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Abstract 

The ability to learn sequences depends on different factors governing sequence structure, such 

as transitional probability (TP, probability of a stimulus given a previous stimulus), adjacent 

or nonadjacent dependency, and frequency. Current evidence indicates that adjacent and 

nonadjacent pairs are not equally learnable; the same applies to second-order and first-order 

TPs and to the frequency of the sequences. However, the relative importance of these factors 

and interactive effects on learning remain poorly understood. The first experiment tested the 

effects of TPs and dependency separately on the learning of nonlinguistic visual sequences 

and the second experiment used the factors of the first experiment and added a frequency 

factor to test their interactive effects with verbal sequences of stimuli (pseudo-words). 

The results of both experiments showed higher performance during online learning for first-

order TPs in adjacent pairs. Moreover, Experiment 2 indicated poorer performance during 

offline recall for nonadjacent dependencies and low-frequency sequences. We discuss the 

results that different factors are not used equally in prediction and memorization. 

Keywords: Statistical learning, Prediction, Sequence learning, Artificial words  
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Probability, Dependency and Frequency are not all Equally Involved in 

Statistical Learning 

 

Adaptation to the environment depends on the ability to learn associations between 

stimuli in sequences (De Houwer et al., 2013). Statistical learning in particular has been 

shown to be a central process to learn such serial associations (Destrebecqz & Cleeremans, 

2001) in different sensory modalities, whether auditory (Saffran, Newport, et al., 1996), visual 

(Fiser & Aslin, 2002) or tactile (Conway & Christiansen, 2005). Some abilities based on 

statistical learning appear as early as a few months old in humans, for instance in word 

segmentation (Saffran, Aslin, et al., 1996; Saffran & Thiessen, 2003), for the acquisition of 

language (Pelucchi et al., 2009b), mental grammar (Nemeth et al., 2011) and when learning 

abstract sequences (Kirkham et al., 2002). 

Statistical learning of associations is reported to depend not only on the frequency of 

the elements of a learning context (Aslin, 2017), but also on the transitional probability 

between elements that can be adjacent (Saffran, Newport, et al., 1996) or nonadjacent, 

referring to nonadjacent dependencies (Newport & Aslin, 2004) and long-distance 

dependencies (Phillips et al., 2005). One issue is that frequency and transitional probability 

use different types of information in the sequence of stimuli, hence raising the question of 

their relative importance in learning. Transitional probability (TP) describes the conditional 

relation between the elements embedded in a set of sequences. For instance, in a sequence 

ABC, the transitional probability p(B|A) of B given A corresponds to the number of 

occurrences of B following all occurrences of A in sequences containing both A and B. In 

other words, TP refers to the strength with which B can be predicted by A (Pelucchi et al., 

2009a). TP has been shown to be more informative in predicting a stimulus given a previous 

stimulus than the frequency of the pair (Mirman et al., 2010). Furthermore, transitional 
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probability between nonadjacent elements p(C|A) corresponds to the strength with which C 

can be predicted by A in a sequence ABC. This type of nonadjacent dependency has been 

reported to be more difficult to learn than adjacent dependency (Wilson et al., 2018). 

Behavioral data has shown that nonadjacent dependencies cannot be learned in a divided 

attention task, while adjacent dependencies can (Pacton et al., 2015). A study using event-

related potentials has highlighted that adjacent and nonadjacent dependencies are not equally 

learnable because nonadjacent dependencies involve a greater processing cost (Phillips et al., 

2005). This higher processing cost is explained by Phillips et al. (2005) by a higher storage 

cost for nonadjacent dependencies. Thus, TP has been considered a fundamental process in 

statistical learning (Aslin, 2017), and it has been used extensively to determine how adjacent 

and nonadjacent elements are processed in diverse domains (e.g., artificial grammar learning 

with syllables, Gomez, 2002; Perruchet & Poulin-Charronnat, 2012; ASRT tasks, Janacsek et 

al., 2012). Statistical learning and transitional probability eventually emerged as crucial 

processes to account for how individuals acquire language (Romberg & Saffran, 2010; 

Thompson & Newport, 2007), how learned associations related to transitional probability 

allow for semantic predictions involved in priming (Brunel & Lavigne, 2009), how reading 

operates (Lavigne et al., 2000). 

Although transitional probability appears central to language processing, but a major 

limitation in the literature is that studies have usually focused on TPs between pairs of stimuli. 

However, language involves statistical regularities outside the pairs (Lavigne et al., 2016). For 

instance, in a triplet of events such as ABC, C can be predicted by each of the preceding 

stimuli A and B but also by the combination of them (AB). This latter case involves the 

second-order transitional probability of C given the combination of A and B noted p(C|AB) 

(Lavigne et al., 2014; also called second-order dependencies or conditionals (SOCs), see 

Gomez, 1997). Despite these previous studies, the effects of second-order TP on learning are 
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still poorly understood, particularly because they have been studied independently of the 

effect of other factors. Our hypothesis is that learning first-order vs. second-order TP could be 

better disentangled using sequences of three stimuli obeying the logic of the exclusive-OR 

(XOR, Lavigne et al., 2016).  

The XOR is a logical rule that has initially been used in categorization studies (J. D. 

Smith et al., 2011). To illustrate its structure, let's imagine a set of four objects that differ 

according to two dimensions: shape (square or circle) and color (blue or yellow). The set of 

possible objects combining these two dimensions is: blue square, yellow square, blue circle, 

and yellow circle. By applying the logic of the XOR to these four objects, the categories could 

be structured this way: the first category contains square OR blue objects, BUT not blue 

squares (that is, category 1: yellow squares and blue circles; category 2: blue squares and 

yellow circles). The categories are therefore based on a relationship between the shape and 

color dimensions. Category 1 requires the presence of one of two diagnostic features but not 

both. This connective is called the eXclusive OR because it eXcludes the conjunction of the 

diagnostic features. The XOR would fit the “cheese OR dessert” options rather well in a 

french menu as the client is only allowed to pick one of two options (the two allowed options 

are those of category 1; the client cannot choose both options, and we imply that because the 

client paid for at least one choice, not picking one option is a second impossibility).  

In a serial version of the XOR, the rule allows the creation of sequential triplets with 

the two input dimensions corresponding to the first stimulus and the second stimulus while 

the category corresponds to the third stimulus (fully predictable based on the two first 

stimuli). The serial organization of the dimensions makes the relational aspect of the XOR 

more straightforward for sequences of variables A-B-C. One example would be four 

sequences of two successive bits ab, ab’, a’b, a’b’ predicting the third bit c vs c’. One XOR 

could be that the third stimulus C is c if and only if the two previous stimuli AB are either a’b 
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or ab’. The verbal rule would be: “Stimulus C is c if and only if Stimulus A is a XOR 

Stimulus B is b; else c’ ”, or in more intelligible terms “Stimulus C is c if and only if Stimulus 

A is a OR Stimulus B is b, BUT not both a and b”. In terms of serial processing, one thus need 

to keep in mind the value of A when the value of B appears in order to combine both values to 

predict C. 

Applying the XOR to triplets of serial stimuli ABC, we can notice that all first-order 

TPs (C given A and C given B) are less than one (neither A or B alone allow full prediction of 

the third stimulus C). However, the second-order TP (C given the combination of A and B) 

does allow exact prediction of C. The XOR logic makes second-order TP informative for 

prediction (not first-order TP) because all first-order TPs are equal to .5 whereas the second-

order TP is equal to 1 (Rey et al., 2022). In other words, one cannot predict the third stimulus 

without having information on both A and B. We thus aimed to test the learning of second-

order TPs and compare it to the learning of first-order TPs for adjacent or nonadjacent items 

in two experiments. 

Moreover, because the precise learning differences between first- and second-order TP 

and between adjacent and nonadjacent dependencies remains poorly understood, the first 

experiment aimed to study the specific effect of these factors during statistical learning. 

Indeed, some studies have indicated that first-order TPs are less complex to learn than second-

order TPs (Gomez, 1997), and that adjacent dependencies are easier to learn than nonadjacent 

dependencies (Pacton et al., 2015). Nevertheless, the use of different protocols has also 

suggested that sequences including second-order TPs and nonadjacent dependencies can be 

easily learned (Barnes et al., 2008; Tóth-Fáber et al., 2021). However, in all these previous 

studies, the factors of interest have not been all tested with the same material.  

To better understand the specific effect of TP and dependency on learning, we used 

four different rules (described in more detail in the method section), each governing four 
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sequences of nonlinguistic visuospatial stimuli. We predicted that learning should be more 

efficient for the conditions involving first-order TPs in adjacent dependencies, followed by 

the condition involving second-order TPs (because, despite the higher complexity, the 

dependency between the combination AB and the item C remained adjacent) and then poorer 

performance for the condition involving nonadjacent dependencies. 

To go further, our second experiment aimed to study the same factors (first-order TPs 

for adjacent or nonadjacent dependencies and second-order TPs) in interaction in a more 

complex task that used sequences of language-related stimuli made of syllables. The 

frequency of the sequences was also manipulated, given that frequency has also been reported 

to have a role during statistical learning (Thiessen et al., 2013). We hypothesized that the 

effects of TPs, adjacency and frequency would all influence the learning of language-related 

stimuli despite the higher complexity of the task. We further hypothesized that even though 

learning could take longer to occur in this complex design, the three factors could all 

contribute to learning and that they would interact. We posited that the effects should be the 

same as in Experiment 1 with a precedence for first-order TPs in adjacent dependencies, and 

we hypothesized better performance with higher frequency. 

 

Experiment 1 

Method 

Participants. Eighty students between 18 and 30 years old (mean age 22.4) 

participated in the experiment, voluntarily or in exchange for course credits. Each condition 

was completed by twenty participants. The experiment was approved by the local ethics 

committee (CERNI) of Université Côte d'Azur, and the experiment was conducted with the 

informed written consent of the participants. 

Material. In the present study, we used sequences of three red dots (with each 
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stimulus characterized by its location on a screen) of the form A – B – C, with A, B and C 

being presented in this temporal order. This allowed us to embed both first-order TPs between 

adjacent pairs (p(B|A) and p(C|B)) as well as between nonadjacent pairs (p(C|A)). This further 

allowed us to embed second-order TPs (p(C|AB)) between the triplets of stimuli. 

Four conditions were created, and each participant completed only one of the four 

conditions. In the first condition, four triplets were used in which the first item predicted the 

second item with certainty (p(B|A) = 1) and two items were possible for position C 

(p(C|B) = 0.5). This condition was called AB* (event C is replaced by an asterisk since it is 

not predictable). This condition allowed us to test the learning of first-order TPs between the 

two adjacent elements of the first pair. In the second condition (called *BC), the second item 

allowed us to predict the last item (p(C|B) = 1), but the first item did not allow the prediction 

of the second item (p(B|A) = 0.5). The third condition (called A*C) was thought to test the 

learning of first-order TPs between two nonadjacent items, with the first item of the sequence 

predicting the last item with certainty (p(C|A)=1). However, a random second item produced 

p(B|A) = 0.5 and p(C|B) = 0.5 by construction. The fourth condition consisted of four 

sequences combined according to an exclusive-OR (XOR) logic (Lavigne et al., 2014). The 

XOR allowed us to dissociate first-order TPs (p(B|A), p(C|B), and p(A|C)) and second-order 

TPs (p(C|AB)). While the third item could not be fully predicted by either of the two 

preceding items considered separately, the third item could be fully predicted by the 

combination of the first two items. The XOR hence allowed us to study the learning of 

second-order TPs by maintaining a constant first-order TP. 

The experiment was programmed in PsychoPy (Peirce, 2007), and stimuli were 

displayed on a touchscreen. Nine positions were marked by nine crosses ‘+’ displayed on a 

3 X 3 virtual grid on a gray background. Each sequence was made of three red dot stimuli that 

replaced the crosses successively at different positions when the participant touched the 
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stimuli. A preliminary phase was carried out to select the most neutral sequences that could be 

used during the experiment. In this pretest, 10 separate participants completed 800 trials of 

random triplets. Transition times between two successive touches were recorded. To 

constitute the triplets to be used in Experiment 1, we selected four pairs of stimuli for each 

transition (the first transition between the first two items and the second transition between 

the last two items), allowing us to have only two items in the first position, two others in the 

second position and again two others in the third position. Moreover, the item at the end of the 

first transition and at the beginning of the second had to be the same (e.g. 9-3 and 3-7) with 

similar response times. Then, triplets were created with the conjunction of these pairs in 

accordance with the condition (Table 1). 

Protocol and task. We used the same task as Rey et al., (2019) but with sequences of 

three items. A trial started when the participant touched a yellow cross always displayed at the 

bottom of the screen. The yellow cross then disappeared and was replaced by the first red dot 

displayed at one of the nine possible locations. When the participant touched the first red dot, 

it was instantly replaced by the second red dot at one of the eight remaining locations (i.e., the 

inter-stimulus interval (ISI) between dot stimuli was set to zero milliseconds). The second red 

dot once touched was then instantly replaced by the third red dot at one of the seven 

remaining locations. 

Participants were instructed to touch the red dots as quickly as possible. Whenever the 

participant touched the second or the third red dot within a sequence, the response time (RT) 

was recorded as TT1 (transition time 1, time to touch the second dot after touching the first 

dot) and TT2 (transition time 2, time to touch the third dot after touching the second dot). The 

next trial began immediately after the completion of a sequence by touching the third red dot, 

with the yellow cross being displayed again at the bottom of the screen. 

Each task was made of 400 trials divided into 10 blocks of 40 trials (10 trials for each 
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sequence by block). Each trial consisted of presenting one of the four sequences of the chosen 

condition for a given participant. At the end of the 400 trials of the learning phase, a switch 

phase occurred. The switch phase consisted of the permutation of the predictable stimulus (the 

second red dot for the AB* condition and the third red dots for other conditions) between the 

different sequences (Table 1). The switch phase allowed us to check whether the sequences 

had been learned. A decrease in RTs for the predictable transitions (p = 1) was expected 

during the learning phase, but it is only an increase in RTs during the switch phase that 

allowed us to conclude that a learning process took place instead of a simple training for the 

task (that is, participants becoming faster at touching the selected dots in their condition). 

Results and discussion 

Data are posted at https://osf.io/hjy9k/ . We removed 2% of the data corresponding to 

response times (RT) faster than 150 ms and slower than 850 ms (± 2 standard deviations from 

the mean). 

 Global analyses. Figure 1 shows a decrease in RTs during the learning phase (first 10 

blocks) for all transitions of each condition but with a stronger decrease for the predictable 

transitions (p = 1) based on first-order TPs for adjacent pairs (AB* and *BC). An increase in 

RTs also appeared between the last block of the learning phase (Block 10) and the switch 

phase (last block) for all predictable transitions, indicating effective learning of the structure 

rather than a simple automatization of responses due to a training in the task. 

Linear mixed models (lmm) with random intercepts by participant were carried out on 

the RTs within the learning phase (first 10 blocks) using the lme4 package for R (Team, 

2013). The factors blocks (1 to 10), condition (AB*, *BC, A*C and XOR) and predictability 

(the present item is predictable given past items vs. not) were tested. The results in Table 2 

indicate a significant decrease in RTs during the learning phase but with a difference of 

steepness as a function of the condition and the predictability of the transition. These findings 
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suggest a different effect based on the type of TP (first-order vs. second-order, d = .21) or 

dependency (adjacent vs. nonadjacent, d = .18) with better performance for sequences 

involving first-order TP in adjacent dependencies. Moreover, a Bayesian ANOVA suggests 

that the model that included all factors (Condition + Prediction + Block + Condition  ✻ 

 Prediction) showed evidence against the null hypothesis (BF10 = 3.370e+166). For the 

switch phase, a lmm with the factors phase (last block of learning phase vs. switch block) and 

condition indicated an increase in RTs for the predictable transitions (F(1,114) = 67.206, 

p <. 001, d = 1.37) and a significant interaction with the condition, showing a greater increase 

of RTs with the switch phase for the conditions AB* and *BC compared to the conditions A*C 

and XOR (F(3,114) = 12.836, p < .001, d = -.82). We note that no effect of the switch phase 

appeared on the unpredictable transitions (F(1,108) = 0.107, p = .744, d = .01). Bayesian 

ANOVAs indicated that the best model included the factors condition, block and their 

interaction for predictable transitions (BF10 = 1.536e+15 against null hypothesis) but only the 

factor condition for unpredictable transitions (BF10 = 2.876). These results correspond to our 

expectations because the sequences used in the switch phase only involved a modification of 

items in the predictive transition (Table 1), so the items in unpredictable transitions remained 

the same as those in the learning phase. 

 Analyses by condition. To better understand the effect of TPs and adjacency, we 

focused on our four conditions. The first condition of interest was the AB* condition, 

corresponding to a set of sequences where the first stimulus allowed us to predict the second 

stimulus (Figure 2a), and we specifically studied the evolution of RTs of TT1 (measured at 

the second stimulus) for this condition. In this condition, there was only one piece of 

information for participants to take into account: the probability of B knowing A. The second 

condition was more complex; indeed, in the *BC condition, more elements were present: 

stimulus C was predicted by B but also by A in a nonadjacent way in sequence ABC 
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(Figure 2b). Thus, the *BC condition should have faster RTs for its TT2 than the TT1 of the 

AB* condition because the stimulus to be predicted received more activation (Lavigne et al., 

2011). A first analysis including block and condition factors indicated a significant effect of 

the condition when only AB* and *BC were compared during the learning phase with shorter 

RTs for the *BC condition (F(1,377) = 13.18, p <.001, d = .37) but no significant effect of the 

interaction block*condition (F(1,366) = 0.926, p =.336, d = -.1). Moreover, Bayesian analysis 

indicated that the best model only included the block factor (BF10 = 1.738e+39 against null 

hypothesis, BFm = 33.961). This result suggested a weak effect of the nonadjacent 

dependency for the prediction because the *BC condition did not lead to shorter RTs through 

the learning phase than the AB* condition. However, in the *BC condition, the TP of C 

knowing A was equal to .5, so the next condition allowed us to test the effect of the 

nonadjacent TP when its value was higher. 

 

The A*C condition had all adjacent TPs equal to .5 and the nonadjacent TP equal to 1 

(Figure 2c) to test the effect of the nonadjacent dependency during prediction. An analysis 

indicated no effect of the transition during the learning phase for the A*C condition 

(F(1,19) = 0.657, p = .428, d = -.37) however a significant effect of the switch phase appeared 

for TT2 (F (1,19) = 4.899, p = .039, d = 1.02) but not for TT1 (F(1,19) = 0.557, p = .465, 

d = .34). These results indicated a weak learning of the nonadjacent dependency. Indeed, this 

TP did not allow a prediction leading to shorter TT2 than TT1 during the learning phase. 

Nevertheless, the effect of the switch phase indicated learning of this TP, but the pattern 

during the learning phase suggested difficult learning. This result also explains why the same 

pattern appeared for the conditions AB* and *BC: the nonadjacent dependency in the *BC 

condition was not sufficient to provide an advantage compared to the AB* condition. 

The XOR condition allowed us to test the effect of the second-order TP. In this 
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condition, all first-order TPs were equal to .5, and only the combination of the first two 

stimuli allowed us to predict the last stimulus (Figure 2d). The results indicated the same 

pattern as the A*C condition: no effect between the RTs of TT1 and TT2 during the learning 

phase (F(1,19) = 0.142, p = .711, d = .17) but a significant effect of the switch phase for TT2 

(F(1,19) = 6.736, p = .018, d = 1.19) and not for TT1 (F(1,19) = 0.231, p = .636, d = -.22). 

These analyses indicated a weak learning of the second-order TP. 

To better understand the respective effects of these factors in a more realistic learning 

context, it was decided to create a more complex task. For this purpose, it was chosen to 

group all our conditions in the same protocol, to test linguistic stimuli allowing more 

information to be measured (i.e., accuracy in addition to RTs). We also decided to add the 

frequency as a factor in Experiment 2 because it could provide more information on factors 

implied in statistical learning. 

 

Experiment 2 

Experiment 1 suggested that all types of TPs and adjacency can be learned by participants 

with an advantage for first-order TPs in adjacent dependencies. However, Experiment 1 tested 

only one condition for each participant, thus manipulating the factors separately as between-

participants variables. Experiment 2 investigated the learning of these conditions mixed 

together as within-participant variables. This was made easier by using pseudo-words instead 

of a matrix of dots. Indeed, a matrix of dots would have embedded 24 dots and would have 

become too large and thus too confusing, while different pseudo-words could be easily 

constructed and memorized. Each pseudo-word was constructed according to one of the 

experimental conditions, and all were presented in the tasks. Only a few studies have 

addressed the combined effect of both TPs and frequency to test for their interactive effects 

(Endress & Langus, 2017; Lazartigues et al., 2021; Mirman et al., 2010; Perruchet & Poulin-
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Charronnat, 2012) or by fixing the frequency parameter to show an effect of TPs (Aslin et al., 

1998). These studies have suggested a prevalence of TPs over frequency in both prediction 

and memorization. Additionally, the three factors (i.e., TP, dependency and frequency) have 

generally been studied separately in the statistical learning of sequences. However, the fact 

that TP and frequency are learned on the basis of the same set of sequences suggests that they 

could interact, which would be a new interesting result to understand the benefits of each 

factor for the task involved (prediction or memorization).  

In order to test the interaction between TPs and frequency, we decided to replace the 

AB* condition. In Experiment 1, conditions AB* and *BC focused on the same factor (i.e., 

first-order TP for an adjacent pair) and the results showed that they produced similar 

performance, so we chose to drop the AB* condition in Experiment 2. To replace it, we chose 

a condition involving an XOR with unbalanced sequences. This type of condition is 

interesting because it allowed us to disentangle the effects of frequency of the sequences and 

first-order TP. This was made possible by manipulating the frequency of sequences for fixed 

values of second-order TP (Lazartigues et al., 2021).  

In this experiment, two different tasks were designed to focus on the prediction and 

memorization of the sequence.  

We hypothesized, as in Experiment 1, that the conditions with first-order TPs in 

adjacent dependencies should produce better performance, followed by the condition 

involving second-order TPs with a manipulation of frequency (because an unbalanced 

division of frequencies is known to allow better learning, L. B. Smith et al., 2018), followed 

by the second-order TP without manipulation of frequency and finally by the condition with 

nonadjacent dependencies. Moreover, according to the literature (Endress & Langus, 2017; 

Lazartigues et al., 2021; Mirman et al., 2010), we hypothesized the prevalence of TPs over 

frequency during the learning. 
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Method 

Participants. Thirty Université Côte D'Azur psychology students between 18 and 32 

years of age (mean age 21.9) participated in the experiment voluntarily (20 among them who 

could not receive course credits obtained 50€ for their participation). In the present study, 33 

students completed the experiment, but three of them were excluded due to a data logging 

problem (for one participant) or interruption during sessions resulting in biased performance. 

The experiment was approved by the local ethics committee (CERNI) of Université Côte 

d'Azur, and the experiment was conducted with the informed written consent of the 

participants. 

Material and task. Participants were exposed to 16 pseudo-words made of three 

simple meaningless syllables (consonant-vowel, see Table 3). These 16 pseudo-words 

corresponded to four conditions governed by rules (described later) allowing us to test the 

effect of transitional probabilities (first-order and second-order), contiguity (adjacent 

dependency and nonadjacent dependency) and frequency of the triplet. For all pseudo-words, 

the last syllable was fully predictable based on TPs. The *BC, A*C and XOR conditions were 

constructed with the same rules as in Experiment 1. The new condition (called XOR 

Unbalanced) allowed us to test the effect of second-order TPs (typical of the XOR) while 

including a manipulation of frequency: the first two pseudo-words were presented five times 

per block (the same as the pseudo-words in other conditions), the third one was presented 

twice per block and the last one was presented eight times per block. This corresponded to 

frequencies of 0.0625 for two pseudo-words, 0.025 for the least frequent pseudo-word and 0.1 

for the most frequent pseudo-word.  

In each condition, only six syllables were used to create pseudo-words. Different 

syllables were used in the different conditions, for a total of 24 syllables used in the 



PROBABILITY, DEPENDENCY AND FREQUENCY 16 
 

experiment. Ten different sets of pseudo-words were used and assigned randomly to the 

different participants. Note that pseudo-words were constructed so that only two vowels 

appeared in the last syllable, allowing a detection task on the third element (fully predictable). 

Participants had to perform a target detection task on the last vowel appearing in the 

last syllable of each pseudo-word. This last vowel could be, for example, either “e” or “u”, 

each one being assigned a specific key. Participants had to press the “q” key if they saw the 

“e” vowel and press the “m” key if they saw the “u” vowel (note that the target vowels were 

not the same for all participants). Participants had to press the key as fast as possible when the 

third vowel of the sequence appeared. Correct answer rates and response times were recorded. 

All pseudo-words were presented in a random order in each block, and each occurred five 

times per block (except for two pseudo-words of the XOR Unbalanced condition presented 

twice or eight times per block to manipulate the frequency of the triplet of syllables). A block 

thus involved 80 trials. Each trial began with a white cross in the center of the screen, 

followed by the sequence of three syllables. To avoid an effect of a fixed rhythm of 

presentation, two parameters of the presentation of the stimuli were manipulated: the position 

of each syllable on the screen (half of the syllables had the consonant in the center, the other 

half had the vowel in the center) and the display time of the syllable (the presentation time of 

each syllable randomly varied between 250 ms and 400 ms with a fixed blank screen of 250 

ms between each syllable). Each participant completed five sessions of 10 blocks, one session 

per day for five days. A switch phase of 80 trials was added at the end of the last session 

(corresponding to a switch of the last stimuli as in Experiment 1). After the experiment, to 

further check for actual learning, a two-alternative forced-choice (2AFC) task was conducted 

that requested participants to choose between the learned pseudo-words and lures constructed 

by using the same syllables as in the learned pseudo-words but in different combinations. 
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Results and discussion 

 Accuracy and RTs (task one) and recognition rates (task two) were analyzed by fitting 

linear mixed-effect models to the data with random intercepts by participant. We used the 

lmer function in the lme4 package for R (Team, 2013). To analyze RTs, we selected correct 

answers only. 

A lmm only including the session factor showed a significant increase in accuracy 

(F(1,119) = 21.534, p < .001, d = .85) and a significant decrease in RTs (F(1,119) = 48.513, 

p < .001, d = -1.28) during the learning phase (i.e., the first five sessions without the switch 

phase). This improvement during the learning phase was followed by a general drop in 

performance between the last block of the learning phase and the switch phase (correct 

answer rates: F(1,29) = 10.634, p < .003, d = -1.21 ; RTs: F(1,29) = 9.094, p < .005, 

d = 1.12). Bayesian ANOVAs indicated that the model including the session factor showed 

evidence against the null hypothesis both for learning phase (accuracy : BF10 = 1323; RTs : 

BF10 = 2.877e+6) and switch effect (accuracy : BF10 = 17.7 ; RTs : BF10 = 7.3). 

Figures 3a and 3b show an increase in performance during the learning phase but 

small differences between conditions. The results of a lmm including the factors session 

(without switch phase) and condition indicated a significant effect of the sessions with an 

increase in the correct answer rate during learning phase (F(1,563) = 64.068, p < .001, 

d = .41) but no effect of the condition (F(3,563) = 1.938, p = .122, d >.10 and < .18). 

However, when we compared the three conditions A*C, XOR and XOR Unbalanced mixed 

together against *BC alone, the effect fell short of significance p = .056 (d = -.23) with the 

*BC condition showing higher correct answer rates across learning phases. A lmm again 

including session and conditions indicated a significant effect of the session on RTs (F(1,563) 

= 159.155, p < .001, d = -.57, BF = 1.13) with a decrease in RTs across the sessions 

(estimates = -2.625e-02) but no effect of the condition or interaction (F(3,563) = 0.244, 
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p = .865, d < .1, and F(3,563) = 0.634, p = .593, d < .1). Nevertheless, Bayesian ANOVAs 

indicated that the model including condition and session showed evidence against the null 

hypothesis (accuracy : BF10 = 4.419e+22, BFm = 17.12 ; RTs : BF10 = 4.895e+29, BFm = 

7.35). 

To study the effect of frequency and to compare it to that of TPs, we selected the XOR 

Unbalanced condition because this condition allows a partial dissociation of frequency and 

first-order TPs. Figures 3c and 3d show an increase of performance during the learning phase 

for correct answer rates and RTs, with poorer performance for the pseudo-words with the 

lowest first-order TPs and frequency. To determine which factors or combination of factors 

was primarily involved in sequential learning, we first ran three mixed models, all including 

the effect of sessions with one or more of the factors of interest (i.e., the first two models 

involved only frequency or first-order TP, and the last included both of them) on correct 

answer rates. Then, we computed the Akaike information criterion (AIC, Akaike, 1987) for 

each of them to determine which model best reflected the data. The results indicated that the 

best model included only first-order TP (smallest AIC, indicating the most parsimonious 

model; AIC = 1098 vs. AIC = 1113 for the two other models). The results indicated a 

significant effect of the session and an interaction between session and first-order TP on 

answer rates (F(1,563) = 11.46, p < .001, d = -.13 and F(3,563) = 4.895, p = .002, d > .21 and 

<.30). Regarding RTs, we only found a significant effect of the session 

(F(1,563) = 131.46, p < .001, d = .43). However, Bayesian analyses showed that the model 

including condition and session indicated evidence against the null hypothesis (accuracy : 

BF10 = 17784, BFm = 7.5 ; RTs : BF10 = 1.683e+27, BFm = 11.82). Moreover, when only 

sequences with equal frequency (i.e., 0.0625) were selected, the results showed an effect of 

TPs at the end of the learning phase (F(1,29) = 4.11, p = .052, d = .75). This finding reaffirms 

the crucial role of TPs and provides evidence that even if second-order TPs allowed an exact 
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prediction (such as in the sequences tested), the first-order TP between the last two items had 

an impact on learning and suggests a complex interaction of first-order and second-order TPs 

during the statistical learning of sequences with a second-order TP not fully learned when the 

first-order TP was not high enough. 

Finally, Figures 3e and 3f show the performance of the 2AFC task presented at the end 

of the experiment, with poor performance for the A*C condition and the weakest pseudo-

words of the XOR Unbalanced condition. A lmm on all conditions indicated a significant 

effect of the condition on the recognition rate (F(3,90) = 5.331, p = .002, d > .01) with a lower 

recognition rate for the A*C condition. 

As before, the XOR Unbalanced condition was selected and three mixed models were tested 

on recognition rates: frequency only, first-order TP only, and the two factors combined.  

The best model on this analysis only included frequency (AIC = 179 against 183 for the two 

other models), although this model did not show a significant effect for frequency 

(F(2,91) = 2.728, p = .071, d > .37 and <.47) and the inclusion of frequency factor did not 

increase the probability of the null model in the Bayesian analysis (BFm < 1). Nevertheless, 

when we tested only the least frequent pseudo-words compared to the other three, an effect of 

frequency appeared short of significance (F(1,30) = 3.824, p = .06, d = .71), suggesting a 

lower recognition rate for the least frequent pseudo-words. Hence, although TP prevails over 

frequency in online prediction, visible in correct answer rates, frequency could be a more 

important factor for memorization, visible in recognition rates. 

 

General discussion 

The purpose of this study was to investigate the learning of (1) first-order TP in cases 

of adjacent or nonadjacent dependencies and (2) second-order TP as a function of sequence 

frequency and first-order TP. The two experiments used different protocols and materials to 
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investigate the relative importance of these factors as a function of visuospatial or language-

related stimuli and in online prediction tasks or an offline recognition task. 

In Experiment 1, first-order TPs in adjacent pairs exhibited stronger effects on RTs 

with results showing the pattern of performance (AB*,*BC)>(A*C, XOR), meaning that the 

conditions AB* and *BC superseded the two others. Indeed, predictable transitions (p = 1) for 

the AB* and *BC conditions led to shorter RTs than tasks in which contiguous pairs were 

made of unpredictable transitions (p = .5). As in previous studies, our results indicate more 

efficient learning of first-order TP compared to second-order TP (Gomez, 1997) and adjacent 

dependencies compared to nonadjacent dependencies (Pacton et al., 2015; Phillips et al., 

2005). Indeed, our finding suggests that participants used predominantly first-order TPs 

between two adjacent elements during sequence processing to predict the next stimulus to 

appear in the sequence and, thus enabling them to be faster. Conversely, nonadjacent 

dependencies (A*C condition) as well as second-order TPs (XOR condition) did not lead to 

faster RTs for the predictable transition during the learning phase, although a drop in 

performance appeared with sequence modification. These results indicate difficult learning for 

both nonadjacent dependencies and second-order TPs. 

The results of Experiment 2 showed that pseudo-words in all conditions were learned 

by participants, with a stronger effect of first-order TPs in adjacent dependencies on correct 

answer rates with (*BC)>(A*C, XOR, XOR Unbalanced). However, the results differed for the 

recognition task, with only poor performance for nonadjacent dependencies such as 

(*BC,XOR,XOR Unbalanced)>(A*C). Thus, nonadjacent pairs appeared to be less well 

recalled, even though the detection task indicated learning of these dependencies. The result 

that nonadjacent pairs led to poorer recognition performance highlights the difficulties of 

learning this type of dependency. 

The fact that the results of both experiments indicate a prevalence of first-order TPs in 
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adjacent pairs points to the possibility of similar mechanisms involved in learning sequences 

of nonlinguistic visuospatial stimuli and sequences of language-related stimuli. Moreover, this 

concurs with the idea of domain-general learning mechanisms (Perruchet & Pacton, 2006). 

Note that this does not mean that these two types of information are learned by the same brain 

structure or region, but that similar synaptic and neural mechanisms may be at work in 

learning sequences of the two types of stimuli. 

Turning to the XOR Unbalanced condition in Experiment 2, the two tasks (detection 

task and 2AFC task) focusing either on online prediction or on memorization showed stronger 

effects of TPs or frequency, respectively. This suggests that both TP and frequency were 

learned during the experimental sessions but that participants did not use the same factor in 

both tasks. These results are in contrast with previous studies showing a prevalence of TP 

over frequency for both prediction (Mirman et al., 2010) and memorization (Endress & 

Langus, 2017). The difference between our results and those of Endress and Langus (2017) 

could be due to the type of stimulus presentation. Indeed, in our recognition task, the pseudo-

words were presented visually as units (i.e., the components of the pseudo-words were not 

presented sequentially) whereas Endress et al. used an auditory serial presentation. This 

difference could explain our results. Since a non-sequential presentation does not require any 

prediction, the frequency could show an effect stronger than TP. In addition, low frequency 

led to poorer performance for recognition and this result is in line with the better recognition 

of frequent words than of rare words in reading (Albrengues et al., 2019). Moreover, 

Experiment 2 brings new results on learning TP for linguistic stimuli compared to results 

from (Lazartigues et al., 2021) for nonlinguistic stimuli. The Lazartigues et al. (2021) study 

involved sequential pointing of dots on a touch screen, similar to Experiment 1 but with 

sequences obeying an XOR Unbalanced rule comparable to that of Experiment 2 (with the 

same values of TPs). Their results indicated a prevalence of TPs over frequency, as in 
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Experiment 2. However, in Lazartigues et al. (2021), the RTs between the second and third 

stimuli of the sequences did not show an effect of TP for high-frequency sequences, while 

Experiment 2 showed an effect of TP on correct answer rates even for high-frequency 

sequences.  

The use of different protocols to study the same factors reaffirms the question of the 

differential role of TPs depending on the task. The results of Experiment 2 point to the fact 

that the information used by participants depends on the task at stake. It is interesting to note 

that for the same set of sequences that are learned, participants use in greater proportion either 

the TP between stimuli processed in the sequence or the frequency of the triplets. The present 

study highlights the relation between task properties and the information used. On the one 

hand, the online task of Experiment 2 allowed prediction of a stimulus from the preceding 

one(s). In that case, the TP was the information used by participants with a greater effect of 

first-order TP on performance and second-order TP appearing to be more difficult to learn 

even though it allowed perfect prediction. On the other hand, the 2AFC task of Experiment 2 

required offline recognition of triplets of stimuli presented at the same time and hence did not 

require predicting a stimulus from the preceding stimuli. In that case, the frequency of the 

sequences had a stronger effect on recognition than TP. This new result that TPs are more 

used by participants in prediction and frequency in recognition suggests that the effects of TP 

and frequency do not depend on different learning stages but rather on different uses of the 

learned information. When prediction can help online processing of sequentially presented 

stimuli, participants use the TP, which is information about which stimulus will come next in 

the sequence. When recall is tested offline, the effect of frequency arises and influences 

recognition, as is the case in word reading. The task-dependent relative effects of TP and 

frequency on the basis of the same learned set of sequences are in line with Thiessen et al. 

(2013), who reported that frequency and TP are involved in different types of statistical 
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learning mechanisms. The results of the present study point to the possibility that, based on a 

single set of learned parameters, including TP and frequency, task-dependent mechanisms can 

lead to the use of TPs or frequency, depending on whether the task requires recognition or 

prediction. 
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Table 1 
Sequences used for the learning phase and switch phase for all conditions in Experiment 1. 

Condition AB* *BC A*C XOR 
Learning phase 9-3-7 

9-3-4 
6-2-7 
6-2-4 

6-3-7 
9-3-7 
6-2-4 
9-2-4 

9-2-4 
9-3-4 
6-2-7 
6-3-7 

9-3-4 
9-2-7 
6-3-7 
6-2-4 

Switch phase 9-2-7 
9-2-4 
6-3-7 
6-3-4 

6-3-4 
9-3-4 
6-2-7 
9-2-7 

9-2-7 
9-3-7 
6-2-4 
6-3-4 

9-3-7 
9-2-4 
6-3-4 
6-2-7 

Note. The switch phase corresponds to a modification of the predictable item, i.e., the second for the AB* 
condition and the last one for other conditions. 
 
Table 2 
Effects of block, condition and predictability on RTs during the learning phase in Experiment 1. 
Variable Sum Sq. Mean Sq. NumDF DenDF F value p 
Block 851506 851506 1 1542.8 413.662 < .001*** 
Condition 56328 18776 3 1566.7 9.121 < .001*** 
Predictability 34430 34430 1 1542.8 16.726 < .001*** 
Block × Condition 29362 9787 3 1542.8 4.755 .003** 
Block × Predictability 31438 31438 1 1542.8 15.273 < .001*** 
Condition × Predictability 20737 6912 3 1542.8 3.358 .018* 
Block × Condition × Predictability 54826 18275 3 1542.8 8.878 < .001*** 
Note. The predictability factor corresponds to the possibility of predicting the present item from the previous items. 
 
 
Table 3 
Example of pseudo-words used for the learning phase and switch phase for all conditions in Experiment 2. 

Condition *BC A*C XOR XOR Unbalanced 
Learning phase PA-TI-DE 

PA-RO-VU 
MI-TI-DE 

MI-RO-VU 

TA-MO-FU 
TA-JI-FU 

JO-MO-TE 
JO-JI-TE 

DI-PO-PE 
DI-GA-BU 
FA-PO-BU 
FA-GA-PE 

TO-KO-RE (frequency +) 
TO-RA-LU (frequency =) 
GO-KO-LU (frequency =) 
GO-RA-RE (frequency -) 

Switch phase PA-TI-VU 
PA-RO-DE 
MI-TI-VU 
MI-RO-DE 

TA-MO-TE 
TA-JI-TE 

JO-MO-FU 
JO-JI-FU 

DI-PO-BU 
DI-GA-PE 
FA-PO-PE 
FA-GA-BU 

TO-KO-LU (frequency +) 
TO-RA-RE (frequency =) 
GO-KO-RE (frequency =) 
GO-RA-LU (frequency -) 

Note. The switch phase corresponds to a modification of the last syllable. Notes of frequencies in the XOR 
Unbalanced condition column corresponds to the frequency distribution of each pseudo-words : + corresponded 
to a frequency of 0.1, = to 0.0625 (as other conditions) and – to 0.025. 
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Figure 1 
Decrease of response times during the learning phase (10 first blocks) and increase with the switch phase (last 
block) as a function of condition and predictability (possibility of predicting the present item from the previous 
items) in Experiment 1. 

 
Note. The error bars correspond to ± 1 standard error. 

 
 

Figure 2 
Structure and transitional probabilities in Experiment 1 for (a) AB* Condition, (b) *BC Condition, (c) A*C 
Condition, and (d) XOR Condition. 

  

(a) (b) 

  

(c) (d) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



PROBABILITY, DEPENDENCY AND FREQUENCY 31 
 

Figure 3 
In Experiment 2, increase in performance during the learning phase (5 sessions) and drop in performance with 
the switch phase (last block) for (a) correct answer rates for each condition, (b) RTs for each condition, (c) correct 
answer rates for the XOR Unbalanced condition, (d) RTs for the XOR Unbalanced condition, and observed 
recognition rate in the two-choice recognition task for (e) all conditions and (f) the XOR Unbalanced condition. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Note. The error bars correspond to ± 1 standard error. 
 


