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Abstract

This paper deals with single-tap equalization for the recently introduced FBMC-

PAM system, a multicarrier scheme able to meet the requirements of cognitive

radio such as high level of adjacent channel leakage ratio and asynchronous com-

munications. The optimum single-tap gain in the minimum mean square error

(MMSE) sense is derived and its performance is compared with that of previously

considered receivers. It is shown that when the optimum MMSE single-tap gain

is multiplied (before the real part extraction) by a zero-mean complex noncircular

random variable (that is, when the zero-mean output of the standard matched fil-

ter has a complementary variance different from zero) the achieved performance

can be better than that of other single-tap receivers and similar to that of a more

advanced previously considered equalization structure.
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1. Introduction

Filter bank multicarrier (FBMC) techniques are potential alternatives to the

current orthogonal frequency division multiplexing (OFDM) schemes for some

emerging applications fields such as machine type communications or cognitive

radio [1]. In these systems the prototype filter controls performance and a num-

ber of operational aspects. Long filters assure high of out-of-band attenuation

and asynchronous user coexistence. However, for reduced system latency short

prototype filters are required.

In [2, 3] short prototype filters with overlapping factor K= 2 (i.e., only 2 ad-

jacent multicarrier symbols overlap in time), have been proposed. Since FBMC

offset-quadrature amplitude modulation (OQAM) combined with short filters as-

sures limited performance, the complex lapped transform has been used for the

design of the FBMC-PAM transceiver [4–6]. For a special choice of the proto-

type filter it is much similar to the first analog multicarrier system introduced by

Chang [7]. The scheme is based on pulse amplitude modulation (PAM) combined

with a sine prototype filter with overlapping factor K=2 and it achieves perfect

reconstruction in the real field. Moreover, the sine prototype filter has a main lobe

in the frequency domain whose width is 3 times the sub-carrier spacing while it is

only 2 times for OFDM scheme. For this reason and for its better spectral decay,

FBMC-PAM outperforms OFDM systems as well as FBMC-OQAM systems in

terms of CFO sensitivity [8].

Several equalization structures have been considered for FBMC-PAM sys-

tems, among them the well known single-tap zero-forcing equalizer and the more

advanced structures termed 2M-4M and 2M-6M [4]. In particular, the 2M-4M

receiver evaluates the FFT of the received signal in a window of length 4M whose

central part of length 2M is used by the single-tap receivers, divide this FFT by

that of the channel in a window of the same length, performs the inverse FFT of
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the resulting data and, then, uses the central part of length 2M as the input of the

receiver for the AWGN channel.

This paper deals with single-tap equalization of FBMC-PAM signals in wire-

less dispersive channels. The optimum single-tap gain in the minimum mean

square error (MMSE) sense is derived and it is shown that it assumes a more in-

volved expression when the output of the standard matched filter (that multiplied

by the considered gain and after real part extraction provides the decision variable)

is noncircular [9–12], that is when its complementary variance is different from

zero. Moreover, it is shown through computer simulations, that in this case the

optimum MMSE single-tap equalizer can outperform other well-known single-

tap structures and can assure a performance similar to that of the more advanced

2M-4M receiver.

The organization of the paper is as follows. In Section 2, the standard FBMC-

PAM system is recalled. In Section 3 the MMSE single-tap gain expression is

derived while in Section 4 and in Section 5, the single-path case and the asymp-

totic case (large number of subcarriers), respectively, are analyzed. Simulation

results are reported in Section 6 and conclusions are drawn in the final Section.

It is shown that when the optimum MMSE single-tap gain is multiplied (before

the real part extraction) by a zero-mean complex noncircular random variable (that

is, when the zero-mean output of the standard matched filter has a complementary

variance different from zero) the achieved performance can be better than that

of other single-tap receivers and similar to that of a more advanced previously

considered equalization structure.

Notation: j 4=
√
−1, superscript (·)∗ denotes the complex conjugation,<[·] the

real part, =[·] the imaginary part, δ[k] the Kronecker delta, | · | the absolute value,

∠[·] the argument of a complex number in [−π, π) and E[·] denotes statistical

expectation.

3



2. System Model

Let us consider an FBMC-PAM system [4] with 2M subcarriers. The received

signal in time-dispersive channel can be written as

r(t) =

L−1∑
p=0

gp s(t − τp) + n(t) (1)

where s(t) is the transmitted FBMC-PAM signal, n(t) denotes the zero-mean cir-

cular complex white Gaussian noise with independent real and imaginary parts,

each with two sided power spectral density No, and τp is the delay of the pth path

with complex gain gp. The FBMC-PAM signal s(t) is equal to

s(t) =

Ns−1∑
i=0

2M−1∑
k=0

dk[i] e j πT (k+ 1
2 )(t−iT+ T

2 ) h(t − iT ) (2)

where 2T is the FBMC-PAM symbol duration, Ns is the number of payload sym-

bols, dk[i] is the real information symbol transmitted on the kth subcarrier in the

ith symbol interval, and h(t) is the real pulse-shaping filter. The data symbols are

zero-mean statistically independent real random variables with mean-square value

Pd, thus,

E {dk[i]dm[l]} = δ[k − m] δ[i − l] Pd. (3)

In (1) the complex gains gp are modeled as a zero-mean complex circular Gaussian

random variables with variance σ2
p and statistically independent of one another.

Moreover, it is assumed that the following condition holds

L−1∑
p=0

σ2
p = 1. (4)

The received signal r(t) is filtered with an ideal low-pass filter with a bandwidth

of 1/Ts, where Ts denotes the sampling period (the FBMC-PAM symbol duration

is equal to 2T = 2MTs), thus the discrete-time low-pass version of the received
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signal can be written as

r[l] =

Ns−1∑
i=0

2M−1∑
k=0

L−1∑
p=0

gp dk[i] Tc[k, l − θp − iM] + v[l] (5)

where

Tc[k, l]
4
= h[l] e j πM (k+ 1

2 )(l+ 1
2 + M

2 ), (6)

θp = τp/Ts is the normalized delay of the pth path and v[l] is a discrete-time

zero-mean AWGN process with autocorrelation function

Rv[m] = E {v[l]v∗[l − m]} =
2No

Ts
δ[m] = σ2

v δ[m]. (7)

It is assumed that the normalized delays θp = τp/Ts in (5) are integer values. In

(6) the real prototype filter h[l], equal to zero for l < K2M
4
= {0, 1, . . . , 2M − 1} and

with energy

Eh
4
=

2M−1∑
l=0

h2[l], (8)

satisfies the following conditions

h[M + l] = h[M − l − 1] ∀ l, (9)
+∞∑

m=−∞

h[l + mM]h[l + mM + 2rM] = δ[r] ∀ l, r (10)

that imply the orthogonality condition in the real field

<

 1
M

2M−1∑
l=0

Tc[k, l]T ∗c [m, l − pM]

 = δ[m − k] δ[p]. (11)

In this case, it follows that [4] in AWGN channel the optimum (in the maximum

likelihood sense) decision variable for estimating statistically independent infor-

mation symbols can be written as<
{
D̂m[i]

}
where

D̂m[i] 4=
1
M

2M−1∑
l=0

r[iM + l]T ∗c [m, l] (12)
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since conditions (9) and (10) assure the absence of intersymbol interference and

intercarrier interference.

In the following it is considered the prototype filter

h[l] = sin
[
π

2M

(
l +

1
2

)]
l ∈ K2M, h[l] = 0 l < K2M. (13)

This prototype filter satisfies conditions (9) and (10) and simplifies the receiver as

shown in [4].

3. Optimum single-tap receiver

In this section we derive the optimum (in the minimum mean-square error

(MMSE) sense) single-tap receiver for the signal model in (5). Specifically, we

derive the expression of the complex gain am such that the estimate of the symbol

transmitted on the m−th subcarrier in the i−th interval

d̂m[i] = <
{
amD̂m[i]

}
(14)

minimizes the mean-square error

E
[
ε2

]
= E

[(
d̂m[i] − dm[i]

)2
]
. (15)

In (14) D̂m[i] is the decision variable for AWGN (see (12)) evaluated by the re-

ceiver and am is the complex gain used by the single-tap equalizer to achieve

satisfactory performance in a multipath channel. By substituting (14) in (15) and

taking into account that

<2 {A} =
1
2
<

{
A2

}
+

1
2
| A |2 (16)

it follows that

E
[
ε2

]
=

1
2
<

{
a2

mE
[
D̂2

m[i]
]}

+
1
2
| am |

2 E
[∣∣∣D̂m[i]

∣∣∣2]+ Pd − 2<
{
amE

[
dm[i]D̂m[i]

]}
.

(17)
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A necessary and sufficient condition for a point ao
m to be a stationary point

for the real-valued function (17) analytic in both am and a∗m is that the derivative

is zero in ao
m when am and a∗m are considered as independent variables [13]. In

particular, the real-valued function (17) can be minimized by solving the equation

amE
[
D̂2

m[i]
]

+ a∗mE
[∣∣∣D̂m[i]

∣∣∣2] = 2E
[
dm[i]D̂m[i]

]
. (18)

In the derivation of (18) the following relationships

∂

∂ am
<

{
a2

m γ
}

=
∂

∂ am

1
2

{
a2

m γ +
(
a2

m

)∗
γ∗

}
= am γ (19)

∂

∂ am
<{am γ} =

∂

∂ am

1
2

{
am γ + a∗m γ

∗} =
1
2
γ (20)

∂

∂ am
γ | am |

2 =
∂

∂ am
γ am a∗m = γ a∗m (21)

have been accounted for, where γ is any complex constant.

The solution of (18) (see Appendix A) leads to the following expression for

the complex gain to be used in the optimum MMSE single-tap receiver

ao
m =

2E
[
dm[i]D̂m[i]

]
E∗

[
D̂2

m[i]
]
− 2E∗

[
dm[i]D̂m[i]

]
E

[
| D̂m[i] |2

]
∣∣∣∣E [

D̂2
m[i]

]∣∣∣∣2 − E2
[∣∣∣D̂m[i]

∣∣∣2] . (22)

It is worthwhile to emphasize that the optimum gain ao
m depends not only on the

terms E
[
| D̂m[i] |2

]
and E

[
dm[i]D̂m[i]

]
but also on the complementary variance

E
[
D̂2

m[i]
]

which is different from zero when the zero-mean complex random vari-

able D̂m[i] is noncircular [9–12]. Note that when E
[
D̂2

m[i]
]

= 0 the solution of

(18) can be immediately obtained and is coincident with (22) in the particular

case E
[
D̂2

m[i]
]

= 0.

By substituting (22) in (17) we obtain the expression of the minimum MSE

value (see Appendix B)

E
[
ε2

]
min

= Pd+2
<

{
E∗

[
D̂2

m[i]
]

E2
[
dm[i]D̂m[i]

]}
− E

[∣∣∣D̂m[i]
∣∣∣2] ∣∣∣∣E [

dm[i]D̂m[i]
]∣∣∣∣2

E2
[∣∣∣D̂m[i]

∣∣∣2] − ∣∣∣∣E [
D̂2

m[i]
]∣∣∣∣2 .

(23)
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In particular, if we define

ρ
4
=

E
[
D̂2

m[i]
]

E
[∣∣∣D̂m[i]

∣∣∣2] (24)

and

u 4
=

E2
[
dm[i]D̂m[i]

]
E

[∣∣∣D̂m[i]
∣∣∣2] (25)

we can write

E
[
ε2

]
min

= Pd −
2

1− | ρ |2
{
| u | −<

[
ρ∗u

]}
. (26)

Let us note that the second term in the right-hand side of (26) is positive since

| ρ |≤ 1 and, then,

<
[
ρ∗u

]
≤ | ρ | | u | ≤ | u | .

Taking into account (12) and (5) it follows that

D̂m[i] =

2M−1∑
k=0

∑
q

dk(q) wm,k(i − q) + Nm(i) (27)

where

wm,k(i − q) 4=
1
M

L−1∑
p=0

gp

2M−1∑
l=0

Tc[k, l − θp + (i − q)M] T ∗c [m, l] (28)

and

Nm(i) 4=
1
M

2M−1∑
l=0

ν[l + iM] T ∗c [m, l]. (29)

In particular, the gain of the useful term in (27) is given by

gu
4
= wm,m(0) =

1
M

L−1∑
p=0

gp

2M−1∑
l=0

Tc[m, l − θp] T ∗c [m, l] (30)

Since the noise samples ν[l] are zero-mean complex circular statistically indepen-

dent Gaussian random variables with variance σ2
ν, it follows that

E
[
D̂2

m[i]
]

= Pd

2M−1∑
k=0

∑
q

w2
m,k(i − q) (31)
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E
[
dm[i]D̂m[i]

]
= Pd wm,m(0) (32)

and

E
[∣∣∣D̂m[i]

∣∣∣2] = Pd

2M−1∑
k=0

∑
q

∣∣∣wm,k(i − q)
∣∣∣2 +

1
S NR

 (33)

where

S NR 4
=

Pd Eh

σ2
ν

. (34)

Thus, by using (31), (32) and (33) the optimum single-tap (22) can be obtained.

Moreover, the corresponding minimum MSE value can be obtained by substitut-

ing in (26)

ρ =

2M−1∑
k=0

∑
q

w2
m,k(i − q)

2M−1∑
k=0

∑
q

∣∣∣wm,k(i − q)
∣∣∣2 +

1
S NR

(35)

and

u =
Pd w2

m,m(0)
2M−1∑
k=0

∑
q

∣∣∣wm,k(i − q)
∣∣∣2 +

1
S NR

. (36)

4. The single-path case

Let us consider the case of a single-path channel, that is L = 1 in (5) and let us

assume, without a loss of generality, that θo = 0. It is shown in Appendix C that

in this case

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l]

2

= 0 (37)

while it is shown in Appendix D that

2M−1∑
k=0

∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

= 2 , (38)
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therefore, accounting for (31), (28) and (37) we can write

E
[
D̂2

m[i]
]

= Pd g2
0

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l]

2

= 0. (39)

Moreover, from (32), (28) and (11) it results that

E
[
dm[i]D̂m[i]

]
= Pd g0

1
M

2M−1∑
l=0

| Tc[m, l] |2 = Pd g0 (40)

and from (33), (28) and (38) it follows that

E
[∣∣∣D̂m[i]

∣∣∣2] = Pd

| g0 |
2

2M−1∑
k=0

∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

+
1

S NR


= Pd

(
2 | g0 |

2 +
1

S NR

)
. (41)

Since in this case E
[
D̂2

m[i]
]

= 0, the optimum single-tap value (22) reduces to

aflat
m =

2 E∗
[
dm[i]D̂m[i]

]
E

[
| D̂m[i] |2

] =
g∗0

| g0 |
2 + 1

2 S NR

(42)

and, moreover, since

ρ =

2M−1∑
k=0

∑
q

w2
m,k(i − q)

2M−1∑
k=0

∑
q

∣∣∣wm,k(i − q)
∣∣∣2 +

1
S NR

= 0 (43)

and

u =
Pd w2

m,m(0)
2M−1∑
k=0

∑
q

∣∣∣wm,k(i − q)
∣∣∣2 +

1
S NR

=
Pd g2

0

2 | g0 |
2 +

1
S NR

(44)

the minimum MSE value results to be

E
[
ε2

]flat

min
= Pd

1 − | g0 |
2

| g0 |
2 +

1
2 S NR

 . (45)
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5. The asymptotic case (M � 1)

Let us now suppose that M is sufficiently large with respect to the maximum

excess delay of the channel [14]. In this case, the prototype filter has contained

time-variations, so that, for each value of θp and l ∈ {0, 1, . . . , 2M − 1} it follows

that

Tc[k, l−θp] = h[l−θp] e j πM (k+ 1
2 )(l−θp+ 1

2 + M
2 ) ' h[l] e j πM (k+ 1

2 )(l−θp+ 1
2 + M

2 ) = Tc[k, l]e− j πM (k+ 1
2 )θp .

(46)

By substituting (46) in (28), we obtain

wm,k(i − q) =
1
M

L−1∑
p=0

gp

2M−1∑
l=0

Tc[k, l − θp + (i − q)M] T ∗c [m, l]

'
1
M

L−1∑
p=0

gpe− j πM (k+ 1
2 )θp

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l]

= Hc

(
2k + 1

4M

)
1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l] (47)

where Hc

(
2k+1
4M

)
is the frequency response of the multipath channel at frequency

F = 2k+1
4M . Therefore, we can write

E
[
D̂2

m[i]
]

= Pd

2M−1∑
k=0

∑
q

w2
m,k(i − q)

' Pd

2M−1∑
k=0

H2
c

(
2k + 1

4M

)∑
q

 1
M

2M−1∑
l=0

Tc[k, l + (i − q)M]T ∗c [m, l]

2

= Pd

2M−1∑
k=0

H2
c

(
2k + 1

4M

)  1
M

2M−1∑
l=0

Tc[k, l + M]T ∗c [m, l]

2

+Pd

2M−1∑
k=0

H2
c

(
2k + 1

4M

)  1
M

2M−1∑
l=0

Tc[k, l]T ∗c [m, l]

2

+Pd

2M−1∑
k=0

H2
c

(
2k + 1

4M

)  1
M

2M−1∑
l=0

Tc[k, l − M]T ∗c [m, l]

2

. (48)
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In particular, the last equality holds since for the considered prototype filter (see

(13)) the only three values of q to be considered are q ∈ {i − 1, i, i + 1}. Moreover,

in Appendix E, taking into account (6) and the considered prototype filter (13), it

is shown that

1
M

2M−1∑
l=0

Tc[k, l + M] T ∗c [m, l] = (−1)m j ξ(k − m) , (49)

1
M

2M−1∑
l=0

Tc[k, l] T ∗c [m, l] = δ[k − m] +
j
2
δ[k − m + 1] −

j
2
δ[k − m − 1] , (50)

and
1
M

2M−1∑
l=0

Tc[k, l − M] T ∗c [m, l] = (−1)k+1 j ξ(k − m) (51)

where

ξ(l) 4=
1

4M

 sin
[
π
2 (l + 1)

]
sin

[
π

2M (l + 1)
] +

sin
[
π
2 (l − 1)

]
sin

[
π

2M (l − 1)
]
 . (52)

Let us observe that ξ2(l) is periodic with period 2M and, moreover, as shown in

Appendix F, it results
2M−1∑

l=0

ξ2(l) =
1
4
. (53)

By substituting (49), (50) and (51) in (48) it follows that

E
[
D̂2

m[i]
]
' Pd

[
H2

c

(
2m + 1

4M

)
−

1
4

H2
c

(
2m − 1

4M

)
−

1
4

H2
c

(
2m + 3

4M

)]

−2 Pd

2M−1∑
k=0

H2
c

(
2k + 1

4M

)
ξ2(k − m) . (54)

Let us observe that, from (53) and (54) it follows that if the value of M is suffi-

ciently large that the channel frequency response Hc(F) is flat in a range of sub-

carriers such that ξ2(±l) becomes negligible we obtain

E
[
D̂2

m[i]
]
' 0 . (55)
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Moreover, taking into account (46) we can write

E
[
dm[i]D̂m[i]

]
= Pd wm,m(0) = Pd

1
M

L−1∑
p=0

gp

2M−1∑
l=0

Tc[m, l − θp] T ∗c [m, l]

' Pd Hc

(
2m + 1

4M

)
1
M

2M−1∑
l=0

|Tc[m, l]|2 = Pd Hc

(
2m + 1

4M

)
(56)

and

E
[∣∣∣D̂m[i]

∣∣∣2] = Pd

2M−1∑
k=0

∑
q

∣∣∣wm,k(i − q)
∣∣∣2 +

1
S NR


' Pd

2M−1∑
k=0

∣∣∣∣∣∣Hc

(
2k + 1

4M

)∣∣∣∣∣∣2 ∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

+
1

S NR

 .
(57)

By substituting (49), (50) and (51) in (57) it follows that

E
[∣∣∣D̂m[i]

∣∣∣2] ' Pd

∣∣∣∣∣∣Hc

(
2m + 1

4M

)∣∣∣∣∣∣2 +
1
4

∣∣∣∣∣∣Hc

(
2m − 1

4M

)∣∣∣∣∣∣2 +
1
4

∣∣∣∣∣∣Hc

(
2m + 3

4M

)∣∣∣∣∣∣2


+2 Pd

2M−1∑
k=0

∣∣∣∣∣∣Hc

(
2k + 1

4M

)∣∣∣∣∣∣2 ξ2(k − m) + Pd
1

S NR
. (58)

Let us observe that, from (53) and (58) it follows that if the value of M is suffi-

ciently large that the channel frequency response Hc(F) is flat in a range of sub-

carriers such that ξ2(±l) becomes negligible we obtain

E
[∣∣∣D̂m[i]

∣∣∣2] ' Pd

 2

∣∣∣∣∣∣Hc

(
2m + 1

4M

)∣∣∣∣∣∣2 +
1

S NR

 . (59)

Thus, if M is sufficiently large that (55) and (59) hold, taking into account (56)

the optimum single-tap (22) results to be

aasy
m =

H∗c
(

2m+1
4M

)
∣∣∣∣Hc

(
2m+1
4M

)∣∣∣∣2 + 1
2 S NR

(60)

and, the corresponding minimum MSE results to be

E
[
ε2

]asy

min
= Pd

1 −
∣∣∣∣Hc

(
2m+1
4M

)∣∣∣∣2∣∣∣∣∣∣Hc

(
2m + 1

4M

)∣∣∣∣∣∣2 +
1

2 S NR

 . (61)
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Thus, for high S NR values the optimum MMSE single-tap (for large values of

M) aasy
m in (60) is nearly equal to the gain adopted in the well-known zero-forcing

single-tap receiver

azf
m =

1

Hc

(
2m+1
4M

) (62)

based on the approximation of the gain in (30) for large values of M.

6. Simulation results

In this section the BER of the optimum MMSE single-tap receiver (labeled as

SC MMSE) based on (22) in frequency-selective Rayleigh fading channel is as-

sessed via computer simulations and compared with that of the single-tap equal-

izer (labeled as SC) based on (30), the exact expression of the gain of the useful

term in the decision variable [15], that of the single-tap equalizer (labeled as SCA)

based on (62) and that of the asymptotic (M � 1) expression of the optimum

MMSE single-tap receiver (labeled as SCA MMSE) based on (22). In the figures

the performance of the 2M-4M receiver equalizer is also reported, and, moreover,

the BER in the ideal interference-free condition [15] is presented. The simulation

results are obtained under the following conditions:

1. the transmitted data belong to a 2-PAM and a 8-PAM constellation and in

the active subcarriers profile 1 (ASP1) the percentage of active subcarriers

is 89%, moreover, in the active subcarriers profile 2 (ASP2), profile 1 is

modified by inserting one virtual subcarrier between active subcarriers to

simulate a scenario where a fragmented spectrum is considered;

2. the considered Extended Vehicular A (EVA) [16] multipath channel model

has the following power/delay profile: relative power (in dB) equal to

[0 − 1.5 − 1.4 − 3.6 − 0.6 − 9.1 − 7 − 12 − 16.9] and excess tap

delay (in discrete samples) [0 1 3 6 7 14 22 35 50]. Moreover, the con-

sidered multipath channel model Extended Typical Urban (ETU) [16] has
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the following power/delay profile: relative power (expressed in dB) equal

to [−1 − 1 − 1 0 0 0 − 3 − 5 − 7] and excess tap delay (expressed

in discrete samples) equal to [0 1 2 4 5 10 32 46 100];

3. the BER values are obtained by averaging over all the active subcarriers of

a given multicarrier symbol in a burst and over 104 independent channel re-

alizations in the 2-PAM case and over 103 independent channel realizations

in the 8-PAM case;

4. each channel realization is assumed to be perfectly known and remains con-

stant in the whole burst.

Figures 1 and 2 show the BER of the considered receivers versus Eb/No for

2-PAM constellation and M = 64 in EVA channel, and for the active subcarriers

profiles 1 and 2, respectively. The results show that, when ASP1 is considered the

asymptotic versions of the single-tap structures, particularly that of the MMSE

structure, perform worse than the other single-tap structures, and, moreover, the

2M-4M receiver provides the best performance. Note that taking into account

(31), (32) and (33) the asymptotic version of the solution of (22) leads to an ap-

proximation of a many terms, this can lead to a performance degradation with

respect to the other considered less complex single-tap structures. On the other

side, when ASP2 is considered, the MMSE SC receiver outperforms the remain-

ing single-tap receivers and, moreover, assures a performance slightly worse than

that of the 2M-4M receiver. Thus, when ASP2 is considered the solution of (22)

leads to a gain that can allow to exploit the noncircularity of the zero-mean output

of the standard receiver based on the matched filter. Figures 3 and 4 show the

BER of the considered receivers for M = 128 in EVA channel and for the active

subcarriers profiles 1 and 2, respectively. When ASP1 is considered all the re-

ceivers present a performance improvement and, moreover, the performance gap

between the 2M-4M receiver and the other single-tap receivers is reduced. In the
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ASP2 case all the single-tap structures assure similar performance except for the

MMSE single-tap receiver that, for high values of Eb/No slightly outperforms the

other considered structures.

Figures 5 and 6 show the BER of the considered receivers for 2-PAM con-

stellation and M = 128 in ETU channel, and for the active subcarriers profiles 1

and 2, respectively. Moreover, figures 7 (ASP1) and 8 (ASP1) show the BER for

M = 256. The results show that, in the ASP1 case the 2M-4M receiver outper-

forms all the single-tap structures, moreover, for M = 128 a performance degra-

dation of the structures designed for large values of M (SCA and SCA MMSE) is

observed while for M = 256 only the degradation of the SCA MMSE structure is

present. In the ASP2 case when M = 128 the MMSE single-tap structure clearly

outperforms the other single-tap structures and presents a contained performance

degradation with respect to the 2M-4M receiver. Furthermore, when M = 256 the

MMSE single-tap receiver assures a performance practically coincident with that

of the 2M-4M structure and both outperform for high values of Eb/No the other

considered single-tap receivers.

Figures 9 and 10 show the BER of the considered receivers versus Eb/No for

8-PAM constellation and M = 64 in EVA channel, and for the active subcarriers

profiles 1 and 2, respectively. The results show that when ASP1 is considered the

2M-4M receiver clearly outperforms the other considered structures while when

ASP2 is considered a performance improvement of the SC MMSE receiver with

respect to the other considered single-tap structures can be observed. However,

this improvement is not observed for larger values of M. Moreover, figures 11

(ASP1) and 12 (ASP2) show that for M = 256 only the 2M-4M receiver assures a

contained performance degradation with respect to the interference-free curve in

the whole range of values of Eb/No.

Finally, figures 13 and 14 show the BER of the considered receivers for 8-PAM
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constellation and M = 128 in ETU channel, and for the active subcarriers profiles

1 and 2, respectively. Moreover, figures 15 (ASP1) and 16 (ASP1) show the BER

for M = 512. The results show that only in the ASP2 case when M = 128 the

MMSE single-tap structure outperforms the other single-tap structures. However,

as M becomes larger this performance improvement disappears.

7. Conclusions

The FBMC-PAM transceiver with its capabilities in terms of spectral effi-

ciency, asynchronous access and protection of adjacent users, has the potential

to meet many requirements imposed by the future wireless systems [17].

In this paper the problem of single-tap equalization of FBMC-PAM signals in

wireless dispersive channels has been analyzed. The MMSE single-tap receiver

has been derived and its performance has been compared with that of other pre-

viously considered receivers. It has been shown that the MMSE single-tap gain

assumes a more involved expression when the output of the standard matched fil-

ter (that multiplied by the considered gain, provides, after real part extraction, the

decision variable) is noncircular. In this case the MMSE single-tap receiver can

outperform other single-tap structures and can assure a performance similar to that

of the more advanced 2M-4M equalizer. However, the observed performance im-

provement of the MMSE SC receiver with respect to the other considered single-

tap structures is more contained as the constellation size increases.
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Appendix A

In this appendix we provide some detail about the solution of (18) which is

reported here for readability

amE
[
D̂2

m[i]
]

+ a∗mE
[∣∣∣D̂m[i]

∣∣∣2] = 2E
[
dm[i]D̂m[i]

]
. (A.1)

By using the definitions

E
[
D̂2

m[i]
]
4
= αR + jαI

E
[∣∣∣D̂m[i]

∣∣∣2] 4= β

E
[
dm[i]D̂m[i]

]
4
= ζR + jζ I

(A.1) leads to the following system of two real equations
aR

m

(
αR + β

)
− aI

m α
I = 2ζR

aR
m α

I + aI
m

(
αR − β

)
= 2ζ I .

(A.2)

where aR
m = <{am} and aI

m = = {am}. The solution of this system is

aR
m =

2<
{
E∗

[
D̂2

m[i]
]

E
[
dm[i]D̂m[i]

]}
− 2E

[∣∣∣D̂m[i]
∣∣∣2]< {

E
[
dm[i]D̂m[i]

]}
∣∣∣∣E [

D̂2
m[i]

]∣∣∣∣2 − E2
[∣∣∣D̂m[i]

∣∣∣2] (A.3)

aI
m =

2=
{
E∗

[
D̂2

m[i]
]

E
[
dm[i]D̂m[i]

]}
+ 2E

[∣∣∣D̂m[i]
∣∣∣2]= {

E
[
dm[i]D̂m[i]

]}
∣∣∣∣E [

D̂2
m[i]

]∣∣∣∣2 − E2
[∣∣∣D̂m[i]

∣∣∣2] (A.4)

Therefore, we can write

am = aR
m + jaI

m =

2 E∗
[
D̂2

m[i]
]

E
[
dm[i]D̂m[i]

]
− 2E

[∣∣∣D̂m[i]
∣∣∣2] E∗

[
dm[i]D̂m[i]

]
∣∣∣∣E [

D̂2
m[i]

]∣∣∣∣2 − E2
[∣∣∣D̂m[i]

∣∣∣2] .

(A.5)
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Appendix B

In this appendix we provide some detail about the steps that lead to the ex-

pression of the minimum MSE value in (23) obtained by substituting (22) in (17)

reported here for readability

E
[
ε2

]
=

1
2
<

{
a2

mE
[
D̂2

m[i]
]}

+
1
2
| am |

2 E
[∣∣∣D̂m[i]

∣∣∣2]+ Pd − 2<
{
amE

[
dm[i]D̂m[i]

]}
.

(B.1)

By using the definitions

E
[
D̂2

m[i]
]
4
= α (B.2)

E
[∣∣∣D̂m[i]

∣∣∣2] 4= β (B.3)

E
[
dm[i]D̂m[i]

]
4
= ζ (B.4)

we can write

E
[
ε2

]
=

1
2
<

{
a2

mα
}

+
1
2
| am |

2 β + Pd − 2<{amζ} . (B.5)

Since the optimum complex gain results to be (see (A.5))

am =
2α∗ζ − 2βζ∗

|α|2 − β2
=

2α∗ζ − 2βζ∗

δ
(B.6)

where

δ
4
= |α|2 − β2 (B.7)

the minimum value of the MSE results to be

E
[
ε2

]
min

=
2
δ2<

{
(α∗ζ − βζ∗)2 α

}
+

2
δ2 |α

∗ζ − βζ∗|2 β + Pd −
4
δ
<{(α∗ζ − βζ∗) ζ}

=
2
δ2 <

{
α∗ζ2

} [
| α |2 − β2

]
−

2
δ2 β | ζ |

2
[
| α |2 − β2

]
+ Pd−

4
δ
<

{
α∗ζ2

}
+

4
δ
β | ζ |2 .

Taking into account the definition of δ in (B.7) we can write

E
[
ε2

]
min

=
2
δ2 <

{
α∗ζ2

}
δ −

2
δ2 β | ζ |

2 δ + Pd −
4
δ
<

{
α∗ζ2

}
+

4
δ
β | ζ |2

= Pd −
2
δ
<

{
α∗ζ2

}
+

2
δ
β | ζ |2 .

Finally, by using the definitions (B.2), (B.3), (B.4), and (B.7), the expression of

the minimum MSE value in (23) immediately follows.
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Appendix C

In this appendix we derive the relationship (37). Let us observe that, since

Tc[2M + k, l + qM] = −Tc[k, l + qM] (see (6)), we can equivalently show that

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

2

= 0 . (C.1)

Taking into account (6) we can write

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

2

=
1

M2

2M−1∑
k=0

∑
q

(
e j πM (m+k+ 1

2 )qM
)2

2M−1∑
l=0

h[l + qM] e j πM (m+k+ 1
2 )(l+ 1

2 + M
2 ) h[l] e− j πM (m+ 1

2 )(l+ 1
2 + M

2 )
2

=
1

M2

∑
q

e jπq
2M−1∑
l1=0

2M−1∑
l2=0

h[l1 + qM] h[l2 + qM] h[l1] h[l2]
2M−1∑
k=0

e j πM k(l1+l2+1+M) .

(C.2)

Let us observe that

2M−1∑
k=0

e j πM k(l1+l2+1+M) =


2M if l1 + l2 + 1 + M = 2M r

0 otherwise .

(C.3)

Since l1, l2 ∈ {0, 1, . . . , 2M − 1} the sum in (C.3) is different from zero only for

l2 = M − 1 − l1 with l1 ∈ {0, 1, . . . ,M − 1}, and for l2 = 3M − 1 − l1 with l1 ∈

{M,M + 1, . . . , 2M − 1}, thus we can write

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

2

=
1

M2

∑
q

e jπq

M−1∑
l1=0

h[l1 + qM] h[l1] h[M − 1 − l1] h[M − 1 − l1 + qM]

+

2M−1∑
l1=M

h[l1 + qM] h[l1] h[3M − l1 − 1] h[3M − l1 − 1 + qM]

 .

(C.4)
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Taking into account the symmetry condition (9) it follows that

h[M − 1 − l1] = h[M + l1] (C.5)

h[M − 1 − l1 + qM] = h[M − 1 − (l1 − qM)] = h[M + l1 − qM] (C.6)

h[3M − 1 − l1] = h[M + 2M − 1 − l1︸        ︷︷        ︸
u

] = h[M − 1 − u] = h[l1 − M] (C.7)

h[3M−1− l1 +qM] = h[M +2M − 1 − l1 + qM︸                 ︷︷                 ︸
u

] = h[M−1−u] = h[l1−M−qM]

(C.8)

By substituting (C.5) - (C.8) in (C.4) we obtain

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

2

=
1

M2

∑
q

e jπq

M−1∑
l1=0

h[l1 + qM] h[l1] h[l1 + M] h[l1 + M − qM]

+

2M−1∑
l1=M

h[l1 + qM] h[l1] h[l1 − M] h[l1 − M − qM]

 (C.9)

By using the position l = l1 − M in the last sum in (C.9) we obtain

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

2

=
1

M2

∑
q

e jπq

M−1∑
l1=0

h[l1 + qM] h[l1] h[l1 + M] h[l1 + M − qM]

+

M−1∑
l=0

h[l + M + qM] h[l + M] h[l] h[l − qM]

 (C.10)

and, then, we can write

2M−1∑
k=0

∑
q

 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

2

=
1

M2

M−1∑
l1=0

h[l1] h[l1] h[l1 + M] h[l1 + M] +

M−1∑
l=0

h[l + M] h[l + M] h[l] h[l]
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−

M−1∑
l1=0

h[l1 − M] h[l1] h[l1 + M] h[l1 + 2M] −
M−1∑
l=0

h[l] h[l + M] h[l] h[l + M]

−

M−1∑
l1=0

h[l1 + M] h[l1] h[l1 + M] h[l1] −
M−1∑
l=0

h[l + 2M] h[l + M] h[l] h[l − M]


=

1
M2

2
M−1∑
l=0

h2[l] h2[l + M] −
M−1∑
l=0

h2[l] h2[l + M] −
M−1∑
l1=0

h2[l1] h2[l1 + M]

 = 0

(C.11)

Appendix D

In this appendix we show the relationship (38). A similar result has been

shown in the Appendix of [18] with reference to the FBMC-OQAM signal case.

Let us observe that, since Tc[2M + k, l + qM] = −Tc[k, l + qM] (see (6)), we

can equivalently show that
2M−1∑
k=0

∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

∣∣∣∣∣∣∣
2

= 2 . (D.1)

Taking into account (6) we can write
2M−1∑
k=0

∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

∣∣∣∣∣∣∣
2

=
1

M2

∑
q

2M−1∑
l1=0

2M−1∑
l2=0

h[l1 + qM] h[l2 + qM] h[l1] h[l2]
2M−1∑
k=0

e j πM k(l1−l2) . (D.2)

Let us observe that

2M−1∑
k=0

e j πM k(l1−l2) =


2M if l1 − l2 = 2M r

0 otherwise .

(D.3)

Since l1, l2 ∈ {0, 1, . . . , 2M − 1} the sum in (D.3) is different from zero only for

l2 = l1 with l1 ∈ {0, 1, . . . , 2M − 1}, thus we can write
2M−1∑
k=0

∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

∣∣∣∣∣∣∣
2

=
2
M

∑
q

2M−1∑
l1=0

h2[l1 + qM] h2[l1] .

(D.4)
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Taking into account condition (10) for r = 0 it follows that

2
M

2M−1∑
l1=0

h2[l1]
∑

q

h2[l1 + qM]︸              ︷︷              ︸
=1

=
2
M

2M−1∑
l1=0

h2[l1] = 2 . (D.5)

Finally, from (D.5) and (D.4) equation (38) follows.

Appendix E

In this appendix, with reference to the adopted prototype filter in (13), we

evaluate the explicit expression of the terms

t(k,m, i − q) 4=
1
M

2M−1∑
l=0

Tc[k, l + (i − q)M] T ∗c [m, l] (E.1)

in (48). Let us observe that since the length of the prototype filter in (13) is

Lh = 2M, it immediately follows that t(k,m, i − q) , 0 only for i − q = −1, 0, 1.

Let us evaluate t(k,m, 0), taking into account (6) we obtain

t(k,m, i) 4=
1
M

2M−1∑
l=0

Tc[k, l] T ∗c [m, l] =
1
M

2M−1∑
l=0

h2[l]e j πM (k−m)(l+ 1
2 + M

2 ) . (E.2)

Since, for l = 0, 1, . . . , 2M − 1,

h2[l] =
1
2
−

1
2

cos
[
π

M

(
l +

1
2

)]
it follows that

1
M

2M−1∑
l=0

h2[l]e j πM (k−m)(l+ 1
2 + M

2 ) =
1
M

2M−1∑
l=0

{
1
2
−

1
2

cos
[
π

M

(
l +

1
2

)]}
e j πM (k−m)(l+ 1

2 + M
2 )

=
1

2M
e j πM (k−m)( 1

2 + M
2 )

2M−1∑
l=0

e j πM (k−m) l −
1
2

e j π
2M

2M−1∑
l=0

e j πM (k−m+1) l −
1
2

e− j π
2M

2M−1∑
l=0

e j πM (k−m−1) l


= e j πM (k−m)( 1

2 + M
2 )

{
δ[k − m] −

1
2

e j π
2M δ[k − m + 1] −

1
2

e− j π
2M δ[k − m − 1]

}
= δ[k − m] −

1
2

e− j π2 δ[k − m + 1] −
1
2

e j π2 δ[k − m − 1] .
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Therefore, we can write

t(k,m, 0) 4=
1
M

2M−1∑
l=0

Tc[k, l] T ∗c [m, l] = δ[k−m]+
j
2
δ[k−m+1]−

j
2
δ[k−m−1] (E.3)

Let us now evaluate t(k,m, 1), taking into account (6) we obtain

t(k,m, 1) 4=
1
M

2M−1∑
l=0

Tc[k, l+M] T ∗c [m, l] = e j πM (k+ 1
2 ) M 1

M

2M−1∑
l=0

h[l+M] h[l] e j πM (k−m)(l+ 1
2 + M

2 )

= e j πM (k+ 1
2 ) MA = (−1)k j A

where

A 4
=

1
M

M−1∑
l=0

h[l + M] h[l] e j πM (k−m)(l+ 1
2 + M

2 ) (E.4)

=
1
M

M−1∑
l=0

sin
[
π

2M

(
l + M +

1
2

)]
sin

[
π

2M

(
l +

1
2

)]
e j πM (k−m)(l+ 1

2 + M
2 )

=
1

4 jM
e j πM (k−m)( 1

2 + M
2 )

e j π
2M

M−1∑
l=0

e j πM (k−m+1) l − e− j π
2M

M−1∑
l=0

e j πM (k−m−1) l


=

1
4M

(−1)(k−m)

 sin
[
π
2 (k − m + 1)

]
sin

[
π

2M (k − m + 1)
] +

sin
[
π
2 (k − m − 1)

]
sin

[
π

2M (k − m − 1)
]


Therefore,

t(m, k, 1) 4=
1
M

2M−1∑
l=0

Tc[k, l + M] T ∗c [m, l]

= (−1)m j
1

4M

 sin
[
π
2 (k − m + 1)

]
sin

[
π

2M (k − m + 1)
] +

sin
[
π
2 (k − m − 1)

]
sin

[
π

2M (k − m − 1)
]
 . (E.5)

Let us now evaluate t(k,m,−1), taking into account (6) we obtain

t(k,m,−1) 4=
1
M

2M−1∑
l=0

Tc[k, l−M] T ∗c [m, l] = e− j πM (k+ 1
2 ) M 1

M

2M−1∑
l=0

h[l−M] h[l] e j πM (k−m)(l+ 1
2 + M

2 )

= e− j πM (k+ 1
2 ) MB = (−1)k (− j) B

where

B 4
=

1
M

2M−1∑
l=0

h[l − M] h[l] e j πM (k−m)(l+ 1
2 + M

2 ) =
1
M

2M−1∑
l=M

h[l − M] h[l] e j πM (k−m)(l+ 1
2 + M

2 ) .
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By using the position l1 = l − M we obtain

B =
1
M

M−1∑
l1=0

h[l1]h[l1 + M]e j πM (k−m)(l1+M+ 1
2 + M

2 )

= e j πM (k−m) M 1
M

M−1∑
l1=0

h[l1]h[l1 + M]e j πM (k−m)(l1+ 1
2 + M

2 ) = e j πM (k−m) M A = (−1)(k−m) A .

Therefore, we can write

t(k,m,−1) = (−1)k (− j) B

where

B = (−1)(k−m) A

and, then, taking into account (E.4) we obtain

t(k,m,−1) 4=
1
M

2M−1∑
l=0

Tc[k, l−M] T ∗c [m, l] = (−1)k (− j) (−1)(k−m) A = (− j) (−1)m A

= (− j) (−1)k 1
4M

 sin
[
π
2 (k − m + 1)

]
sin

[
π

2M (k − m + 1)
] +

sin
[
π
2 (k − m − 1)

]
sin

[
π

2M (k − m − 1)
]
 . (E.6)

Appendix F

We have shown in Appendix C that

2M−1∑
k=0

∑
q

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l + qM] T ∗c [m, l]

∣∣∣∣∣∣∣
2

= 2 . (F.1)

Since q ∈ {−1, 0, 1} (see (6)), it follows that

2M−1∑
k=0

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l − M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

︸                                              ︷︷                                              ︸
A1

+

2M−1∑
k=0

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l] T ∗c [m, l]

∣∣∣∣∣∣∣
2

︸                                       ︷︷                                       ︸
A2
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+

2M−1∑
k=0

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l + M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

︸                                              ︷︷                                              ︸
A3

= 2 . (F.2)

Moreover, taking into account (E.6) we can write

1
M

2M−1∑
l=0

Tc[m + k, l − M] T ∗c [m, l] = (−1)k+m+1 j ξ(k) , (F.3)

from (E.3) it follows that

1
M

2M−1∑
l=0

Tc[m + k, l] T ∗c [m, l] = δ[k] +
j
2
δ[k + 1] −

j
2
δ[k − 1] , (F.4)

and, finally, taking into account (E.5) it follows that

1
M

2M−1∑
l=0

Tc[m + k, l + M] T ∗c [m, l] = (−1)m j ξ(k) (F.5)

where (the expression of ξ(·) is reported here for readability)

ξ(l) =
1

4M

 sin
[
π
2 (l + 1)

]
sin

[
π

2M (l + 1)
] +

sin
[
π
2 (l − 1)

]
sin

[
π

2M (l − 1)
]
 . (F.6)

Thus, from (F.2), (F.3), (F.4) and (F.5) we obtain

A1
4
=

2M−1∑
k=0

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l − M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

=

2M−1∑
k=0

ξ2(k) (F.7)

A3
4
=

2M−1∑
k=0

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l + M] T ∗c [m, l]

∣∣∣∣∣∣∣
2

=

2M−1∑
k=0

ξ2(k) (F.8)

A2
4
=

2M−1∑
k=0

∣∣∣∣∣∣∣ 1
M

2M−1∑
l=0

Tc[m + k, l] T ∗c [m, l]

∣∣∣∣∣∣∣
2

=
3
2

(F.9)

and, then, from (F.2) it follows that

2
2M−1∑
k=0

ξ2(k) +
3
2

= 2 . (F.10)

Therefore, we can write
2M−1∑
k=0

ξ2(k) =
1
4
. (F.11)
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Figure 1: BER versus Eb/No over EVA channel for 2-PAM constellation, M = 64 and active

subcarriers profile 1.
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Figure 2: BER versus Eb/No over EVA channel for 2-PAM constellation, M = 64 and active

subcarriers profile 2.
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Figure 3: BER versus Eb/No over EVA channel for 2-PAM constellation, M = 128 and active

subcarriers profile 1.
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Figure 4: BER versus Eb/No over EVA channel for 2-PAM constellation, M = 128 and active

subcarriers profile 2.
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Figure 5: BER versus Eb/No over ETU channel for 2-PAM constellation, M = 128 and active

subcarriers profile 1.
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Figure 6: BER versus Eb/No over ETU channel for 2-PAM constellation, M = 128 and active

subcarriers profile 2.
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Figure 7: BER versus Eb/No over ETU channel for 2-PAM constellation, M = 256 and active

subcarriers profile 1.
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Figure 8: BER versus Eb/No over ETU channel for 2-PAM constellation, M = 256 and active

subcarriers profile 2.
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Figure 9: BER versus Eb/No over EVA channel for 8-PAM constellation, M = 64 and active

subcarriers profile 1.
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Figure 10: BER versus Eb/No over EVA channel for 8-PAM constellation, M = 64 and active

subcarriers profile 2.
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Figure 11: BER versus Eb/No over EVA channel for 8-PAM constellation, M = 256 and active

subcarriers profile 1.
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Figure 12: BER versus Eb/No over EVA channel for 8-PAM constellation, M = 256 and active

subcarriers profile 2.
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Figure 13: BER versus Eb/No over ETU channel for 8-PAM constellation, M = 128 and active

subcarriers profile 1.
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Figure 14: BER versus Eb/No over ETU channel for 8-PAM constellation, M = 128 and active

subcarriers profile 2.
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Figure 15: BER versus Eb/No over ETU channel for 8-PAM constellation, M = 512 and active

subcarriers profile 1.

46



0 5 10 15 20 25 30

Eb/No

10
-3

10
-2

10
-1

B
E

R

int-free theory

SC

SCA

SC MMSE

SCA MMSE

2M-4M

Figure 16: BER versus Eb/No over ETU channel for 8-PAM constellation, M = 512 and active

subcarriers profile 2.
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