

Chronic refined carbohydrate consumption measured by glycemic load and variation in cognitive performance in healthy people

Léonard Guillou, Valérie Durand, Michel Raymond, Claire Berticat

▶ To cite this version:

Léonard Guillou, Valérie Durand, Michel Raymond, Claire Berticat. Chronic refined carbohydrate consumption measured by glycemic load and variation in cognitive performance in healthy people. Personality and Individual Differences, 2023, 206, pp.112138. 10.1016/j.paid.2023.112138. hal-04016630

HAL Id: hal-04016630 https://hal.science/hal-04016630v1

Submitted on 6 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	
2	
3	
4	Chronic refined carbohydrate consumption measured by glycemic load
5	and variation in cognitive performance in healthy people
6	
7	
, 8	
9	Guillou Léonard ^{1,2} , Durand Valérie ¹ , Raymond Michel ^{1#} , Berticat Claire ^{1#*}
10	
11	
12	¹ ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
13	² École Normale Supérieure, PSL Research University, Département d'études cognitives, CNRS, UMR8129,
14	Institut Jean Nicod, Paris, France
15	* Corresponding author E-mail: claire.berticat@umontpellier.fr
16	[#] These authors contributed equally to this work
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	

30 Abstract

A massive diet switch has occurred in the occidental world since the second half of the 20th century, with a dramatic increase in refined carbohydrate consumption generating numerous deleterious health effects. Physiological mechanisms associated with refined carbohydrate consumption, such as hyperinsulinemia and insulin resistance, may impact cognition in healthy people before overt obesity, metabolic disease onset or dementia. To explore this possibility, the relationship between cognitive performance and chronic refined carbohydrate consumption was studied in healthy young adults (N = 95). Evaluation of chronic refined consumption was based on the glycemic load (a proxy of glycemic and insulinemic responses) of three mealtimes at higher glycemic risk: breakfast, afternoon snacking and between-meal snacking. Immediate consumption of refined carbohydrates was experimentally controlled. High chronic between-meal glycemic load is associated to a decrease of cognitive performance for men and women in the presence of several control variables, including energy intake. The different physiological ecologies of the three meals and the interpretation of the results in terms of adaptation or maladaptation to the modern dietary environment are discussed. **Key Words** Refined carbohydrates, diet evolution, cognition, sugars, high glycemic load, energy intake

54 1. Introduction

55

Each animal species is adapted to a specific diet (carnivore, herbivore, etc.) through a more or less specialized digestive process. Usually, a sudden and drastic change in diet leads to health problems due to inadequate nutrition, revealing that the change has driven the population outside of their adaptive peak.

59 For most Western people, substantial diet changes have occurred during the second half of the 20th century, 60 although some changes began earlier in the century. Industrialized foods were developed, with the introduction of 61 highly processed refined products, in particular refined carbohydrates (primary sucrose, fiber-depleted gelatinous 62 starches, high sugar corn syrup, and sugars; Cordain et al., 2005). This massive dietary change has been associated 63 with various medical problems, such as obesity, insulin resistance, type II diabetes, cardiovascular diseases, myopia, 64 dental caries, Alzheimer's disease, hypertension, inflammatory diseases, and cancer. (Carrera-Bastos et al., 2011; 65 Craft, 2007; Gentreau et al., 2020; Jellinger, 2007; Lustig et al., 2012; Myles, 2014; Sofi et al., 2008, 2010; Thorburn 66 et al., 2014). The physiological mechanisms involved in these pathologies are now thought to involve in particular 67 repeated hyperglycemia/hyperinsulinemia and insulin resistance caused by the overconsumption of refined 68 carbohydrates (Cordain et al., 2003, 2005). Insulin resistance is defined as an impaired biologic response to insulin 69 stimulation of target tissues, primarily liver, muscle, and adipose tissue, but also brain.

70 Insulin has a pivotal function in the brain. Insulin signaling not only regulates energy metabolism, cell 71 survival, and cellular homeostasis but also has a neuroprotective role, regulates the concentration of several 72 neurotransmitters and supports neuronal plasticity (Y. Sun et al., 2020). Consequently, insulin resistance may directly 73 impact cognition, as shown by the association between insulin resistance (and high glycemia) and cognitive 74 impairment (e.g., orientation, concentration and memory) and increased risk of dementia (e.g., Neergaard et al., 2017; 75 Willette et al., 2015). Chronic consumption of refined carbohydrates could therefore also promote cognitive 76 impairment via insulin resistance. In obese individuals, often characterized by long-term consumption of high 77 glycemic load meals and insulin resistance, reduced memory and executive functioning have been consistently 78 demonstrated (Gunstad et al., 2006). In adults with type 2 diabetes, also characterized by long-term consumption of 79 high glycemic load meals and insulin resistance, it was demonstrated that the degree of glycemic control was related 80 to cognitive performance (Greenwood et al. 2003). In older people, high refined carbohydrate diets have recently been 81 identified as a potential risk factor for Alzheimer's disease and cognitive impairment, with an underlying hypothesis 82 involving the influence of insulin resistance (Gentreau et al., 2020). Poor vascularization of the brain due to 83 degradation of the capillary network by chronic hyperglycemia has also been proposed to explain this phenomenon 84 (Shigaeff et al., 2012). Additionally, dammage from cardiovascular disease, one of the main risk factor of which is 85 chronic high glycemic load diet (Jenkins et al. 2021), may also contribute to cognitive decline (Deckers et al. 2017; 86 Eggermont et al. 2012). Immediate refined carbohydrate consumption could also affect cognitive performance through 87 blood glucose levels (Greenwood et al. 2003, Papanikolaou et al. 2006, Young & Benton, 2014). Particularly, it has 88 been shown that the way carbohydrates raise blood glucose levels during breakfast may influence the cognitive 89 performance of participants (Edefonti et al., 2017; Ingwersen et al., 2007).

90 To date, studies on the link between the long-term consumption of refined carbohydrates and cognition have 91 mainly been carried out on older individuals or in a pathological context. Nevertheless, early life exposure to refined 92 carbohydrates (i.e., prenatal, juvenile, and adolescence periods) may be particularly toxic to cognitive functioning, and 93 neurocognitive deficits induced by a diet high in refined carbohydrates may manifest before overt obesity or metabolic 94 disease onset (for a review see Hawkins et al., 2018). Here, we investigated whether refined carbohydrate 95 consumption affects cognition in healthy young adults, men and women, taking into account several confounding 96 variables and experimentally controlling for immediate carbohydrate consumption. Evaluation of refined carbohydrate 97 consumption was based on the total glycemic load (a proxy of glycemic and insulinemic responses) of three 98 mealtimes at higher glycemic risk (breakfast, afternoon snack and between-meal snack). Subjects were given an 99 isocaloric high or low glycemia breakfast, they responded to a diet questionnaire and, at three different defined times, 100 they performed a cognitive test, and their blood glucose was measured. We were thus able to address how chronic 101 refined carbohydrate consumption can affect cognition in healthy adults.

- 102
- 103

104 2. Methods

105

106 2.1. Participants

107 Individuals between 20 and 30 years of age were recruited at the University of Montpellier, France, through 108 an online form. The inclusion criteria used to participate in this experiment were the health status (nondiabetic, 109 without food allergies) and the diet habit (usually eating breakfast). In addition, to limit cultural heterogeneity, only 110 individuals declaring European ancestry were retained (95 participants: 48 female and 47 male).

111

112 2.2. Experimental design

113 The participants came in groups of three or four (one group/day) to the laboratory early in the morning and 114 followed the procedure described below. At baseline (step 1), subject glycemia was measured (G1). Glycemia was 115 read by a glucose meter (ACCU-CHEK Performa Nano Roche) into which a strip with a blood drop was inserted. 116 Blood drops were obtained with a single-use lancing pen that was self-operated by each subject. Then, they completed 117 the Wechsler's digit symbol substitution cognitive test (Wechsler, 1981). This test is sensitive to dementia, cortical 118 damage and cognitive changes. It makes it possible to assess visual-motor coordination, mental and motor speed, 119 executive functions and attention (Hugonot-Diener et al., 2008). Immediately following the test, one of two types of 120 isocaloric breakfasts (500 kcal), B1 and B2, randomly chosen each day, was served to the whole group. B1 was 121 composed of nonrefined carbohydrates (stone-ground wholemeal bread, butter, cheese, a raw fruit -orange or apple-122 and a nonsweetened beverage -coffee, tea- without sugar available) and B2 was composed of refined carbohydrates 123 (French baguette made from industrially milled flour, jam, fruit juice -orange or apple- and a nonsweetened beverage -124 coffee, tea- with sugar available). Once participants finished their breakfast, they completed a personal questionnaire 125 and a quantitative diet questionnaire. Half an hour after the end of breakfast (step 2) and one and a half hours after 126 breakfast (step 3), the participants' glycemia was again measured, and they undertook the Wechsler cognitive test. 127 Between step 2 and step 3, several morphometric variables (weight and height) were measured. Tests and 128 questionnaires were completed on an online interface developed with PHP, HTML, MySQL and JavaScript. Time was 129 recorded at each step, with t = 0 minutes at the first Wecshler's test. Over the two months of experimentation, 130 breakfast B1 was served as many times as breakfast B2.

131

132 **2.3.** Cognitive test

133 A computer version of Wechsler's digit symbol substitution test was administered to participants 134 (Supplementary Figure S1). This test has been validated in the WAIS-III (Wechsler Adult Intelligence Scale) with a 135 sample of 1200 participants from 16 to 89 years (Ryan & Lopez, 2001). A list of 9 digit-symbol pairs (association 136 rule) was displayed on the top of the screen. Below, a random digit was displayed with all the symbols in a random 137 order. The participant had to click on the correct symbol corresponding to the displayed digit, according to the 138 association rule above. The goal was to correctly associate as many symbols as possible with their corresponding digit 139 during the allocated time (approximately 2 minutes). The number of correct clicks (CC; according to the specific 140 association rule displayed on the screen) during the allocated time was recorded. To avoid learning effects, digit-141 symbol association rules were randomly changed between each test session.

142

143 2.4. Questionnaires

144 The personal questionnaire was used to collect possible confounding variables potentially affecting cognitive 145 performance and diet: sex, age, socioeconomic status (parents homeowners, yes: 1, no: 0), and physical activity level 146 (0 to 5).

147 The quantitative diet questionnaire concerning for breakfast, afternoon snack ["goûter" in French, 148 corresponding to an after-school snack] and between-meals snack of the day before (Slimani et al., 2000) was used to 149 estimate participants' chronic refined carbohydrate consumption. The various daily meals have different nutritional 150 compositions, and thus do not bring the same glycemic response. Indeed, carbohydrates are rarely ingested alone, and 151 their degradation and absorption rates during digestion are modified by the other macronutrients. The glycemic 152 response will be higher with a meal rich in refined carbohydrates and poor in fat, protein and fiber (Hätönen et al., 153 2011; L. Sun et al., 2020). Moreover, the order of food macronutrient intake also changes glycemic and insulinemic 154 responses (L. Sun et al., 2020). As a consequence, meals such as breakfast, afternoon snacks and between-meal snacks 155 may be at higher glycemic risk than other meals because they are described as richer in refined carbohydrates and 156 contain fewer food items (Bellisle, 2014; Bellisle et al., 2003, 2018). For each of these three meals, participants had to 157 identify the foods consumed from a list of proposed items (Table S1) and their corresponding serving-size using the 158 SU.VI.MAX cohort portion book, which allows an accurate estimation of the quantity consumed for each food with photos indicating several possible sizes (Hercberg et al., 2004). The different food groups chronically consumedduring these 3 meals are shown in Table 1.

161

162 **2.5.** Daily Diet Variables

163 For each food item in the diet questionnaires, the glycemic index (GI) was calculated according to the 164 International Tables of glycemic Index (Foster-Powell et al., 2002) and internet updates (www.glycemicindex.com), 165 using glucose as the reference. The GI refers to the rate of glucose release by measuring the 2 h postprandial glycemia 166 value after consumption of a food portion containing 50 g of available carbohydrates relative to 50 g of glucose 167 consumption. Glycemic load (GL) reflects both carbohydrate quantity and quality. Compared with low-GL diets, high-168 GL diets elicit larger glycemic and insulinemic responses (Foster-Powell et al., 2002). For each participant and each item, GL was calculated by multiplying the GI by the amount of available carbohydrates (g) per serving estimated 169 170 from the photographs of SU.VI.MAX cohort catalog, divided by 100 (Monro & Shaw, 2008). Foods with low 171 carbohydrate content (e.g., meat, fats) were not assigned any glycemic load value (Bakel et al., 2009). For each 172 subject, the glycemic load for each item was summed, leading to a total glycemic load (Table 2) estimation for 173 breakfast (GL1), afternoon snack (GL2) and between-meal intake (GL3).

Energy intake (EI) and macronutrients for each item were obtained from the Anses-Ciqual database (www.anses.ciqual.fr) and were calculated for each participant depending on the corresponding serving size estimated from the SU.VI.MAX cohort catalog. For each subject, they were summed, resulting in a total energy intake estimation for breakfast (EI1), afternoon snack (EI2) and between-meal intake (EI3), and corresponding macronutrient compositions (Table 2).

To measure GL independently of EI, linear models were used to produce regressions of EI as a function of GL for each meal (Im function from the R stats package version 3.6.3). These regression residuals were then used as new variables (Willett et al., 1997). In this way, each subject's refined residual carbohydrate consumption was described for breakfast (RGL1), afternoon snack (RGL2) and between-meal intake (RGL3). These variables represent the glycemic load part of food that is not explained by energy intake.

184

185 2.6. Statistical Analyses

186 <u>2.6.1. Effects of immediate breakfast consumption on glycemia.</u>

To assess the effect of breakfast type on glycemia, G1, G2 and G3 were compared across the B1 and B2 breakfast types (Table 3). At baseline (before breakfast), no significant difference in G1 glycemia was found between B1 and B2 (Wilcoxon-Mann–Whitney, P = 0.66). However, glycemia following breakfast (G2 and G3) was significantly different between B1 and B2 (Wilcoxon-Mann–Whitney: P < 10^{-7} for G2, and P = 0.04 for G3). Consumption of refined carbohydrates during breakfast thus had a significant immediate effect on glycemia (Figure 1).

193 <u>2.6.2. Statistical analyses for cognitive performance</u>.

194 Linear mixed models were used to analyze cognitive performance in relation to the chronic refined 195 carbohydrate glycemic load of the three meals. The response variable was the number of correct clicks (CC). Subjects 196 completed the same cognitive test several times, and so participant was a random-effect variable. The maximum 197 random effects structure (intercept and slope) was included according to (Barr et al., 2013). RGL1, RGL2 and RGL3 198 were integrated into the model as the variables of interest, and several control variables potentially affecting cognitive 199 performance and diet were added: the type of breakfast served (B1 or B2), energy intake (EI1, EI2 and EI3), a 200 quadratic effect of time since the first test (t and t2), sex, age, BMI (calculated as weight divided by the squared 201 height; Craft, 2007; Kim & Feldman, 2015), parents' homeowner status and physical activity level (Donnelly et al., 202 2016; Mikus et al., 2012). Interactions with sex were included in the model. P < 0.10 was considered statistically 203 significant for interaction terms.

All statistical analyses were performed using R software version 3.6.3 using the package lme4 (v1.1-26; Bates et al., 2015). All quantitative variables used in the models were centered and scaled. The significance of each term was assessed from the model including all of the other variables. The variance inflation factor was computed using the vif.mer function adapted from the vif function of the R package rms (v6.2-0; Harrell, 2015; Zuur et al., 208 2010).

209

210 2.7. Ethical Statement

The protocol used to recruit participants and collect data was approved by the French Committee of Information and Liberty (CNIL #1783997V0) and the Committee for the protection of persons (CPP IDRCB 2018A00505-50). For each participant, the general purpose of the study was explained ("Effects of diet on major phenotypic traits"), and a written voluntary agreement was obtained for a statistical use of data (private information). Data were analyzed anonymously.

216

217

218 **3. Results**

219

Descriptive statistics of the physical characteristics of the 95 participants (48 female and 47 male) are given in Table 4. The proportions of individuals eating an afternoon snack were 40% and 54% for males and females, respectively, and those eating a between-meal snack were 25% for both sexes (Table 1). Mean glycemic load (GL) and energy intake (EI) for each meal are indicated in Table 2. GL items are defined as "low" when the GL value is below 10 and as "high" when the value is above 20 (Eleazu, 2016). GL values were within the same range of variation as those from other studies on the French population (Berticat et al., 2020; Gentreau et al., 2022).

226 Chronic refined carbohydrate consumption, chronic energy intake and the other control variables had different 227 effects on cognitive performance (Table 5). Only the interaction term between sex and BMI had a P-value under the 228 threshold of 0.10 and was thus kept in the final model. Between-meal refined carbohydrate consumption significantly 229 decreased cognitive performance (RGL3, $\beta = -1.64$, se = 0.71, P = 0.02). Cognitive performance was also 230 significantly affected by energy intake at the afternoon snack (EI2, $\beta = -1.46$, se = 0.71, P = 0.04), and a trend in the 231 same direction was observed for energy intake at breakfast (EI1, $\beta = -1.15$, se = 0.66, P = 0.08). No effect of 232 immediate breakfast on cognitive performance was detected (P = 0.67). A significant negative effect of BMI (β = -233 3.04, se = 0.89, P = 0.004) was observed which appeared to be mainly driven by men (BMI.sex, β = 2.75, se = 1.53, P 234 = 0.07; β men = -3.04; β women = -0.29). The linear and quadratic effects of time were both statistically significant 235 (both P < 10-11). The performance of individuals on Wechsler's digit symbol substitution test improved over time (t, β = 6.35, se = 0.60, $P < 10^{-15}$), as expected, due to habituation of the participants, although the association rules were 236 237 changed between each test session. All other variables studied were nonsignificant. Removing an outlier for GL3

variable from initial dataset (GL3 = 110, greater than 2 standard deviations from mean, Table 2) did not qualitatively
change the results.

The full model explained 31% of the total variance. The variance inflation factors (VIFs) were less than 1.9 (except for the related variables, time and squared time). The VIF values indicated that the multicollinearity between covariables was weak and not of concern (Zuur et al., 2010).

- 243
- 244

245 **4. Discussion**

246

In this study, we investigated whether chronic refined carbohydrate consumption estimated by the glycemic load of three mealtimes at higher glycemic risk (breakfast, afternoon snack and between-meal snack) was related to cognitive performance in healthy women and men. We found that cognitive performance as measured by Wechsler's digit symbol substitution test was not independent of chronic between-meals consumption of refined carbohydrates. The higher the consumption of refined carbohydrates between meals, the lower the cognitive performance. This effect was maintained when controlling for potential confounding effects such as age, sex, BMI, physical activity, parental home ownership, chronic energy intake of the three mealtimes, and immediate consumption of refined carbohydrates.

254

255 4.1. How refined carbohydrates could affect cognition ?

It has been suggested that carbohydrate-rich diet-related alterations in metabolic processes may cause neurological injury prior to overt obesity or metabolic disease development, and that early-life exposure to refined carbohydrates may be particularly toxic to cognitive functioning (for a review, see Hawkins et al., 2018). This phenomenon could explain the relationship between the between-meal snack GL and the cognitive performance observed in our study with healthy adult participants. The decrease in cognitive performance observed could be a first biological consequence of chronic hyperinsulinemia and insulin resistance. Indeed, as mentioned earlier, betweenmeal snack is a meal with high GL foods (Table 1), and the greater the GL is, the greater the spike of glycemia and insulinemia. Thus, chronic exposure to a high-GL diet, such as between-meal snacks, could promote chronic
hyperinsulinemia and insulin resistance (Cao et al., 2007; Ludwig & Ebbeling, 2018; Mckeown et al., 2004).

265 The disturbance of brain cognitive functions by chronic hyperinsulinemia and insulin resistance could be due 266 to an alteration of brain glucose metabolism and of blood brain barrier permeability, and to a generation of oxidative 267 stress and inflammation (Arnold et al., 2018; Butterfield et al., 2014; Ma et al., 2015; Monnier et al., 2006). Cerebral 268 glucose hypometabolism has been identified in prediabetic and diabetic elderly individuals compared to nondiabetic 269 subjects (Baker et al., 2011), which can be explained either by a partial deregulation of insulin signaling decreasing 270 glucose entry into cells produced by chronic peripheral hyperinsulinemia (Benomar et al., 2006) or by insulin 271 resistance at the level of the blood brain barrier leading to a decrease in brain insulin concentration and insulin-272 mediated brain cell activity (Arnold et al., 2018). In both hypotheses, the absorption and use of glucose by brain cells 273 is altered. In parallel, insulin resistance leads to mitochondrial dysfunction that promotes the formation of free 274 radicals, which produce excess oxidative stress (Butterfield et al., 2014). The damage caused by free radicals is 275 pivotal, as insulin resistance impairs the antioxidant defense capacities of cells (Kolb et al., 2020). Chronic 276 hyperglycemia can also alter proteins through a process of glycation, leading to the formation of a diverse group of 277 modified proteins known as AGEs (Advanced Glycation End products), which are able to attack other molecules 278 (Butterfield et al., 2014). In diabetic individuals, it is suggested that acute blood glucose fluctuations over daily period 279 exhibited a more specific triggering effect on oxidative stress than sustained chronic hyperglycemia estimated by 280 hemoglobin A1c (Monnier et al., 2006). Finally, insulin resistance could promote inflammation. It has been shown 281 that a high GL diet was associated with a higher concentration of CRP (C-reactive protein), a marker of systemic 282 inflammation (Liu et al., 2002), and that chronic hyperglycemia, induced by a high GL diet, led to an increase in the 283 plasma concentration of free fatty acids, which, in turn, stimulated the secretion of proinflammatory cytokines 284 (Butterfield et al., 2014; Litwiniuk et al., 2021).

Poor vascularization of the brain due to degradation of the capillary network by chronic hyperglycemia has also been proposed to explain the disruption of brain cognitive function in relation to refined carbohydrate consumption (Shigaeff et al., 2012).

288

289 4.2. Why do the three chronic meals affect cognition differently?

290 A relationship between refined carbohydrate content and cognitive performance was observed from only one 291 (between-meal snack) of the three meals examined. This meal is not the one with the higher mean GL and is not 292 particularly notable for its macronutrient content, carbohydrates, proteins, fats or fibers (Table 2). A possible 293 explanation is that these three types of meals could correspond to different ecological food habits that affect subjects 294 differently with different physiological consequences. Between-meal snacks, relative to the other meals, are often not 295 associated with physiological hunger and are mainly motivated by social or other external stimuli, with few resulting 296 effects on satiety and compensation mechanisms (Bellisle, 2014). Therefore, this meal category could better reflect 297 chronic and acute refined carbohydrate consumption. Interestingly, chronic energy intake during the afternoon snack 298 and breakfast also decreased cognitive performance. In the model, the effect of energy intake of each meal was 299 estimated at equal residual glycemic load and thus represented mainly the effects of fat and protein intake. One 300 possibility is that a large proportion of saturated fat is involved in these two meals, such as those found in pastries or 301 dairy; Fat is known to be an antagonist of insulin and a contributor to hyperinsulinemia and insulin resistance 302 (Kennedy et al., 2009), thus mimicking the potential negative effects of refined carbohydrates.

303

304 4.3. How the other control variables could affect cognition?

305 We controlled for several other variables potentially affecting cognition in our study, such as BMI and 306 immediate intake of refined carbohydrates.

307 BMI was significantly associated with a decrease in cognitive performance in both sexes, although this effect 308 may be driven mainly by men (Table 5). The link between BMI and cognition is well established (Craft, 2007; Kim & 309 Feldman, 2015). Studies on obese people show that a high BMI is associated with a smaller brain, which negatively 310 affects cognition (Raji et al., 2010). Other studies have demonstrated an increased risk of cognitive dysfunction or 311 dementia in obese individuals even after adjustment for metabolic and vascular factors such as hypertension, 312 hyperlipidemia, metabolic syndrome, insulin resistance and diabetes (Rosengren et al., 2005; R. Whitmer et al., 2007; 313 R. A. Whitmer et al., 2005). The mechanisms involved have not yet been elucidated, but impaired vascularization of 314 the brain has been proposed to explain this phenomenon (Shigaeff et al., 2012). The lower impact of BMI on women's 315 cognition has already been discussed (Karlsson et al., 2021), and there is evidence that being overweight may 316 contribute to negative health outcomes differently in men and women (Bohn et al., 2020; Gannon et al., 2019). One explanation could reside in the difference in body fat distribution between men and women, which is of importance, as
the location and type of fat stored affect the association between overweight and negative health outcomes (Sulc et al.,
2020).

320 The immediate intake of refined carbohydrates with a high or low glycemic breakfast influenced blood sugar 321 levels but had no impact on cognitive performance, whereas in the literature, an association between a low-GL 322 breakfast and better cognitive performance is generally reported (for a review see Edefonti et al., 2017). There are 323 several explanations for this result. First, it is possible that Wechsler's digit symbol substitution test is sensitive to 324 hypoglycemia: the brain is not supplied with optimal energy at a time when it is particularly in demand (Gold, 1995). 325 The duration of our experiment (1hour and 30 minutes after the end of breakfast) may have not allowed the cognitive 326 test to be performed during the period of hypoglycemia expected for high-GL breakfast B2 at t = 1h30 - 2h327 (consecutive to an acute insulin response to B2-induced hyperglycemia). Second, the lack of effect may be related to 328 the fact that postprandial blood glucose levels affect the cognitive performances of young adults less, as found by 329 Sanchez-Aguadero et al., 2018 on several cognitive domains, such as attention, and executive functions also evaluated 330 by the Weschler cognitive test.

331

332 4.4. How can the influence of diet on health and cognition be evolutionary triggered?

333 The adaptive landscape of the past human environments selected for multiple genetic, behavioral and 334 physiological traits. The transition to the industrial era rapidly reshaped these environments, resulting in evolutionary 335 mismatch, defined here as the phenomenon by which previously adaptive traits become maladaptive in a new 336 environment. The current mismatch between the way human physiology has evolved and Western industrialized 337 lifestyles has been proposed to explain the current epidemic of numerous diseases. Generally, traditional food (i.e., 338 preindustrial or nonrefined) does not generate hyperglycemia or insulin resistance. This is the case for fresh fruits, 339 vegetables, legumes and traditionally prepared cereals. Traditional foods with a high level of sugar contents are 340 energetically rewarding, but they are typically seasonal or scarce, such as ripened fruit and honey. In the current 341 industrial dietary environment, foods that generate hyperglycemia, hyperinsulinemia and ultimately insulin resistance, 342 such as refined carbohydrates, are not quantitatively limited. In addition, humans did not evolve in such a dietary

environment. It is thus not surprising that this massive consumption of refined carbohydrates generates deregulation ofthe insulin response system (Gunn-Moore et al., 2018), which now affects many aspects of health and well-being.

345

346 **4.5.** *Limitations*

347 Our study presents some limitations. First, the chronic effect of refined carbohydrate consumption on 348 cognitive performance observed here could be confounded by several variables not considered in this work. The main 349 and more complex meals (i.e., lunch and dinner), were not included, precluding the computation of an overall diet 350 quality index, which could have captured other aspects of diet influencing cognition (e.g., high fruit and vegetable 351 consumption, polyunsaturated fats). However, diet quality indices are correlated with low glycemic load food (higher 352 values for an increase in low glycemic load food; Azadbakht et al., 2016; Jones et al., 2016). Thus, diet quality 353 consumption was partially described by glycemic load measures. Second, even if the effect of diet on brain health is 354 well documented (Firth et al., 2020; Bremner et al., 2020), the converse is also possible as mental health, for exemple 355 the development of psychiatric disorders, can lead to changes in eating habits (Bremner et al., 2020). Thus direction of 356 causal effect are not straightforwardly determined. Third, the sample size of participants was relatively small, in 357 particular that of consumers of between-meal snacks (N = 24, Table 2), with the possibility that outliers have a 358 determinant influence. However, removing an outlier did not change qualitatively the results for RGL3. In addition, 359 repeatedly (1000 times) randomly removing 10 % of the total dataset, or 12.5 % (N = 3) of the pool of between-meal 360 snacks consumers, led to 94 % or 78 %, respectively, significant *P*-values (< 0.05) for the RGL3 variable, suggesting 361 that the effect detected is strong enough to be detected in a smaller sample size. Nevertheless, a small sample size 362 remains here a limitation of type 1 error. Fourth, concerning the method used to measure blood glucose for the 363 assessment of the effect of breakfast type on glycemia: although the glucose meter was conform to the ISO 364 15197:2013 norm, a direct measurement of blood glucose would have been more relevant leading to more accurate 365 results. Finally, we used a single cognitive test to assess cognitive performance. Even if the Wechsler's digit symbol 366 substitution covers many different cognitive domains (visual-motor coordination, mental and motor speed, executive 367 functions and attention; Hugonot-Diener et al., 2008), the use of other tests would have contributed additional 368 dimensions of cognition, for example, verbal episodic memory, immediate visual memory or global cognitive 369 function, currently used for the assessment of cognitive health and the diagnosis of neurodegeneration.

4.6. *Conclusion*

372 The recent Western dietary change, characterized mainly by the massive increase in refined carbohydrate 373 consumption, has well-known detrimental health consequences. Given the increasing number of people affected by 374 these pathologies and the repeated failure of many medical treatments, our study reinforces the belief that the most 375 promising research should focus on prevention in healthy persons. Indeed, we have shown that cognition in healthy 376 individuals is impacted by chronic refined carbohydrate consumption, indicating that neurocognitive deficits induced 377 by this type of diet may manifest before overt obesity, metabolic disease onset or dementia. Thus, the identification of 378 modifiable factors that could be targeted in interventions to prevent future health impairment is pivotal. Further 379 studies are needed to investigate what other potential health-related traits might be affected by refined carbohydrate 380 consumption in healthy people.

- 381
- 382

383 **Competing interests statement**

- 384 The author(s) have declared no potential competing interests with respect to the research, authorship, and/or385 publication of this article.
- 386

387 Data Availability

388 The data and R script associated with this research are available on Zenodo repository 389 10.5281/zenodo.7031099.

390

391 Appendix A. Supplementary data

392 Supplemental data for this article can be found online.

393

394 **References**

- Arnold, S. E., Arvanitakis, Z., Macauley-Rambach, S. L., Koenig, A. M., Wang, H.-Y., Ahima, R. S., Craft, S., Gandy, S., Buettner, C., Stoeckel, L. E., Holtzman, D. M., & Nathan, D. M. (2018). Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. *Nature Reviews. Neurology*, *14*(3), 168–181. https://doi.org/10.1038/nrneurol.2017.185
- Azadbakht, L., Mohammadifard, N., Akhavanzanjani, M., Taheri, M., Golshahi, J., & Haghighatdoost, F. (2016). The association between dietary glycemic index, glycemic load and diet quality indices in Iranian adults: Results from Isfahan Healthy Heart Program. *International Journal of Food Sciences and Nutrition*, 67(2), 161–169. https://doi.org/10.3109/09637486.2015.1134443
- Bakel, M. M. E. van, Kaaks, R., Feskens, E. J. M., Rohrmann, S., Welch, A. A., Pala, V., Avloniti, K., Schouw, Y. T. van der, A, D. L. van der, Du, H., Halkjær, J., Tormo, M. J., Cust, A. E., Brighenti, F., Beulens, J. W., Ferrari, P., Biessy, C., Lentjes, M., Spencer, E. A., ... Slimani, N. (2009). Dietary glycaemic index and glycaemic load in the European Prospective Investigation into Cancer and Nutrition. *European Journal of Clinical Nutrition*, 63(4), S188–S205. https://doi.org/10.1038/ejcn.2009.81
- Baker, L. D., Cross, D. J., Minoshima, S., Belongia, D., Watson, G. S., & Craft, S. (2011). Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. *Archives of Neurology*, 68(1), 51–57. https://doi.org/10.1001/archneurol.2010.225
- Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing:
 Keep it maximal. *Journal of Memory and Language*, 68(3), 255–278.
 https://doi.org/10.1016/j.jml.2012.11.001
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67, 1–48. https://doi.org/10.18637/jss.v067.i01
- Bellisle, F. (2014). Meals and snacking, diet quality and energy balance. *Physiology & Behavior*, *134*, 38–43. https://doi.org/10.1016/j.physbeh.2014.03.010
- Bellisle, F., Dalix, A. M., Mennen, L., Galan, P., Hercberg, S., de Castro, J. M., & Gausseres, N. (2003). Contribution of snacks and meals in the diet of French adults: A diet-diary study. *Physiology & Behavior*, *79*(2), 183–189. https://doi.org/10.1016/S0031-9384(03)00088-X

- Bellisle, F., Hébel, P., Salmon-Legagneur, A., & Vieux, F. (2018). Breakfast consumption in French children, adolescents, and adults: a nationally representative cross-sectional survey examined in the context of the International Breakfast Research Initiative. *Nutrients*, *10*(8), 1056. https://doi.org/10.3390/nu10081056
- Benomar, Y., Naour, N., Aubourg, A., Bailleux, V., Gertler, A., Djiane, J., Guerre-Millo, M., & Taouis, M. (2006). Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a Phosphatidylinositol 3-Kinase- dependent mechanism. *Endocrinology*, *147*(5), 2550–2556. https://doi.org/10.1210/en.2005-1464
- Berticat, C., Durand, V., & Raymond, M. (2020). Refined carbohydrate consumption and facial attractiveness. *Evolutionary Psychology: An International Journal of Evolutionary Approaches to Psychology and Behavior*, 18(4), 1474704920960440. https://doi.org/10.1177/1474704920960440
- Bohn, L., McFall, G. P., Wiebe, S. A., & Dixon, R. A. (2020). Body mass index predicts cognitive aging trajectories selectively for females: Evidence from the Victoria Longitudinal Study. *Neuropsychology*, 34(4), 388–403. https://doi.org/10.1037/neu0000617
- Bremner, J. D., Moazzami, K., Wittbrodt, M. T., Nye, J. A., Lima, B. B., Gillespie, C. F., Rapaport, M. H., Pearce, B.
 D., Shah, A. J. & Vaccarino, V. (2020). Diet, stress and mental health. *Nutrients*, *12*(8), 2428. https://doi.org/10.3390/nu12082428
- Butterfield, D. A., Di Domenico, F., & Barone, E. (2014). Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842*(9), 1693–1706. https://doi.org/10.1016/j.bbadis.2014.06.010
- Cao, D., Lu, H., Lewis, T. L., & Li, L. (2007). Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer Disease *. *Journal of Biological Chemistry*, 282(50), 36275–36282. https://doi.org/10.1074/jbc.M703561200
- Carrera-Bastos, P., Fontes, O'Keefe, Lindeberg, & Cordain. (2011). The western diet and lifestyle and diseases of civilization. *Research Reports in Clinical Cardiology*, 15.
- Cordain, L., Eades, M. R., & Eades, M. D. (2003). Hyperinsulinemic diseases of civilization: More than just Syndrome X. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 136(1), 95–112. https://doi.org/10.1016/S1095-6433(03)00011-4

- Cordain, L., Eaton, S. B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B. A., O'Keefe, J. H., & Brand-Miller, J. (2005). Origins and evolution of the Western diet: Health implications for the 21st century. *The American Journal of Clinical Nutrition*, *81*(2), 341–354.
- Craft, S. (2007). Insulin resistance and Alzheimers Disease pathogenesis: potential mechanisms and implications for treatment. *Current Alzheimer Research*, 4(2), 147–152. https://doi.org/10.2174/156720507780362137
- Deckers, K., Schievink, S. H., Rodriquez, M. M., van Oostenbrugge, R. J., van Boxtel, M. P., Verhey, F. R., & Köhler, S. (2017). Coronary heart disease and risk for cognitive impairment or dementia: Systematic review and meta-analysis. *PloS one*, *12*(9), e0184244. https://doi.org/10.1371/journal.pone.0184244
- Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A.
 N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. *Medicine and Science in Sports and Exercise*, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000001
- Edefonti, V., Bravi, F., & Ferraroni, M. (2017). Breakfast and behavior in morning tasks: Facts or fads? *Journal of Affective Disorders*, *224*, 16–26. https://doi.org/10.1016/j.jad.2016.12.028
- Eggermont, L. H., De Boer, K., Muller, M., Jaschke, A. C., Kamp, O., & Scherder, E. J. (2012). Cardiac disease and cognitive impairment: a systematic review. *Heart*, *98*(18), 1334-1340. http://doi.org/10.1136/heartjnl-2012-301682
- Eleazu, C. O. (2016). The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. *African Health Sciences*, 16(2), 468–479. https://doi.org/10.4314/ahs.v16i2.15
- Firth, J., Gangwisch, J. E., Borsini, A., Wootton, R. E., & Mayer, E. A. (2020). Food and mood: how do diet and nutrition affect mental wellbeing?. *Bmj*, *369*. https://doi.org/10.1136/bmj.m2382
- Foster-Powell, K., Holt, S. H., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values: 2002. *The American Journal of Clinical Nutrition*, *76*(1), 5–56. https://doi.org/10.1093/ajcn/76.1.5
- Gannon, O. J., Robison, L. S., Custozzo, A. J., & Zuloaga, K. L. (2019). Sex differences in risk factors for vascular contributions to cognitive impairment & dementia. *Neurochemistry International*, 127, 38–55. https://doi.org/ 10.1016/j.neuint.2018.11.014

- Gentreau, M., Chuy, V., Féart, C., Samieri, C., Ritchie, K., Raymond, M., Berticat, C., & Artero, S. (2020). Refined carbohydrate-rich diet is associated with long-term risk of dementia and Alzheimer's disease in apolipoprotein E ε4 allele carriers. *Alzheimer's & Dementia : The Journal of the Alzheimer's Association*, *16*(7), 1043–1053. https://doi.org/10.1002/alz.12114
- Gentreau, M., Raymond, M., Samieri, C., Chuy, V., Féart, C., Berticat, C., & Artero, S. (2022). Dietary Glycemic Load and Plasma Amyloid-β Biomarkers of Alzheimer's Disease. *Nutrients*, *14*(12), 2485. https://doi.org/10.3390/nu14122485
- Gold, P. E. (1995). Role of glucose in regulating the brain and cognition. *The American Journal of Clinical Nutrition*, 61(4), 987S-995S. https://doi.org/10.1093/ajcn/61.4.987S
- Greenwood, C.E., Kaplan, R.J., Hebblethwaite, S., & Jenkins, D.J. (2003) Carbohydrate-induced memory impairment
 in adults with type 2 diabetes. *Diabetes Care*. *26*(7),1961-6. https://doi.org/10.2337/diacare.26.7.1961
- Gunn-Moore, D., Kaidanovich-Beilin, O., Iradi, M. C. G., Gunn-Moore, F., & Lovestone, S. (2018). Alzheimer's
 disease in humans and other animals: A consequence of postreproductive life span and longevity rather than
 aging. *Alzheimer's & Dementia*, 14(2), 195–204. https://doi.org/10.1016/j.jalz.2017.08.014
 - Gunstad, J., Paul, R. H., Cohen, R. A., Tate, D. F., & Gordon, E. (2006). Obesity is associated with memory deficits in young and middle-aged adults. *Eating and Weight Disorders Studies on Anorexia, Bulimia and Obesity*, *11*(1), e15–e19. https://doi.org/10.1007/BF03327747
 - Harrell, F. E. (2015). Regression modeling strategies: With applications to linear models, logistic and ordinal regression, and survival analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-19425-7
 - Hätönen, K. A., Virtamo, J., Eriksson, J. G., Sinkko, H. K., Sundvall, J. E., & Valsta, L. M. (2011). Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. *The British Journal of Nutrition*, 106(2), 248–253. https://doi.org/10.1017/S0007114511000080
 - Hawkins, M., Keirns, N., & Helms, Z. (2018). Carbohydrates and cognitive function. *Current Opinion in Clinical Nutrition and Metabolic Care*, *21*, 1. https://doi.org/10.1097/MCO.000000000000471
 - Hercberg, S., Galan, P., Preziosi, P., Bertrais, S., Mennen, L., Malvy, D., Roussel, A.-M., Favier, A., & Briançon, S. (2004). The SU. VI. MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant

vitamins and minerals. Archives of Internal Medicine, 164(21), 2335–2342.

- Hugonot-Diener, L., Barbeau, E., Michel, F.-B., Thomas-Anterion, C., & Robert, P. (2008). *Grémoire: Tests et échelles de la maladie d'Alzheimer et des syndromes apparentés*. Editions Solal.
- Ingwersen, J., Defeyter, M. A., Kennedy, D. O., Wesnes, K. A., & Scholey, A. B. (2007). A low glycaemic index breakfast cereal preferentially prevents children's cognitive performance from declining throughout the morning. *Appetite*, *49*(1), 240–244.
- Jellinger, P. S. (2007). Metabolic consequences of hyperglycemia and insulin resistance. *Clinical Cornerstone*, *8*, S30–S42. https://doi.org/10.1016/S1098-3597(07)80019-6
- Jenkins, D. J., Dehghan, M., Mente, A., Bangdiwala, S. I., Rangarajan, S., Srichaikul, K., ... & Yusuf, S. PURE Study
 Investigators. (2021). Glycemic index, glycemic load, and cardiovascular disease and mortality. *New England Journal of Medicine*, 384(14), 1312-1322. https://doi.org/10.1056/NEJMoa2007123
 - Jones, M., Barclay, A. W., Brand-Miller, J. C., & Louie, J. C. Y. (2016). Dietary glycaemic index and glycaemic load among Australian children and adolescents: Results from the 2011–2012 Australian Health Survey. *British Journal of Nutrition*, *116*(1), 178–187. https://doi.org/10.1017/S0007114516001823
 - Karlsson, I. K., Gatz, M., Arpawong, T. E., Dahl Aslan, A. K., & Reynolds, C. A. (2021). The dynamic association between body mass index and cognition from midlife through late-life, and the effect of sex and genetic influences. *Scientific Reports*, *11*, 7206. https://doi.org/10.1038/s41598-021-86667-4
 - Kennedy, A., Martinez, K., Chuang, C.-C., LaPoint, K., & McIntosh, M. (2009). Saturated Fatty Acid-Mediated Inflammation and Insulin Resistance in Adipose Tissue: Mechanisms of Action and Implications. *The Journal of Nutrition*, 139(1), 1–4. https://doi.org/10.3945/jn.108.098269
 - Kim, B., & Feldman, E. L. (2015). Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. *Experimental & Molecular Medicine*, *47*(3), e149. https://doi.org/10.1038/emm.2015.3
 - Kolb, H., Kempf, K., Röhling, M., & Martin, S. (2020). Insulin: Too much of a good thing is bad. *BMC Medicine*, *18*(1), 224. https://doi.org/10.1186/s12916-020-01688-6
 - Litwiniuk, A., Bik, W., Kalisz, M., & Baranowska-Bik, A. (2021). Inflammasome NLRP3 potentially links obesityassociated low-grade systemic inflammation and insulin resistance with Alzheimer's Disease. *International Journal of Molecular Sciences*, *22*(11), 5603. https://doi.org/10.3390/ijms22115603

- Liu, S., Manson, J. E., Buring, J. E., Stampfer, M. J., Willett, W. C., & Ridker, P. M. (2002). Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. *The American Journal of Clinical Nutrition*, *75*(3), 492–498. https://doi.org/10.1093/ajcn/75.3.492
- Ludwig, D. S., & Ebbeling, C. B. (2018). The Carbohydrate-insulin model of obesity: Beyond "calories in, calories out." *JAMA Internal Medicine*, *178*(8), 1098–1103. https://doi.org/10.1001/jamainternmed.2018.2933
- Lustig, R. H., Schmidt, L. A., & Brindis, C. D. (2012). Public health: The toxic truth about sugar. *Nature*, 482(7383), 27–29. https://doi.org/10.1038/482027a
- Ma, L., Wang, J., & Li, Y. (2015). Insulin resistance and cognitive dysfunction. *Clinica Chimica Acta*, 444, 18–23. https://doi.org/10.1016/j.cca.2015.01.027
- Mckeown, N., Meigs, J., Liu, S., Saltzman, E., Wilson, P., & Jacques, P. (2004). McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PWF, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care 27, 538-546. *Diabetes Care*, 27, 538–546. https://doi.org/10.2337/diacare.27.2.538
- Mikus, C. R., Oberlin, D. J., Libla, J. L., Taylor, A. M., Booth, F. W., & Thyfault, J. P. (2012). Lowering physical activity impairs glycemic control in healthy volunteers. *Medicine and Science in Sports and Exercise*, 44(2), 225–231. https://doi.org/10.1249/MSS.0b013e31822ac0c0
- Monnier, L., Mas, E., Ginet, C., Michel, F., Villon, L., Cristol, J. P., & Colette, C. (2006). Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. *Jama*, *295*(14), 1681-1687. https://doi.org/10.1001/jama.295.14.1681
- Monro, J. A., & Shaw, M. (2008). Glycemic impact, glycemic glucose equivalents, glycemic index, and glycemic load: Definitions, distinctions, and implications. *The American Journal of Clinical Nutrition*, 87(1), 237S-243S. https://doi.org/10.1093/ajcn/87.1.237S
- Myles, I. A. (2014). Fast food fever: Reviewing the impacts of the Western diet on immunity. *Nutrition Journal*, *13*(1), 61. https://doi.org/10.1186/1475-2891-13-61
- Neergaard, J. S., Dragsbæk, K., Christiansen, C., Nielsen, H. B., Brix, S., Karsdal, M. A., & Henriksen, K. (2017). Metabolic syndrome, insulin resistance, and cognitive dysfunction: Does your metabolic profile affect your brain? *Diabetes*, 66(7), 1957–1963. https://doi.org/10.2337/db16-1444

- Papanikolaou, Y., Palmer, H., Binns, M.A., Jenkins, D.J., & Greenwood, C.E. (2006). Better cognitive performance following a low-glycaemic-index compared with a high-glycaemic-index carbohydrate meal in adults with type 2 diabetes. *Diabetologia*, *49*(5), 855-62. https://doi.org/10.1007/s00125-006-0183-x.
- Raji, C. A., Ho, A. J., Parikshak, N. N., Becker, J. T., Lopez, O. L., Kuller, L. H., Hua, X., Leow, A. D., Toga, A. W.,
 & Thompson, P. M. (2010). Brain structure and obesity. *Human Brain Mapping*, *31*(3), 353–364. https://doi.org/10.1002/hbm.20870
- Rosengren, A., Skoog, I., Gustafson, D., & Wilhelmsen, L. (2005). Body mass index, other cardiovascular risk factors, and hospitalization for dementia. *Archives of Internal Medicine*, 165(3), 321–326. https://doi.org/10.1001/archinte.165.3.321
- Ryan, J. J., & Lopez, S. J. (2001). Wechsler adult intelligence scale-III. In W. I. Dorfman & M. Hersen (Eds.), Understanding Psychological Assessment (pp. 19–42). Springer US. https://doi.org/10.1007/978-1-4615-1185-4_2
- Sanchez-Aguadero, N., Recio-Rodriguez, J. I., Patino-Alonso, M. C., Mora-Simon, S., Alonso-Dominguez, R., Sanchez-Salgado, B., Gomez-Marcos, M. A., & Garcia-Ortiz, L. (2018). Postprandial effects of breakfast glycaemic index on cognitive performance among young, healthy adults: A crossover clinical trial. *Nutritional Neuroscience*, 0(0), 1–7. https://doi.org/10.1080/1028415X.2018.1461459
- Shigaeff, N., Jacinto, A., Chiochetta, G., Cendoroglo, M. S., Amaro, E., Ikeda, M., Alegro, M., Gazelato, F., & Citero,
 V. (2012). P3-115: Cognition and cerebral neurovascular coupling in the elderly with metabolic syndrome. *Alzheimer's & Dementia*, 8(4S_Part_13), P492–P492. https://doi.org/10.1016/j.jalz.2012.05.1335
- Slimani, N., Ferrari, P., Ocke, M., Welch, A., Boeing, H., Van Liere, M., Pala, V., Amiano, P., Lagiou, A., & Mattisson,
 I. (2000). Standardization of the 24-hour diet recall calibration method used in the European Prospective
 Investigation into Cancer and Nutrition (EPIC): General concepts and preliminary results. *European Journal of Clinical Nutrition*, 54(12), 900.
- Sofi, F., Abbate, R., Gensini, G. F., & Casini, A. (2010). Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. *The American Journal of Clinical Nutrition*, 92(5), 1189–1196.

Sofi, F., Cesari, F., Abbate, R., Gensini, G. F., & Casini, A. (2008). Adherence to Mediterranean diet and health status:

Meta-analysis. BMJ, 337(sep11 2), a1344-a1344. https://doi.org/10.1136/bmj.a1344

- Sulc, J., Winkler, T. W., Heid, I. M., & Kutalik, Z. (2020). Heterogeneity in obesity: genetic basis and metabolic consequences. *Current Diabetes Reports*, 20(1), Article 1. http://doi.org/10.1007/s11892-020-1285-4
- Sun, L., Goh, H. J., Govindharajulu, P., Leow, M. K.-S., & Henry, C. J. (2020). Postprandial glucose, insulin and incretin responses differ by test meal macronutrient ingestion sequence (PATTERN study). *Clinical Nutrition*, 39(3), 950–957. https://doi.org/10.1016/j.clnu.2019.04.001
- Sun, Y., Ma, C., Sun, H., Wang, H., Peng, W., Zhou, Z., Wang, H., Pi, C., Shi, Y., & He, X. (2020). Metabolism: A novel Shared link between diabetes mellitus and Alzheimer's Disease. *Journal of Diabetes Research*, 2020, e4981814. https://doi.org/10.1155/2020/4981814
- Thorburn, A. N., Macia, L., & Mackay, C. R. (2014). Diet, metabolites, and "Western-lifestyle" inflammatory diseases. *Immunity*, 40(6), 833–842. https://doi.org/10.1016/j.immuni.2014.05.014
- Wechsler, D. (1981). The psychometric tradition: Developing the Wechsler Adult Intelligence Scale. *Contemporary Educational Psychology*, 6(2), 82–85. https://doi.org/10.1016/0361-476X(81)90035-7
- Whitmer, R. A., Gunderson, E. P., Barrett-Connor, E., Quesenberry, C. P., & Yaffe, K. (2005). Obesity in middle age and future risk of dementia: A 27 year longitudinal population based study. *BMJ*, *330*(7504), 1360. https://doi.org/10.1136/bmj.38446.466238.E0
- Whitmer, R., Gunderson, E., Quesenberry, C., Zhou, J., & Yaffe, K. (2007). Body mass index in midlife and risk of Alzheimer Disease and vascular dementia. *Current Alzheimer Research*, 4(2), 103–109. https://doi.org/10.2174/156720507780362047
- Willett, W. C., Howe, G. R., & Kushi, L. H. (1997). Adjustment for total energy intake in epidemiologic studies. *The American Journal of Clinical Nutrition*, 65(4), 1220S-1228S. https://doi.org/10.1093/ajcn/65.4.1220S
- Willette, A. A., Bendlin, B. B., Starks, E. J., Birdsill, A. C., Johnson, S. C., Christian, B. T., Okonkwo, O. C., La Rue, A., Hermann, B. P., Koscik, R. L., Jonaitis, E. M., Sager, M. A., & Asthana, S. (2015). Association of insulin resistance with cerebral glucose uptake in late middle–aged adults at risk for Alzheimer Disease. JAMA Neurology, 72(9), 1013–1020. https://doi.org/10.1001/jamaneurol.2015.0613
- Young, H., & Benton, D. (2014). The glycemic load of meals, cognition and mood in middle and older aged adults with differences in glucose tolerance: A randomized trial. *E-SPEN Journal*, *9*(4), e147–e154.

https://doi.org/10.1016/j.clnme.2014.04.003

Zuur, A. F., Ieno, E. N., & Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. *Methods in Ecology and Evolution*, 1(1), 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

Table 1. Number of individuals consuming the different food groups for each meal. N indicates the number of

418 consumers.

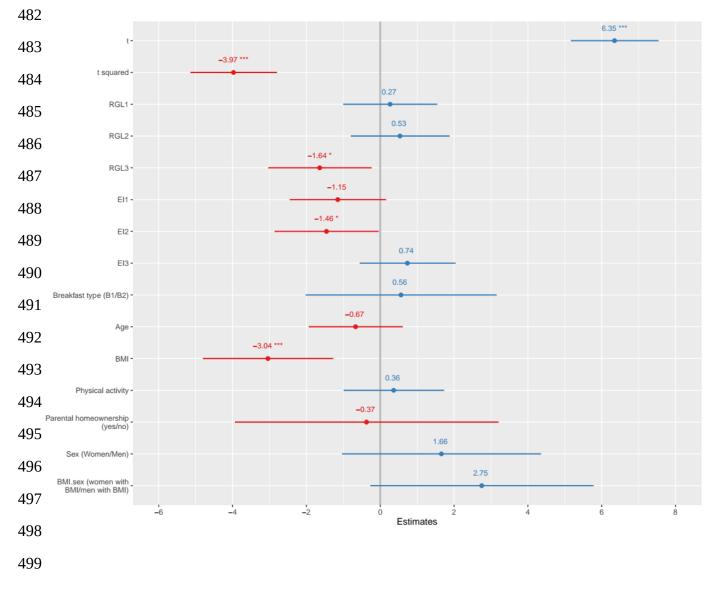
		Women ($N = 48$)			Men (N = 47)		
Food group	Breakfast (N = 48, 100%)	Afternoon snack (N = 26, 54%)	Between-meal snack (N = 12, 25%)	Breakfast (N = 47, 100%)	Afternoon snack (N = 19, 40%)	Between-meal snack (N = 12, 25%)	
Cereals and bread	36	9	2	38	7	3	
Biscuits, cakes, and pastries	9	11	4	8	11	3	
Sweets and chocolate	20	13	5	29	8	9	
Sweetened beverages	17	5	0	15	4	3	
Dairy products	31	6	3	24	8	3	
Fruits	16	13	3	13	6	4	
Nuts	5	5	2	2	0	0	

425	Table 2. Descriptive statistics of food consumption for the three meals. Means and standard deviations (SDs) are
426	given for consumers only. GL1, GL2 and GL3 are the three variables representing chronic refined carbohydrate
427	consumption.

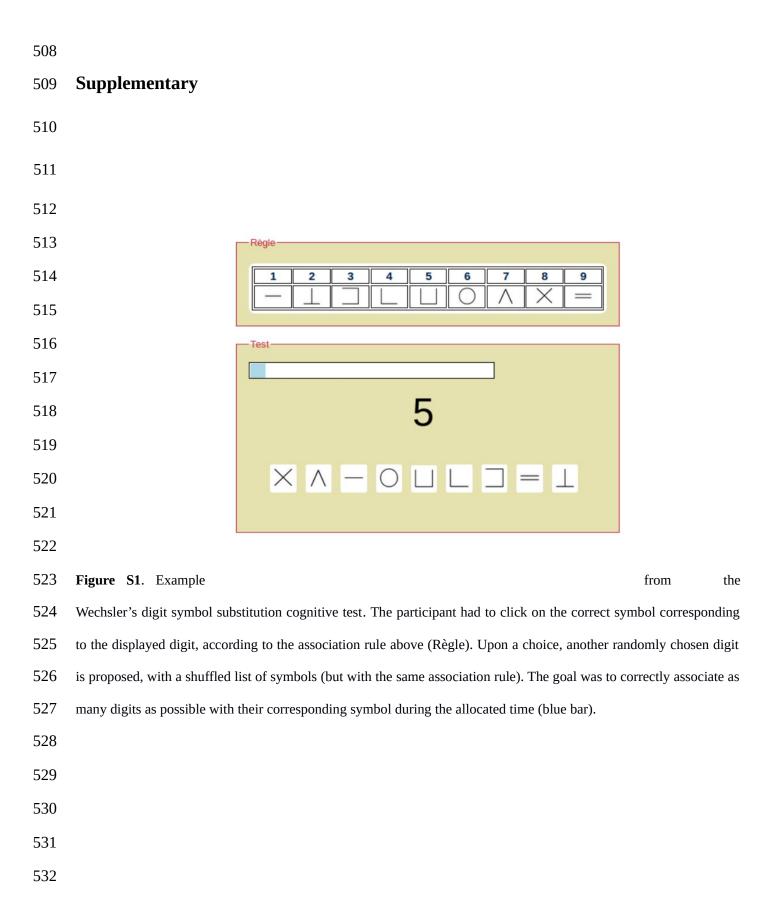
	Women (N = 48)			Men (N= 47)		
	Range	Mean	SD	Range	Mean	SD
Breakfast						
GL1	0-92	30.4	21.8	1-143	45.3	30.5
EI1	4-1038	377.3	245.1	8-1451	495.3	310.4
Carbohydrates (g)	0-144	42.8 (67%)	32.2	1-224	62 (70%)	41.4
Fat (g)	0-39	9.5 (17%)	9.4	0-55	13.4 (14%)	12.4
Protein (g)	0-27	6.7 (11%)	5.7	0-36	9.1 (10%)	7.7
Fiber (g)	0-17	3.7 (5%)	3.5	0-22	4.9 (5%)	4.1
Afternoon Snack						
GL2	0-62	13.1	16.7	0-128	16.4	29.4
EI2	0-985	184.9	244.6	0-1065	177.2	295.4
Carbohydrates (g)	0-103	19.6 (65%)	26.4	0-126	17.9 (74%)	30.9
Fat (g)	0-72	7.7 (19%)	13.6	0-42	3.5 (14%)	7.4
Protein (g)	0-23	3.2 (8%)	5.0	0-30	2.5 (8%)	5.8
Fiber (g)	0-16	2.3 (7%)	3.4	0- 10	1.3 (4%)	2.6
Between-Meal Snack						
GL3	0-42	3.8	9.2	0-110	7.5	19.4
EI3	0-622	63.6	149.0	0-1010	85.1	201.1
Carbohydrates (g)	0-66	4.7 (60%)	11.5	0-111	8.7 (71%)	21.4
Fat (g)	0-39	2.3 (24%)	6.7	0-23	1.9 (16%)	5.4
Protein (g)	0-19	1.1 (11%)	3.3	0-22	1.1 (7%)	3.6
Fiber (g)	0-8	0.6 (5%)	1.7	0-7	0.7 (6%)	1.7

- **Table 3.** Effects of breakfast type on the subject's glycemia of the participants. The type of breakfast, mean glycemia
- 431 for each, Wilcoxon test statistic (W) and corresponding *P*-value are given. Bold characters indicate significant (P < P
- 432 0.05) effects. B1 was composed of nonrefined carbohydrates, and B2 was composed of refined carbohydrates.

Glycemia	Type of Breakfast	Mean glycemia (mg.dL ⁻¹)	W	Р
G1 (before breakfast)	B1	85.8	1186	0.66
	B2	85.8		
G2 (30 minutes after breakfast)	B1	117.5	1846	< 10 ⁻⁷
	B2	144.3		
G3 (90 minutes after breakfast)	B1	94.5	1401	0.04
	B2	99.9		


Table 4. Descriptive statistics of the subjects' physical characteristics

	V	Women (N = 48)			Men (N= 47)		
	Range	Mean	SD	Range	Mean	SD	
Age (years)	20.0-28.1	22.7	2.1	20.0–29.8	23.1	2.1	
BMI (kg/m²)	16.4-28.8	21.7	2.6	16.5–37.4	23.3	3.9	


Table 5. Effects of different variables studied on Wechsler's digit symbol substitution cognitive test performances. RGL1, RGL2 and RGL3 represent chronic refined carbohydrate consumption during breakfast, afternoon snack and between-meal, respectively. E1, E2 and E3 refer to energy intake during breakfast, afternoon snack and between-meal, respectively. For categorical data, the estimates are given for one category compared to the reference category (underlined term). The estimate (β), standard error of the mean (se), χ^2 statistic, and corresponding *P*-value are given. Bold characters indicate significant (*P* < 0.05) effects.

	β	se	χ²	P(>χ²)
Intercept	62.049	1.866		
t	6.347	0.598	112.6	< 10 ⁻¹⁵
t ²	-3.975	0.591	45.25	< 10 ⁻¹⁰
RGL1	0.267	0.642	0.173	0.677
RGL2	0.535	0.675	0.627	0.428
RGL3	-1.639	0.706	5.389	0.020
EI1	-1.150	0.658	3.057	0.080
EI2	-1.457	0.712	4.183	0.040
EI3	0.736	0.656	1.256	0.262
Breakfast type (B1/ <u>B2</u>)	0.561	1.309	0.184	0.668
Age	-0.668	0.642	1.081	0.298
BMI	-3.042	0.892	8.432	0.003
Physical activity	0.364	0.687	0.281	0.596
Parental homeownership (yes/ <u>no</u>)	-0.372	1.810	0.042	0.837
Sex (Women/ <u>Men)</u>	1.657	1.364	0.918	0.338
BMI.sex (women with BMI/ <u>men with BMI</u>)	2.750	1.532	3.222	0.073

Figure 2. Forest plot of the model of the impact of RGL1, RGL2 and RGL3 and control variables on the performance on Wechsler's digit symbol substitution cognitive test. For categorical data, the estimates are for one category compared to the reference category (underlined term). * P < 0.05 ** P < 0.01 *** P < 0.001

Table S1. Exhaustive list of the different food items of the diet questionnaire in French and translated.

French	English
Baguette (morceaux)	Baguette (pieces)
Pain (morceaux)	Bread (pieces)
Pain de campagne	Country bread
Pain complet	Whole wheat bread
Pain de mie	Soft bread
Pain de seigle	Rye bread
Pain poilane	Poilane bread
Pain découpé (restaurant-cantine)	Sliced bread (restaurant-canteen)
Couleur café au lait	Latte coffee color
Couleur chocolat au lait	Milk chocolate color
Blé soufflé	Puffed wheat
Müesli	Muesli
Pétales de maïs	Corn petals
Biscottes diverses	Various rusks
Brioches tranches ou individuelles	Sliced or individual brioches
Beurre	Butter
Epaisseur du beurre	Butter thickness
Confiture (consommation totale y compris tartine, boisson, laitage)	Jam (total consumption including toast, drink, dairy)
Miel (consommation totale y compris tartine, boisson, laitage)	Honey (total consumption including toast, drink, dairy)
Nutella (consommation totale y compris tartine, boisson, laitage)	Nutella (total consumption including toast, drink, dairy)
Sucre morceaux (consommation totale y compris totale, boisson, laitage)	Sugar cubes (total consumption including drink, dairy)
Sucre poudre (consommation totale y compris boisson, laitage)	Granulated sugar (total consumption including drink, dairy)
Chèvre crottin	Goat cheese
Bûche	Goat cheese
Pyramide	Goat cheese
Boursin	Boursin
Camembert	Camembert
Rouy	Rouy
Gruyère	Gruyere
Mimolette	Mimolette
Roquefort	Roquefort
Tomme	Cheese
Fromage blanc	White cheese
	Number of yogurts already sweetened (flavored, with fruits)
Nombre de yaourts déjà sucrés à l'achat (aromatisé, aux fruits)	Number of yoguits aready sweetened (navored, with fruits) Number of plain yogurts
Nombre de yaourts natures	Number of plain Petits-Suisses
Nombre de petits-suisses nature	
Yaourt à boire: nombre de verres	Drinkable yogurt: number of glasses
Taille du verre pour le yaourt à boire	Glass size for yogurt drink
Chantilly Entremet semoule et riz	Sweet whipped cream
	Semolina and rice dessert
Flan Manager an abagelet	Blank
Mousse au chocolat	Chocolate mousse
Gâteau à la crème	Cream cake
Gâteau mousse aux fruits	Fruit mousse cake
Tarte aux fruits	Fruit tart
Gâteau au chocolat	Chocolate cake
Tourte aux amandes	Almond pie
Cake	Cake
Madeleines	Madeleines
Quatre-quarts	Pound cake

Type de biscuits consommés	Type of cookies eaten
Nombre de biscuits consommés	Number of cookies eaten
Nombre de viennoiseries consommées (croissant, pain au chocolat,	Number of pastries consumed (croissant, pain au chocolat,
)	etc.)
Noix	Nut
Noisettes	Hazelnut
Pistaches	Pistachios
Cerises	Cherries
Fraises	Strawberries
Framboises	Raspberries
Banane	Banana
Pomme	Apple
Poire	Pear
Kiwi	Kiwi
Abricot	Apricot
Groseilles	Currants
Quetsches (prunes)	Quetsches (plums)
Raisins	Grapes
Orange	Orange
Pruneaux	Prunes
Ananas au sirop	Pineapple in syrup
Fruis au sirops divers	Fruits in various syrups
Bonbons divers	Various candies
Chocolat (carrés)	Chocolate (squares)
Barre chocolatée	Chocolate bar
Soda, jus de fruit: nombre de boissons individuelles consommées	Soda, fruit juice: number of individual drinks consumed (can-
(canette-bouteille-brick)	bottle-brick)
Type de contenant de boisson individuelle (canette-bouteille-brick)	Type of individual beverage container (can-bottle-brick)
Soda, jus de fruit: nombre de verres	Soda, fruit juice: number of glasses
Taille du verre (soda ou jus)	Glass size (soda or juice)
Taille de la tasse ou du bol (lait-café-chocolat)	Cup or bowl size (milk-coffee-chocolate)