.23), we obtain that L
′′
p is a matrix of size nbe × nbe with entries given by

L
′′
p [i, j] =

∫
Γh

2(ϕi(x)nh(xi) · nh(x))∇uh′
nj
h

(x) · ∇uh(x)

+

∫
Γh

(ϕi(x)nh(xi) · nh(x))(ϕj(x)nh(xj) · nh(x))(∂nh
+ κ(x))|∇uh(x)|2

+ λ

∫
Γh

(ϕi(x)nh(xi) · nh(x))(ϕj(x)nh(xj) · nh(x))κ(x)dx.

In this expression, uh is the discrete P1 solution to the state equation (4.17) and

uh
′

nj
h

is the discrete (P1) solution to problem (4.21) with θ(x) = ϕj(x)nh(xj). Using

a trapezoidale rule to evaluate the integrals, we obtain

L
′′
p [i, j] =

(
h−i + h+

i

2

)(
2∇uh′

nj
h

(xi) · ∇uh(xi)
)

+δij

(
h−i + h+

i

2

)(
(∂nh

+ κ(xi))|∇uh(xi)|2 + λκ(xi)
)
.

Owing to the term δij , the matrix L
′′
p is diagonal, except for the first term involving

∇uh′
nj
h

(xi) which is nonlocal. In practice, we only keep the diagonal terms in L
′′
p ,

leading to a quasi-Newton method.
Going back to the continuous problem (4.21), we have u′θ = (θ · n)∂nu. In partic-

ular, tor θ = n, this gives u′n(xi) = ∂nu(xi). Thus, we can write

∇u′n = ∇(∇u · n)

= D2un+Dn.∇u
= D2u.n+ ∂nuDn.n (∇Γu = 0)

= D2u.n (Dn.n = 0 since n is unitary on Γ).

This allows us to rewrite ∇uh′
ni
h
(xi) = D2uh(xi).nh(xi). This could seem problematic

at first sight. Indeed, uh is only P1 and thus ∇uh = (∂xuh, ∂yuh)T is only a P0 func-
tion on Th, i.e., it is constant on each triangle Ti. We thus seek to lift this function
as a P1 function. The easiest way to do so is by interpolation, but our experiments
show that the most accurate way to do this is through a least-squares matching of
the gradient ∇uh on the vertices xi of Γ. This is described in detail in Appendix A.
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Figure 13. The starting shape (left), a nearly optimal shape (mid-
dle) and the best shape (right), with the magnitude of the descent
direction θ for the minimization of the Dirichlet energy.

In particular, we define the operator ∇h (see (A.6)),{
∇h : Vh =⇒ Vh × Vh
ϕh 7→ ∇hϕh ≈ ∇ϕh.

Not only is this an accurate way of approximating the gradient, but its (almost)
local character also allows us to cut down on unnecessary computations on the in-
terior of the domain Ωh. Indeed, L

′′
p is only defined on the boundary Γh, so we only

need the values of the gradient as a P1 function on a neighborhood of the boundary
vertices xi. Notice also that this solves the issue of computing the term ∂n

(
|∇u|2

)
,

since we can compute

∂nh

(
|∇uh|2

)
(xi) = ∇hi

(
|∇huh|2

)
· nh(xi),

where, for a continuous function g, ∇hi g = ∇hg(xi). We stress that the operator

∇h : C0(Ωh) → Vh × Vh is actually defined for any continuous function. Here, it
applies to the continuous P2 function |∇huh|2.

Ultimately, the diagonal entries of the Hessian L
′′
p and the entries of L′p read

L
′′
p [i, i] = 2∇hi

(
∇huh

)
.nh(xi) · ∇hi uh +∇hi

(
|∇huh|2

)
· nh(xi) + κ(xi)

(
λ+ |∇hi uh|2

)
(4.28)

L′p[i] = λ+
(
∇hi uh · nh(xi)

)2
. (4.29)

We have divided these entries by (h+
i + h−i )/2 which is common to both sides.

4.3.2. Numerical results. In this section, we test our discretization to compute the
optimal shape Ω? for minimizing the Dirichlet energy (4.16) under volume (area,
since d = 2) constraint |Ω| = 0.4. Recall that the optimal shape in this case is a
disc of area 0.4. Starting from a random guess, we successively compute a descent
direction by solving (4.26) that we use to move the shape with a constant step
t = 1 as defined in (4.27). We also compare Newton’s method with an augmented
Lagrangian method [27].

As stated in the introduction of [11], the tuning of the penalty parameters for
the augmented Lagrangian is strongly case-dependent. Thus, we perform a series
of tests with different penalty parameters and time steps and we retain the fastest
in order to compare it with Newton’s algorithm. We take a constant time step
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Figure 14. Convergence of the Dirichlet energy

Figure 15. The L2 norm of the descent direction θh at every itera-
tion of the minimization process.

t = 0.4 and a quadratic penalty parameter µ < 10 for the augmented Lagrangian
algorithm. Figure 13 shows the starting shape and the optimal shape. In both cases,
the algorithm converges to a ball, as expected.

As seen in Figures 14 and 15, Newton’s algorithm is remarkably fast and converges
in about 20 iterations. In contrast, the augmented Lagrangian takes 10 times longer
to converge. Figure 16 shows that the volume constraint is reasonably satisfied
during the whole process.

5. Optimal hull with optimized support

5.1. Theoretical results. We introduce a “bounding box”, namely a bounded and
connected open subset Q of the upper half plane {(x, z) ∈ R2 : z > 0}. We assume
that Q has a Lipschitz boundary ∂Q such that ∂Q ∩ (R × {0}) is a segment of the
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Figure 16. Convergence of the area constraint |V (Ωp)− Vtarget|.

x-axis (possibly empty). We denote by ∂QN the (relative) interior of this segment
and ∂Q0 = ∂D \ ∂QN .

For instance, Q can be a half disc with a large radius and centered on the x-axis
or a rectangle with one side of its boundary included in the x-axis.

We introduce the Sobolev space

H(Q) =
{
u ∈ H1(Q) : u = 0 on ∂Q0 in the sense of trace

}
,

equipped with the H1 norm. For each function u ∈ H1(Q), we denote its support
by

Du = {(x, z) ∈ Q : u(x, z) 6= 0}.
The set Du is unique up to a set of zero Lebesgue-measure and its area |Du| does
not depend on the choice of the representative of u.

Let a ∈ (0, |Q|) (an area) and V > 0 (a volume). Following [8], we introduce the
set

CV ,a(Q) =

{
u ∈ H(Q) :

∫
Q
u dxdz = V and |Du| ≤ a

}
.

The set CV ,a is a closed subset of H(Q).
As in Section 3.1, we assume that the Kelvin wave number is a random variable

ν : Ω→ R whose probability distribution has a compact support in (0,+∞).
For u ∈ H(Q), the functional is

J (u) = E
[
h̃(ν)

(
2a+ J0(u) +

1

CF
Jwave(u, ν)

)]
,

where h̃ : (0,+∞) → (0,+∞) is a continuous function which depends on the fixed
parameters ρ, g and CF . The functions J0 and Jwave are defined as previously,
except that the integration on D is replaced by an integration on Q. That is, we
have

J0(u) =

∫
Q
|∇u|2dxdz
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and

Jwave(u, α) =
8α4

π

∫ ∞
1
|T (u, α, λ)|2 λ4

√
λ2 − 1

dλ,

where T is defined for all u ∈ H(Q), α > 0 and λ > 0 by

T (u, α, λ) =

∫
Q
u(x, z)e−iλαxe−λ

2αzdxdz.

We recall that the bounding box Q and the function h̃ are given, and that the
positive parameters ρ, g , CF , a and V are fixed. The problem reads:

Find u? ∈ CV ,a(Q) such that J (u?) = min
u∈CV ,a(Q)

J (u). (5.1)

The support Du? of u? will be called on optimal domain. We note that u? is generally
not unique, because J is invariant with respect to translations along the x-axis.
Moreover, the set CV ,a(Q) is not convex, so that an optimal domain Du? is not
necessarily unique up to translations along the x-axis. We have:

Theorem 5.1. Problem (5.1) has at least one solution u?.

Proof. Let (un)n be a minimizing sequence in CV ,a(Q). We have

J (un) = 2aE
[
h̃(ν)

]
+ E

[
h̃(ν)

]
J0(un) +

1

CF
E
[
h̃(ν)Jwave(un, ν)

]
,

and each term in the sum above is nonnegative. This implies that the sequence
(J0(un))n is bounded, and so (un) is bounded in H1(Q), by the Poincaré inequality.
Let q′ > 5. By compactness, there is a subsequence still denoted by (un) and

u? ∈ H(Q) such that (un) converges to u? weakly in H(Q), strongly in Lq
′
(Q) and

a.e. in Q. By Fatou’s lemma, we have

|Du? | =
∫
Q

1u?dxdz ≤ lim inf
n

∫
Q

1undxdz = |Dun | ≤ a,

where 1v denotes the characteristic function of a function v ∈ H(Q). Thus, u?

belongs to CV ,a(Q). By lower semi-continuity of J0, we have

J0(u?) ≤ lim inf
n

J0(un). (5.2)

We may apply Proposition 3.4 with the set D replaced by Q. Since (un) converges

strongly in Lq
′
(Q), we have

E
[
h̃(ν)Jwave(un, ν)

]
→ E

[
h̃(ν)Jwave(u

?, ν)
]
. (5.3)

The relations (5.2) and (5.3) show that

J (u?) ≤ lim inf
n
J (un).

Since (un) is a minimizing sequence, u? is a solution to problem (5.1). �
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5.2. Numerical simulations. We want to compute the optimal shape for minimiz-
ing the expectation of the total water resistance under area constraint. That is, for
a given area a > 0, we wish to solve numerically the following problem,

min
|D|=a

J (D), (5.4)

among bounded open subsets D of the upper half plane which are admissible. As a
shortcut, we have denoted by J the functional

D 7→ JD(u?D),

where JD is defined by (3.8) with the choice (3.17) for h̃ and u?D is the solution to
the minimization problem (3.18).

By (3.22), solving (5.4) is the same as solving

min
|D|=a

J̃ (D) (5.5)

where

J̃ (D) =

∫
D
|∇u?D|2 +

1

CFE[h̃(ν)]

∫
D×D

Hν(x, z, x′, z′)u?D(x, z)u?D(x′, z′),

and u?D is the solution to the boundary value problem (cf. (3.16))

−∆u(x, z) +
1

CFE
[
h̃(ν)

]∫
D×D

Hν(x, z, x′, z′)u(x′, z′)dx′dz′ = C, ∀(x, z) ∈ D,

∫
D u dxdz = V ,
u = 0 on Γ0,

∂u

∂n
= 0 on ΓN .

(5.6)
Throughout Section 5.2, D is a simply connected and bounded open subset of

the upper half plane with Lipschitz boundary. We assume that ∂D ∩ (R× {0}) is a
segment and we denote by ΓN the relative interior of this segment. We also assume
that the curve Γ0 = ∂D \ ΓN is of class C3 (see Figure 2).

5.2.1. Shape derivatives. The shape sensitivity analysis of J̃ is very similar to the
case of the Dirichlet energy, assuming enough regularity. The result is very similar
to Theorem 4.1 (up to the minus sign). The calculations for a smooth domain and
a smooth kernel are given in [38, Section 8.3] (see also [19]).

In our case, we will use the following expressions. Let R2
+ = R × [0,+∞) denote

the closed upper half plane. For all θ, ξ ∈ C1,∞(R2
+;R2) such that θ · n = 0 and

ξ · n = 0 on the x-axis, we have

J̃ ′(D; ξ) = −
∫

Γ0

(ξ · n)(∂nu)2 (5.7)

and

J̃ ′′(D; θ, ξ) = −2

∫
Γ0

(ξ · n)∇u′θ · ∇u−
∫

Γ0

(θ · n)(ξ · n)
[
(∂n +H)|∇u|2

]
−
∫

Γ0

Zθ,ξ|∇u|2
(5.8)



ROBUST OPTIMAL SHIP HULLS 33

where u solves (5.6), Zθ,ξ is given by (4.7) and u′θ is solution to the following problem:

−∆u′θ +
1

CFE
[
h̃(ν)

]∫
D×D

Hν(·, ·, x′, z′)u′θ(x′, z′)dx′dz′ = C̃ in D,

∫
D u
′
θ dxdz = 0,

u′θ = −(θ · n)∂nu on Γ0,

∂u′θ
∂n

= 0 on ΓN .

(5.9)

The same discretization as in Section 4.3.1 can be used to apply Newton’s algo-
rithm to the set functional J̃ , assuming enough regularity both on the domain D
and the kernel Hν . Even in situations where these regularity constraints are not
satisfied, for example when the domain contains corners or when the kernel is not
regular enough, the discretization (4.26) provides enough flexibility to get around
these issues, as explained below in Section 5.2.2.

5.2.2. Tips for Newton’s algorithm. In this section, we seek to compute the optimal
shape D? by Newton’s method discretized as in Section 4.3. There are two main
obstructions to regularity in the expression of the second order shape derivative (5.8).

First, Michell’s kernel Hν does not belong to L2(D). It is only in L
5
4
−ε(D) for all

ε > 0 small enough, as proved in [8]. Second, the boundary expression of the second
order derivative given by (5.8) is only given for domains D that are at least C3 (with
ΓN = ∅ and Γ0 = ∂D) while D here is only C3 on each boundary Γ0 and ΓN . We
shall always have two corners at the intersection of the boundaries.

These regularity issues make it a priori difficult to attempt a second order shape
optmization method. Since the boundary expression of the second order shape de-
rivative is ill-defined, one could then try to find a different expression that takes into
account the irregularity of the boundary. This is extensively studied in [23] for the
case of the Dirichlet energy and volume functional, and the interested reader can
find in it expressions for the second order derivative given for domains that are only
Lipschitz.

In our case, it turns out that the discretization (4.13) gives enough flexibility
to get around these issues when building the discrete Hessian matrix. Indeed, the
discrete Hessian shall only be constructed on the vertices of the boundary Γ0. Since
our discretization is strictly dependent on the discrete normal nh(xi) on a vertex xi,
in order to remain consistent, we exclude the vertices xi with singularities (in this
case, the first and last vertex of Γ0) when building the discrete Hessian. The value
θh(xi) on each one of these two vertices is then obtained by keeping the horizontal
component of the neighboring value θh(xi+1) computed on Γ0. In this way, the
constraint on ΓN is preserved, namely

θh(xi) · nh(xi) = 0 on ΓN .

Finally, while theoretically the solution u is not in H2(D), we still can discretize
quantities such as ∇2u using numerical gradients, specifically the least-squares gra-
dient defined in Appendix A. This least-square gradient will enjoy higher regularity
and ensures that the resulting discrete Hessian matrix is well conditioned.

These are all the tips that were used to help Newton’s algorithm to converge on
an irregular domain with an irregular solution, and the results are given in the next
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Figure 17. Convergence results for the expectation of the total re-
sistance and for the volume constraint using Newton’s algorithm.

section. While these tips seems complicated and a little bit technical, they are easy
to implement for a trained FreeFem++ user [18].

5.2.3. Numerical results. For all our numerical simulations, the initial domain D0 is
taken as the half-ellipse, centered at the origin of length 2.2 m and draft 0.3 m. The
area of D0 is therefore a = 0.518 m2. The volume of the hull is fixed at V = 0.06 m3,
and we consider a uniform probability distribution of the Kelvin wave number α ∈
[νmin, νmax]. The parameters ρ, g , CF are as in (3.20) and h̃ is defined by (3.17).

For the sake of comparison with the results in [8], we introduce the area Froude
number

F 2
r =

1

α
√
a

=
V 2

g
√
a
,

where a = 0.518 m2 is the area of D. The bounds νmin and νmax are computed as

νmin =
1

√
aFr2

max

and νmax =
1

√
aFr2

min

.

For our numerical results, we focus on the Froude interval [0.6, 1.0]. This is the
range of speed where it is most interesting to have a bulb in order to minimize the
total ship resistance, as seen in [9].

We first compute the optimal domain D? which minimizes the expectation of the
total water resistance J̃ . Figure 18 (bottom) shows the optimal domain computed
with Newton’s algorithm. The corresponding optimal hull u? is represented in Figure
19 (bottom). The convergence of the algorithm is given in Figure 17. We can see
that Newton’s algorithm converges very fast without the need of a line search, since
a constant time step t = 1 was used throughout the optimisation process.

As a comparison, we have also computed the domain which minimizes the total
resistance for the mean Kelvin number α = E(ν) related to the Froude number
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Figure 18. The optimal domains for minimizing the total resistance
at Fr = 0.73 (top) and for minimizing the expectation of the total
resistance for Fr ∈ [0.6, 1] with ν uniform (bottom).

Figure 19. The optimal hulls for minimizing the total water resis-
tance at Fr = 0.73 (ū, top) and for minimizing the expectation of
the total resistance for Fr ∈ [0.6, 1] with ν uniform (u?, bottom).

Fr = 0.73 (Figure 18, top) and the corresponding optimal hull ū (Figure 19, top).
We use the same algorithm (Newton’s method), except that the averaged kernel Hν

is replaced by Michell’s kernel h̃(α)kα (see Remark 3.2), so the computation is less
costly.

The two optimal domains and the corresponding hulls u? and ū are different: the
bulbous bow is more pronounced for ū than for u?. In contrast u∗ is longer than
ū since it takes into account higher Froude numbers. We refer here to [9, Section
7] where it is seen that the length of the optimal domain increases with the Froude
number.

Despite these remarkable geometric differences, we can see in Figure 20 that the
total resistance is very similar for both hulls on the whole interval [0.6, 1.0]. The
expectation of the total resistance is equal to 26.3 N for u? and it is equal to 27.1 N
for ū. We note however that ū is optimal for α = E(ν) and slightly better for Froude
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Figure 20. The total water resistance of the two hulls

number less than 0.75, while u? is better on the rest of the interval. Both hulls
perform much better than a Wigley hull.

As a comparison, we have performed computations for the Wigley w defined by
the function (3.28) and the parameters L = 2 m, T = 0.255 m and B = 0.7272 m. For
this choice, we have a = 0.51 m2 and V = 0.06 m3 (see (3.29)). The total resistance
of w increases from 27.4 N for Fr = 0.6 to 211.2 N for Fr = 1.0. Its expectation is
equal to 113.2 N.

Appendix A. Gradient of a piecewise linear function

In this appendix, we define a continuous gradient of a P1 function. This is used
in our shape optimization algorithms.

For a domain D in R2 with a Lipschitz boundary Γ, we denote by Th a conforming
triangulation of D with typical mesh size h. The triangulation Th contains nt trian-
gles Ti. The approximation of the domain D is the polygonal domain Dh = ∪nt

i=1Ti
and we denote by Γh the boundary of Dh.

The space of continous piecewise linear (P1) functions is denoted by Vh, namely

Vh =
{
u ∈ C(Dh,R)

∣∣∀Ti ∈ Th, u|Ti ∈ P1

}
,

where P1 is the space of polynomials of degree less than or equal to 1.
If u belongs to Vh, then the gradient ∇u is only a discontinuous P0 function on

Th. i.e. it is equal to a constant value αi on each triangle Ti. In many cases, we seek
to lift this gradient to a P1 function defined on the vertices of Th through a stable
approximation.

Let x0 be a vertex of Th and denote by x1, . . . , xn the neighboring vertices as given
in Figure 21. For a smooth function f : R2 → R, we have the following Taylor
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Figure 21. Neighborhood of a vertex x0 in a mesh Th.

expansion around x0,

f(xi) ≈ f(x0) +∇f(x0) · (xi − x0), for i = 1, . . . , n. (A.1)

Then following [13], a good approximation of the gradient ∇u of our piecewise
linear function u may be obtained by mimicking the expansion (A.1) for all i =
1, . . . , n. That is, we approximate ∇u by a vector b = (b1, b2) solution to

Ab = c, (A.2)

where A and c are the n× 2 matrix and n-dimensional vector given by:

A =


x1

1 − x1
0 x2

1 − x2
0

x1
2 − x1

0 x2
2 − x2

0
...

...
x1
n − x1

0 x2
n − x2

0

 and c =


u(x1)− u(x0)
u(x2)− u(x0)

...
u(xn)− u(x0)

 . (A.3)

However, problem (A.2) is clearly overdetermined, and in practice we search b as
a solution to the least-square problem

ATAb = AT c, (A.4)

where AT is the transpose of A. In (A.4), AT c is a two-dimensional vector and ATA
is the 2× 2 matrix defined by

ATA =


n∑
i=1

(x1
i − x1

0)2
n∑
i=1

(x1
i − x1

0)(x2
i − x2

0)

n∑
i=1

(x1
i − x1

0)(x2
i − x2

0)
n∑
i=1

(x2
i − x2

0)2

 .

The matrix ATA is invertible since det(ATA) > 0 as a consequence of the Cauchy-
Schwarz inequality.

By repeating the procedure above, we obtain a value for the gradient of u at
every vertex of the triangulation Th, and by linear interpolation, a function (vh, wh)
in Vh × Vh. This approach for approximating the gradient ∇u as a continuous P1

function is pretty robust in practice. Unfortunately, it may still be affected by nume-
rical errors, and this is a reason why it is often recommended to smooth the resulting
quantities.
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To this end, it is common practice to use the screened Poisson equation, i.e. for a
P1 function ψ ∈ Vh, we trade ψ for the solution ψ̃ ∈ Vh to the following variational
problem:

∀ϕh ∈ Vh,
∫
Dh

(ε2∇ψ̃ · ∇ϕh + ψ̃ϕh)dx =

∫
Dh

ψϕhdx, (A.5)

where ε is chosen of the order of mesh size, that is, ε ≈ h.
Summing up, for a function u ∈ Vh, we define its continuous P1 gradient as

∇hu = (ṽh, w̃h), (A.6)

where ṽh ∈ Vh and w̃h ∈ Vh are obtained by smoothing vh and wh respectively, and
(vh, wh) ∈ Vh × Vh is obtained at each vertex of the triangulation by the local least
square problem described above. We note that this definition of ∇hu makes senses
for any continuous function u ∈ C0(Dh).
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[3] G. Allaire, E. Cancès, and J.-L. Vié. Second-order shape derivatives along normal trajectories,
governed by Hamilton-Jacobi equations. Struct. Multidiscip. Optim., 54(5):1245–1266, 2016.

[4] G. Allaire, C. Dapogny, and F. Jouve. Shape and topology optimization. In Geometric partial
differential equations. Part II, volume 22 of Handb. Numer. Anal., pages 1–132. Elsevier/North-
Holland, Amsterdam, 2021.

[5] L. Birk. Fundamentals of ship hydrodynamics: Fluid mechanics, ship resistance and propulsion.
John Wiley & Sons, 2019.
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