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Introduction

Runge-Kutta methods are a well-established family of one-step solvers for systems of ordinary dierential equations (ODEs; see [START_REF] Wanner | Solving Ordinary Dierential Equations I : Non-Sti Problems[END_REF][START_REF] Wanner | Solving Ordinary Dierential Equations II : Sti and Dierential-Algebraic Problems[END_REF] for an overview and further references). For implicit methods (IRK), their eciency relies on having an ecient solver for the so-called stage equations { in general a system of ms non-linear equations, where m is the number of scalar ODEs in the system and s is the number of stages of the Runge-Kutta method. An important application arises from the space discretization of time-dependent partial dierential equations (PDEs), resulting in a system of ODEs with very large m. If the spatial operator is linear, then the stage equations also become a system of linear algebraic equations, which are often solved by an iterative solver, e.g., a Krylov method. In [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF], the authors introduced a family of preconditioners for GMRES for the stage equations, numerically showing that these preconditioners give an outstanding performance, especially under renement of the spatial mesh, i.e., as m grows. Recently, there has been also other contributions in the direction of preconditioning the fully implicit Runge-Kutta stage equations for PDEs, see [START_REF] Southworth | Fast solution of fully implicit Runge{Kutta and discontinuous Galerkin in time for numerical PDEs, Part I: The linear setting[END_REF][START_REF] Southworth | Fast solution of fully implicit Runge{Kutta and discontinuous Galerkin in time for numerical PDEs, Part II: nonlinearities and DAEs[END_REF] but also [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] and [START_REF] Clines | Ecient order-optimal preconditioners for implicit Runge-Kutta and Runge-Kutta-Nyström methods applicable to a large class of parabolic and hyperbolic PDEs[END_REF], introducing new ideas and testing these numerically on a variety of test problems.

We focus on the setting considered by Howle et al. in [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF] and analyze the convergence of the preconditioned GMRES method, giving a theoretical background for the performance observed for two stage methods. The general s-stage case will be treated in a follow-up manuscript. In Section 2 we summarize some preliminary knowledge and introduce the problem and the preconditioners followed by some general results for Kronecker-like matrices in Section 3. We then give the analysis of each of the block type of the preconditioners in Section 4.1 { 4.3 and also comment on the possibility of numerical optimization to improve the solution process in Section 4.4.

Model problem and preliminaries

As our model problem we consider the heat equation on the unit square and a time interval (0, T end ), i.e.,

∂ ∂t u = ∆u + f in Ω × (0, T end ), u = g on ∂Ω × (0, T end ) and u = u 0 in Ω × {0}, (1) 
where ∆ is the Laplace operator, f, g, u 0 are given functions and Ω is the unit square Ω := (0, 1) × (0, 1). We discretize in space using nite dierence scheme on an equidistant grid with N + 1 rows and columns and with the mesh size h = 1/N as in Figure 1. The values at the interior grid points become unknown functions of time, which are governed by the system of ODEs,

∂ ∂t u i (t) = u i-N (t) + u i-1 (t) -4u i (t) + u i+1 (t) + u i+N (t) h 2 + b (ST ) i (t), (2) 
for i = N + 1, . . . , N (N -1) -1, where b (ST) i (t) collects the known values from the source terms, given by g and f , at the given point. Combining the unknowns in each grid column into one vector denoted by u k (t), i.e.,

u k (t) := u N k+2 u N k+3 • • • u N (k+1)-1 T (t), u(t) := u 1 (t) • • • u N -1 (t) T ,
and also analogously for b k (t) and b(t), we rewrite (2) as

∂ ∂t u(t) = 1 h 2 Lu(t) + b (ST) (t), (3) 
with

L =       T I I . . . . . . . . . . . . I I T       , T =       -4 1 1 . . . . . . . . . . . . 1 1 -4       , I =       1 . . . . . . 1       , ( 4 
)
where L is of dimension n := (N -1) 2 , the blocks T, I are of dimension N -1. We discretize [0, T end ] with M T end + 1 equidistant time points with time step τ = T end /M T end , i.e., 

{0 = t 0 < t 1 • • • < t M T end -1 < t M T end = T end }, τ = T end M T end and t m = τ • m, m = 0, . . . , M T end . Ω = (0, 1) × (0, 1) × x0,0 × x1,0 × x2,0 × x3,0 × x0,1 × x1,1 × x2,1 × x3,1 × × × × × x4,1 × × × x4,4 h h Ω = (0, 1) × (0, 1) × u1 × u2 × u3 × u4 × u5 × u6 × u7 × u8 × × × × × u N (N -1)+1 × × × u N 2 h h
the corresponding IRK method applied to (3) at the m-th time step gives the approximation

u m ≈ u(t m ) as u m = u m-1 + τ s i=1 b i k m i , (6) 
where the vectors k m 1 , . . . , k m s ∈ R n are the solutions of the linear system

      I . . . I    - τ h 2    a 1,1 L . . . a 1,s L . . . . . . . . . a s,1 L . . . a s,s L       ≡Is⊗In-τ h 2 (A⊗L)=:M k m =    1 h 2 Lu m-1 + b (ST) (t m-1 + c 1 τ ) . . . 1 h 2 Lu m-1 + b (ST) (t m-1 + c s τ )    , (7) 
with

k m := k m 1 • • • k m s T ∈ R ns .
The symbol ⊗ stands for the Kronecker product (see [START_REF] Van Loan | The ubiquitous Kronecker product[END_REF] and references therein) and we would like to note here that (7) can be reformulated into a matrix equation, which is in general better suited for using a Krylov solver (see [START_REF] Palitta | Optimality properties of Galerkin and Petrov{Galerkin methods for linear matrix equations[END_REF]). Here we focus on the analysis of the results in [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF] and thus we do not address this any further but a study of the preconditioners from [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF] in the matrix equations setting seems worthwhile. Having p ≤ 2s as the order of convergence of the IRK method we assume that it is balanced with the spatial discretization error, i.e., that h 2 = C e τ p for some

C e > 0.
The problem [START_REF] Liesen | GMRES convergence analysis for a convection-diusion model problem[END_REF] with the system matrix M sparse can be very large for h (and τ ) small, suggesting an iterative solver such as GMRES, BiCG or GCR should be used which in turn usually requires a preconditioner to become truly ecient. In [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF], the authors introduce the block preconditioners

P d = I s ⊗ I n - τ h 2 diag(A) ⊗ L, P u = I s ⊗ I n - τ h 2 D A U A ⊗ L and P l = I s ⊗ I n - τ h 2 L A D A ⊗ L, (8) 
where L A , D A , U A are the LDU factors of the Butcher tableau matrix A. In addition, the authors also consider the block triangular preconditioners

P GSL = I s ⊗ I n - τ h 2 A L ⊗ L and P GSU = I s ⊗ I n - τ h 2 A U ⊗ L, (9) 
where GSL/GSU stands for Gauss-Seidel lower/upper, and A L,U is the lower/upper triangular part of A, i.e.,

(A L ) ij = a ij if i ≥ j 0 otherwise , (A U ) ij = a ij if i ≤ j 0 otherwise .
Some of these were considered already in [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF]. Notice that if a ii > 0 for all i = 1, . . . , s, then the preconditioners are invertible as L is symmetric negative-denite. More general conditions for non-singularity of the preconditioners can be also derived analogously to [16, Lemma 1].

Using GMRES for a linear system Cx = f with C being diagonalizable, i.e., C = SΛS -1 and Λ = diag(λ 1 , . . . , λ d ), a standard convergence bound for the residuals r reads r r 0 ≤ κ(S) min

ϕ(0)=1 deg(ϕ)≤ max 1≤i≤d |ϕ(λ i )|, (10) 
where κ(S) is the 2-norm condition number of the matrix S, see, e.g., [START_REF] Liesen | Krylov Subspace Methods: Principles and Analysis[END_REF]Section 5.7.2]. We would like to highlight some aspects of this bound that is often used to study GMRES convergence behavior.

Remark 1. As indicated above, the spectral information of the system matrix in GMRES (in our case of the preconditioned system) does not generally govern the convergence (see [START_REF] Greenbaum | Matrices that generate the same Krylov residual spaces[END_REF], [START_REF] Greenbaum | Any nonincreasing convergence curve is possible for GMRES[END_REF] and [START_REF] Arioli | Krylov sequences of maximal length and convergence of GMRES[END_REF] and also [8, Chapter 2 and 5.7] and the references therein). If the system matrix is normal, i.e., it is diagonalizable with S unitary, then the spectral information is enough to evaluate the ideal GMRES bound. However, if C is non-normal, then a convincing argument needs to be put forward to validate linking spectral information with the convergence behavior of GMRES as the authors in [8, p. 303, Remark 1] point out. Moreover, particular knowledge of the interaction of S and the initial residual r 0 can lead to a qualitative and quantitative improvement on [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF], see, e.g., [START_REF] Liesen | GMRES convergence analysis for a convection-diusion model problem[END_REF]. However, studying GMRES bahavior with the bound [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF], this interaction is completely lost.

Analysis of the block preconditioners

We start by transforming the calculations into the eigenbasis of the spatial operator. Denoting the eigenpairs of L by (λ k , v k ), we organize the eigenvectors into an n-by-n matrix V and dene the block transformation matrix Q,

V := [v 1 , . . . , v n ] , and Q :=    V . . . V    ∈ R sn×sn . ( 11 
)
Transforming M blockwise into the V basis gives

M := QM Q T , M =    I . . . I    - τ h 2    a 1,1 Λ . . . a 1,s Λ . . . . . . . . . a s,1 Λ . . . a s,s Λ    , (12) 
with Λ = diag(λ 1 , . . . , λ n ). With the preconditioners proposed in [START_REF] Liesen | Krylov Subspace Methods: Principles and Analysis[END_REF][START_REF] Mardal | Order-optimal preconditioners for implicit Runge{Kutta schemes applied to parabolic PDEs[END_REF] we write the spectrum of the preconditioned system as

sp(M P -1 ) = sp(Q T M P -1 Q) = sp(Q T M QQ T P -1 Q) = sp M P -1 ,
where P := Q T P Q stands for one of the right-preconditioners P d,GSU,u and an analogous formulation follows also for the left-preconditioners P l,GSL . As the preconditioners are dened blockwise as scalar multiplications of L and I, their blockwise transformation into the eigenbasis of L is a straight-forward calculation -replacing L with Λ (and keeping I). Next, such matrices { block matrices with each block being a square, diagonal matrix { can be permuted into classical blockdiagonal matrices as the following lemma shows.

Lemma 1. Let C ∈ R ns×ns be a real matrix with block structure such that every block is a square diagonal matrix, i.e.,

C =    Λ 11 . . . Λ 1s . . . . . . . . . Λ s1 . . . Λ ss    , with Λ ij = diag λ (ij) 1 , . . . , λ (ij) n ∀ij. (13) 
Then there exists a permutation matrix Π ∈ R ns×ns such that 11) . . . λ

Π T CΠ =    C 1 . . . C n    with C =    λ ( 
. . . . . . . . .

λ (s1) . . . λ (ss)    ∈ R s×s , (14) 
for any = 1, . . . , n.

Hence, C is diagonalizable if and only if C is diagonalizable for all = 1, . . . , n and if

C = V -1 D V is the eigendecomposition of C with D = diag(µ (1) , . . . , µ (s) ), then sp(C) = n =1 s i=1 µ (i) , and if (µ, v) is an eigenpair of some C , then µ, Π T (v ⊗ e ) is an eigenpair of C. As a result, if C is diagonalizable with C = V -1 DV , then κ(V ) = max =1,...,s κ(V ), (15) 
where κ(•) is the 2-norm condition number.

Proof. Setting E = diag(0, . . . 0, 1, 0, . . . , 0) ∈ R n×n as the matrix with the only non-zero entry being at the position ( , ) with value one, we observe that

C = n =1 C ⊗ E .
Using the Kronecker product permutation property from [START_REF] Van Loan | The ubiquitous Kronecker product[END_REF]Eqn. (1) and below], we take Π such that

Π T CΠ = n =1 E ⊗ C =    C 1 . . . C n    ,
proving the rst part of the statement. The rest follows by a direct calculation and the properties of block-diagonal matrices.

Using Lemma 1 we can analyse the eigenproperties of M P -1 directly and thereby evaluate the GMRES bound.

Remark 2. We note that an analogous lemma to Lemma 1 can also be formulated for non-normal matrices (replacing Q T by Q -1 ). Considering the Jordan canonical (or the Schur decomposition form) of C , Lemma 1 can be reformulated to obtain a block upper bidiagonal (or block uppertriangular) matrix.

To shorten the notation we set

θ k := τ h 2 λ k and Θ := τ h 2 Λ, (16) 
as these quantities appear always together in the computations. By a direct calculation (see [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Appendix B.8]) we get the limit behavior of θ k as τ, h → 0,

(θ n , θ 1 ) → (- 8 C e , 0), (θ -1 1 , θ -1 n ) → -∞, - C e 8 , (LIM) p=1 (θ n , θ 1 ) → (-∞, 0), (θ -1 1 , θ -1 n ) → (-∞, 0), (LIM) p>1 (17) 
and continue by explicit calculations for the two stage methods.

Two stage methods

For the case s = 2 we have

P d = I -a 11 Θ 0 0 I -a 22 Θ , P GSL = I -a 11 Θ 0 -a 21 Θ I -a 22 Θ , P GSU = I -a 11 Θ -a 12 Θ 0 I -a 22 Θ , P u = I -a 11 Θ -a 12 Θ 0 I -a 22 -a 21 a 12 a 11 Θ , P l = I -a 11 Θ 0 -a 21 Θ I -a 22 -a 21 a 12 a 11 Θ , (18) 
and we start with a useful lemma summarizing some direct calculations.

Lemma 2 ([11, Appendix B.8]). Let

C ∈ R 2×2 . (i) The eigenvalues µ 1,2 are given by µ 1,2 = c 11 +c 22 2 ± 1 2 √ D with D = (c 11 -c 22 ) 2 + 4c 12 c 21 . In particular, if D = 0, then C is diagonalizable.
(ii-a) If c 12 = 0 and D = 0, then C is diagonalizable and the eigenvectors v 1,2 are given by v

1,2 = 1 ṽ1,2 ṽ1,2 with ṽ1,2 = 1 α 1,2 and α i = 0 if c 11 = λ i , -c 11 -c 22 ∓ √ D 2c 12 if c 11 = λ 1,2 .
(ii-b) If c 21 = 0 and D = 0, then C is diagonalizable and the eigenvectors v 1,2 are given by v

1,2 = 1 ṽ1,2 ṽ1,2 with ṽ1,2 = α 1,2 1 
and

α i = 0 if c 22 = λ i , --c 11 +c 22 ∓ √ D 2c 21 if c 22 = λ 1,2 .
(iii) If c 12 , c 21 = 0 and D = 0, then the condition number κ(V ) of the matrix of eigenvectors of C is given by κ

(V ) = ṽ1 ṽ2 + √ (1+α 1 α 2 )(1+α 1 α 2 ) ṽ1 ṽ2 - √ (1+α 1 α 2 )(1+α 1 α 2 )
, where α i is given as in (ii -a).

(iv-a) If c 21 = 0, c 12 = 0 and c 11 = c 22 , then C is diagonalizable with real eigenvalues c 11 , c 22 and eigenvectors e 1 , v 2 , and the formula from (iii) simplies to κ(V ) = ṽ2 +1 ṽ2 -1 , where v 1 is the vector with non-zero entries from (ii-a), and α 1 is its rst component. We analyze rst the block diagonal preconditioners, and then continue with the block triangular ones. The calculations below give insight into the results presented in [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF], e.g., give explicit formulas for the results in Figure 4.1 and 4.3, Table 4.3 and Table 5.1, 5.2. and 5.3 from [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF] for s = 2.

Block diagonal preconditioner

A direct calculation gives

M ( P diag ) -1 = I -a 12 Θ (I -a 22 Θ) -1 -a 21 Θ (I -a 11 Θ) -1 I , (19) 
and using Lemma 1 the eigen-information of the preconditioned system can be obtained from the 2-by-2 matrices

X d k := 1 -a 12 θ k 1-a 22 θ k -a 21 θ k 1-a 11 θ k 1 .
We immediately notice that X d k is diagonalizable if and only if 1

a 12 = 0 ⇐⇒ a 21 = 0. ( 20 
)
1 If a12 = a21 = 0, then A is in fact diagonal and hence M = P d , making this case uninteresting.

7

Assuming a 12 , a 21 = 0, we calculate the characteristic polynomial

p X d k (λ) of X d k , p X d k (λ) = λ 2 -2λ + 1 - a 12 a 21 θ 2 k (1 -a 11 θ k )(1 -a 22 θ k ) ,
and therefore the eigenvalues

ξ (k) 1,2 of X d k are given by ξ (k) 1,2 = 1 ± D k with D k = a 12 a 21 (|θ -1 k | + a 11 )(|θ -1 k | + a 22 ) . ( 21 
)
We write ξ (k) 1,2 as functions of

|θ k | -1 , ξ (k) 1 = 1 ± φ(|θ k | -1 ) with φ(α) = a 12 a 21 (α + a 11 )(α + a 22 )
,

and α ∈ (|θ 1 | -1 , |θ n | -1
) { an interval converging towards the limit interval in [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF]. If a 11 , a 22 ≥ 0 (e.g., Gauss, Radau or Lobatto methods), then ξ (k) 1,2 lie on a line segment in C going through the point 1, which is either a part of the real axis (if sign(a 12 a 21 ) ≥ 0) or on the line 1 + βi, β ∈ R (otherwise). We have

|ξ (k) 1,2 -1| = φ(|θ -1 k |) = a 12 a 12 (|θ -1 k | + a 11 )(|θ -1 k | + a 22 )
, and hence2 the maximum of

|ξ (k) 1,2 -1| as a function of |θ -1 k |
is attained either at one of the endpoints of the interval in [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF] or at an interior stationary point. Calculating the derivative, we get

(|φ|) (α) = -sign (φ(α)) a 12 a 21 2α + a 11 + a 22 (α + a 11 ) 2 (α + a 22 ) 2 ,
and thus the only candidate for a stationary point is -(a 11 + a 22 )/2 assuming it belongs to the domain of φ (as mentioned above, this is not the case for the commonly used Gauss, Radau or Lobatto methods). Assuming it does not, e.g., because a 11 , a 22 > 0, the maximum is attained at the left endpoint of the interval in [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF], bounded from above by the value at α = 0 which gives

|ξ (k) 1,2 -1| ≤ a 12 a 21 a 11 a 22 . (22) 
Thus making this quantity small will make the eigenvalues cluster tightly around 1. Notice that the bound above is suggesting to make the diagonal entries large compared to the o-diagonal ones, making the matrix diagonal in the limit (and hence making the preconditioner exact). Assuming a ij = 0 for i, j = 1, 2 and a 11 , a 22 ≥ 0 we use Lemma 2, and the condition number of the matrix of eigenvectors Recalling [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF], we see that κ S d k has no singularities in it and the limits at 0 and +∞ are also real and bounded. Therefore the conditioning of the eigenbasis of the preconditioned system will be uniformly bounded with respect to mesh renement in space and time { just as the clustering diameter.

S d k of X d k is given by κ S d k = 1 + a 21 (|θ k | -1 +a 22 ) a 12 (|θ k | -1 +a 11 ) + 1 -a 21 (|θ k | -1 +a 22 ) a 12 (|θ k | -1 +a 11 ) 1 + a 21 (|θ k | -1 +a 22 ) a 12 (|θ k | -1 +a 11 ) -1 -a 21 (|θ k | -1 +a 22 ) a 12 (|θ k | -1 +a 11 ) . ( 23 
Remark 3. Some authors call such preconditioners, i.e., preconditioners such that the eigenproperties of the preconditioned system can be bounded independently of h and τ , order-optimal and the general way to show order-optimality for these kind of preconditioners has been laid out in [START_REF] Mardal | Order-optimal preconditioners for implicit Runge{Kutta schemes applied to parabolic PDEs[END_REF]. However, we want to emphasize that this independence does not mean, practically speaking, that the given preconditioner is in some sense optimal or even well-performing (and this is even more pronounced if the order-optimality is considered only wrt the spectrum, omitting the conditioning of the eigenbasis of the preconditioned system) { but in particular settings with additional reasoning this might be a useful property as we will demonstrate.

Given a Butcher tableau A, the bound (10) can be further approximated using the Joukowsky bound with the Chebyshev polynomials in the complex plane, see [14, Section 6.11 and Corollary 6.33] and also [8, Section 5.7.2] and references therein. A relatively direct and elementary calculation then allows us to evaluate the bound [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF], and in Figure 2 we show the GMRES convergence behavior together with these bounds for dierent Butcher tableaus for P d on the left (for validation of the above formulas and detailed calculations we refer the interested reader to [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.3.1]). Notice that as h is xed for all methods we obtain dierent τ for each of the IRK methods and therefore the scaling factor τ /h 2 becomes h 2(1/p-1) . Hence, the dierence is not only in the choice of A but also in the interval spanned by θ k and how close (or far) these are to the limit in [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF].

We also want to address the notable stair-like behavior. Since GMRES is invariant (in exact arithmetic) to an orthogonal transformation we can focus on GMRES applied to a problem with the block-diagonal matrix

X d := diag(X d 1 , X d 2 , . . . , X d n ).
As noted in [START_REF] Faber | On Chebyshev polynomials of matrices[END_REF], the optimal polynomial3 that solves the min-max problem

r r 0 ≤ κ(S d ) min ϕ(0)=1 deg(ϕ)≤ max 1≤k≤n ϕ(X d k ) ,
equioscillates over the blocks { but only for even degrees, i.e., for = 2l for some l ∈ N. Considering our situation, the optimal polynomial is trying to minimize its value over these 2-by-2 blocks, which in our case have eigenvalues

ξ (k) 1 = ξ (k)
2 . Hence, the optimal polynomial aims to be small (in the maximum norm) on the line segment connecting 1 + i |(a 12 a 21 )/(a 11 a 22 )| and 1 -i |(a 12 a 21 )/(a 11 a 22 )|, symmetrically about 1. However, polynomials with real coecients of odd degree have at least one real root. This is why we see notably less improvement at odd iterations { the added degree of freedom for the optimization (placement of one additional root) is constrained in a quite inconvenient way for our setting. In contrast to even iterations, on odd iterations we can make the polynomial small only in the vicinity of the real axis, which after a couple of odd iterations decreases the overall maximum norm only very little, e.g., for LobattoIIIC in Figure 4 we see that initially the real root can contribute almost equally to the decrease of the maximum norm of the polynomial, but after seven or nine iterations this is no longer true. Remark 4. This reasoning is similar to the one in [8, Section 5.7.2, p.291], where the GMRES convergence bound [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] is adapted to a symmetric indenite problem with spectrum in two intervals

I -∪ I + ≡ [-1, ν] ∪ [ν, 1]
. Then [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] can be simplied to

r r 0 ≤ 2 κ -1 κ + 1 [ /2] , (24) 
where κ = 1/ν is the condition number of the given system matrix and [ /2] is the integer part of /2. Notice that this bound gives linear convergence but only over every two iterations of GMRES { precisely the observed behavior in Figure 4.

However adapting this bound to our setting becomes very quickly very complicated and goes beyond the scope of this text. The main diculty, in our eyes, is in the treatment of the optimal polynomials with real coecients on two separated line-segments in C. For more details on the real case and the derivation of (24) we refer also to [4, Chapter 3].

Block upper-triangular preconditioner

We consider the preconditioners P GSU , P u and where necessary we join the quantities corresponding to the preconditioners by writing, e.g., X GSU,u k instead of X GSU k and X u k . By analogous calculations to Section 4.1, we obtain the formulas

X GSU k = 1 0 -a 21 θ k 1-a 11 θ k ξ GSU k and X u k = 1 0 -a 21 θ k 1-a 11 θ k ξ u k ,
hence obtaining the spectrum of the preconditioned systems as the union of (25)

Moreover, Lemma 2 shows that for

X GSU,d k = (S GSU,d k ) -1 diag(1, ξ GSU,u k )S GSU,d k we have κ(S GSU,u k ) = 1 + (β GSU,u ) 2 + 1 1 + (β GSU,u ) 2 -1 ,
where the scalars β GSU,u are given as functions of θ k , .

|β GSU | = |a 12 | ||θ k | -1 +
The conditioning of the eigenbasis S GSU,u k of X GSU,u k can be treated similarly, rst observing that

κ(S GSU,u k
) is a decreasing function of |β GSU,u | ∈ (0, +∞) with a singularity at 0. Hence, as h, τ → 0, the matrix X GSU 1 (and X u n ) becomes non-diagonalizable 4 as |θ 1 | → 0 (and |θ n | → +∞). We show the preconditioned GMRES convergence behavior and the evaluated bounds in Figure 2; for detailed calculations and validation of the above formulas we refer the interested reader to [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.3.2]. Also, notice that the stair-like behavior of P d is not present as the entire spectrum is real and covers reasonably uniformly an interval on a real line and a single point 1. As the authors point out in [8, Section 5.6.2 and 5.7.2], as long as the condition number κ(S GSU,u ) is not too large, the classical linear bound based on the condition number of the preconditioned system matrix (i.e., the condition number of M P GSU,u -1 ) can be quite descriptive for the worst-case GMRES behavior. If the preconditioned system is not far away from being normal, then this explains why we only see the linear convergence { the spectrum is populating the interval considered densely enough so that the superlinear convergence argument used in exact arithmetic is not applicable (i.e., we cannot single out any outliers if there are none, see [8, Section 5.6.4 (Figure 5.7 in particular) and also Section 5.6.4]). Hence, linear convergence is, in principle, to be expected. Also, this explains the observation that the number of GMRES iterations does not grow as h → 0 as observed in [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF] (an analogous argument applies also to the block-diagonal preconditioner). Notice that the accuracy of the bound (24) is usually supported by the same kind of arguments. By analogy, this also qualitatively explains the linear in the linear-over-two-iterations convergence behavior of the block-diagonal preconditioned system.

4.3

Block lower-triangular preconditioner

The results for P GSL , P l are completely analogous to the ones from Section 4.2 and hence we just present these without much comment; more details can be found in [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.3.3]. We have

X GSL k = 1 -a 12 θ k 1-a 11 θ k 0 ξ GSL k and X l k = 1 -a 12 θ k 1-a 11 θ k 0 ξ l k ,
hence obtaining the spectrum of the preconditioned systems as the union of 1, ξ GSL,l

k n k=1 with ξ GSL k = ξ GSU k = |θ| 2 det(A) + |θ|(a 11 + a 22 ) + 1 |θ| 2 a 11 a 22 + |θ|(a 11 + a 22 ) + 1 , ξ l k = ξ u k = |θ| 2 det(A) + |θ|(a 11 + a 22 ) + 1 |θ| 2 det(A) + |θ|(a 11 + a 22 -a 21 a 12 a 11 ) + 1 . (26) 
Moreover, Lemma 2 shows that for

X GSL,l k = (S GSL,l k ) -1 diag(1, ξ GSL,l k )S GSL,l k we have κ(S GSL,l k ) = 1 + (β GSL,l ) 2 + 1 1 + (β GSL,l ) 2 -1 ,
where the scalars β GSL,l are given as functions of θ k ,

|β GSL | = |a 21 | ||θ k | -1 + a 22 |
, and

|β l | = |a 21 /a 11 | |θ k | det(A) a 11 + a 11 .
Notice that the results are either identical or very similar to the ones obtained with P GSU , P u and a comparison of the convergence behavior as well as of the bounds in Figure 2 and Figure 3 reects this.

Optimized Butcher tableaus

In [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF], the authors consider taking a dierent A, let us denote it by Ã, for the construction of the preconditioner, motivated by [START_REF] Sta | Preconditioning of fully implicit Runge-Kutta schemes for parabolic PDEs[END_REF]. Ã is chosen as a result of an optimization routine seeking to minimize κ( Ã-1 A) (or κ(A Ã-1 ) for a right preconditioner) subject to a particular non-zero pattern and diag( Ã) = diag(A). This optimization thus evaluates only quantities corresponding to the s-bys Butcher tableaus, which should be negligible in cost compared to the solution process of the stage equations. Numerical results in [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF]Table 4.3] show that the resulting preconditioner lowers the condition number of the preconditioned system. Having explicit formulas from Section 4.1{4.3 we can move from minimizing the quantity κ( Ã-1 A) (or κ(A Ã-1 )) to minimizing quantities in the bound [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] so that a provable bound can be obtained based on the result.

First, adapting the eigenpair formulas in Section 4.1 { 4.3 for the case A = Ã we could optimize the eigenproperties of the preconditioned system and thus obtain a theoretical bound on the resulting preconditioner. Using Lemma 1, the matrices X k are easily accessible with any A xed.

Second, having A = Ã as in Section 4.1 { 4.3, we can still consider the same optimization problem { but naturally with extra constraints so that the resulting IRK method has some desired order of convergence and stability properties.

We numerically test these approaches, dening the objective function to be minimized as a weighted sum of the cluster diameter5 |ξ k -1| and the conditioning of the eigenbasis of the preconditioned system matrix κ(S),

f obj (A, Ã) := max k |ξ k -1| + ωκ(S),
with some positive small weight ω > 0. Minimizing f obj then aims to minimize the min-max part of (10) while keeping the eigenbasis conditioning under control. In case that the clustering is very tight we expect to get good GMRES convergence. Before showing the results we comment on the usefulness of the optimization approach for the case A = Ã.

Remark 5. In order to optimize over A = Ã we have to keep in mind that we are at the same time changing the IRK method we are using to solve the system of ODEs. This introduces some optimization constraints to ensure good order of convergence (equality constraints on A, b, c) and stability (equality and inequality constraints on A, b, c). In our experience, in order to obtain a notable improvement in minimization of f obj over choosing A = A Gauss,RadauIIA,... , we need to relax some of the qualities of the IRK methods, e.g., decrease the order of convergence by one or give up some stability. This seems quite unappealing as the maximal order of convergence p Gauss = 4 is already not too large for practical use.

In our eyes, this makes the optimization for A = Ã better suited for larger s (e.g., s ≥ 5), where decreasing the order of convergence by one or two might not be a signicant drawback as the order of convergence of the standard IRK methods is much higher; see [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.5].

Note that even though Remark 5 suggests that the optimization with A = Ã is not really of interest here, it is still reasonable to start studying it for s = 2, to get some insight in the case where the formulas are explicitly available. We show the numerical results in Figure 4 and the resulting matrices in Table 1.

We see that for the setting A = Ã in the rst row of Figure 4 the optimized A are such that we converge after two to ve iterations, basically turning GMRES into a direct solver 6 . This seems natural looking at Table 1 { we observe that the Butcher tableau matrix A adapts the non-zero structure of the preconditioner, e.g., A becomes close to diagonal for P d , so that the preconditioner then becomes almost identical to M , reinforcing the point of Remark 5. Notably, this is achieved while not exploding the condition number of the eigenbasis of the preconditioned system.

For the second row, i.e., A = à and optimizing à that is used to construct the preconditioner, we see that for the block-diagonal preconditioner we can still obtain a considerable speed-up, as well as for the preconditioners P GSL,GSU . This is not the case, however, for the preconditioners P l,u . The reason is that with A = Ã, the spectrum of M (P l,u ) -1 was real but this property is lost in the general case A = Ã. Hence, even though we have tightened the clustering of the eigenvalues by optimizing à this wasn't signicant enough to o-set the introduction of the complex eigenvalues of the preconditioned system.

We would like to note that we obtained similar results to the rst row when considering p = 3 and A-stability (i.e., giving up the more restrictive property of L-stability) but for p = 3 and Lstable methods there seemed to be next to no gains from the extra optimization (see [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.5]). block diagonal block lower-triangular block upper-triangular

P d P GSL P l P GSU P u A = Ã 1.8 • 10 -1 -3.8 • 10 -6 2.3 • 10 -6 3.9 • 10 -1 3.5 • 10 -1 -4.5 • 10 -9 2.5 • 10 -6 2.3 • 10 -1 3.2 • 10 -1 -3.0 • 10 -8 9.6 • 10 -1 2.7 • 10 -1 3.5 • 10 -1 4.2 • 10 -1 -5.8 • 10 -9 2.3 • 10 -1 4.9 • 10 -1 -5.2 • 10 -2 6.3 • 10 -8 1.7 • 10 -2 A = Ã 9.3 • 10 -1 4.8 • 10 -2 4.0 • 10 -1 1.3 • 10 -1 5.1 • 10 -1 -6.6 • 10 -2 8.0 • 10 -1 3.0 • 10 -1 4.1 • 10 -1 -8.4 • 10 -2 7.4 • 10 -1 2.2 • 10 -1 4.1 • 10 -1 -8.2 • 10 -2 7.0 • 10 -1 3.7 • 10 -1 4.1 • 10 -1 -8.1 • 10 -2 7.2 • 10 -1 2.3 • 10 -1
Table 1: The resulting matrices A = à (rst row) or à (second row) corresponding to the results presented in Figure 4.

Last but not least we comment on the computational costs. In order to evaluate the complete eigenproperties of the preconditioned system M (P ) -1 (or (P ) -1 M ) we rst calculate the eigendecomposition of L (which is prohibitively costly) and then we calculate eigendecompositions of n : GMRES convergence (and bounds) for block preconditioners P d (left column), P GSL , P l (middle column) and P GSU , P u (right column) for the two stage RadauIIA Butcher tableau (lled markers, same results as in Figure 2 and 3) and also the optimized setting considered above (halflled markers). In the second row the optimization process changes only the matrix à used to construct the preconditioner (and not M ) in contrast to the rst row where the optimized is used for construction of both the system matrix and the preconditioner (in this case we imposed A to be such that the resulting IRK method is at least of order two and is L-stable, the constraints can be found in [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.3.4]). We used ω = 10 -5 , N = 100 and τ = h 2/p as above.

matrices X k , each of dimension s, which can be done in parallel. Even without any parallelization the cost is linear in n with the constant corresponding to s 3 . In practice, we often have (or can reasonably cheaply obtain) some estimate of the eigeninformation of L, e.g., estimates µ 1 , µ n of the true eigenvalues λ 1 , λ n or on the conditioning of V . The eigendecomposition of L can then be replaced by, e.g., considering only q \fake" λ k sampled from (µ min , µ max ) (assuming we know the spectrum of L is real). We show a numerical illustration, considering the same setting as for Figure 4 and sample only q distinct λ k (and thus θ k ) in the interval µ min := θ min , µ max := θ max . We show the evolution of the number of preconditioned GMRES with the optimized preconditioners depending on q in Figure 5. We see that for the spatial dimension n = 99 2 we already get comparable results to Figure 4 by sampling only very few \fake" θ k compared to optimizing over the actual roughly ten thousands of them. Also, the bounds stay still quite descriptive { only for q = 40 and P GSU have we found that running the optimization as a black-box does not give a useful descriptive bound 7 . This observation is key for either of the optimization approaches to be viable and further study of q for more involved settings (and its dependency on n) and/or sampling strategies for complex spectra is necessary. However, as the main interest is in s large, this will be presented in the follow-up work. 5

Generalizations and conclusion

We have shown that for two stage IRK methods the preconditioners from [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF] can be analyzed explicitly using spectral techniques and the GMRES convergence behavior can be reasonably predicted using the worst-case GMRES bound. This bound can be evaluated directly before the computations and gives a theoretical background to the results observed in [START_REF] Rana | A New Block Preconditioner for Implicit Runge-Kutta Methods for Parabolic PDE Problems[END_REF]. These results are given for a simple test problem but the analysis clearly extends to any diagonalizable spatial operator L { not just the Laplacian. The same is true also for the discretization scheme used { a nite elements scheme analysis can be done completely analogously (see [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.7]). Some of the above can be generalized to s-stage IRK methods but due to the space restrictions these results will be presented in an upcoming manuscript. We would also like to mention that both in [START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] and [START_REF] Southworth | Fast solution of fully implicit Runge{Kutta and discontinuous Galerkin in time for numerical PDEs, Part I: The linear setting[END_REF], the authors multiplied M with A -1 ⊗I n from the left. The analysis above for this case is analogous and reveals that for some preconditioners we obtain much better properties and for others the performance deteriorates. This is naturally very dependent on the choice of A as well; for more details see [START_REF] Outrata | Schwarz methods, Schur complements, preconditioning and numerical linear algebra[END_REF]Section 7.6].

Figure 1 :

 1 Figure 1: Left: grid points for N + 1 = 4; right: lexicographical ordering of the unknowns for N + 1 = 4.

  (iv-b) If c 12 = 0, c 21 = 0 and c 11 = c 22 , then C is diagonalizable with real eigenvalues c 11 , c 22 and eigenvectors v 1 , e 2 , and the formula from (iii) simplies to κ(V ) = ṽ1 +1 ṽ1 -1 , where v 2 is the vector with non-zero entries from (ii-b).

Figure 2 :

 2 Figure2: We show the GMRES performance together with the evaluated bound[START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] for dierent preconditioners and Butcher tableaus. We set N = 100, τ = h 2/p (p is the order of convergence of the IRK method; p Gauss = 4, p RadauIIA = 3, p LobattoIIIC = 2) and use a random right-hand side.

Figure 3 :

 3 Figure3: We show the GMRES performance together with the evaluated bound[START_REF] Neytcheva | Numerical Solution Methods for Implicit Runge-Kutta Methods of Arbitrarily High Order[END_REF] for dierent preconditioners and Butcher tableaus. We set N = 100, τ = h 2/p (p is the order of convergence of the IRK method; p Gauss = 4, p RadauIIA = 3, p LobattoIIIC = 2) and use a random right-hand side.

Figure 4

 4 Figure4: GMRES convergence (and bounds) for block preconditioners P d (left column), P GSL , P l (middle column) and P GSU , P u (right column) for the two stage RadauIIA Butcher tableau (lled markers, same results as in Figure2 and 3) and also the optimized setting considered above (halflled markers). In the second row the optimization process changes only the matrix à used to

  Figure 5

  1, ξ GSU,u det(A) + |θ|(a 11 + a 22 ) + 1 |θ| 2 a 11 a 22 + |θ|(a 11 + a 22 ) + 1 , ξ u k = |θ| 2 det(A) + |θ|(a 11 + a 22 ) + 1 |θ| 2 det(A) + |θ|(a 11 + a 22 -a 21 a 12 a 11 ) + 1 .

			k	n k=1	with
	ξ GSU k	=	|θ| 2

  a 22 | , and |β u | = |a 12 /a 11 | |θ k | det(A) a 11 + a 11 . |θ| 2 a 12 a 21 |θ| 2 a 11 a 22 + |θ|(a 11 + a 22 ) + 1 , |θ|a 12 a 21 /a 11 |θ| 2 det(A) + |θ|(a 11 + a 22 -a 21 a 12 a 11 ) + 1 , and assuming a 11 , a 22 ≥ 0, elementary calculus reveals that the cluster diameter for P GSU is bounded from above by |a 12 a 21 /(a 11 a 22 )| { the limit as |θ k | → +∞. For P u analogous calculations show that the cluster diameter is maximized at |θ

	Further calculations give	
	|ξ GSU k	-1| =
	|ξ u k -1| =
		|ξ u k -1| ≤	a 21 a 12 11 + det(A) + 2a 11 a 2 √ det(A)

k | = det(A) -1/2 (assuming det(A) ∈ (|θ n |, |θ 1 |))

with the value

We assumed at the beginning of the section that the inverse ( P d ) -1 exists and hence the denominator of φ is non-zero. Hence |φ(α)| is a smooth function.

In[START_REF] Faber | On Chebyshev polynomials of matrices[END_REF], the authors call these the Chebyshev polynomials of the given matrix { of X d in this case.

We can see this already in (25) since in the limits considered we get ξ GSU,u k = 1 thus obtaining a 2-by-2 Jordan block.

The clustering point is for all of our preconditioners naturally equal to 1.

Notice that in practice the solve accuracy also needs to be balanced with the discretization errors, hence even ve iterations to obtain a relative residual smaller than machine precision might eb considered a direct solver (i.e., converging after one or two steps) in some applications.

In fact for that particular setting the optimization routine sets o in a direction of inadmissible A (singular) and does not nd it's way back. Fine tuning the parameters of the optimization routine does, however, x this issue.
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