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This paper deals with single-tap equalization for the recently introduced FBMC-PAM system, a multicarrier scheme able to meet the requirements of cognitive radio such as high level of adjacent channel leakage ratio and asynchronous communications. The optimum single-tap gain in the minimum mean square error (MMSE) sense is derived and its performance is compared with that of previously considered receivers. It is shown that when the optimum MMSE single-tap gain is multiplied (before the real part extraction) by a zero-mean complex noncircular random variable (that is, when the zero-mean output of the standard matched filter has a complementary variance different from zero) the achieved performance can be better than that of other single-tap receivers and similar to that of a more advanced previously considered equalization structure.

Introduction

Filter bank multicarrier (FBMC) techniques are potential alternatives to the current orthogonal frequency division multiplexing (OFDM) schemes for some emerging applications fields such as machine type communications or cognitive radio [START_REF] Medjahdi | On the road to 5G: comparative study of physical layer in MTC context[END_REF]. In these systems the prototype filter controls performance and a number of operational aspects. Long filters assure high of out-of-band attenuation and asynchronous user coexistence. However, for reduced system latency short prototype filters are required.

In [START_REF] Pinchon | Derivation of analytical expressions for flexible PR low complexity FBMC systems[END_REF][START_REF] Nadal | Design and evaluation of a novel short prototype filter for OFDM/OQAM modulation[END_REF] short prototype filters with overlapping factor K= 2 (i.e., only 2 adjacent multicarrier symbols overlap in time), have been proposed. Since FBMC offset-quadrature amplitude modulation (OQAM) combined with short filters assures limited performance, the complex lapped transform has been used for the design of the FBMC-PAM transceiver [START_REF] Mattera | Filter bank multicarrier with PAM modulation for future wireless systems[END_REF][START_REF] Sabeti | Performance Analysis of FBMC-PAM in Massive MIMO[END_REF][START_REF] Sexton | Enabling asynchronous machine-type D2D communication using multiple waveforms in 5G[END_REF]. For a special choice of the prototype filter it is much similar to the first analog multicarrier system introduced by Chang [START_REF] Chang | Synthesis of band-limited orthogonal signals for multichannel data transmission[END_REF]. The scheme is based on pulse amplitude modulation (PAM) combined with a sine prototype filter with overlapping factor K=2 and it achieves perfect reconstruction in the real field. Moreover, the sine prototype filter has a main lobe in the frequency domain whose width is 3 times the sub-carrier spacing while it is only 2 times for OFDM scheme. For this reason and for its better spectral decay, FBMC-PAM outperforms OFDM systems as well as FBMC-OQAM systems in terms of CFO sensitivity [START_REF] Mattera | CFO sensitivity and efficient estimation for the short filter multicarrier system FBMC-PAM[END_REF].

Several equalization structures have been considered for FBMC-PAM systems, among them the well known single-tap zero-forcing equalizer and the more advanced structures termed 2M-4M and 2M-6M [START_REF] Mattera | Filter bank multicarrier with PAM modulation for future wireless systems[END_REF]. In particular, the 2M-4M receiver evaluates the FFT of the received signal in a window of length 4M whose central part of length 2M is used by the single-tap receivers, divide this FFT by that of the channel in a window of the same length, performs the inverse FFT of the resulting data and, then, uses the central part of length 2M as the input of the receiver for the AWGN channel. This paper deals with single-tap equalization of FBMC-PAM signals in wireless dispersive channels. The optimum single-tap gain in the minimum mean square error (MMSE) sense is derived and it is shown that it assumes a more involved expression when the output of the standard matched filter (that multiplied by the considered gain and after real part extraction provides the decision variable) is noncircular [START_REF] Neeser | Proper complex random processes with applications to information theory[END_REF][START_REF] Picinbono | On circularity[END_REF][START_REF] Schreier | Bounds on the degree of impropriety of complex random vectors[END_REF][START_REF] Delmas | On the degree of second-order non-circularity of complex random variables[END_REF], that is when its complementary variance is different from zero. Moreover, it is shown through computer simulations, that in this case the optimum MMSE single-tap equalizer can outperform other well-known singletap structures and can assure a performance similar to that of the more advanced 2M-4M receiver.

The organization of the paper is as follows. In Section 2, the standard FBMC-PAM system is recalled. In Section 3 the MMSE single-tap gain expression is derived while in Section 4 and in Section 5, the single-path case and the asymptotic case (large number of subcarriers), respectively, are analyzed. Simulation results are reported in Section 6 and conclusions are drawn in the final Section.

It is shown that when the optimum MMSE single-tap gain is multiplied (before the real part extraction) by a zero-mean complex noncircular random variable (that is, when the zero-mean output of the standard matched filter has a complementary variance different from zero) the achieved performance can be better than that of other single-tap receivers and similar to that of a more advanced previously considered equalization structure. 

System Model

Let us consider an FBMC-PAM system [START_REF] Mattera | Filter bank multicarrier with PAM modulation for future wireless systems[END_REF] with 2M subcarriers. The received signal in time-dispersive channel can be written as

r(t) = L-1 p=0 g p s(t -τ p ) + n(t) (1) 
where s(t) is the transmitted FBMC-PAM signal, n(t) denotes the zero-mean circular complex white Gaussian noise with independent real and imaginary parts, each with two sided power spectral density N o , and τ p is the delay of the pth path with complex gain g p . The FBMC-PAM signal s(t) is equal to

s(t) = N s -1 i=0 2M-1 k=0 d k [i] e j π T (k+ 1 2 )(t-iT+ T 2 ) h(t -iT ) ( 2 
)
where 2T is the FBMC-PAM symbol duration, N s is the number of payload symbols, d k [i] is the real information symbol transmitted on the kth subcarrier in the ith symbol interval, and h(t) is the real pulse-shaping filter. The data symbols are zero-mean statistically independent real random variables with mean-square value

P d , thus, E {d k [i]d m [l]} = δ[k -m] δ[i -l] P d . (3) 
In (1) the complex gains g p are modeled as a zero-mean complex circular Gaussian random variables with variance σ 2 p and statistically independent of one another. Moreover, it is assumed that the following condition holds

L-1 p=0 σ 2 p = 1. ( 4 
)
The received signal r(t) is filtered with an ideal low-pass filter with a bandwidth of 1/T s , where T s denotes the sampling period (the FBMC-PAM symbol duration is equal to 2T = 2MT s ), thus the discrete-time low-pass version of the received signal can be written as

r[l] = N s -1 i=0 2M-1 k=0 L-1 p=0 g p d k [i] T c [k, l -θ p -iM] + v[l] (5) 
where

T c [k, l] = h[l] e j π M (k+ 1 2 )(l+ 1 2 + M 2 ) , (6) 
θ p = τ p /T s is the normalized delay of the pth path and v[l] is a discrete-time zero-mean AWGN process with autocorrelation function

R v [m] = E {v[l]v * [l -m]} = 2N o T s δ[m] = σ 2 v δ[m]. (7) 
It is assumed that the normalized delays θ p = τ p /T s in ( 5) are integer values. In [START_REF] Sexton | Enabling asynchronous machine-type D2D communication using multiple waveforms in 5G[END_REF] the real prototype filter h[l], equal to zero for l K 2M = {0, 1, . . . , 2M -1} and with energy

E h = 2M-1 l=0 h 2 [l], (8) 
satisfies the following conditions

h[M + l] = h[M -l -1] ∀ l, (9) 
+∞ m=-∞ h[l + mM]h[l + mM + 2rM] = δ[r] ∀ l, r (10) 
that imply the orthogonality condition in the real field

       1 M 2M-1 l=0 T c [k, l]T * c [m, l -pM]        = δ[m -k] δ[p]. (11) 
In this case, it follows that [START_REF] Mattera | Filter bank multicarrier with PAM modulation for future wireless systems[END_REF] in AWGN channel the optimum (in the maximum likelihood sense) decision variable for estimating statistically independent information symbols can be written as Dm [i] where

Dm [i] = 1 M 2M-1 l=0 r[iM + l]T * c [m, l] (12) 
since conditions ( 9) and ( 10) assure the absence of intersymbol interference and intercarrier interference.

In the following it is considered the prototype filter

h[l] = sin π 2M l + 1 2 l ∈ K 2M , h[l] = 0 l K 2M . (13) 
This prototype filter satisfies conditions ( 9) and ( 10) and simplifies the receiver as

shown in [START_REF] Mattera | Filter bank multicarrier with PAM modulation for future wireless systems[END_REF].

Optimum single-tap receiver

In this section we derive the optimum (in the minimum mean-square error (MMSE) sense) single-tap receiver for the signal model in [START_REF] Sabeti | Performance Analysis of FBMC-PAM in Massive MIMO[END_REF]. Specifically, we derive the expression of the complex gain a m such that the estimate of the symbol transmitted on the m-th subcarrier in the i-th interval

dm [i] = a m Dm [i] (14) 
minimizes the mean-square error

E 2 = E dm [i] -d m [i] 2 . (15) 
In ( 14) Dm [i] is the decision variable for AWGN (see [START_REF] Delmas | On the degree of second-order non-circularity of complex random variables[END_REF]) evaluated by the receiver and a m is the complex gain used by the single-tap equalizer to achieve satisfactory performance in a multipath channel. By substituting [START_REF] Lélé | Channel estimation methods for preamble-based OFDM/OQAM modulations[END_REF] in [START_REF] Mattera | On the performance of FBMC-PAM systems in frequency-selective Rayleigh fading channels[END_REF] and taking into account that

2 {A} = 1 2 A 2 + 1 2 | A | 2 (16) 
it follows that

E 2 = 1 2 a 2 m E D2 m [i] + 1 2 | a m | 2 E Dm [i] 2 + P d -2 a m E d m [i] Dm [i] . (17) 
A necessary and sufficient condition for a point a o m to be a stationary point for the real-valued function [START_REF] Matthaiou | The road to 6G: ten physical layer challenges for communications engineers[END_REF] analytic in both a m and a * m is that the derivative is zero in a o m when a m and a * m are considered as independent variables [START_REF] Brandwood | A complex gradient operator and its application in adaptive array theory[END_REF]. In particular, the real-valued function [START_REF] Matthaiou | The road to 6G: ten physical layer challenges for communications engineers[END_REF] can be minimized by solving the equation

a m E D2 m [i] + a * m E Dm [i] 2 = 2E d m [i] Dm [i] . (18) 
In the derivation of ( 18) the following relationships

∂ ∂ a m a 2 m γ = ∂ ∂ a m 1 2 a 2 m γ + a 2 m * γ * = a m γ (19) ∂ ∂ a m {a m γ} = ∂ ∂ a m 1 2 a m γ + a * m γ * = 1 2 γ (20) ∂ ∂ a m γ | a m | 2 = ∂ ∂ a m γ a m a * m = γ a * m ( 21 
)
have been accounted for, where γ is any complex constant.

The solution of (18) (see Appendix A) leads to the following expression for the complex gain to be used in the optimum MMSE single-tap receiver

a o m = 2E d m [i] Dm [i] E * D2 m [i] -2E * d m [i] Dm [i] E | Dm [i] | 2 E D2 m [i] 2 -E 2 Dm [i] 2 . ( 22 
)
It is worthwhile to emphasize that the optimum gain a o m depends not only on the terms

E | Dm [i] | 2 and E d m [i] Dm [i] but also on the complementary variance E D2 m [i]
which is different from zero when the zero-mean complex random variable Dm [i] is noncircular [START_REF] Neeser | Proper complex random processes with applications to information theory[END_REF][START_REF] Picinbono | On circularity[END_REF][START_REF] Schreier | Bounds on the degree of impropriety of complex random vectors[END_REF][START_REF] Delmas | On the degree of second-order non-circularity of complex random variables[END_REF]. Note that when E D2 m [i] = 0 the solution of (18) can be immediately obtained and is coincident with (22) in the particular case E D2 m [i] = 0. By substituting (22) in [START_REF] Matthaiou | The road to 6G: ten physical layer challenges for communications engineers[END_REF] we obtain the expression of the minimum MSE value (see Appendix B)

E 2 min = P d +2 E * D2 m [i] E 2 d m [i] Dm [i] -E Dm [i] 2 E d m [i] Dm [i] 2 E 2 Dm [i] 2 -E D2 m [i] 2 . (23) 
In particular, if we define

ρ = E D2 m [i] E Dm [i] 2 (24) 
and

u = E 2 d m [i] Dm [i] E Dm [i] 2 (25) 
we can write

E 2 min = P d - 2 1-| ρ | 2 | u | -ρ * u . ( 26 
)
Let us note that the second term in the right-hand side of (26) is positive since | ρ |≤ 1 and, then,

ρ * u ≤ | ρ | | u | ≤ | u | .
Taking into account ( 12) and ( 5) it follows that

Dm [i] = 2M-1 k=0 q d k (q) w m,k (i -q) + N m (i) (27) 
where

w m,k (i -q) = 1 M L-1 p=0 g p 2M-1 l=0 T c [k, l -θ p + (i -q)M] T * c [m, l] (28) 
and

N m (i) = 1 M 2M-1 l=0 ν[l + iM] T * c [m, l]. (29) 
In particular, the gain of the useful term in ( 27) is given by

g u = w m,m (0) = 1 M L-1 p=0 g p 2M-1 l=0 T c [m, l -θ p ] T * c [m, l] (30) 
Since the noise samples ν[l] are zero-mean complex circular statistically independent Gaussian random variables with variance σ 2 ν , it follows that

E D2 m [i] = P d 2M-1 k=0 q w 2 m,k (i -q) (31) E d m [i] Dm [i] = P d w m,m (0) (32) 
and

E Dm [i] 2 = P d         2M-1 k=0 q w m,k (i -q) 2 + 1 S NR         (33)
where

S NR = P d E h σ 2 ν . (34) 
Thus, by using (31), ( 32) and ( 33) the optimum single-tap ( 22) can be obtained.

Moreover, the corresponding minimum MSE value can be obtained by substituting in ( 26)

ρ = 2M-1 k=0 q w 2 m,k (i -q) 2M-1 k=0 q w m,k (i -q) 2 + 1 S NR (35) 
and

u = P d w 2 m,m (0) 2M-1 k=0 q w m,k (i -q) 2 + 1 S NR . ( 36 
)

The single-path case

Let us consider the case of a single-path channel, that is L = 1 in ( 5) and let us assume, without a loss of generality, that

θ o = 0. It is shown in Appendix C that in this case 2M-1 k=0 q        1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l]        2 = 0 (37) while it is shown in Appendix D that 2M-1 k=0 q 1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l] 2 = 2 , (38) 
therefore, accounting for (31), ( 28) and (37) we can write

E D2 m [i] = P d g 2 0 2M-1 k=0 q        1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l]        2 = 0. ( 39 
)
Moreover, from (32), ( 28) and ( 11) it results that

E d m [i] Dm [i] = P d g 0 1 M 2M-1 l=0 | T c [m, l] | 2 = P d g 0 ( 40 
)
and from ( 33), ( 28) and (38) it follows that

E Dm [i] 2 = P d          | g 0 | 2 2M-1 k=0 q 1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l] 2 + 1 S NR          = P d 2 | g 0 | 2 + 1 S NR . (41) 
Since in this case E D2 m [i] = 0, the optimum single-tap value ( 22) reduces to

a flat m = 2 E * d m [i] Dm [i] E | Dm [i] | 2 = g * 0 | g 0 | 2 + 1 2 S NR (42) 
and, moreover, since

ρ = 2M-1 k=0 q w 2 m,k (i -q) 2M-1 k=0 q w m,k (i -q) 2 + 1 S NR = 0 (43) 
and

u = P d w 2 m,m (0) 2M-1 k=0 q w m,k (i -q) 2 + 1 S NR = P d g 2 0 2 | g 0 | 2 + 1 S NR (44)
the minimum MSE value results to be

E 2 flat min = P d              1 - | g 0 | 2 | g 0 | 2 + 1 2 S NR              . ( 45 
)

The asymptotic case (M 1)

Let us now suppose that M is sufficiently large with respect to the maximum excess delay of the channel [START_REF] Lélé | Channel estimation methods for preamble-based OFDM/OQAM modulations[END_REF]. In this case, the prototype filter has contained time-variations, so that, for each value of θ p and l ∈ {0, 1, . . . , 2M -1} it follows that

T c [k, l-θ p ] = h[l-θ p ] e j π M (k+ 1 2 )(l-θp+ 1 2 + M 2 ) h[l] e j π M (k+ 1 2 )(l-θp+ 1 2 + M 2 ) = T c [k, l]e -j π M (k+ 1 2 )θp . (46) 
By substituting ( 46) in (28), we obtain

w m,k (i -q) = 1 M L-1 p=0 g p 2M-1 l=0 T c [k, l -θ p + (i -q)M] T * c [m, l] 1 M L-1 p=0 g p e -j π M (k+ 1 2 )θp 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l] = H c 2k + 1 4M 1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l] (47) 
where

H c 2k+1 4M
is the frequency response of the multipath channel at frequency F = 2k+1 4M . Therefore, we can write

E D2 m [i] = P d 2M-1 k=0 q w 2 m,k (i -q) P d 2M-1 k=0 H 2 c 2k + 1 4M q        1 M 2M-1 l=0 T c [k, l + (i -q)M]T * c [m, l]        2 = P d 2M-1 k=0 H 2 c 2k + 1 4M        1 M 2M-1 l=0 T c [k, l + M]T * c [m, l]        2 +P d 2M-1 k=0 H 2 c 2k + 1 4M        1 M 2M-1 l=0 T c [k, l]T * c [m, l]        2 +P d 2M-1 k=0 H 2 c 2k + 1 4M        1 M 2M-1 l=0 T c [k, l -M]T * c [m, l]        2 . ( 48 
)
In particular, the last equality holds since for the considered prototype filter (see [START_REF] Brandwood | A complex gradient operator and its application in adaptive array theory[END_REF]) the only three values of q to be considered are q ∈ {i -1, i, i + 1}. Moreover, in Appendix E, taking into account [START_REF] Sexton | Enabling asynchronous machine-type D2D communication using multiple waveforms in 5G[END_REF] and the considered prototype filter [START_REF] Brandwood | A complex gradient operator and its application in adaptive array theory[END_REF], it is shown that

1 M 2M-1 l=0 T c [k, l + M] T * c [m, l] = (-1) m j ξ(k -m) , (49) 1 
M 2M-1 l=0 T c [k, l] T * c [m, l] = δ[k -m] + j 2 δ[k -m + 1] - j 2 δ[k -m -1] , (50) and 1 M 2M-1 l=0 T c [k, l -M] T * c [m, l] = (-1) k+1 j ξ(k -m) (51) 
where

ξ(l) = 1 4M          sin π 2 (l + 1) sin π 2M (l + 1) + sin π 2 (l -1) sin π 2M (l -1)          . ( 52 
)
Let us observe that ξ 2 (l) is periodic with period 2M and, moreover, as shown in Appendix F, it results

2M-1 l=0 ξ 2 (l) = 1 4 . (53) 
By substituting (49), ( 50) and ( 51) in (48) it follows that

E D2 m [i] P d H 2 c 2m + 1 4M - 1 4 H 2 c 2m -1 4M - 1 4 H 2 c 2m + 3 4M -2 P d 2M-1 k=0 H 2 c 2k + 1 4M ξ 2 (k -m) . ( 54 
)
Let us observe that, from (53) and (54) it follows that if the value of M is sufficiently large that the channel frequency response H c (F) is flat in a range of subcarriers such that ξ 2 (±l) becomes negligible we obtain

E D2 m [i] 0 . (55) 
Moreover, taking into account (46) we can write

E d m [i] Dm [i] = P d w m,m (0) = P d 1 M L-1 p=0 g p 2M-1 l=0 T c [m, l -θ p ] T * c [m, l] P d H c 2m + 1 4M 1 M 2M-1 l=0 |T c [m, l]| 2 = P d H c 2m + 1 4M (56) 
and

E Dm [i] 2 = P d         2M-1 k=0 q w m,k (i -q) 2 + 1 S NR         P d          2M-1 k=0 H c 2k + 1 4M 2 q 1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l] 2 + 1 S NR          . ( 57 
)
By substituting (49), ( 50) and ( 51) in (57) it follows that

E Dm [i] 2 P d        H c 2m + 1 4M 2 + 1 4 H c 2m -1 4M 2 + 1 4 H c 2m + 3 4M 2        +2 P d 2M-1 k=0 H c 2k + 1 4M 2 ξ 2 (k -m) + P d 1 S NR . (58) 
Let us observe that, from (53) and (58) it follows that if the value of M is sufficiently large that the channel frequency response H c (F) is flat in a range of subcarriers such that ξ 2 (±l) becomes negligible we obtain

E Dm [i] 2 P d        2 H c 2m + 1 4M 2 + 1 S NR        . (59) 
Thus, if M is sufficiently large that (55) and (59) hold, taking into account (56) the optimum single-tap (22) results to be

a asy m = H * c 2m+1 4M H c 2m+1 4M 2 + 1 2 S NR (60) 
and, the corresponding minimum MSE results to be

E 2 asy min = P d                    1 - H c 2m+1 4M 2 H c 2m + 1 4M 2 + 1 2 S NR                    . ( 61 
)
Thus, for high S NR values the optimum MMSE single-tap (for large values of M) a asy m in (60) is nearly equal to the gain adopted in the well-known zero-forcing single-tap receiver

a zf m = 1 H c 2m+1 4M (62) 
based on the approximation of the gain in (30) for large values of M.

Simulation results

In this section the BER of the optimum MMSE single-tap receiver (labeled as SC MMSE) based on (22) in frequency-selective Rayleigh fading channel is assessed via computer simulations and compared with that of the single-tap equalizer (labeled as SC) based on (30), the exact expression of the gain of the useful term in the decision variable [START_REF] Mattera | On the performance of FBMC-PAM systems in frequency-selective Rayleigh fading channels[END_REF], that of the single-tap equalizer (labeled as SCA)

based on (62) and that of the asymptotic (M 1) expression of the optimum MMSE single-tap receiver (labeled as SCA MMSE) based on (22). In the figures the performance of the 2M-4M receiver equalizer is also reported, and, moreover, the BER in the ideal interference-free condition [START_REF] Mattera | On the performance of FBMC-PAM systems in frequency-selective Rayleigh fading channels[END_REF] is presented. The simulation results are obtained under the following conditions:

1. the transmitted data belong to a 2-PAM and a 8-PAM constellation and in the active subcarriers profile 1 (ASP1) the percentage of active subcarriers is 89%, moreover, in the active subcarriers profile 2 (ASP2), profile 1 is modified by inserting one virtual subcarrier between active subcarriers to simulate a scenario where a fragmented spectrum is considered;

2. the considered Extended Vehicular A (EVA) [16] multipath channel model has the following power/delay profile: relative power (in dB) equal to 4. each channel realization is assumed to be perfectly known and remains constant in the whole burst.

Figures 1 and2 show the BER of the considered receivers versus E b /N o for 2-PAM constellation and M = 64 in EVA channel, and for the active subcarriers profiles 1 and 2, respectively. The results show that, when ASP1 is considered the asymptotic versions of the single-tap structures, particularly that of the MMSE structure, perform worse than the other single-tap structures, and, moreover, the 2M-4M receiver provides the best performance. Note that taking into account (31), (32) and (33) the asymptotic version of the solution of (22) leads to an approximation of a many terms, this can lead to a performance degradation with respect to the other considered less complex single-tap structures. On the other side, when ASP2 is considered, the MMSE SC receiver outperforms the remaining single-tap receivers and, moreover, assures a performance slightly worse than that of the 2M-4M receiver. Thus, when ASP2 is considered the solution of ( 22) leads to a gain that can allow to exploit the noncircularity of the zero-mean output of the standard receiver based on the matched filter. Figures 3 and4 show the BER of the considered receivers for M = 128 in EVA channel and for the active subcarriers profiles 1 and 2, respectively. When ASP1 is considered all the receivers present a performance improvement and, moreover, the performance gap between the 2M-4M receiver and the other single-tap receivers is reduced. In the ASP2 case all the single-tap structures assure similar performance except for the MMSE single-tap receiver that, for high values of E b /N o slightly outperforms the other considered structures. 

Conclusions

The FBMC-PAM transceiver with its capabilities in terms of spectral efficiency, asynchronous access and protection of adjacent users, has the potential to meet many requirements imposed by the future wireless systems [START_REF] Matthaiou | The road to 6G: ten physical layer challenges for communications engineers[END_REF].

In this paper the problem of single-tap equalization of FBMC-PAM signals in wireless dispersive channels has been analyzed. The MMSE single-tap receiver has been derived and its performance has been compared with that of other previously considered receivers. It has been shown that the MMSE single-tap gain assumes a more involved expression when the output of the standard matched filter (that multiplied by the considered gain, provides, after real part extraction, the decision variable) is noncircular. In this case the MMSE single-tap receiver can outperform other single-tap structures and can assure a performance similar to that of the more advanced 2M-4M equalizer. However, the observed performance improvement of the MMSE SC receiver with respect to the other considered singletap structures is more contained as the constellation size increases.

Appendix A

In this appendix we provide some detail about the solution of ( 18) which is reported here for readability

a m E D2 m [i] + a * m E Dm [i] 2 = 2E d m [i] Dm [i] . (A.1)
By using the definitions

E D2 m [i] = α R + jα I E Dm [i] 2 = β E d m [i] Dm [i] = ζ R + jζ I (A.1
) leads to the following system of two real equations

                 a R m α R + β -a I m α I = 2ζ R a R m α I + a I m α R -β = 2ζ I . (A.2)
where a R m = {a m } and a I m = {a m }. The solution of this system is

a R m = 2 E * D2 m [i] E d m [i] Dm [i] -2E Dm [i] 2 E d m [i] Dm [i] E D2 m [i] 2 -E 2 Dm [i] 2 (A.3) a I m = 2 E * D2 m [i] E d m [i] Dm [i] + 2E Dm [i] 2 E d m [i] Dm [i] E D2 m [i] 2 -E 2 Dm [i] 2 (A.4)
Therefore, we can write

a m = a R m + ja I m = 2 E * D2 m [i] E d m [i] Dm [i] -2E Dm [i] 2 E * d m [i] Dm [i] E D2 m [i] 2 -E 2 Dm [i] 2 .
(A.5)

Appendix B

In this appendix we provide some detail about the steps that lead to the expression of the minimum MSE value in (23) obtained by substituting ( 22) in [START_REF] Matthaiou | The road to 6G: ten physical layer challenges for communications engineers[END_REF] reported here for readability

E 2 = 1 2 a 2 m E D2 m [i] + 1 2 | a m | 2 E Dm [i] 2 + P d -2 a m E d m [i] Dm [i] . (B.1)
By using the definitions

E D2 m [i] = α (B.2) E Dm [i] 2 = β (B.3) E d m [i] Dm [i] = ζ (B.4)
we can write

E 2 = 1 2 a 2 m α + 1 2 | a m | 2 β + P d -2 {a m ζ} . (B.5)
Since the optimum complex gain results to be (see (A.5))

a m = 2α * ζ -2βζ * |α| 2 -β 2 = 2α * ζ -2βζ * δ (B.6)
where

δ = |α| 2 -β 2 (B.7)
the minimum value of the MSE results to be

E 2 min = 2 δ 2 (α * ζ -βζ * ) 2 α + 2 δ 2 |α * ζ -βζ * | 2 β + P d - 4 δ {(α * ζ -βζ * ) ζ} = 2 δ 2 α * ζ 2 | α | 2 -β 2 - 2 δ 2 β | ζ | 2 | α | 2 -β 2 + P d - 4 δ α * ζ 2 + 4 δ β | ζ | 2 .
Taking into account the definition of δ in (B.7) we can write

E 2 min = 2 δ 2 α * ζ 2 δ - 2 δ 2 β | ζ | 2 δ + P d - 4 δ α * ζ 2 + 4 δ β | ζ | 2 = P d - 2 δ α * ζ 2 + 2 δ β | ζ | 2 .
Finally, by using the definitions (B.2), (B.3), (B.4), and (B.7), the expression of the minimum MSE value in (23) immediately follows.

Appendix C

In this appendix we derive the relationship (37). Let us observe that, since 6)), we can equivalently show that

T c [2M + k, l + qM] = -T c [k, l + qM] (see (
2M-1 k=0 q        1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l]        2 = 0 . (C.1)
Taking into account ( 6) we can write

2M-1 k=0 q        1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l]        2 = 1 M 2 2M-1 k=0 q e j π M (m+k+ 1 2 )qM 2        2M-1 l=0 h[l + qM] e j π M (m+k+ 1 2 )(l+ 1 2 + M 2 ) h[l] e -j π M (m+ 1 2 )(l+ 1 2 + M 2 )        2 = 1 M 2 q e jπq 2M-1 l 1 =0 2M-1 l 2 =0 h[l 1 + qM] h[l 2 + qM] h[l 1 ] h[l 2 ] 2M-1 k=0 e j π M k(l 1 +l 2 +1+M) . (C.2)
Let us observe that

2M-1 k=0 e j π M k(l 1 +l 2 +1+M) =                  2M if l 1 + l 2 + 1 + M = 2M r 0 otherwise . (C.3) Since l 1 , l 2 ∈ {0, 1, . . . , 2M -1} the sum in (C.3) is different from zero only for l 2 = M -1 -l 1 with l 1 ∈ {0, 1, . . . , M -1}, and for l 2 = 3M -1 -l 1 with l 1 ∈ {M, M + 1, . . . , 2M -1}, thus we can write 2M-1 k=0 q        1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l]        2 = 1 M 2 q e jπq        M-1 l 1 =0 h[l 1 + qM] h[l 1 ] h[M -1 -l 1 ] h[M -1 -l 1 + qM] + 2M-1 l 1 =M h[l 1 + qM] h[l 1 ] h[3M -l 1 -1] h[3M -l 1 -1 + qM]        . (C.4)
Taking into account the symmetry condition (9) it follows that

h[M -1 -l 1 ] = h[M + l 1 ] (C.5) h[M -1 -l 1 + qM] = h[M -1 -(l 1 -qM)] = h[M + l 1 -qM] (C.6) h[3M -1 -l 1 ] = h[M + 2M -1 -l 1 u ] = h[M -1 -u] = h[l 1 -M] (C.7) h[3M -1 -l 1 + qM] = h[M + 2M -1 -l 1 + qM u ] = h[M -1 -u] = h[l 1 -M -qM] (C.8) By substituting (C.5) -(C.8) in (C.4) we obtain 2M-1 k=0 q        1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l]        2 = 1 M 2 q e jπq        M-1 l 1 =0 h[l 1 + qM] h[l 1 ] h[l 1 + M] h[l 1 + M -qM] + 2M-1 l 1 =M h[l 1 + qM] h[l 1 ] h[l 1 -M] h[l 1 -M -qM]        (C.9)
By using the position l = l 1 -M in the last sum in (C.9) we obtain

2M-1 k=0 q        1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l]        2 = 1 M 2 q e jπq        M-1 l 1 =0 h[l 1 + qM] h[l 1 ] h[l 1 + M] h[l 1 + M -qM] + M-1 l=0 h[l + M + qM] h[l + M] h[l] h[l -qM]        (C.10)
and, then, we can write

2M-1 k=0 q        1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l]        2 = 1 M 2        M-1 l 1 =0 h[l 1 ] h[l 1 ] h[l 1 + M] h[l 1 + M] + M-1 l=0 h[l + M] h[l + M] h[l] h[l] - M-1 l 1 =0 h[l 1 -M] h[l 1 ] h[l 1 + M] h[l 1 + 2M] - M-1 l=0 h[l] h[l + M] h[l] h[l + M] - M-1 l 1 =0 h[l 1 + M] h[l 1 ] h[l 1 + M] h[l 1 ] - M-1 l=0 h[l + 2M] h[l + M] h[l] h[l -M]        = 1 M 2        2 M-1 l=0 h 2 [l] h 2 [l + M] - M-1 l=0 h 2 [l] h 2 [l + M] - M-1 l 1 =0 h 2 [l 1 ] h 2 [l 1 + M]        = 0 (C.11)

Appendix D

In this appendix we show the relationship (38). A similar result has been shown in the Appendix of [START_REF] Lélé | Channel estimation methods for preamble-based OFDM/OQAM modulations[END_REF] with reference to the FBMC-OQAM signal case.

Let us observe that, since

T c [2M + k, l + qM] = -T c [k, l + qM] (see (6)), we can equivalently show that 2M-1 k=0 q 1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l] 2 = 2 . (D.1)
Taking into account [START_REF] Sexton | Enabling asynchronous machine-type D2D communication using multiple waveforms in 5G[END_REF] we can write

2M-1 k=0 q 1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l] 2 = 1 M 2 q 2M-1 l 1 =0 2M-1 l 2 =0 h[l 1 + qM] h[l 2 + qM] h[l 1 ] h[l 2 ] 2M-1 k=0 e j π M k(l 1 -l 2 ) . (D.2) Let us observe that 2M-1 k=0 e j π M k(l 1 -l 2 ) =                  2M if l 1 -l 2 = 2M r 0 otherwise . (D.3)
Since l 1 , l 2 ∈ {0, 1, . . . , 2M -1} the sum in (D.3) is different from zero only for l 2 = l 1 with l 1 ∈ {0, 1, . . . , 2M -1}, thus we can write

2M-1 k=0 q 1 M 2M-1 l=0 T c [m + k, l + qM] T * c [m, l] 2 = 2 M q 2M-1 l 1 =0 h 2 [l 1 + qM] h 2 [l 1 ] . (D.4)
Taking into account condition [START_REF] Picinbono | On circularity[END_REF] for r = 0 it follows that 2 M

2M-1

l 1 =0 h 2 [l 1 ] q h 2 [l 1 + qM] =1 = 2 M 2M-1 l 1 =0 h 2 [l 1 ] = 2 . (D.5)
Finally, from (D.5) and (D.4) equation ( 38) follows.

Appendix E

In this appendix, with reference to the adopted prototype filter in (13), we evaluate the explicit expression of the terms

t(k, m, i -q) = 1 M 2M-1 l=0 T c [k, l + (i -q)M] T * c [m, l] (E.1)
in (48). Let us observe that since the length of the prototype filter in ( 13) is

L h = 2M
, it immediately follows that t(k, m, iq) 0 only for iq = -1, 0, 1.

Let us evaluate t(k, m, 0), taking into account (6) we obtain

t(k, m, i) = 1 M 2M-1 l=0 T c [k, l] T * c [m, l] = 1 M 2M-1 l=0 h 2 [l]e j π M (k-m)(l+ 1 2 + M 2 ) . (E.2)
Since, for l = 0, 1, . . . , 2M -1,

h 2 [l] = 1 2 - 1 2 cos π M l + 1 2 it follows that 1 M 2M-1 l=0 h 2 [l]e j π M (k-m)(l+ 1 2 + M 2 ) = 1 M 2M-1 l=0 1 2 - 1 2 cos π M l + 1 2 e j π M (k-m)(l+ 1 2 + M 2 ) = 1 2M e j π M (k-m)( 1 2 + M 2 )        2M-1 l=0 e j π M (k-m) l - 1 2 e j π 2M 2M-1 l=0 e j π M (k-m+1) l - 1 2 e -j π 2M 2M-1 l=0 e j π M (k-m-1) l        = e j π M (k-m)( 1 2 + M 2 ) δ[k -m] - 1 2 e j π 2M δ[k -m + 1] - 1 2 e -j π 2M δ[k -m -1] = δ[k -m] - 1 2 e -j π 2 δ[k -m + 1] - 1 2 e j π 2 δ[k -m -1] . + 2M-1 k=0 1 M 2M-1 l=0 T c [m + k, l + M] T * c [m, l] 2 A 3 = 2 . (F.2)
Moreover, taking into account (E.6) we can write

1 M 2M-1 l=0 T c [m + k, l -M] T * c [m, l] = (-1) k+m+1 j ξ(k) , (F.3) from (E.3) it follows that 1 M 2M-1 l=0 T c [m + k, l] T * c [m, l] = δ[k] + j 2 δ[k + 1] - j 2 δ[k -1] , (F.4)
and, finally, taking into account (E.5) it follows that

1 M 2M-1 l=0 T c [m + k, l + M] T * c [m, l] = (-1) m j ξ(k) (F.5)
where (the expression of ξ(•) is reported here for readability)

ξ(l) = 1 4M          sin π 2 (l + 1) sin π 2M (l + 1) + sin π 2 (l -1) sin π 2M (l -1)          . (F.6)
Thus, from (F.2), (F.3), (F.4) and (F.5) we obtain

A 1 = 2M-1 k=0 1 M 2M-1 l=0 T c [m + k, l -M] T * c [m, l] 2 = 2M-1 k=0 ξ 2 (k) (F.7) A 3 = 2M-1 k=0 1 M 2M-1 l=0 T c [m + k, l + M] T * c [m, l] 2 = 2M-1 k=0 ξ 2 (k) (F.8) A 2 = 2M-1 k=0 1 M 2M-1 l=0 T c [m + k, l] T * c [m, l] 2 = 3 2 (F.9)
and, then, from (F.2) it follows that 

Notation: j = √ - 1 ,

 1 superscript (•) * denotes the complex conjugation, [•] the real part, [•] the imaginary part, δ[k] the Kronecker delta, | • | the absolute value, ∠[•] the argument of a complex number in [-π, π) and E[•] denotes statistical expectation.
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 151436 0.6 -9.1 -7 -12 -16.9] and excess tap delay (in discrete samples) [0 1 3 6 7 14 22 35 50]. Moreover, the considered multipath channel model Extended Typical Urban (ETU) [16] has the following power/delay profile: relative power (expressed in dB) equal to [-1 -1 -1 0 0 0 -3 -5 -7] and excess tap delay (expressed in discrete samples) equal to [0 1 2 4 5 10 32 46 100]; 3. the BER values are obtained by averaging over all the active subcarriers of a given multicarrier symbol in a burst and over 10 4 independent channel realizations in the 2-PAM case and over 10 3 independent channel realizations in the 8-PAM case;

Figures 5 and 6

 6 Figures 5 and 6 show the BER of the considered receivers for 2-PAM constellation and M = 128 in ETU channel, and for the active subcarriers profiles 1 and 2, respectively. Moreover, figures 7 (ASP1) and 8 (ASP1) show the BER for M = 256. The results show that, in the ASP1 case the 2M-4M receiver outperforms all the single-tap structures, moreover, for M = 128 a performance degradation of the structures designed for large values of M (SCA and SCA MMSE) is observed while for M = 256 only the degradation of the SCA MMSE structure is present. In the ASP2 case when M = 128 the MMSE single-tap structure clearly outperforms the other single-tap structures and presents a contained performance degradation with respect to the 2M-4M receiver. Furthermore, when M = 256 the MMSE single-tap receiver assures a performance practically coincident with that of the 2M-4M structure and both outperform for high values of E b /N o the other considered single-tap receivers. Figures 9 and 10 show the BER of the considered receivers versus E b /N o for 8-PAM constellation and M = 64 in EVA channel, and for the active subcarriers profiles 1 and 2, respectively. The results show that when ASP1 is considered the 2M-4M receiver clearly outperforms the other considered structures while when ASP2 is considered a performance improvement of the SC MMSE receiver with respect to the other considered single-tap structures can be observed. However, this improvement is not observed for larger values of M. Moreover, figures 11 (ASP1) and 12 (ASP2) show that for M = 256 only the 2M-4M receiver assures a contained performance degradation with respect to the interference-free curve in the whole range of values of E b /N o . Finally, figures 13 and 14 show the BER of the considered receivers for 8-PAM
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 5 Fig. 5 BER versus Eb/No over ETU channel for 2-PAM constellation, M = 128 and active subcarriers profile 1.
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 6 Fig. 6 BER versus Eb/No over ETU channel for 2-PAM constellation, M = 128 and active subcarriers profile 2.
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 7 Fig. 7 BER versus Eb/No over ETU channel for 2-PAM constellation, M = 256 and active subcarriers profile 1.
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 8 Fig. 8 BER versus Eb/No over ETU channel for 2-PAM constellation, M = 256 and active subcarriers profile 2.Fig. 9 BER versus Eb/No over EVA channel for 8-PAM constellation, M = 64 and active subcarriers profile 1.Fig. 10 BER versus Eb/No over EVA channel for 8-PAM constellation, M = 64 and active subcarriers profile 2.
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 11 Fig. 11 BER versus Eb/No over EVA channel for 8-PAM constellation, M = 256 and active subcarriers profile 1.
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 12 Fig. 12 BER versus Eb/No over EVA channel for 8-PAM constellation, M = 256 and active subcarriers profile 2.
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 13 Fig. 13 BER versus Eb/No over ETU channel for 8-PAM constellation, M = 128 and active subcarriers profile 1.
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 14 Fig. 14 BER versus Eb/No over ETU channel for 8-PAM constellation, M = 128 and active subcarriers profile 2.
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 151234 Fig. 15 BER versus Eb/No over ETU channel for 8-PAM constellation, M = 512 and active subcarriers profile 1.Fig. 16 BER versus Eb/No over ETU channel for 8-PAM constellation, M = 512 and active subcarriers profile 2.
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 910111213141516 Figure 9: BER versus Eb/No over EVA channel for 8-PAM constellation, M = 64 and active subcarriers profile 1.

Therefore, we can write

Let us now evaluate t(k, m, 1), taking into account [START_REF] Sexton | Enabling asynchronous machine-type D2D communication using multiple waveforms in 5G[END_REF] we obtain

Let us now evaluate t(k, m, -1), taking into account (6) we obtain

where

.

By using the position l 1 = l -M we obtain

Therefore, we can write

where

and, then, taking into account (E.4) we obtain

Since q ∈ {-1, 0, 1} (see ( 6)), it follows that
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