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ABSTRACT

-Objective: this paper presents an innovative graphical user interface to visualize the attitude of a
sensing device in a three-dimensional space, serving a wide-range of medical applications.
-Material and methods: based on inertial measurement units (IMU) or on magnetic, angular rate and
gravity (MARG) sensors, a processing unit provides Euler angles using a sensor fusion technique to
display the orientation of the device relative to the Earth frame in real-time. The device is schematized
by linking six polygonal regions, and is subject to sequential rotations by updating the graph each 350
ms. We conduct comparative studies between the two sensing devices, i.e. IMUs and MARGS, as well
as two orientation filters, namely Madgwick’s algorithm and Mahony’s algorithm.

-Results: the accuracy of the system is reported as a function of (i) the sampling frequency, (ii) the
sensing unit, and (iii) the orientation filter, following two elderly care applications, namely fall risk
assessment and body posture monitoring. The experiments are conducted using public datasets. The
corresponding results show that Madgwick’s algorithm is best suited for low sampling rates, whereas
MARG sensors are best suited for the detection of postural transitions.

-Conclusion: this paper addresses the different aspects and discusses the limitations of attitude

estimation systems, which are important tools to help clinicians in their diagnosis.

1. Introduction

In the past decades, minimized electronic sensors have
been known for their low price, and their widespread use in
the healthcare domain [8]. The integration of these sensors
in wearable devices or smartphones has been shown to be
reliable for many monitoring systems and healthcare appli-
cations [13]. In the literature, Hwang et al. have proposed
a hierarchical deep learning model to recognize human
activities [10]. They adopted a fusion technique using some
physiological sensors such as photoplethysmography and
electrodermal activity as well as inertial sensors like an
accelerometer. Sevil et al. [20] have inspected wristband
data including acceleration and other physiological measure-
ments to detect physical activity and characterize physiolog-
ical stress. Tri-axial accelerometry using smartphones was
also investigated to monitor obstructive sleep apnea at home
[7]. Han et al. [9] developed a wearable sensing solution for
forward head posture monitoring. The system is based on
a tri-axial magnetometer paired with a miniature permanent
magnet, and fused with an accelerometer. Now, sensor fusion
techniques have been developed to estimate the attitude
of sensing devices [17]. In other words, the orientation
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of the device relative to the Earth frame is measured by
merging data acquired from a tri-axial accelerometer and
a tri-axial gyroscope, or from these two sensors and a tri-
axial magnetometer, thus forming an attitude and heading
reference system (AHRS). These approaches are useful for
human motion tracking [21], which is the base of several
medical solutions. Two types of accelerometers exist. The
first one concerns capacitive accelerometers, also known
as micro-electro-mechanical systems (MEMS). These ac-
celerometers depend on a change in electrical capacitance
to measure acceleration. The second type refers to piezo-
electric accelerometer, which is made of a quartz crystal. A
force acting on the piezoelectric element is produced when
the accelerometer is moving. A charge output, generated
from these vibrations, is proportional to the applied force
and is used to measure acceleration. The first type has the
advantage of measuring the static acceleration caused by
the gravity. This measurement is important for orientation
estimation techniques. This justifies why MEMS sensors are
preferred for this task.

Given these aforementioned elements, we proposed in
a previous work [2] a graphical user interface (GUI) to
visualize the attitude of a sensing unit in real-time (called
D-SORM). Once fed by acquired data, particularly acceler-
ation, angular velocity, and magnetic fields, the processing
units estimate the orientation of the device relative to Earth
frame. This orientation can be visualized by plotting the
sensor in a 3-dimensional coordinate system, and by rotating
the vertices and the faces of the plot to update the graph
periodically. The present paper extends the previous work
in different aspects, particularly in terms of input signals,
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3D Visualization of Device Attitude

orientation filters (i.e. sensor-fusion technique), and sam-
pling frequency. A new module is added, where the subject
can select the type of sensing unit (acquired data) together
with the orientation filter. Firstly, the orientation can now
be estimated before and after adding a magnetometer to the
input source, thus inspecting the value of magnetic fields
in this context. Secondly, the performances of two widely
used orientation filters are evaluated and compared. Exam-
ining the way of estimating the device attitude is important
to increase the reliability of the system and decrease the
required computational load if possible. Thirdly, the effect
of the sampling frequency on the accuracy is also studied in
this paper. Finally, some drawbacks and limitations related
to orientation estimation systems, as well as some practical
considerations are discussed.

Analyzing medical reports and questioning patients are not
always sufficient to accurately check their health. Clinicians
may need to visualize the orientation of wearable devices
to assess the movements of their patients (or a certain event
like a fall) and/or to restore them to normal behavior. The
proposed tool answers these questions.

The remainder of the paper is organized as follows.
Section 2 discusses the principle of orientation estimation
algorithms and describes the functionalities and the char-
acteristics of the interface. Some real world examples are
given in section 3 allowing comparative studies, including
the type of the sensing unit, the input data, as well as the
orientation filter and the effect of the sampling frequency on
the accuracy of the system. Finally, section 4 addresses some
limitations and practical considerations, whereas section 5
concludes the paper.

2. Real-time Orientation Display via GUI

2.1. Principle of Attitude Estimation

The orientation estimation of a device with respect to
an inertial frame or reference is done using sensor fusion
techniques. Reading multimodal data from different sources
gives valuable information to understand and symbolize the
motion of the sensing device. Inertial measurement units
(IMUs), which consist of an accelerometer and a gyroscope,
are able to monitor translational and rotational motions. On
the other hand, magnetic, angular rate and gravity (MARG)
devices include a third sensor, namely a magnetometer. This
type of sensing unit has the advantage of measuring the
attitude relative to the Earth magnetic field, which could be
an added-value to an AHRS and thus increases its precision.
The choice of the sensing device depends on the require-
ments of the developed system. An IMU might be sufficient
for some applications. In this paper, both devices IMU and
MARG) are investigated in the next sections.

Figure 1 illustrates a sensing device (IMU or MARG),
with its corresponding coordinate system (sensor frame) in
black, and in the Earth frame E in red. The goal is to estimate
the orientation of the sensor frame S relative to E. This
orientation is represented by Euler angles [14], defined by
subsequent rotations of ¢ around Ey, 6 around Ey, and y

Figure 1: A sensing device, with its corresponding frame (S)
and the Earth frame (E).

around E ~. Hence, data acquired from inertial sensors are
processed to estimate the sequence of Euler angles, using
Kalman filters [6], gradient descent step [11], quaternion
representation [5]... To our knowledge, the two widely used
orientation filters is the one proposed by Mahony et al. [16]
and by Madgwick et al. [15]. The effectiveness of these
algorithms has been proven at relatively low computational
cost. Moreover, they both have low latency with a response
time less than 300 ms [2]. This fast response ensures a
higher frame rate and therefore a smoother 3D visualization
(detailed in section 2.2). It is worth noting that the output
of these algorithms are three time-series, having the same
sampling rate of the deployed modalities, representing the
progression of Euler angles over time. The performance of
both algorithms is considered in the next sections of this

paper.

2.2. Visualization in a 3D Space

A graphical user interface (GUI) tool was developed on
Matlab to display the orientation of a sensing device based
on its acquired data. The sensing device in Figure 1 is sym-
bolized by plotting three pairs of polygonal regions using
the patch function by initializing the coordinates of each
vertex. The vertices are connected in a specified order so that
each of these six regions represents one face of this device.
Afterwards, each region is colored using hexadecimal codes
for RGB. For instance, the color of the frontal zone is set to
grey (c;), and that of the backward zone to white (¢,), while
the remaining faces are colored in dark blue (c3). Moreover,
the six regions are labeled using the following letters: ‘U’
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Figure 2: Two different views of the plotted sensing device in a
three-dimensional space, and its corresponding labels in yellow.

which stands for up, ‘D’ for down, ‘L’ for left, ‘R’ for right,
‘F’ for front, and ‘B’ for back. The color of these letters is set
to yellow. Figure 2 illustrates the plotted device in a three-
dimensional space. This is the initial position of the device,
i.e. at the beginning of the algorithm (¢ = 0).

Now, the Euler angles are updated after the acquisition of
each data-point from the inertial sensors. The orientation fil-
ter reads data from sensors, processes them, and fuses them
to estimate the angles. Each 350 ms, the graph is updated by
rotating the simulated device and the corresponding labels,
according to the output of the filter. This frame rate, i.e. the
frequency at which consecutive images appear on a display,
seems adequate for the human eye. This update is done by
pivoting the centroids of the device faces (localized using the
coordinates of any two opposite vertices) around the axes,
using the estimated Euler angles [2]: 8 around the x-axis, ¢
around the y-axis, and y around the z-axis.

Two modes can be considered. The real-time mode,
where data are sent continuously to a remote server using
a Bluetooth dongle (if the wearable sensor includes a Blue-
tooth module) or via internet (wifi) for example. The second
one is the replay mode, where data have been acquired
beforehand. Two modules are added to this tool. Explicitly,
the type of the sensing device (IMU or MARG) as well as the
orientation filter (Mahony et al. [16] or Madgwick et al. [15])
are chosen before launching the algorithm. When a MARG
sensor is chosen, the magnetic distortion compensation unit
is activated automatically to process magnetic fields. This

manipulation increases the flexibility of the proposed sys-
tem.

3. The Aspects of Orientation Estimation
Systems via Real World Applications

The proposed tool, i.e. orientation estimation and vi-
sualization of the sensing device, serves a wide-range of
healthcare applications. In a previous work [2], a machine-
learning based human activity recognition architecture was
developed to inspect the orientation of the wearable sensor
and predict the performed activity. The output classes were
transient activities like sitting-down/standing and lying-
down/rising-up, cyclic activities like walking and climb-
ing/descending stairs, staying still (inactivity) and falling.
In this section, two medical applications are considered,
namely fall assessment and body posture monitoring. The
first one characterizes the fall incident when it occurs. The
second one detects the body posture when the subject is
inactive (staying still), particularly sitting, standing, and
lying. We also conduct comparative studies involving Ma-
hony’s filter vs Madgwick’s filter, the effect of the sampling
frequency F; on the accuracy, and IMU vs MARG.

3.1. Fall risk assessment

Falls are one of the main causes of mortality in elderly.
While most of the proposed solutions target fall detection,
the clinician may need to evaluate this fall by observing the
successive movements of the wearable device during this
fall. The initial state of the human body (standing, sitting,
lying, walking, etc.) which precedes the fall, the velocity of
the impact, and the direction of the fall (forward, backward,
lateral) are important factors from a medical point of view.
The proposed tool answers all these questions and provides
an added-value for the practitioner. Now, we address the
real world situation, resorting to the FallAIID public dataset
[19]. This dataset contains data acquired from tri-axial ac-
celerometers, tri-axial gyroscopes, and tri-axial magnetome-
ters, including human falls. The subjects wore a necklace
device while simulating falls and ADLs. As indicated by its
name (Fall in All Directions), this dataset consists of a wide-
range of falls in different directions starting with different
postures (standing, sitting, lying). In this section, the ability
of detecting the direction of falls (forward, backward, lat-
eral) is investigated using machine learning models (tri-class
classification), while conducting two comparative studies,
namely (i) Madgwick’s algorithm vs Mahony’s algorithm
(orientation filters) and IMU vs MARG (sensing unit).
Madgwick’s filter vs Mahony’s filter - Both algorithms
were tested to calculate Quaternions then Euler angles. For
reasons of clarity, only necklace IMUs (accelerometer +
gyroscope) are considered in this section. Falls were se-
lected from FallAlIID then segmented using seven different
6-second windows: the one centered on the peak (impact)
and six others shifted by +£250 ms, +£500 ms, and +750 ms. It
is worth mentioning that the choice of 6-second windows is
based on previous studies [1, 2], where this length appeared
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Figure 3: The effect of the sampling frequency F, on the
accuracy of the machine learning classifier following both
orientation filters (Madgwick’s filter and Mahony's filter).

to be suitable for human movements identification and track-
ing. This segmentation is important to reflect the behavior
of the machine learning classifier in real world situations.
The model should be trained over different positions seeing
that the sliding window is not controlled in real-time. The
previous operations resulted in 3325 samples (time-series).
Each time-series representing an angle (¢, 6, y) is divided
into three equal sub-segments of 2 s, and the mean value
of each sub-segment is calculated, resulting in 9 features in
total. Moreover, the correlation between each pair of angles
is calculated as the ratio of the covariance to the product of
the standard deviations, resulting in 3 features. Explicitly,
the correlation { between two angles «; and aj is equal to:

cov(ay, ay)

Slay,ap) = ————= 1

aalaaz

The previous operations of feature extraction result in a
feature vector of length 12 (9+3 features). Hence, the final
dataset is a 3325 x 12 matrix, where each row represents a
feature vector of a certain fall, and each column represents an
element of the feature vector. Each fall is labeled according
to its direction, i.e. forward falls are labeled as C;, backward
falls as C,, and lateral falls as C;.

Three machine learning models were applied using re-
peated 10-fold cross validation (number of repeats is equal to
3), namely k-Nearest Neighbor (KNN) with k = 5, Random
Forest (RF) with 50 estimators and a depth equal to 5, and
Gradient Boosting Machine (GBM) with 100 estimators, a
depth equal to 5, and a learning rate of 0.1. The acceleration
and angular velocity signals were down-sampled to test the
effect of the sampling frequency F; on the accuracy of
the model. GBM and RF achieved similar results, with the
former being the better performer, while KNN achieved
relatively lower results. For readibility purposes, Figure
3 illustrates the corresponding results for both GBM and
KNN. It is obvious that the accuracy of both classifiers

is somewhat saturated when Euler angles are computed
using Madgwick’s filter. Globally, Madgwick’s algorithm
outperforms slightly that of Mahony for low F,. Meanwhile,
the latter achieves moderately better results for higher F, (>
60 Hz). Mahony’s orientation filter requires higher sampling
rate compared to that of Madgwick, which might increase
the computational load and thus the power consumption of
the system. The choice of orientation filter depends on the
application, whether it requires a high sampling rate or not.
Figure 4 illustrates the precision and recall for each class
(i.e. fall direction) using the 1-vs-all strategy, based on the
results of the GBM. This tri-class classification is highly
sensitive to forward falls (highest recall value of 97.28%).
Meanwhile, it is more precise when it comes to backward and
lateral falls (precision of 96.94% and 96.51% respectively).
Basically, backward falls generate the least amount of false
detection.
Sensing Unit: IMU vs MARG - The focus is now on
the comparison between both sensing units, i.e. IMU (ac-
celerometer + gyroscope) and MARG (accelerometer +
gyroscope + magnetometer). For reasons of clarity, Madg-
wick’s algorithm is used as orientation filter with F, being
fixed to 60 Hz. This choice was based on the aforementioned
results (see Figure 3) and on Madgwick’s internal report
[14], where it was demonstrated that a sampling rate higher
than 50 Hz ensures a high level of performance. Figure 5
illustrates the time-series of the estimated Euler angles from
both sensing units, representing a fall forward from walking
caused by syncope (fainting) without recovery. It is clear
from this figure that the subject was walking during the first
8 seconds, where the MARG sensor shows that ¢ ~ 0°,
0 ~ —90°, and y = 0° (the subject was standing). This phase
is called pre-impact phase. Afterwards, the impact phase was
located between the 8™ and 12t seconds (the shock is around
the 10" second), where a change in angles occurred. The
subject was lying on the floor (inactive) for the remaining 8
seconds. A video has been created to display the orientation
of the device during this fall, using both estimations (see
Appendix).

98 T
Il Precision
IlRecall

Accuracy (%)
© © © ©
) (3] [=2] ~

o\\8

Forward Backward Lateral

Figure 4: The outcome of the tri-class classification of GBM
per fall direction in terms of recall and precision using 1-vs-all
strategy.
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Table 1
Comparative study between both sensing units, namely IMU
and MARG

Phase Angle | IMU | MARG
Variability° | Pre-impact AllT 18.12 8.22
Filtering* Impact v 55.36 0.93
Correlation All* (w, 0) | 093 0.63
Variability° | Post-impact AllT 1.2 0.6
Slope Post-impact v -3°/s | 0.39°/s

" mean value of the results from each angle
* the whole window

* the variance of the filtered signal

° the standard deviation of the signal

The variability of the IMU estimation is higher while the
subject was walking, even though the three angles are not
changing during this phase. When it comes to MARG, the
orientation estimation is smoother. Moreover, concerning
the angle y, a certain phenomenon appears in the IMU
estimation. A sudden change from —180° to 180° occurs
between the 9" and 10" seconds (when the body was on
the verge of hitting the floor), due to the effect of the
angular velocity. From 3D visualization point of view (see
video), there is no rotation around this axis. This means that
the device kept the same inclination. Now, from a signal
point of view, this switch from —180° to 180° means that
a certain rotation occurred around the z-axis. In this case,
by using filtering methods or correlation for example, a

0s 4s 8s 12s 16s 20s

50
7]
g ¢ ’
o —0
8 .50 _0IMU
MARG
100 - _IL =& L ! J
0s 4s 8s 12s 16s 20s
200
7]
)
o
g, 0
(a] —wlMU
—¥mare
=200 - 1 L L - J
0s 4s 8s 12s 16s 20s

Figure 5: The estimation of Euler angles using (i) IMU and (ii)
MARG sensors using Madgwick's algorithm.

certain deviation would be detected, since the signal level
changed (see blue signal in Figure 5). Additionally, the angle
y estimated from IMU is decreasing during the post-impact
phase, even though the subject is inactive after the fall.
All the aforementioned remarks may lead to biased results
when it comes to the estimation of fall direction and the
final body state (after the impact on the ground). Although
these phenomena may not be visible in the visualization
process (as displayed in the video), they have their effects on
the processing units and the detection modules. To quantify
these observations, we calculated the variability of the pre-
impact phase (standard deviation of the signal) when the
subject is moving, and that of the post-impact phase when
he is inactive, the variance of the impact phase after being
subject to a high-pass filter, the correlation between two
pairs of angles, and the slope of the curve of angle y during
the post-impact phase. Table 1 illustrates the corresponding
results. The variability of IMU is considerably higher when
the subject is moving, but is close to that of MARG during
inactivity periods. Ideally, this parameter should be small
when the body trunk is moving without changing its posture,
and equal to O when the subject is inactive. The phenomenon
of angle y is visible in the variance of the filtered signal (2"
row of Table 1) and the correlation between y and 8 (3" row
of Table 1). A considerably high value of 55.36 indicates
that high frequencies were detected in the signal. Hence,
if the postural transitions detection algorithm is based on
filtering methods, its reliability will be affected. Besides,
while using IMU, y and 6 are correlated (with a value
of 0.93). This is not the case when the estimation is done
using MARG. Indeed, the simulated fall involved a rotation
around the y-axis (angle 0), whereas the z-axis kept the same
orientation before and after the shock. Therefore, both angles
0 and y should not be correlated. Finally, the slope of IMU
(when it comes to y) is relatively higher compared to that of
MARG, which is close to 0. Consequently, and based on the
previous observations, MARG sensors may be preferred for
postural transitions and recurrent movements (like walking),
since they involve higher degrees of freedom, thus having
an advantage over IMUs by providing robust orientation
estimation.

3.2. Body posture monitoring

Another medical application is the distribution of the
body posture over the course of a day. In other words, the
idea is to detect the periods when the subject is sitting,
standing, and lying. This information is valuable for health
monitoring and frailty prevention in elderly care. Hence,
we resorted to another public dataset [4], available in the
UCI Machine Learning Repository [18]. The subjects have
worn the smartphone on the waist and simulated six different
activities. This dataset was built using an accelerometer and
a gyroscope. Hence, the considered sensing unit in this sub-
section was IMU since a magnetometer was not included.
As seen in the previous subsection, IMUs are sufficient for
this application since the estimation of the body posture is
done while the subject is being sedentary. As mentioned
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previously, this task is a tri-class classification, where the
targeted classes were (i) Sitting (C), (ii) Standing (C,), and
(iii) Lying (C;). Euler angles were estimated from 2.56-
second windows (provided by the authors of this dataset).
Three features were calculated, namely the mean values of ¢,
0, and y. Figure 6 illustrates the distribution of these posture
classes following the three extracted features.

Madgwick’s filter vs Mahony’s filter - The choice of the
sensing unit being fixed, both filters are now investigated
for this task. Firstly, and based on a simple observation, it
is clear that the third class (lying) was well separated from
the other two classes. However, a significant intersection
exists between Sitting and Standing clusters. Now, to predict
the posture of the human body, the mean values (feature
vectors of length three) fed a set of machine learning (ML)
classifiers. These classifiers were the following ones: (a)
Neural Network (NN) with 2 hidden layers of 8 and 2
neurons respectively, and ‘ReLLU’ as activation function; (b)
Support Vector Machine with a radial basis function kernel
(SVMp); (c) Random Forest (RF) with 20 estimators of
depth equal to 2; (d) Adaboost (Ada) with 100 estimators;
(e) Naive Bayes (NB) with a Gaussian Distribution; (f)
Linear Discriminant Analysis (LDA). Table 2 illustrates
the different results. Both orientation filters provided close
results in terms of performance, except for NN and Ada. NN
achieved the highest accuracy (equal to 89.6%)and Figure 7
illustrates the corresponding confusion matrix. The confu-
sion occurred between Sitting and Standing, where 20.77%
of windows representing Sitting (C;) were misclassified as
Standing (C,) whereas 11.27% of C, were misclassified as
C,. The waist position alone does not seem to be sufficient
for this task. Another position and/or additional features are
required to increase the achieved accuracy. As seen in Table
2, Madgwick’s algorithm had the upper edge when it comes
to predicting the body posture with F, =50 Hz. These results
are coherent with the previous sections, where it was seen
that Mahony’s filter requires a relatively higher sampling
rate.

i - Sitting

r |
‘4, + Standing
4 b of Lying

-100

Figure 6: The distribution of body postures following the mean
values of Euler angles.

Table 2
The achieved accuracy of each ML classifier when it comes to
the detection of body posture

Machine Learning Classifier
NN | SVM, RF Ada NB LDA
Madgwick | 89.6 87.8 87 88.2 | 88.7 | 87.2
Mahony 38 87.2 87.4 | 84.7 | 879 | 87.8

Sitting

Standing

Lying

Standing '

Sitting Lying
Figure 7: The confusion matrix resulting from tri-class classi-
fication using NN. The columns and rows represent the actual
classes and the output of the classifier respectively.

4. Drawbacks and Practical Considerations

In this section, we discuss some artifacts and limita-
tions related to an attitude estimation system. We have seen
in section 3 that MARG sensors are preferred to IMUs
when it comes to postural transitions estimation. Now, elec-
tronic devices, ferrous materials, and some other mechanical
and electrical infrastructures are sources of magnetic fields.
These artificial fields contaminate the Earth’s magnetic field
measurements and decrease the reliability of sensor fusion
techniques in heavily disturbed areas like indoor environ-
ments [3]. Hence, the indoor performance of MARG sensors
could be limited. Figure 8 illustrates this phenomenon. The
Euler angles are estimated using a MARG sensing unit,
which was approached close to an electronic device during
phases P1 and P2. It is clear that time-series are noisy during
both phases, verifying the aforementioned drawbacks.

The use of a gyroscope is required for the attitude estimation,
whether the system is based on an IMU or a MARG sensor.
However, its power consumption is very high compared to
that of the accelerometer [12], which reduces the battery
life and the autonomy of the sensing device. This could
affect the acceptability of the system, especially when the
targeted population is elderly, seeing that the device needs
to be recharged frequently.

High sampling rates increase the computational load of
attitude estimation systems. The general tendency is to lower
it in order to reduce the complexity. However, very low
rates may not be able to capture certain movements, thus
not sufficient for certain applications. Therefore, the trade-
off between accuracy and complexity should be considered
when developing such approaches. It is worth mentioning
that a sampling rate of 50 Hz leads to satisfactory perfor-
mance [14].
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Figure 8: The estimation of Euler angles using a MARG sensor which was placed close to an electronic device during phases P1

and P2.

5. Conclusion

This paper discussed the attitude estimation of inertial
sensors. Based on widely used orientation filters, a GUI tool
has been developed to visualize the orientation of a rigid
body (a sensing device) in a three-dimensional space. The
previous study was enriched by discussing two new modules,
i.e. the option to choose between (1) IMU and MARG as the
input device and (2) Madgwick’s algorithm and Mahony’s
algorithm as an orientation filter. This paper addressed the
different aspects of attitude estimation systems. It was shown
that Madgwick’s algorithm is better suited for low sampling
rate F,, whereas Mahony’s filter achieves better result for
higher rates. Moreover, MARG sensors are preferred to
IMUs when it comes to the detection of postural transitions,
since the latter might induce high variability when the sub-
ject is moving and could produce fast transitions in time-
series representing Euler angles which affects the processing
units and leads to biased results.

In a future work, modeling the part of the human body
where the device is worn in the 3D space should be targeted
instead of a simple parallelepiped representing the device,
since the orientation of the human body itself is more mean-
ingful for the medical staff. The acceptability of the proposed
system will also be investigated.

Appendix

The video can be found on Google drive: https://drive.
google.com/file/d/1KqL@oahTCC4 jkoFWQAX7E5LWKXDNVQIJ/view.
Its goal is to display the simulated fall with both MARG
estimation (on the left) and IMU estimation (on the right),
using Madgwick’s algorithm. Note that the user can select
the sensing unit as well as the orientation filter before
launching the 3D visualization.
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