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Abstract

Interval branch-and-bound solvers provide reliable algorithms for han-
dling non-convex optimization problems by ensuring the feasibility and
the optimality of the computed solutions, i.e. independently from the
floating-point rounding errors. Moreover, these solvers deal with a wide
variety of mathematical operators. However, these solvers are not ded-
icated to quadratic optimization and do not exploit nonlinear convex
relaxations in their framework. We present an interval branch-and-
bound method that can efficiently solve quadratic optimization problems.
At each node explored by the algorithm, our solver uses a quadratic
convex relaxation which is as strong as a semi-definite programming
relaxation, and a variable selection strategy dedicated to quadratic
problems. The interval features can then propagate efficiently this infor-
mation for contracting all variable domains. We also propose to make
our algorithm rigorous by certifying firstly the convexity of the objec-
tive function of our relaxation, and secondly the validity of the lower
bound calculated at each node. In the non-rigorous case, our experi-
ments show significant speedups on general integer quadratic instances,
and when reliability is required, our first results show that we are
able to handle medium-sized instances in a reasonable running time.
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1 Introduction

We consider the Mixed Integer Quadratically Constrained Quadratic Programs
(MIQCQPs) of the following form:

(P )


min f(x) ≡ ⟨Q0, xx

T ⟩+ cT0 x

gr(x) ≡ ⟨Qr, xx
T ⟩+ cTr x ≤ er r ∈ R

ℓi ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ J ⊆ I

where R is the set of inequality indices, I is the set of variable indices, and
J ⊆ I is the subset of integer variables. Each variable xi lies in the interval
[ℓi, ui] where ℓi and ui are real scalars. This interval is often called the domain
of variable xi. The quadratic forms f and gr use symmetric real matrices Q0

and Qr and real vectors c0 and cr. The notation ⟨A1, A2⟩ denotes a dot product
between two matrices A1, A2 of the same dimensions.

Many optimization problems can be modelled as MIQCQPs. A few exam-
ples are optimization problems in graphs like max-clique, graph partitioning,
or in industrial applications like district heating networks [1], optimal power
flow [2]. MIQCQPs can also model any optimization problem with binary
variables [3].

MIQCQPs are a particular case of Mixed Integer Non-Linear Problems
(MINLP) [4] which are known to be very hard in general. Global solution meth-
ods exist however and are implemented in software solutions like Baron [5].
Specialized methods for MIQCQPs are implemented in other solvers like
GloMIQO [6], or in standard solvers like Gurobi [7] or CPLEX [8].

Methods for solving (P ) globally are based on partial enumeration of the
search space implemented by a branch-and-bound algorithm. The two main
ingredients are bounding and branching. Branching subdivides the set of fea-
sible solutions in order to work on smaller subsets and aims at getting rid of
non-feasible solutions as soon as possible. Bounding, which can for example be
based on relaxations, finds a lower bound on the optimal value of (P ) in order
to eliminate subsets that can then be proven to contain no optimal solution.
One of the key points to be addressed when using those methods is to find a
good compromise between the quality of the bound and the time needed for
its computation. Semi-definite programming (SDP) is known to provide strong
bounds that need a large computation time. The Quadratic Convex Refor-
mulation for Mixed Integer quadratic problems (MIQCR) approach [9][10] gets
around this difficulty by capturing the bound quality of an SDP relaxation
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within a convex quadratic reformulation of (P ). A convex quadratic reformu-
lation is an equivalent problem to (P ) that has a trivial quadratic convex
relaxation. Hence MIQCR is composed of two steps, the first one solves the SDP
relaxation and builds the equivalent reformulation. The second step performs
a branch-and-bound based on bounding by quadratic convex relaxation.

Interval methods are different solution methods that are still based on
partial enumeration but focus on variable domain contraction. They consider
the objective function as a particular variable and aim at improving the bounds
on all variables by reasoning about all or part of the problem constraints [11–
14]. IbexOpt [15] is a state-of-the-art constrained nonlinear optimization solver
that has been used to build the QIBEX solver proposed in this paper. It uses
rigorous interval algorithmic operators [15, 16].

Interval methods provide two main advantages: first, the guarantee of the
solution obtained despite rounding problems on floating numbers; second, the
possibility of defining the constraints and the objective function based on
a wide variety of mathematical operators including arithmetic, trigonomet-
ric, exponential, logarithm, and even non-differentiable operators such as the
absolute value.

Our objective in this paper is to introduce a cooperation between inter-
val methods and quadratic convex reformulation methods. We aim to design
an efficient and rigorous global method for problem (P ). Our work leads to a
new quadratic solver named QIBEX that is an variant of IbexOpt specialized
to quadratic problems and improved by the quadratic convex reformulation
framework. At each node, the hybrid solver QIBEX uses a quadratic con-
vex relaxation that is built thanks to semi-definite programming (Section 2),
together with a variable selection strategy dedicated to quadratic optimization.
The interval features (Section 3) can then efficiently propagate this informa-
tion for reducing/contracting all variable domains (Section 4). We then focus
on the rigor issue (Section 5). Our experiments show significant speedups on
general integer quadratic instances and emphasize the influence of introducing
rigor (Section 6).

2 Convex quadratic reformulation

Quadratic convex reformulation first introduces a new variableXij that models
the product of variables xi and xj , for each pair (i, j) ∈ I2. Then, it builds
the following program, parameterized by the positive semi-definite matrices S0
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and Sr ∀ r ∈ R:

(PC)



minF (x,X) ≡ ⟨S0, xx
T ⟩+ ⟨Q0 − S0, X⟩+ cT0 x

Gr(x) ≡ ⟨Sr, xx
T ⟩+ ⟨Qr − Sr, X⟩+ cTr x ≤ er r ∈ R

Xii ≥ xi i ∈ J (1)

Xij ≥ ujxi + uixj − ujui i, j ∈ I2 (2)

Xij ≥ ℓjxi + ℓixj − ℓjℓi i, j ∈ I2 (3)

Xij ≤ ujxi + ℓixj − ujℓi i, j ∈ I2 (4)

Xij ≤ ℓjxi + uixj − ℓjui i, j ∈ I2 (5)

Xij = xixj i, j ∈ I2 (6)

xi ∈ N i ∈ J ⊆ I (7)

Thanks to equalities (6), it can be easily checked that problems (P ) and (PC)
are equivalent for any parameters S0, Sr (r ∈ R). Moreover, since the latter
matrices are positive semi-definite, the quadratic forms F and Gr are convex,
and the only non-convexities in (PC) come from Constraints (6) and (7).
By dropping these constraints from (PC) we obtain Problem (PC) a convex
quadratically constrained quadratic relaxation to (PC), and obviously to (P ).
Observe that the McCormick’s envelopes (1)-(5) are necessary for the purpose
of the branch-and-bound algorithm since they tighten the bound at each node
of the branch-and-bound with the current domains of the variables.

Now, an important issue is the choice of matrices S0 and Sr. The criterion
adopted in [9] is to choose the matrices such that relaxation (PC) is as tight
as possible. We then consider the problem of finding a best set of positive
semi-definite matrices S∗

0 , . . . , S
∗
m, in the sense that the optimal solution value

of (PC) is as large as possible. It was proved in [10] that the best choice can
be deduced from a dual optimal solution of the ”Shor plus RLT” semi-definite
programming relaxation of (P ).

(SDP )



min⟨Q0, X⟩+ cT0 x

s.t.

⟨Qr, X⟩+ cTr x ≤ br r ∈ R (8)

Xii ≥ xi i ∈ J (9)

Xij ≤ ujxi + ℓixj − ujℓi (i, j) ∈ I2 (10)

Xij ≤ uixj + ℓjxi − uiℓj (i, j) ∈ I2 (11)

Xij ≥ ujxi + uixj − uiuj (i, j) ∈ I2 (12)

Xij ≥ ℓjxi + ℓixj − ℓiℓj (i, j) ∈ I2 (13)(
1 xT

x X

)
⪰ 0

x ∈ Rn X ∈ Sn
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The best matrices (S∗
0 , . . . , S

∗
m) can be built as follows:

i) ∀r ∈ R, S∗
r = 0n (i.e. we linearize the initial quadratic constraints)

ii) S∗
0 = Q0 +

m∑
r=1

α∗
rQr +Φ∗ where:

⋄ α∗ is the vector of optimal dual variables associated with Constraints (8),
⋄ matrix Φ∗ = Φ1∗ +Φ2∗ −Φ3∗ −Φ4∗ − diag(φ∗), where φ∗ is the vector
of dual variables associated with Constraints (9), and Φ1∗, Φ2∗, Φ3∗, and
Φ4∗ are the symmetric matrices built from the optimal dual variables
associated with Constraints (10) (13) respectively.

To sum up, we can solve the dual of problem (SDP ) and deduce a positive
semi-definite matrix S∗

0 that will allow us to build the following tightest convex
quadratic relaxation of (P ):

(PC∗)


min ⟨S∗

0 , xx
T ⟩ − ⟨Q0 − S∗

0 , X⟩+ cT0 x

⟨Qr, X⟩+ cTr x ≤ er r ∈ R
(1)− (5)

Problem (PC∗) is a convex quadratic problem with linear constraints. It is
also proved in [10] that it has the same optimal value as (SDP ). It can be used
to compute a tight lower bound to the optimal value of (P ) and it can also be
used within a spatial branch-and-bound to globally solve (P ) by enforcing (6)
and (7).

3 Interval branch & bounds

Several interval B&Bs for global optimization have been proposed, including
Numerica [12], GlobSol [11], Icos [13], IBBA [14] and IbexOpt [15]. Let us
summarize the principles behind IbexOpt that have been used to build our
new quadratic solver QIBEX that is described in Section 4.

3.1 Outline of interval branch-and-bounds

An interval [xi] = [xi, xi] defines the set of reals xi s.t. xi ≤ xi ≤ xi, and we
call a box, denoted by [x], a vector of intervals, i.e. the Cartesian product of
intervals [x1]× ...× [xi]× ...× [xn].

IbexOpt deals with continuous global optimization under inequality con-
straints defined by:

min
x∈[x]

f(x) s.t. g(x) ≤ 0

where f : Rn → R is the real-valued objective (non convex) function and g :
Rn → Rm is a vector-valued (non convex) function. We present in Algorithm 1
the main features of the IbexOpt interval branch-and-bound algorithm.

Algorithm 1 is launched with an objective function f , a vector of constraints
g, and with [ℓ, u] the input domain/box initializing the list q of open nodes.



Springer Nature 2021 LATEX template

6 Qibex

Algorithm IntervalBranch&Bound (f , g, [ℓ, u], ϵobj, ϵsol)
fmin ← −∞ /* Lower bound */

f̃ ← +∞ /* Upper bound */
q ← {[ℓ, u]} /* List of open nodes */
xf̃ ← ⊥ /* Best feasible point */

while q ̸= ∅ and f̃ − fmin > ϵobj and f̃−fmin

|f̃ |
> ϵobj do

no← SelectNode(q) ; q ← q \ {no} /* node selection */

ĩ← SelectVariable(no, ϵsol) ; /* variable selection */

(nL, nR)← Bisect (no, ĩ) /* separation/bisection step */

(nL, f̃) ← Contract&Bound (nL, q, f̃ , xf̃ , f, g, ϵobj)

(nR, f̃) ← Contract&Bound (nR, q, f̃ , xf̃ , f, g, ϵobj)

q ← UpdateNodes (nL, nR, ϵsol, q)
fmin ← minq ℓobj

return (xf̃ , f̃ )

Algorithm 1: Outline of Interval-based branch-and-bound

Two accuracy parameters are also required as input: ϵobj that is the absolute
or relative precision required on the objective function value and is used in the
stopping criterion, and ϵsol that is the absolute accuracy of a domain.

Therefore, the algorithm computes a feasible point xf̃ of cost f̃ such that

no other solution exists with a cost lower than f̃ − ϵobj . A variable xobj is
added to the vector x of variables, corresponding to the objective function
value, along with a constraint f(x) = xobj .

The B&B algorithm maintains an upper and a lower bound during the
main loop:

• f̃ : the value of the best feasible point found so far,
• fmin: the minimal value of the lower bounds xobj of the nodes q to explore,
i.e. the minimal xobj in the list of open nodes.
In other terms, in every node no, there is a guarantee that no feasible point
exists with an objective function value lower than xobj .

The procedure SelectNode selects the next node to handle, the one that
has the minimal lower bound xobj estimated for the objective function, hence

performing a best-first search.1 Once an open node has been selected, its
domain/box is split into two sub-boxes along one dimension, that is selected
by the variable selection strategy SmearSumRel through the procedure Bisect.
Both sub-boxes are then handled by the Contract&Bound procedure (see
Algorithm 2).

1Note that another node selection strategy can also be used by IbexOpt : the FeasibleDiving
strategy, described in [17], did not appear to be the best option for our new QP solver QIBEX .
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Algorithm Contract&Bound ( no, q, f̃ , xf̃ , f, g, ϵobj)

n ← Contraction (no, g ∪ {f(x) = xobj} ∪ {xobj ≤ f̃ − ϵobj})
if no ̸= ∅ then

(xc, cost) ← FeasibleSearch (no, f, g, ϵobj)

if cost < f̃ then

f̃ ← cost
xf̃ ← xc

FilterOpenNodes(q, f̃ − ϵobj)

return (no, q, f̃ , xf̃ )

Algorithm 2: The Contract&Bound procedure run at each node

A constraint xobj ≤ f̃−ϵobj is first added to the problem for decreasing the

upper bound of the objective function in the box. Imposing f̃ − ϵobj as a new

upper bound (and not only f̃) aims at finding a solution significantly better
than the current best feasible point. Then, the procedure Contraction reduces
the handled box without loss of feasible part. In other words, some infeasible
parts at the limits of the domain are discarded by constraint programming
and convexification techniques. This contraction is applied on the extended
box that includes the variable xobj modelling the objective function value, and
thus improves the value of the lower bound lobj .

The last part of the procedure carries out upper bounding.
FeasibleSearch calls one or several algorithms searching for a feasible point
xf̃ that improves the best cost f̃ found so far. If the upper bound of the
objective value is improved, the FilterOpenNodes procedure performs a type
of garbage collector on all the open nodes by removing from q all the nodes
having xobj > f̃ − ϵobj .

Finally, after the calls to procedures Contract&Bound, the main B&B algo-
rithm (Algorithm 1) push the two sub-boxes in the set q of open nodes.
However, if the size of a box reaches the precision ϵsol, the box will be no more
bisected, and only the minimal value of the objective function of these small
discarded boxes is updated.

3.2 Main algorithms used by IbexOpt

Most of the algorithmic ingredients used by IbexOpt are called in Algorithm
2 by the Contraction and FeasibleSearch procedures.

In IbexOpt, FeasibleSearch, that implements upper bounding, does not
use any local search (e.g., gradient descent) method. Instead, interval branch-
and-bounds called algorithms InHC4 and InXTaylor that are able to extract
entirely feasible box or polytopes from the feasible domain [16].
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The Contraction procedure, that removes non feasible parts of the
domain, first includes contraction algorithms issued from constraint program-
ming techniques, such as the state-of-the-art HC4 constraint propagation
algorithm[18, 19] that works on each constraint individually, or stronger consis-
tency algorithms (i.e., 3BCID(HC4) [20] or ACID(HC4) [21]). It also includes
interval polyhedral relaxation of the feasible space using:

• XTaylor [22], a specific interval first order Taylor linear form of each
inequality constraint, and/or

• ART [14, 19], an algorithm producing an affine form of the constraints based
on affine arithmetic.

4 Improving an interval B&B using quadratic
convex reformulation : QIBEX

Our hybrid algorithm QIBEX is an improvement of the solver IbexOpt [15, 16].
The steps of IbexOpt algorithm that were modified for designing QIBEX are
surrounded in the pseudo-code of Algorithm 3 and 4.

We describe in Algorithm 3, the main procedure of our interval B&B. It
starts from an initial node with domain/box [x] = [ℓ, u]. An auxiliary vari-
able xobj represents the objective function value, and is added to the system
along with the constraint f(x) = xobj . First, the initial box is contracted,
i.e. the bounds are improved without loss of feasible point. Basically, this
Contraction procedure applies a sequence of contraction algorithms offered by
IbexOpt and described in Section 3.2. Then, before performing the tree search,
QIBEX calls procedure QuadraticConvexReformulation that computes the
positive semi-definite matrix S∗

0 and produces the quadratic convex relaxation
(PC∗). Finally, the B&B is described in the while loop, and works in best-first
node order. Once a node and a variable are selected, the domain is split into
two parts by the Bisect separation procedure, and both sub-nodes (nL, nR)
are handled by the Cont&BoundQ procedure before being added into the list of
nodes N by UpdateNodes.



Springer Nature 2021 LATEX template

Qibex 9

Algorithm Qibex (f, g, x, [ℓ, u], ϵobj , ϵsol)
fmin ← −∞ /* Lower bound*/

f̃ ← +∞ /* Upper bound */
x
f̃
← ⊥ /* Best feasible point */

no← createNode([ℓ, u])
no ← Contraction(no, g)

PC∗ ← QuadraticConvexReformulation(f, g, x, [ℓ, u])

q ← {no}
while q ̸= ∅ and f̃ − fmin > ϵobj and f̃−fmin

|f̃ |
> ϵobj do

no← SelectNode(q) ; q ← q \ {no} /* node selection */

ĩ ← SelectVariableQ(no, ϵsol) ; /* variable selection */

(nL, nR) ← Bisect (no, ĩ) /* separation/bisection step */

(nL, q, x
f̃
, f̃) ← Contract&BoundQ(nL, q, f, g, x, ϵobj , x

f̃
, f̃ ,

PC∗ )

(nR, q, x
f̃
, f̃) ← Contract&BoundQ (nR, q, f, g, x, ϵobj , x

f̃
, f̃ ,

PC∗ )
q ← UpdateNodes (nL, nR, ϵsol, q)
fmin ← minq ℓobj

return (x
f̃
, f̃)

Algorithm 3: The QIBEX interval-based branch-and-bound for global
solution of quadratic optimization problems

Another new feature of QIBEX compared to IbexOpt is the variable selec-
tion strategy SelectVariable that we adapt in a new strategy named
SelectVariableQ from the strategy dedicated to quadratic programming
of [23]. Indeed, the initial SmearSumRel variable selection strategy of
IbexOpt does not take advantage of the nature of the relaxation (PC∗). More
precisely, since Constraints (6) (i.e.Xij = xixj) are relaxed in (PC∗), it is more
relevant to select a variable that maximizes the violation of these constraints.
More formally, we first select the variable xĩ with

ĩ = argmax
i ∈ I

| ui − ℓi |> ϵsol
xi ∈ ]ℓi, ui[

| Xii − x2
i |

if no violation is detected, we then select the variable xĩ with

ĩ = argmax
(i, j) ∈ I2

| ui − ℓi | > ϵsol
xi ∈ ]ℓi, ui[, xj ∈ ]ℓj , uj [

| Xij − xixj |
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To summarize, QIBEX first uses the variable selection strategy described
above, if the strategy selects no variable, we resort to the SmearSumRel

bisection strategy available in IbexOpt [15].

Algorithm Contract&BoundQ(no, q, f, g, x, ϵobj , xf̃ , f̃ , PC∗ )

no ← Contraction (no, g ∪ {f(x) = xobj} ∪ {xobj ≤ f̃ − ϵobj})
if node no is still feasible then

(xpc∗, costpc∗) ← ConvexOptimize(PC∗, no.[ℓ, u])

(xc, cost)← FeasibleSearch (no, f, g, ϵobj , xpc∗ ) /* Upper

bounding */

if cost < f̃ then

f̃ ← cost
x
f̃
← xc

q ← FilterOpenNodes(q, f̃ − ϵobj)

no← Contraction(no, g ∪ {costpc∗ ≤ xobj ≤ f̃ − ϵobj} ∪ {f(x) = xobj})

return (no, q, x
f̃
, f̃)

Algorithm 4: The Contract&BoundQ procedure called at each node of
the QIBEX branch-and-bound algorithm

The other main improvement relates to the Contract&BoundQ procedure
and is described in Algorithm 4. First, the standard Contraction procedure
implemented in IbexOpt is called. If it leads to an empty box, it proves
the absence of solution in this domain, and we are done. Otherwise, the
ConvexOptimize procedure evaluates (PC∗) with the updated domains of
variables [ℓ, u], whose optimal solution is called xpc∗. The four subsequent
instructions carry out the upper bounding phase: FeasibleSearch tries to find
a feasible point using several techniques proposed in IbexOpt, and as a new
feature this procedure tests whether the original variables of xpc∗ are feasible

for the initial problem (P ). If such a point xc is found and if its cost improves f̃ ,

the xf̃ and f̃ are updated and the open nodes are filtered by FilterOpenNodes

to remove those with a lower bound lobj greater than f̃−ϵobj . A last call to the
Contraction procedure is useful either if costpc∗ improves the lower bound
lobj or if a better upper bound has been found.

An additional contribution is the handling of integer variables in
QIBEX which was not provided in IbexOpt. For this, rounding to integer oper-
ations enforcing the integrality constraints are launched after the contraction
operations and during feasible search computations.
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5 A reliable implementation of QIBEX

Contrarily to existing quadratic program solvers, we can ensure that QIBEX is
rigorous, reliable, whatever numeric tool is used to solve (SDP) and the (PC∗)
relaxation.

Proposition 1. Let us consider the QIBEX algorithm described in Algorithm
3 that applies to (P ) with a user-defined precision εobj on the objective func-
tion value. Let x∗ be the theoretical real feasible point minimizing the objective
function f .

Then, QIBEX can compute xf̃ a feasible point to (P ), and a lower bound

fmin such that fmin ≤ f(x∗) ≤ f(xf̃ ) and f(xf̃ )− f(x∗) ≤ εobj.

Let us recall that QIBEX is built on the top of IbexOpt and benefits
from its interval computations. In particular, the feasibility of the sequence
of points found by the interval branch-and-bound algorithm is ensured by
interval arithmetic. In addition, at each node, the Contraction procedure
called by Contract&BoundQ in the QIBEX algorithm is a slight extension of
the Contraction procedure of IbexOpt that takes into account one additional
constraint costpc∗ ≤ xobj , where costpc∗ is the optimal value of (PC∗) at the
current node. Obviously, it cannot lose any feasible point due to underlying
interval methods.

Hence, to prove Proposition 1, we have to prove that the features added
by QIBEX are also reliable, i.e.:

• The objective function of (PC∗) is a convex function, i.e. S∗
0 is a positive

semi-definite matrix (see Lemma 1 in Section 5.1).
• The optimal value of (PC∗), on any domain, provides a strict underesti-
mate of the real-valued objective function value of (P ) (see Lemma 2 in
Section 5.2).

5.1 Guarantee of convexity of (PC∗)

The aim of the ConvexQuadraticRelaxation procedure is to compute the
program (PC∗). To do this, we solve (SDP ), and from its dual optimal solu-
tion, we build S∗

0 . In practice, solving a semi-definite optimization problem
can be very expensive. We know from [9] that from any feasible dual solution
of (SDP ), we are able to build a positive semi-definite matrix S0. Hence, we
do not need a solution that is proven optimal for (SDP ) and its dual problem
to ensure convexity of F (x,X).

However, for numerical reasons the computed matrix S∗
0 can be indefinite

with eigenvalues very close to 0. To make the Hessian matrix of F positive
semi-definite, a simple idea is to replace S∗

0 by a positive matrix S∗
0 + |δ|In,

i.e. add a positive value δ on the whole diagonal of S∗
0 .

A non guaranteed way to achieve this goal is to compute the smallest
eigenvalue λ of S∗

0 , and take as corrective value δ = |λ|.
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We present in Algorithm 5 an iterative method that computes a corrective
floating-point value δ that guarantees that S0 + |δ|In ⪰ 0, and thus certifies
the convexity of F (x,X), the objective function of (PC∗).

Algorithm CertifyConvexity (λ, P, k)
for i← 1 to n do

ϵi ← 10−8

while 0 /∈
[
P
]
N
([λi − ϵi, λi + ϵi]) do

ϵi ← ϵi ∗ k

λmin ← min
i
(λi − ϵi)

δ ← min{0, λmin}
return (- δ)

Algorithm 5: An iterative algorithm that computes an under-
estimator of the smallest eigenvalue of a matrix.

The CertifyConvexity procedure is called with the characteristic poly-
nomial P of a matrix (in our case S∗

0 ) and the vector λ of its eigenvalues
computed by a numerical tool. The for loop iterates on each element λi in
λ. The while loop computes a ”small” interval around λi (of increasing size
obtained by iteratively multiplying ϵi by a user-defined positive value k, e.g.

k = 2 or k = 10) until 0 ∈
[
P
]
N
([λi − ϵi, λi + ϵi]). We recall that

[
P
]
N

com-

putes an interval [a, b], by interval evaluation of the characteristic polynomial
on the interval [λi− ϵi, λi + ϵi]. The fact that 0 ∈ [a, b] guarantees that λi− ϵi
is a lower bound of the true real eigenvalue.

Finally, at the end of the for loop, λmin stores the smallest lower bound
value of any λi.

2 If the numerical tool used for computing the eigenvalues
provides one or several negative values (due to round-off errors on floating point
numbers), δ reflects the worst error and the procedure returns its absolute
value. Otherwise, the procedure returns 0.

Lemma 1. Let M be a matrix with floating-point coefficients. Assuming that
a numerical tool can compute the whole set of eigenvalues of M , then the
CertifyConvexity procedure computes a corrective value δ such that:

M + |δ|In ⪰ 0

2The computation min
i

(λi − ϵi) is in fact achieved on intervals, i.e. min
i

([λi, λi] − [ϵi, ϵi]).
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5.2 A reliable lower bound of (PC∗)

The second important ingredient for proving Proposition 1 concerns the rigor
of the value computed when solving (PC∗) at each node of our interval branch-
and-bound QIBEX .

Lemma 2. Let us consider the QIBEX algorithm described in Algorithm 3 that
applies to (P ). At each node of the branch-and-bound , QIBEX calls a convex
QP solver to solve (PC∗) in the current domain d. This computation provides
a value fd

min.
Then, there exists fd′

min a corrective value of fd
min that is a lower bound

of the objective function value of (PC∗) in d, i.e. for all feasible point x in
d, fd′

min ≤ f(x).

The lemma is a direct application of a theorem of interval analysis obtained
in [24] and [25]. The result holds on any optimization problem (CP) of a convex
function constrained by p convex inequality constraints and q linear equality
ones.

Theorem 1. ([24, 25]) Consider the following constrained convex optimiza-
tion problem:

(CP)


minx∈Rn f(x)
s.c.

g(x) ≤ 0
Ax = b
ℓi ≤ xi ≤ ui,∀i ∈ {1, · · · , n}

where f and g are convex functions defined over Rn and g has its value in Rp.
A is a real matrix of size q × n and b is a real vector of q components. Let
us denote by x∗ the global solution of problem (CP) and L(x, µ, λ) := f(x) +
µT .g(x)+λT .(Ax− b) the Lagrangian function with λ ∈ Rq and µ ∈ (Rp)+ its
corresponding multipliers.

For all (x̃, µ̃, λ̃) ∈ ([ℓ, u], (Rp)+,Rq), one obtains:

f(x∗) ≥ L(x̃, µ̃, λ̃) + (z − x̃)T .∇xL(x̃, µ̃, λ̃)

where zi := ui if
∂L
∂xi

(x̃, µ̃, λ̃) ≤ 0 and zi := ℓi otherwise.

In other terms, for any vector (x̃, µ̃, λ̃), the corrective value (z −
x̃)T .∇xL(x̃, µ̃, λ̃) added to L(x̃, µ̃, λ̃) allows us to correct the value of L(x̃, µ̃, λ̃)
such that that we obtain a reliable lower bound of f(x∗).

Hence, by applying Theorem 1 to the Lagrangian function of F (x,X) we
are sure to compute a lower bound of f(x∗), the optimal value of (P ). We
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now apply Theorem 1 in the pure continuous case (i.e., by dropping Con-
straints (1) that apply to integer variables), but the reasoning is the same in
presence of integer variables. With each constraint gr(x,X) ≤ 0, and Con-
straints (2), (3), (4), and (5), we associate a non-negative Lagrange multiplier
µr and ν1ij , ν2ij , ν3ij , ν4ij respectively. We obtain the Lagrangian function:

L(x,X, µ, ν1, ν2, ν3, ν4) = ⟨S∗
0 , xx

T ⟩+ cT0 x− ⟨Q0 − S∗
0 , X⟩

+
∑
r∈R

µr(⟨Qr, X⟩+ cTr x− er)

+
∑

(i,j)∈I2

ν1ij(−Xij + ujxi + uixj − ujui)

+
∑

(i,j)∈I2

ν2ij(−Xij + ℓjxi + ℓixj − ℓjℓi)

+
∑

(i,j)∈I2

ν3ij(Xij − ujxi − ℓixj + ujℓi)

+
∑

(i,j)∈I2

ν4ij(Xij − ℓjxi − uixj + ℓjui)

The first two components of the gradient of L(x,X, µ, ν1, ν2, ν3, ν4) are:


∂L
∂xi

= c0i +

n∑
j=1

S∗
0ijxj +

∑
r∈R

µrcri +

n∑
j=1

(ν1ijuj + ν2ijℓj − ν3ijuj − ν4ijℓj)

∂L
∂Xij

= Q0ij − S∗
0ij +

∑
r∈R

µrQrij − ν1ij − ν2ij + ν3ij + ν4ij


Note that when we use a numerical convex solver to solve (PC∗), we expect

the computation of a good solution implying a quasi-null gradient. The other
factor of the corrective value (i.e., (z−x̃)T ) is bounded by the size of the current
domain. However, the experiments on three significant benchmarks (see next
section) highlight that the overall corrective value is very small and does not
lead to the exploration of additional nodes in the branch-and-bound .

6 Experiments

We evaluate our algorithms QIBEX and QIBEX-R on two sets of instances. The
first set is composed of 100 instances of quadratically constrained quadratic
programs of [9] available at [26]. For those, we consider two classes of instances:
the class QCP5 of pure-continuous instances and the class IQCP5 of pure-
integer instances. Each QCP5 (IQCP5, resp.) instance consists in minimizing
a quadratic function of n continuous (general integer, resp.) variable subject
to 5 quadratic inequality constraints. For the considered instances, n varies
from 10 to 50, and the variables belong to the interval [0, 20]. In the second
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set, we consider the 135 instances of quadratically constrained quadratic pro-
grams from [27] called unitbox. Each unitbox instance consists in minimizing
a quadratic function of n continuous variables in the interval [0, 1], subject to
m quadratic inequalities. For the considered instances, n varies from 8 to 50,
and m from 8 to 100.

For solving the semi-definite programs (SDP ) of methods QIBEX and
QIBEX-R, we use the algorithm described in [28] with the solver MOSEK [29]
together with the Conic Bundle Library [30]. For solving the quadratic convex
relaxations (PC∗) at each node of the search tree, we use the AMPL [31] interface
of the solver Cplex 12.6.3 [32]. Finally, for our reliable version QIBEX-R, we
implement Algorithm 5 in IbexOpt and Lemma 2 with the modelling language
AMPL.

We set the parameters of QIBEX and QIBEX-R as follows:

• Node selection strategy : we use the best node first search.
• Contraction algorithms: we use HC4 and XTaylor for IQCP5 and QCP5

instances, and HC4 only for unitbox instances.
• Feasible search algorithm: for IQCP5 and QCP5 instances, we use InHC4,
InXTaylor methods, and we use xpc∗ , the optimal solution of (PC∗), if it is
feasible for (P ). For the unitbox instances, we only use the last strategy.

• Accuracy parameters

– Relative mipgap of the branch-and-bound: ϵobj = 10−5 for classes QCP5,
IQCP5, and ϵobj = 10−4 for class unitbox.

– Absolute accuracy of the constraints violation: ϵconst = 10−4.
– Absolute accuracy of the domain [ℓ, u] : ϵsol = 10−6 for QCP5 instances,

ϵsol = 10−5 for unitbox instances, and ϵsol = 1 for the integer instances
IQCP5.

6.1 Comparison of QIBEX with other solvers

We evaluate our new solver QIBEX on the 3 classes of problems IQCP5, QCP5,
and unitbox (described at the beginning of the section), and compare its per-
formances with that of 3 state-of-the art solvers: IbexOpt, Baron 24.3.19 [5]
and Gurobi 911 [7]. For this, we use performance profiles (see [33]) of the CPU
times. The basic idea is the following: for each instance i and each solver s,
we denote by tis the time for solving instance i by solver s, and we define the
performance ratio as ris = tis

min
s

tis
. Let N be the total number of instances

considered, an overall assessment of the performance P of solver s for a given
τ is given by P (ris ≤ τ) = 1

N ∗ number of instances i such that ris ≤ τ .

In Figures 1, 2, and 3, we present the performance profiles of the CPU times
for methods QIBEX and the solvers IbexOpt, Baron 19.3.24, and Gurobi

911 for the instances of the 3 classes of problems that we consider IQCP5,
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QCP5, and unitbox, respectively. In our experiments, the time limit is set to
2 hours, and for QIBEX, the CPU time includes the pre-processing time nec-
essary for solving (SDP ). We observe that QIBEX outperforms the compared
solvers both in terms of CPU times and number of instances solved for the 3
classes of instances. More precisely, IbexOpt solves 66 instances, Baron 151,
Gurobi 187, and QIBEX 212 out of 235 instances within the time limit. The
fact that QIBEX is slower than Gurobi on the ”easiest” problems essentially
comes from the CPU time of the pre-processing phase used to solve (SDP )
for building (PC∗).

Fig. 1 Performance profile of the CPU times of QIBEX and the solvers IbexOpt, Baron,
Gurobi, for instances IQCP5 with n = 10 to 50. Time limit: 2 hours.

6.2 Impact of the new variable selection strategy

In this section, we start by a comparison of two variants of our new algorithm
QIBEX : QIBEX-S that uses the initial IbexOpt variable selection strategy,
and QIBEX that uses our tailored variable selection strategy SelectVariableQ

described in Section 4. The two algorithms include the lower bound provided
by (PC∗). In Figure 4, we compare the number of nodes required by the 2
methods on instances of size 20 to 50 that were solved by both algorithms
within the time limit of 2 hours. We observe that the number of nodes is
always reduced by using the new variable selection strategy, with an average
factor of about 2. Note that the total CPU time is also reduced by a factor 2
on average.
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Fig. 2 Performance profile of the CPU times of QIBEX and the solvers IbexOpt, Baron,
Gurobi, for instances QCP5 with n = 10 to 50. Time limit: 2 hours.

Fig. 3 Performance profile of the CPU times of QIBEX and the solvers IbexOpt, Baron,
Gurobi, for instances unitbox with n = 8 to 50. Time limit: 2 hours.

Fig. 4 Number of nodes per instance for QIBEX and QIBEX-S - IQCP5 instances.
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6.3 Impact of the reliable implementation of QIBEX-R

In this section, we evaluate QIBEX-R, our reliable implementation of QIBEX,
where we essentially discuss the impact of certifying two steps of QIBEX: the
convexity of the objective function of (PC∗), and the validity of the lower
bound provided by the optimal solution value of (PC∗). A first observation is
that for the 3 families of instances IQCP5, QCP5 and unitbox, the number of
nodes is identical on almost all the instances. This is due to the fact that the
relative deviation between the optimal value of (PC∗) and the value calculated
by Lemma 2 is always lower than 10−6. Concerning the validity of the convexity
of the objective function of (PC∗), we observe that the smallest eigenvalue
of S∗

0 is also almost systematically correct. Note that the time of this last
verification is negligible compared to the total CPU time.

Finally, the main impact of the reliable implementation of QIBEX is the
CPU time required for certifying the lower bound at each node of the branch-
and-bound. Since the CPU times for solving (SDP ) is the same for both
algorithms, we only compare the CPU times of the branch-and-bound. We
present in Figures 5, 6, and 7, the CPU times of the branch-and-bound of each
instance solved by both solvers QIBEX, and QIBEX-R within the time limit of
2 hours, for the classes of instances IQCP5, QCP5, and unitbox, respectively.
We observe that this certification significantly slows down the resolution for
the 3 families of instances. More precisely, this time is increased by an average
factor 8, 7 and 4, for the classes IQCP5, QCP5, and unitbox, respectively. This
is in part due to the implementation of this certification by an AMPL script
and should therefore be improved in a more sophisticated implementation.

Let us finally note that the reliable solver IbexOpt is more efficient on
instances with n ≤ 10 than QIBEX-R because of the time necessary to solve
(SDP ). However, IbexOpt is not able to solve any instance of classes IQCP5

and QCP5 with n > 10, and of class unitbox with n > 28, within the time
limit of 2 hours, whereas QIBEX-R allows us to solve instances of significantly
larger sizes (with n ≥ 40 for the 3 classes).

7 Conclusion and future research

We show how ideas from quadratic convex relaxation and from interval meth-
ods can be mixed to get an efficient and rigorous global solution method for
general quadratic optimization problems. Our numerical experiments show
that rigor comes with a significant increase in the running time but has a very
slight effect on the quality of the computed lower bounds and on the number
of required nodes in the branching tree.

Future potential extensions may handle more general non-convex problems.
A first idea would be to use a Taylor approximation of order 2 to approxi-
mate general non-linear functions by quadratic functions and come back to
the quadratic convex relaxation framework.
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Fig. 5 CPU times per instance of methods QIBEX and QIBEX-R for instances IQCP5 with
10 to 40 variables

Fig. 6 CPU times per instance of methods QIBEX and QIBEX-R for instances QCP5 with
10 to 40 variables
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Fig. 7 CPU times per instance of methods QIBEX and QIBEX-R for instances unitbox with
8 to 48 variables
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