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We report on the observation of a transverse Doppler shift in the optical domain. it occurs when
a receiving system travels perpendicularly to the propagation direction of a Gaussian beam. Shifts
of a few tens of Hz have been evidence for a detector moving in the mm/s range. The shift increases
as the detector is far from the beam axis. The observations fully agree with theoretical calculations
on the propagation of Gaussian beams. It can be observed for any kind of waves, including radio
and acoustic waves. Practical consequences are then discussed, especially for technics using Doppler
measurements in microsystems.

The so-called Doppler effect is the apparent
change in frequency or pitch of a wave when
the emitter moves either toward or away from
the receiver, or vice versa [1–3]. It has found
many applications, such as in astrophysics [4],
biology [5, 6], meteorology [7], medicine [8] or
radars systems [9] to name a few. It is deeply
rooted in the double spatial and temporal pe-
riodicity of the wave. A correlation between
space and time dependence, such as the rela-
tion between time and position via the veloc-
ity, then leads to a Doppler effect. Whereas it
has mainly dealt with longitudinal velocities, a
rotational Doppler effect has also been recently
evidenced [10–12] for beams with an azimuthal
phase dependence. Nevertheless, other kinds
of beams such as Gaussian beams have not
only a longitudinal phase variation, but also
a transverse one [13]. One may then wonder
whereas a transverse Doppler effect could be
evidenced in this case. The aim of this letter
is thus to investigate the signal detected by a
detector moving perpendicularly to a Gaussian
beam.

A Gaussian laser beam is expressed as [13]

E(r, z) = E0
w0

w(z)
e
− r2

w2(z) ei
kr2

2R(z) e−i(kz−ωt+φ(z))

(1)
E0 is the field amplitude, r is the radial dis-
tance from the beam axis, z is the distance
from the beam waist w0, w(z) is the size of
the beam at distance z, k is the wavevector, ω
is the pulsation of light, R(z) is the radius of

curvature of the beam, and φ(z) is the Gouy
phase. The term with a phase with a z de-
pendence is responsible for the usual Doppler
effect. It scales as kvz, vz being the longitu-
dinal velocity. Let us focus here on the term
with a transverse phase dependence associated
with the term with a time dependence of the
Gaussian beam

∆φ =
kr2

2R(z)
+ ωt (2)

and let us consider a linear variation of the
radial distance with time at a distance r0 (r =
r0 + vt, v being the transverse velocity). The
phase term then reads

∆φ = k
r20

2R(z)
+ k

r0vt

R(z)
+ k

(vt)2

2R(z)
+ ωt (3)

Assuming a small displacement (vt ≪ r0) this
thus leads to a transverse Doppler shift

δωd = 2πδυd = k
r0v

R(z)
(4)

According to this equation, there should be a
transverse Doppler shift as soon as a receiving
system travels at a given velocity, perpendicu-
lar to the direction of propagation of a Gaus-
sian beam. The effect must increase as the
system travels far from the beam axis. Since
it depends on the transverse velocity, we thus
call it a transverse Doppler effect. It has not to
be confused with the relativistic Doppler shift
sometimes also called the transverse Doppler
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FIG. 1. a) Experimental set-up: interference be-
tween a Gaussian beam and a plane wave. BS:
beam splitter; L1 (f1 = −5 cm) and L2 (f2 = 40
cm): lenses (distance between the lenses 35 cm);
M1 and M2: mirrors. The interferences are de-
tected either by a CCD camera or by a point like
moving detector. z: distance between the position
of the waist and the detector, taking into account
the index of the BS. Distances on the drawing are
not to scale. b) Phase front of a Gaussian beam
(full line) compared with the phase front of a plane
wave (dotted line).

shift [14, 15], since it is also sensitive to the
transverse velocity. However, it is a problem
of time dilatation when the source and the re-
ceiver are at their closest point. It scales as
v2/c2, c being the velocity of light. It is purely
a problem of relativity and has nothing to do
with a phase variation. It plays no role here.

In order to evidence this effect, we have per-
formed the following experiment (see Fig.1a).
The fundamental Gaussian beam from a laser
source (Luminbird, P= 100 mW, λ = 532 nm)
is transformed into a strongly diverging Gaus-
sian beam by a microscope objective with a
high magnification (X60). It corresponds to
the source in the transverse Doppler effect. At
a given distance z from the focus, we measure
the beam size w(z). We deduce the divergence
θ of the beam tan θ = w(z)/z and estimate
the waist to be w0 = λ/(π tan θ) = 1.7 µm.
This corresponds to a Rayleigh range z0 =
πw2

0/λ = 17 µm. Far from the beam waist
(z ≫ z0), the equiphase surfaces are spher-
ical caps (see Fig.1b). They are compared
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FIG. 2. a) Picture of the interference pattern be-
tween a strongly focused Gaussian laser beam (ra-
dius of curvature R = 5.9 cm) and a plane wave.
b) Plot of the intensity variation of the interfer-
ence pattern versus the distance from the center
of the Gaussian beam (r0).

with the equiphase planes of a plane wave that
originates from the same laser source. To per-
form this, part of the laser light is enlarged by
two lenses (L1, and L2) that makes the beam
nearly parallel. It is then equivalent to a plane
wave. The phase variation is measured by the
interference fringes registered on a CCD cam-
era (Thorlabs DCU 224C).

Figure 2a shows the picture of the two-
waves interference pattern between the diverg-
ing beam and the quasi plane wave at a given
distance z = 5.9 mm (including the path
through the beam splitter) from the beam
waist. The system is static here (v = 0). Since
z is far from the Rayleigh zone, the beam ra-
dius of curvature R equals z [13]. One can no-
tice regular rings corresponding to positions
where the focused laser beam has the same
phase as the plane wave. As one moves far
from the beam center (r0 increases), the rings
get closer to each other, as expected from Eq.
2. One can then register the intensity maxima
and minima versus the distance from the beam
center r0 (see Fig. 2b), and deduce the corre-
sponding phase variation (see Fig. 3). We
have plotted on the same figure the theoreti-
cal phase variation corresponding to Eq. 2 and
the experimental phase variation measured for
three different distances from the waist, corre-
sponding to radius of curvature R = 5.9 cm,
R = 8.4 cm and R = 12.0 cm, respectively
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There is a very good agreement between the
theoretical curve and the experimental mea-
surement, for the three radius of curvature.
The phase variation is smaller as the beam
radius increases in agreement with Eq. 2 and
Eq. 5. Please note that there are no adjustable
parameters in the theoretical curves. They di-
rectly originate from Eq. 5.

In order to investigate the transverse
Doppler shift, we have replaced the CCD cam-
era by a point like detector. This corresponds
to the detector in the transverse Doppler ef-
fect. It is a usual photodiode (FND 100), with
a 10 µm pinhole in front of it. As this pho-
todiode is displaced at a constant velocity in
a direction perpendicular to the direction of
propagation of the Gaussian beam (v ̸= 0), it
experiences an intensity variation that corre-
sponds to the interference fringes shown in Fig.
2, like in every Doppler experiment. However,
we concentrate here, on the one hand, on the
transverse velocity of the detector, and on the
other hand, on the Gaussian nature of the light
beam. These fringes (see insert of Fig. 4a) are
a manifestation of the beat frequency between
the reference plane wave and the Gaussian
laser beam measured by the detector. Since
the reference beam is not Doppler shifted, it
implies that the Gaussian beam detected by
the photodiode is frequency shifted, as ex-
pected. From Eq. 4, the frequency of the
detected beam increases as the system is mov-
ing toward the beam axis and decreases as the
system moves away from the beam axis.

Actually, Eq. 5 can be derived from a
more general formula, as the one established
in [16]. A Doppler effect can be expected
from a phase gradient whatever its direction.
For example, if one adds a phase with an az-
imuthal dependence in Eq. 1, as for Laguerre-
Gaussian beams [13], it might induce a ro-
tational Doppler effect. A structured polar-
ization distribution may also lead to a kind
of Doppler effect. In the case of Laguerre-
Gaussian beam, it has then been proposed to
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FIG. 3. Phase variation of the Gaussian laser
beam perpendicular to the beam propagation for
three different radii of curvature R = 5.9 cm, 8.4
cm and 12.0 cm, versus r0. Solid line: experimen-
tal data, phase uncertainty ±20◦. The uncertainty
comes from the uncertainty in the determination
of the maxima and minima of the fringes. Dotted
lines: theoretical curves corresponding to Eq. 5.

be used for the detection of transverse veloc-
ities, and applied to structured light and the
detection of the rotational Doppler effect via
the orbital angular momentum of light [16, 17].
In our case, we focus on a very simple ra-
dial phase gradient that can be found in usual
Gaussian beam. It is worth noting that an in-
tensity variation may lead to a modulation of
the interference pattern and then may induce
an error in the phase variation identification.
This is not the case here.

We can then plot the transverse Doppler
shift, either versus the distance from the beam
axis for a given velocity (Fig. 4a), or versus
the transverse velocity at a given position (see
Fig. 4b). We have also plotted the theoreti-
cal variations of this shift according to Eq. 4.
The agreement between the theoretical curves
and the experimental ones is very good. Please
note again that there are no adjustable param-
eters in these curves. Obviously, according to
these figures, it exists a transverse Doppler ef-
fect for a system that travels through a Gaus-
sian beam, perpendicular to the beam axis. It
could be easily observed. This is also true for
a moving system that reflects light. However,
contrarily to the usual longitudinal shift, the
effect is not doubled in reflection. One has
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FIG. 4. Doppler shift versus a) the distance from
the beam center for a velocity v = 0.5 mm/s and
b) the velocity of the system for a distance from
the beam center of r = 1 mm. Crosses: experi-
mental data. The uncertainty in the frequency is
±0.2 Hz, due to the uncertainty on the determina-
tion of the beat frequency. Solid line: theoretical
curve corresponding to Eq. 4. Inset: beat fre-
quency for v = 0.5 mm/s and r0 = 1 mm.

to take into account the radius of curvature of
the reflected beam at the position of detection.
This could also be the case when the reflect-
ing moving system is not plane. The induced
extra curvature in the beam propagation has
then also to be taken into account.

Such effect must exist for every non-strictly
plane waves. Besides, it is not limited to op-
tics but also includes in particular radars and
acoustics waves where the Doppler effect has
many applications. Aside from fundamental
aspects, it may thus have important conse-
quences in many experimental set-ups using
the Doppler effect. Nevertheless, there are
situations where the effect described here is
far below the current sensitivity of the exper-
iment, considering the wavefront curvatures
that are used. For example, this is the case

in the probing of movements in the ionosphere
using radiowaves in the megaherz range [18],
or in laser anemometry [19]. The transverse
Doppler effect is negligible in those cases.

However, there are situations where the
transverse Doppler effect may affect the ex-
perimental data, for example in laser Doppler
vibrometry [20], especially in the microscopic
domain [21, 22]. Actually in such experiments,
the incoming beam can be considered as a
plane wave with a very good approximation.
Nevertheless, the reflecting objects are barely
flat. They thus introduce a non plane-wave
reflection with a radius of curvature that de-
pends on the curvature of the object. Since the
light is collected after propagation on micro to
millimeter scales, the transverse doppler effect
may then induce extra or lacking interference
fringes as the object is moving perpendicular
to the beam propagation. For example, for a 2
mm radius of the curved reflecting object, af-
ter a 1 mm propagation, at a 0.1 distance from
the beam center and for a 0.1 mm/s velocity,
the transverse Doppler shift is of the order of
20 Hz. This can be extremely penalizing espe-
cially for calibrations or precise measurements.

As a conclusion, we have experimentally ev-
idence a transverse Doppler shift when a sys-
tem is travelling perpendicular to a probing
Gaussian laser beam. The light is blue shifted
when it travels towards the beam axis and red
shifted as it moves away from the axis. The
shift is in the tens of Hertz range for a veloc-
ity in the millimeter range and depends on the
position of the system within the beam. The
observations are in very good agreement with
theoretical expectations. Since any Doppler
effect is associated with a work and thus with
a force [23], this may have dramatic conse-
quences in optical tweezers that use strongly
focused laser beams [24, 25]. Actually, many
other phase gradients such as polarization gra-
dients, intensity gradients as well as Gouy
phase gradients may also exist for tightly
focused beams. They may induce specific
Doppler effects. However, the existence of a
transverse Doppler effect as the one described
here, may provide a new intuitive insight in the
complicated forces involved in optical tweez-
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ers. In particular it may slow down more ef-
fectively particles as they enter the trapping
beam region and accelerate them as they leave
the beam.
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