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A B S T R A C T   

Medical information processing is a staple of modern medicine with its increasing focus on the collection of 
numeric medical data such as questionnaires, biophysiological signals, and medical images. Although these 
modalities have long existed and guided medical practice, the movement towards using algorithms to transform, 
curate, summarise, and otherwise interact with this data is relatively new. Novel algorithms now form the 
interface between clinical users and data, extracting information that would otherwise be inaccessible or 
cumbersome. Recently, machine learning has expanded the capacities of these algorithms, using a priori acquired 
(and often annotated) datasets to learn a complex computational task. Validation of these techniques is inher
ently important for determining their safety and efficacy in a particular clinical context. However, methodo
logical considerations such as the definition of reference data and validation procedures can obscure validation 
issues such as inaccurate reporting, a lack of standardisation, and a variety of biases. The purpose of this paper is 
to develop a framework for understanding medical information processing algorithms with a focus on validation 
that is adapted for machine learning approaches as well as traditional ones. This framework is instantiated in two 
example literature reviews which serve as the starting point for a discussion on how validation can be improved 
cognisant of machine learning.   

1. Introduction 

Validation is undeniably critical to the use of medical data processing 
algorithms both in research and in clinic. For the latter, various levels of 
validation are not only desirable, but are mandated through regulatory 
bodies in order to ensure patient safety and treatment efficacy [25,27, 
76]. Although medical information/image processing/computing (MIC) 
algorithms were formerly more reliant on human interpretation of a 
small number of modalities (e.g. recording observations about the pa
tient’s symptoms, visual examination of x-ray images, or auditory ex
amination using a stethoscope), there is a growing number of new 
modalities (smartphone cameras, gyroscopes, etc …) and representa
tions derived from existing modalities (i.e. data processing) that assist 
medical decision making [61]. Furthermore, the rise of machine 
learning algorithms in computer vision has provided medical signal and 
image processing research in particular with a large number of new and 
highly performant tools which have yet to be fully integrated into the 
conceptual framework of MIC algorithm validation which has been 

developed with traditional algorithms in mind [76]. 
There has been an effort in the community towards standardised 

tools, allowing for a higher degree of reproducibility owing to the use of 
dedicated software libraries such as ITK [44], MeVisLab [21], and Slicer 
[29,31]. These tools make the reproduction of methods easier (given the 
underlying code) by delivering a software environment that is 
higher-level and more independent of the exact computational infra
structure. However, the ability to reproduce a paper’s code exactly does 
not necessarily mean that the method itself is reproducible, especially 
given the diverse array of validation procedures and techniques used in 
the literature. This is critical as scientific growth and clinical utility rely 
on independent reproduction, which implies that at least some elements 
of the validation process, not only the data used, have been changed 
while still getting the predicted results. Especially with algorithms 
relying on trained models, a researcher reproducing a method from the 
literature might be unsure if a deviation from the reported results comes 
from a possible error in its re-implementation, a critical difference in 
clinical context, or simply a difference of validation. Many aspects of 
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image pre-processing in particular go largely unnoted even when they 
can have a large effect on the result. For example, many papers that use 
machine learning to analyse CT images neglect to give the parameters of 
the kernel used in their reconstruction, which can sometimes result in 
differences on the same order of magnitude as what they see between 
modern state-of-the-art methods [7]. 

There are a number of immediate pitfalls one must overcome in any 
review covering a topic as essential as validation in an area as broad as 
MIC itself. The first is that many of the techniques used come from a 
wide variety of fields: software engineering and computer science, 
computational statistics and machine learning, psychology and psy
chometrics, etc…For example, the word validation in software engi
neering means assessing whether or not a particular system fulfils the 
purpose to which it was intended and is contrasted with terms such as 
verification [79]. In machine learning, on the other hand, validation 
means assessing how performant a system is on previously unseen data [75]. 
Even within an individual discipline, particular words can take on a 
variety of meanings. In machine learning, validation data sometimes 
means the unseen data mentioned above, but in other contexts may 
mean a particular fraction of the whole dataset that is used to determine 
hyper-parameters, making it conceptually similar to ‘Training’ data. 
Thus, any framework concerning validation must clearly define terms 
and remove as much ambiguity as possible. 

For the purposes of this paper, we will be focusing on validation as 
the process of determining whether or not a system fulfils its intended 
clinical purpose as opposed to whether or not it is correctly imple
mented. We do so in a constructive manner, emphasising the main steps 
used in the construction and validation of MIC algorithms as outlined in 
Fig. 1 This model is both an extension and a distillation of the earlier 
approach taken by Jannin et al. [26] and the checklist proposed by 
Maier-Hein et al. [41] adapted for the nuances arising from new ma
chine learning approaches while showing commonalities with tradi
tional approaches. This paper is constructed as follows.  

● We will propose a framework for describing the general process of 
validating a MIC algorithm including the flow of both data and de
cisions. This allows us to identify common features of validation 
procedures across a wide range of contexts and develop a quasi- 
exhaustive list of validation details that should be reported in any 
given study.  

● We will apply this framework to a literature review of machine 
learning algorithms in cortical point localisation for transcranial 
magnetic stimulation and for subthalamic nucleus segmentation for 
deep brain stimulation in order to draw conclusions about how 
validation is performed in these particular sub-fields, analysing 

common correctable mistakes that lead to large biases in the vali
dation results.  

● Lastly, we will use this knowledge of common issues, as well as our 
framework to produce concrete, high-level recommendations for 
improving MIC algorithm validation. 

The intent is to motivate the research community to build awareness and 
encourage more robust validation procedures. The benefit of this is two- 
fold: it may smooth the transition of their research into clinical use and it 
may also improve our capability as a community to draw conclusions 
about novel methods across a variety of published results. This is 
because it allows us to better find papers that are comparable not only in 
terms of technical details, but also validation details that can also 
strongly affect quantitative results. 

2. Framework for the validation of MIC algorithms 

The overall structure of our framework is presented in Fig. 1 with its 
specific terms defined in Table 1, which is designed to mimick the 
process of performing an idealised experiment in validating a MIC al
gorithm and can, at a high-level, be read in a left-to-right movement. In 
practice, this is often not equivalent to the order in which the precise 
computational steps are performed, but can be thought of more as a type 
of loose dependency. This diagram is designed more to handle the se
mantic dependencies between different decisions and processes which 
should be considered prior to actually performing validation and should 
be reported in any resulting publications. Symbols have been given to 
each of the components to allow for a readily-used short-hand. 

Boxes in this image represent a collection of decisions to be made or 
information to be reported that describe and structure the validation 
procedure with arrows indicating dependency with the variables in one 
box relying on knowledge of the other. Naturally, some of these aspects 
may be unnecessary for certain algorithms or validation procedures (e.g. 
if only a single model is ever evaluated, there is no need for to perform 
aggregation or selection to extract a resultant model) but this is for the 
sake of creating a sufficiently general framework to capture the essence 
of different validation procedures across technical methodologies and 
clinical contexts. 

As such, this model is an extension of the one created by Jannin et al. 
[26] which maintains a similar flow structure which they used later in 
an image-guided interventions specific context [27]. However, this 
paper extends outside of their scope, allowing for emerging technical 
methods (such as machine learning) to be readily expressed for a broad 
range of applications and integrated with more traditional methods. For 
each part of the framework, an example will be given from 

Fig. 1. The main components of the validation procedure for MIC algorithms in terms of the decisions made and their dependencies.  
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ultrasound-guided, MRI-planned prostate cancer needle biopsy 
involving image registration [69]. 

2.1. Clinical context 

The first aspect of validation is to elucidate the context and condi
tions in which it takes place, considering it both from the point of view of 
the clinical workflow and also the available data (see Fig. 2). This can be 
understood as the first half of the assessment phase suggested by Jannin 
et al. [27] in which the underlying clinical problem and resources are 
elucidated. 

The clinical context is the particular workflow into which this MIC 
algorithm is to be integrated as well as what role the algorithm is to 
have. Often, clinical systems are not composed of a single data pro
cessing step, but rather a number of interacting components each with a 

particular goal and particular pre-conditions. The goal of stating the 
clinical context in a clear manner is to elucidate considerations and in
formation for later decisions, ensuring that clinical utility is always kept 
in mind. Medical imaging systems are becoming increasingly modular, 
so it is therefore of increasing importance that the individual parts can 
be validated separately without losing sight of how they interact with 
others. In order to clarify the context for the particular MIC algorithm, it 
is important to clearly state. 

● C, the broad clinical context (e.g. pathology being considered, clin
ical workflow, type of intervention …);  

● LA, the level of assessment which describes in the most general terms 
the type of validation being performed;  

● LI, the level of interaction between the clinical user and the algorithm;  
● TH, the human tasks being performed by the clinician that most 

immediately contains the image processing algorithm under 
consideration; 

● TI, the interaction tasks performed by the clinician solely to commu
nicate information to the algorithm, as well as what mechanisms are 
provided for said tasks; and 

● TA, the specific algorithmic tasks being performed by the image pro
cessing algorithm (i.e. segmentation, registration, fusion, etc …). 

(An example of an instantiation of these variables is given in 
Table 2.) 

Outside of the general clinical context of the algorithm, it is impor
tant to have a high-level representation of the context of the validation 
procedure, that is, the level of assessment, LA, being performed. Fryback & 
Thornbury [14] described a series of LA’s (later expanded upon by 
Jannin et al. [26]) which can be interpreted as a spectrum from the 
technical to the societal. 

Table 1 
Summary of validation characteristics to be reported and corresponding 
symbols.   

Brief Description 

Clinical Context 
C The general context around the medical procedure being considered 
LA The level of assessment 
LI The level of interaction 
TH The task being performed by the clinician using the algorithm 
TI The information provided by the clinician for the algorithm 
TA The specific task of the algorithm 
Clinical Data 
PP The patient distribution being used, common features, gender, diagnosis, etc 

… 
PD The distribution of the data (i.e. technical characteristics such as modality, 

type, resolution, etc …) 
PI How the data is pre-processed and/or post-processed (e.g. reconstruction, 

normalisation …) 
SID The specifics of the input data format 
SOD The specifics of the output data format 
A Assumptions made about the data or processing 
Model Structure 
GF The granularity (e.g. slice, 2D/3D patch, volumetric image …) used for 

training and application 
FO The objective of the model including any pre-conditions, any post- 

conditions, etc … 
FD Thefixed parameters and structure of the model not subject to change (e.g. 

type of model, architecture, loss, optimiser, initialisation, etc …) 
FP The parameters of the model that are subject to change (e.g. weights, 

trainable hyperparameters, etc …) 
Validation Objective 
V The specific criteria or aspect under evaluation 
MV The validation metrics used as a surrogate for these criteria 
I What reference is used and how is it collected 
MQ The qualifying performance, the threshold for the metrics that allow the 

method to be clinically useable. 
MOU The observation uncertainty or the measure of the variability in equivalent 

data. 
MRU The reference uncertainty or the measure of the variability in valid 

references. 
Validation Technique 
VT The specific validation technique used. 
GV The validation granularity (i.e. patient, centre, etc …). 
Dataset Splitting 
Ntest The number of data points used to determine MO. 
Ntrain The number of data points used to determine FP. 
VR The number of times the experiment is repeated. 
Data Augmentation & Sampling 
AIE In/equi-variances, their range, and importance 
AB Potential biases arising from data augmentation 
FA The type and extent of data augmentation applied as well as to what data. 
FS The sampling method used including any modifications (e.g. adaptive 

sampling, class balancing) 
Hpyothesis Testing & Validation Result 
MO The distribution of observed validation results 
FH The method used to verify the hypothesis 
Resultant Model 
FR How the resultant/final model is constructed.  

Fig. 2. Study Context & Conditions consisting of the Clinical Context which 
describes the general workflow in which the algorithm will eventually be sit
uated and the Clinical data which describes the characteristics of the dataset 
used in the validation procedure. 

Table 2 
Example clinical context from Ref. [69]. Quotations are taken directly from the 
text. Non-quotations are either implicit in the text or are generated for the sake 
of providing an example.  

Clinical Context 

C “In this regard, MR-TRUS registration technique provides an effective way to 
use TRUS to target biopsy needles toward regions of the prostate containing MR 
identified suspicious lesions ” 

LA Medium-low level - “feasibility on clinical data” 
LI Semi-automatic 
TH “… transrectal ultrasound (TRUS) guided prostate biopsy is the standard 

approach for definitive diagnosis and guiding biopsy needles to suspicious 
regions in the prostate …” 

TA Iteratively refined MRI to US registration - “In this work, we propose a novel 
duality-based approach to computing the challenging 3D MIND-based non-rigid 
MR-TRUS deformable registration.” 

TI “We initialize the registration using 3 manually placed approximately 
corresponding landmarks”  
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● low-level measurement of a specific technical property in a highly 
controlled setting (i.e. accuracy on phantom data, computation time, 
resolution, memory, etc …);  

● medium-low-level measurement of a property which is necessarily 
conditioned on human data (i.e. performance on human data, ease- 
of-use, population coverage, etc …);  

● medium-level measurement of in situ clinical performance (i.e. 
improvement in real workflow efficiency, margin of error in clinic, 
acceptability to clinicians, immediate effects on symptoms or phys
iology, etc …);  

● medium-high level measurement of clinical response (i.e. improved 
patient outcomes, morbidity, etc …); and  

● high-level validation of how well the proposed system fits into the 
healthcare ecology (i.e. public health evaluation, economic evalua
tion, ethics, quality-of-life, etc …). 

The LA is important to determining what technical parameters (e.g. 
the degree of completeness of the algorithm from prototype to robust 
clinic-ready application) and validation parameters (e.g. metrics, miti
gation of different biases through dataset splitting …) are applicable. 
Although often a single LA is used, sometimes two consecutive ones are 
addressed, especially in papers with multiple sub-experiments. Often, 
higher LA’s implicitly assume that lower ones have already been inves
tigated and the algorithm’s more basic capabilities confirmed. 

The goal of separating the human and algorithmic tasks is to clarify 
exactly where the algorithm fits into the clinical workflow in relation to 
the larger task being performed by the human operator. The level of 
interaction, LI, reflects that some advanced algorithms are designed to be 
interactive, receiving information from the clinical user to guide and 
improve quality. Example of higher LI’s can be found in visualisation 
algorithms in which the user must specify which aspects of the data are 
to be visualised, but they also exist in data processing algorithms such as 
image segmentation [2]. The LI ranges between.  

● manual when the task is performed solely by the user;  
● interpolated when the task is performed largely by the user for 

particular parts of the data and the role of the computer is to inter
polate the remainder;  

● interactive when the user iteratively provides information to the 
computer which it then learns or extrapolates from to perform the 
algorithmic task;  

● semi-automatic when the algorithm requires a well-defined and 
highly limited amount of information from the user, likely in the 
form of input initialisation or output selection; and  

● fully automatic when there is little to no user input. 

A higher LI can complicate validation, especially at a lower LA, as it 
introduces uncertainty into the experiment which should be measured 
and reported. 

The LI informs how the immediate clinical task is decomposed into 
tasks that are performed by the human versus those performed by the 
computer. The human tasks (TH) are those being performed by the 
clinician, which is in many contexts either directly or indirectly inter
acting with the patient. This could include diagnostic tasks, such as 
determining whether or not a given patient has a particular condition, or 
physical tasks such as moving a surgical instrument to a particular area. 
The key element of the TH is that it can make the clinical context more 
precise. For example, the clinical context may be the planning of some 
particular surgery, with the TH specifically being the visualisation of the 
implicated anatomy. 

Unlike the TH which relates the clinician’s role to the wider clinical 
context, the interaction task (TI) defines the role that the clinician takes as 
a user of the MIC system. For fully automatic systems, this task may be as 
simple as specifying what data to process, but in other cases, it could be 
more complex and structured [2]. For example, the TH may be to visu
alise some anatomy, and the TI is the user clicking on the particular 

anatomy to be visualised. The algorithmic task (TA) is the high level 
processing performed by computer using the information provided by 
through the TI. Note that the TI and TA may be iterative with both the 
clinician and the computer repeatedly exchanging information (e.g. 
corrections, annotations, changes in parameters …) which can compli
cate their measurement [2]. 

There are a couple of ways in which these iterative processes can be 
validated. The first is through simulating the users themselves either 
computationally [48,83,84] or mathematically [80]. Whether or not this 
should be considered good validation then largely depends on whether 
the simulation reaches a level of realism appropriate to the level of 
assessment, with more general or less-realistic simulated users tending 
towards the lower end of the spectrum. An alternative is to perform a 
user study. However, the question of their quality then comes down to 
exactly what is being measured (i.e. accuracy or usability) as well as the 
reference used for these metrics [4,71]. 

2.2. Clinical data 

For any given experiment, the clinical context has an influence on the 
available clinical data. At a surface level, the clinical data for a MIC task 
are the images/information themselves which are to be inputted into the 
algorithm, although there may be a large amount of supporting data 
such as clinical questionnaires, patient history, surgical instrument 
tracking, etc…to support the validation process. In diagnostic systems, 
this data may be crucial for contextualising the process as a whole, 
determining which patients (or disease sub-types) are present at the 
different stages of the diagnostic workflow. For interventional systems, 
the clinical data can help determine what alternative approaches are 
feasible, including back-up approaches in the case of (partial or total) 
system failure. The data being used in the validation of the algorithm 
can be broadly summarised by.  

● PP, the distribution of the patients and healthy controls used 
including key demographic information such as age, gender, diag
nosis, and relevant clinical information, 

● PD, the characteristics of the data being used, specifically the prop
erties and characteristics of the medical imaging and other sup
porting data used as well as their intrinsic characteristics (e.g. 
modality, spatial/temporal/intensity resolution, tissue contrast),  

● PI, the pre- or post-processing that the data has gone through outside 
of the scope of the model itself. For medical images, this often in
cludes common steps such as image reconstruction or bias field 
correction, but may also include manual steps, 

● SI and SO, the data input and output formats respectively to the al
gorithm including file type, image orientation, sampling rate/reso
lution, etc …  

● A, the set of assumptions about the data used to simplify the problem. 

(An example of an instantiation of these variables is given in 
Table 3.) 

Often, the most informative aspect of the data from the clinical point- 
of-view is the patient distribution, PP. It has been long known that de
mographic information, sex and gender in particular, have a strong ef
fect on the characteristics of a wide array of data modalities. There are a 
large body of literature on gender differences and their effect on 
particular anatomy that may not be immediately expected by an algo
rithm designer such as cartilage density [10], bone tissue characteristics 
[51] and a plethora of neural phenomena [37,81]. The degree to which 
we understand systematic differences like these is constantly changing 
and thus reporting as much as possible may allow for biases to be 
elucidated later based on knowledge that was unavailable to the algo
rithm designers during the validation procedure itself. Although the 
amount and type of necessary information varies widely from applica
tion to application, it is also unfortunately frequent for this information 
to be largely missing as shown even in the illustrative example in 
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Table 3. 
Related to PP is the data characteristics (PD). For clinical datasets in 

which an exact PD cannot be reasonably specified in its entirety, giving 
its parameters can indicate the scope of data on which the proposed 
method can be applied. At the most basic level, this would be simply 
identifying the modalities used (i.e. CT, MRI, EEG, etc …) with enough 
technical information (imaging parameters, sampling rates, number of 
images/channels, etc …) to allow an equivalent dataset to be collected. 
From a reproducibility perspective, including the specific data format (SI 
and SO) can largely improve the chances of a paper’s methods being 
successfully ported to another centre and minimize a number of po
tential technical difficulties in repeated independent validation. Dataset 
pre-processing or post-processing, PI, is often used to make the distri
bution of the data seen or produced by the algorithm more homoge
neous, but itself is subject to error and uncertainty and thus warrants 
being reported. Certain forms of pre- and post-processing are known to 
be more stable or repeatable than others, but given their ubiquity, are 
rarely validated as a component of the overall model under consider
ation. In these cases, attention should still be taken either to validating 
the appropriateness of the additional processing or an explicit citation to 
another paper with the focus on doing exactly that for a similar or 
equivalent patient population. As mentioned in the Introduction, even 
implicit pre- and post-processing can have an effect on performance and 
thus being explicit about these processes is crucial for reproducibility. 

At the lowest LA, simulated or phantom data is often used as a sur
rogate for patient data meaning that, PP is not truly available, although 
PD can be specified exactly rather than heuristically. This simulated data 
could be in the form of physical objects with known characteristics (i.e. 
phantoms) or numeric simulations of physically well-understood 

phenomena. Regardless of whether the simulation is physical, numeric, 
or a combination of the two, there is always a trade-off between simu
lation fidelity and availability, that is, that simulations can never 
simultaneously mimic an actual patient closely and remain easy to ac
quire in large quantities [17]. Thus, the use of simulated data introduces 
its own set of biases to the experiment, favouring algorithms that rely on 
heavier assumptions about the data (e.g. lack of movement, uniform 
contrast, etc …) that are not reflective of clinical reality [66]. 

Lastly, any algorithm designer must make assumptions, A, about the 
data that render the problem more feasible. These assumptions can be 
innocuous, e.g. the particular anatomy of interest will be present or be in 
a particular range of sizes, or that there will be an absence of a particular 
pathology that would render the problem more difficult. Additionally, 
some assumptions may be made about how the data is annotated which 
can have a strong effect on the quality of the reference data used. Thus, 
these assumptions introduce different levels of bias into the validation 
study that can be measured, reported, critiqued, and refined. One of the 
more difficult assumptions to catch concern the distribution of the data 
itself, as we often implicitly assume that the dataset collected is repre
sentative of the clinical situation, which could be false due to underlying 
racial [70], gender [23,35], or age [70] biases amongst other sources. 

2.3. Model structure 

After the clinical context and clinical data have been determined, it is 
now possible to design the particular model (i.e. algorithm, process, 
machine learning architecture, etc …) to address the computational task 
(as per Fig. 3). The model structure forms a central role in a validation 
study, which is to be expected as it is the element that is under the more 
direct investigation. Although even a cursory review of the plethora of 
models used in almost any general MIC task is far beyond the scope of 
this paper, it is important for all of them to distinguish between four 
basic elements, the training/application granularity, the model objective, 
the model description, and the model parameters. 

Granularity is defined as the amount of data is considered as single 
data-point for various purposes. Thus, the training and application 
granularities, GF, may not be a single value but multiple - one part of the 
model may use a coarser or a finer GF compared to another. For example, 
in MIC, entire volumetric images may be acquired and pre-processed, 
but the machine learning component processes them in a slice-by-slice 
manner to conserve memory, meaning that GF differs between 
acquisition/pre-processing and processing. 

Briefly, the model objective, FO, is the computation that the model is 
trying to perform or the particular post-conditions it is trying to fulfil. 
This may sometimes be indirectly related to the TA, especially in ma
chine learning systems in which FO is more often the optimisation of a 
particular loss function which determines elements of the model or 
performs the desired algorithmic task as a by-product of this optimisa
tion. Outside of the context of optimisation, FO can often be thought of in 
simpler terms, abstracting the computation performed by the model and 
specifying at a high level the algorithms pre- and post-conditions. 

The model description, FD, is the collection of design decisions that are 

Table 3 
Example clinical data from Ref. [69]. Quotations are taken directly from the text. 
Non-quotations are either implicit in the text or are generated for the sake of 
providing a reasonable example.  

Clinical Data 

PP 10 patients (M = 10) - “We performed the proposed method to register 10 
patient images.” No additional information given. 

PD “In this study, T2-weighted MR images using a body coil and corresponding 3D 
TRUS images from 10 patients were acquired. The MR images were obtained at 
3 T using a GE Excite HD MRI system (Milwaukee, WI, USA) at an image size of 
512 × 512 × 36 voxels with a voxel size of 0.27 × 0.27 × 2.2 mm3. The 3D 
TRUS images were acquired using a 3D TRUS mechanical scanning system 
developed in our laboratory, using a Philips HDI-5000 US machine with a 
Philips C9-5 transducer. The 3D TRUS image size is 448 × 448 × 350 voxels 
with a voxel size of 0.19 × 0.19 × 0.19 mm3.” 

PI “The MR image is first resampled to have the same dimensions and voxel size 
as the TRUS image. We initialize the registration using 3 manually placed 
approximately corresponding landmarks and the centroid of the three points 
as a default point on the 3D TRUS and MR images to generate a rigid transform 
as initial alignment.” 

SID Not specified - possibly “MR images are saved in DICOM format in RAS 
orientation, 3D TRUS images are saved in DICOM format” 

SOD Not specified - possibly “3D deformation image saved in DICOM format” 
A Not specified - possibly “3D TRUS reconstruction is performed successfully”  

Fig. 3. Model Structure consisting of the Model Objective which the specific technical task or goal the model is designed towards, the Model Description which 
describes the fixed elements of the model, and the Model Parameters which describes the elements of the model which are adjusted to fit to the data. 
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fixed prior to the algorithm having access to any of the data. These can 
include aspects such at the type of model being used (e.g. a neural 
network), its architecture (e.g. number of layers and their widths), as 
well as aspects that control the model creation process, such as the 
optimiser used. Some parameters, such as learning rates, regularisation 
weights, etc…are set ahead of time or are learned through a process 
often called hyperparameter tuning. In the latter case, it is important to 
clearly state so as these hyperparameters are technically learnt and thus 
do not fall into this category. The rule-of-thumb is that FD contains 
everything that should be affected by the general aspects of the data (PP, 
PD, etc …), but not the particular data used. Unlike FO, FD is config
urable, that is, different FD’s could be used to perform the same task. 
Instead of being inherent to the problem being solved, FD elucidates 
design decisions that could be modified or ablated to create similar 
models. For an example, consider neural network architectures: it is easy 
to image two neural networks with a different number and configuration 
of layers that nevertheless could be trained on the same data using the 
same loss function. This is frequently used as the basis for an ablation 
study in papers that propose new architectures [1,4,47]. 

In contrast, the model parameters, FP, which set as a function of the 
computational process investigating a subset of the data, i.e. they are 
learned. This is specifically done using only ‘Training’ data, the defini
tion of which will be discussed in a subsequent section. For the purposes 
of preventing data leakage it is crucial to identify which elements of the 
model fall into which category and to maintain a clear separation be
tween the two in order to prevent biasing the validation results [30]. 
There is a possibility that a technique does not involve any FP, e.g. the 
hyperparameters and weights are inferred from an understanding of the 
problem domain or separate simulated data rather than learnt from the 
clinical data. In the context of machine learning, this is rare as even 
models that are designed to learn on-the-fly still involve hyper
parameters which have likely been set cognisant of the available data. 

The correct divide between FD and FP can also depend on the level of 
assessment. For example, at higher levels of assessment, such as in a 
prospective clinical trial, there is a strong possibility that the model has 
already been trained and the parameters set in a previous publication 
(such as how [65] performs a clinical trial to evaluate their method 
published as [9]). In these cases, there is a distinct benefit to mentioning 
that the model is already trained, simply to differentiate it from papers 
in which a model is retrospectively applied (i.e. lower levels of assess
ment) as merely mentioning that a model is machine-learning-based 
would give the casual reader the impression that the learner process is 
on-going rather than completed. 

Managing this divide is particularly important not only for prevent 
data leakage (discussed in Section 2.5) but also for managing more 
subtle aspects of methodology-centric bias; which has been previously 
elaborated upon in Ref. [3]. 

2.4. Validation objective 

The validation objective generally describes what aspects of the al
gorithm are being validated ranging from an abstract description of 
those aspects to the concrete way in which they are measured. (See Fig. 4 
for the combined placement of the Validation strategy as a whole.) The 

elements of the validation objective are. 

● V, the validation criteria under consideration (i.e. robustness, feasi
bility, efficacy, etc …)  

● MV, the set of metrics being used to measure V,  
● I, the information extracted from the data that determines the 

reference (or ground truth) and how it is extracted,  
● MQ, the qualifying performance, i.e. the worst values of MV that would 

be still considered clinically useable or a meaningful technological 
improvement, and, if possible:  

● MOU, the observation uncertainty, i.e. the range of MV attributed to 
noise or other irreducible features outside of the control of the 
evaluated algorithm, which contextualises small variations or dif
ferences in the quantitative results in terms of potential mitigating 
factors,  

● MRU, the reference uncertainty, i.e. the range of MV applied to I 
instantiated under different conditions, for example, measures such 
as inter-rater and intra-rater variability or the noise characteristics. 

(An example of an instantiation of these variables is given in 
Table 4.) The purpose of the first four is to ensure that the work is 
clinically useful and reproducible whilst the last two contextualise the 
quality and ideal range of the validation objective. 

The purpose of the validation objective, V, is to define what property 
of the system is being validated. In essence, V is a concrete instantiation 
of LA. These properties should be phrased as unambiguously beneficial 
for a system to have (e.g. accuracy, precision, robustness, consistency, 
speed, error tolerance, etc …) or unambiguously detrimental to have (e. 
g. cost, energy consumption, memory consumption, etc …) [25]. The 
exact meaning of these objectives can be nuanced and subject to 

Fig. 4. Validation Strategy consisting of the Validation Objective which defines the particular aspect being validated and how it is to be measured, and the Validation 
Technique which determines how the data will be partitioned, how the model(s) will be constructed, and how the results will be aggregated. 

Table 4 
Example validation objective from Ref. [69]. Quotations are taken directly from 
the text. Non-quotations are either implicit in the text or are generated for the 
sake of providing a reasonable example.  

Validation Objective 

V Accuracy, speed 
MV “We measured the target registration error (TRE) as the overall misalignment 

of manually marked corresponding intrinsic fiducials in MR and 3D TRUS 
images. […] We also measured the fiducial localisation error (FLE) to allow 
determination whether fiducial identification dominates the TRE. We also 
compared the registered MR and corresponding 3D TRUS images by 
calculating the Dice similarity coefficient (DSC), the mean absolute surface 
distance (MAD), and the maximum absolute surface distance (MAXD). All 
validation metrics were separately calculated for three prostate sub-regions: 
the apex, mid-gland and base, selected along the apex-base axis of the manual 
segmented TRUS prostates (0.3, 0.4, 0.3 of the length of the base-apex axis 
respectively).” 

I “We selected 41 fiducial pairs, of which 17 were within the peripheral zone 
(PZ), in which up to 80% of the tumors can be located.” 

MQ “clinically acceptable maximum TRE of 2.5 mm” 
MOU Not specified - possible sources could include image noise, 3D TRUS 

reconstruction artefacts due to motion, etc … 
MRU “We also measured the fiducial localisation error (FLE) to allow 

determination whether fiducial identification dominates the TRE …. FLE are 
0.21 mm for 3D TRUS and 0.18 mm for MR.”  
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differences across domains and algorithm types. For example, if a 
medium-low LA is desired (i.e. validating the technical feasibility of the 
algorithm on clinical data) that could mean different things in different 
contexts. In a diagnostic context, it could mean that high accuracy with 
constraints on time and memory, whereas the opposite may apply for a 
surgical system where the fastest system meeting a minimum accuracy 
would be preferred. As a system matures (i.e. moves from the research 
environment into clinical use) and the LA gets higher, the choice of V also 
changes to reflect the evolved purpose of the validation. 

At this stage, V is still somewhat abstract and must be made concrete 
in order to be useable. Specifically, it is substituted by a set of metrics, 
MV, whose measurements can be used as a surrogate or definition for the 
desired quality. These sometimes involve comparison against a reference, 
I, which we define as an ideal feasible output that is defined outside of the 
algorithm itself, i.e. via a more accurate modality, in-depth physical under
standing, manual processing, or simulation. Aside from being representa
tive of the clinical quality defined by the clinical context, in order for MV 
to be useful and reproducible, it must have some particular 
characteristics.  

● practicality, allowing them to be determined with minimal intrusion 
into clinical workflow or patient care;  

● quantifiability, allowing for easier comparison;  
● monotonicity, meaning that any positive or negative trend in the 

metric can be readily interpreted as reflecting positively or nega
tively on the algorithm’s quality;  

● aggregability, meaning that the results derived from multiple raters/ 
runs/trials/etc…can be combined, summarised, and interpreted 
statistically. 

The last three characteristics are listed in the order of increasing 
specificity. That is, metrics that appear in the literature that are aggre
gable tend to also be monotonic and those that are monotonic tend to be 
quantifiable. The practicality of a metric largely depends on what data is 
available in which these metrics can be evaluated and the complexity of 
computing the metric (either automatically or manually) or by the 
complexity of transforming the data into a different representation in 
which this computation is easier. It should also be noted that these are 
not always binary characteristics but whether or not they are fulfilled 
can depend heavily on the clinical context. 

Although simply measuring the performance may have scientific 
value, in order to be used in clinic, a threshold (i.e. qualifying perfor
mance or MQ) should be placed on the metrics to determine if the al
gorithm is of sufficiently high quality to be used. An intuitive example of 
this could be taken from different cancer biopsy procedures where a 
particular minimum size is specified for a tumour to be of clinical in
terest and the error of the system under evaluation must be consistently 
less than that size [43]. Often in the literature, a comparative approach 
is used in which another (likely better known or clinically used) model is 
used and the qualifying performance is implicit, i.e. the performance 
required for the new algorithm is to simply outperform the old. In many 
of these cases, MQ will be described as a distribution rather than a sin
gular threshold, using statistical analysis (discussed in a subsequent 
section) to determine if the threshold for acceptability is met. 

Calculating these metrics often requires a reference or ground truth, I, 
i.e. an ideal output value obtained through some other means, such as a 
more well-accepted process/modality or a human expert. Additionally, 
the reference representations must be extracted from the clinical data 
and, although assumed to be completely infallible, they themselves are 
subject to error. For an image segmentation task, the ground truth may 
be manual segmentations of the image performed by experts, who 
themselves vary in how they perceive or conceptualise the underlying 
anatomy [46]. Again, this is not a binary consideration as even valida
tion methods that may seem fairly direct in applications such as 
under-sampled medical image reconstruction may rely on ground truth 
images that themselves have inherent noise and uncertainty. 

Alternatively, simulation can be used in order to reduce or altogether 
eliminate the variability and uncertainty in the reference [19]. 

There are meaningful limits on how well an algorithm can match the 
reference. These can arise from reference uncertainty (MRU) which are 
errors or other sources of uncertainty in the data used as the reference, 
or from observation uncertainty (MOU) which is noise, errors, or other 
sources of uncertainty in the input data itself. For an example of MOU, 
there may be fundamental limits to how well a segmentation or local
isation algorithm could perform based on the data’s resolution, i.e. 
differences in distance errors below the size of a pixel/frame are possibly 
meaningless. A similar argument could be made for the reference itself, 
although how the reference is generated will often be associated with 
additional error or uncertainty. These may also be described as distri
butions if the observations or reference data is highly variable or comes 
from different sub-types of patients. The degree to which these con
textualising aspects are valuable is highly problem dependent. For 
example, in a signal or image reconstruction task, MOU would be 
important to contextualise how noise continuously effects the recon
struction, whereas in a discrete classification or segmentation problem, 
this effect is often assumed to be negligible. On the other hand, for 
classification and segmentation problems, the quality of the reference 
information, MRU, has a much higher effect on the perceived quality of 
an algorithm, especially when it performs well enough to approach the 
reference itself. 

2.5. Validation technique 

Once the validation objective and model are defined, the specific 
validation technique, VT, and validation granularity, GV, can be chosen. 
(See Table 5 for an example.) The key aspect of VT is to maintain a 
“Training/Testing” divide, ensuring that datasets that are used to 
construct the model are not simultaneously used to validate it. Main
taining this divide is critical as it ensures that the system is put in a 
context of prospective application on new, unseen patients or in new 
contexts such as application in a different clinical centre. 

Depending on the clinical context (such as the number of datasets 
available), a number of validation techniques are possible although they 
largely fall under two categories: hold-out approaches and cross-valida
tion approaches. Hold-out approaches tend to be simpler and involve 
taking a particular fraction of the clinical dataset and putting it aside to 
be used solely for validation purposes. The benefit of this approach is its 
simplicity: only a single model needs to be constructed and it is always 
clear where the “Training/Testing” divide lies. In cross-validation ap
proaches, such as leave-one-out cross-validation or k-fold cross- 
validation, the validation process is repeated multiple times: each time 
constructing a “Training/Testing” divide, setting FP based on the data in 
the current ‘Training’ set and computing the validation metrics across 
the data in the current ‘Testing’ set. The benefit of this approach is that 
generally more data can be used to determine FP at a given time, which is 
important when data is limited. In addition, cross-validation approaches 
produce more accurate measures of the algorithm’s performance on a 
particular dataset than the hold-out technique given very mild as
sumptions about the data characteristics and algorithms involved [8]. 
Thus, cross-validation approaches are more common in MIC than other 
fields where datasets tend to be larger. However, in practice it is 
sometimes difficult to ensure that the “Training/Testing” divide is al
ways respected as it is no longer constant over the course of the exper
iment. Because cross-validation leads to repeating the process of setting 
FP multiple times, there is a trade-off between the time taken to perform 

Table 5 
Example validation technique from Ref. [69].  

Validation Technique 

VT Direct (i.e. no learned component) 
GV Patient-level  
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the validation and the quality of the validation results. For the com
parison of two or more algorithms (such as when MQ is defined by an 
existing comparative approach) cross-validation also allows for paired 
statistical testing by matching the ‘Training’ and ‘Testing’ splits for all of 
the algorithms involved, limiting variability that may arise from 
different “Training/Testing” divides [5]. 

Nested cross-validation (NCV) is an example of the general versa
tility of cross-validation techniques. In NCV, the ‘Testing’/‘Training’ 
divide is creating through the outer cross-validation loop, then the 
’Training’ dataset is split again in an inner cross-validation loop, 
providing two sets of data, one of which could be used to train some 
elements of FP whereas the other can be used to estimate the perfor
mance to train others (generally, the hyperparameters) or to select an 
optimal model to then evaluate on the actual ‘Testing’ data. Multiple 
studies have found NCV to be beneficial in controlling bias for models 
where there are data normalisation or other hyperparameters that are 
particularly sensitive to the training data [75,78]. 

Both validation techniques have issues in estimating the expected 
performance of the model constructed using a new dataset with the same 
distribution, the cross-validation technique underestimating its vari
ability due to the high correlation between the ‘Training’ sets being used 
and the hold-out technique not estimating a variance for this at all [5]. 
The impact that this has on algorithms in MIC would seem to indicate 
that the validation being performed is only representative of that 
particular model on that particular dataset rather than a family of 
similar models trained on similar datasets [11], emphasising the need 
for researchers to not only release the code to train and apply a model, 
but also the specific instantiation of the model being validated. This 
naturally raises patient privacy and anonymity concerns if information 
about a particular patient can be extracted from the resultant published 
model. 

If the MIC algorithm does not involve any trained parameters (i.e. FP 
is empty), a common validation technique is to use the entire dataset as 
‘Testing’ data, i.e. direct validation. This is more common with non- 
machine-learning based approaches and is still common in the litera
ture, especially at higher LA’s. It also implies that any configurable 
weights and hyperparameters of the model are considered part of FD and 
should be set without access to any of the data. They should therefore 
take on pre-defined default values, values that can be reasonably pre
dicted from an understanding of the clinical context and/or data, or 
values previously reported in the literature on a different dataset. 
Intuitively, this technique is more common at higher LA’s when the 
trainable parameters of the algorithm are more likely to be already set 
and validated in earlier experiments. If direct validation is used, it 
should be clearly stated, allowing the reader to confirm that no training 
takes place. 

At this stage, it is also important to revisit the idea of the data 
granularity, finding the appropriate level for the validation as a whole 
[3]. The validation granularity, GV, is highly important and should be 
explicitly stated and justified. Although the granularity is often specified 
(implicitly or explicitly) for the application of the algorithm and for 
metric computation, it is less frequently noted for the validation as a 
whole. The GV for dataset splitting is particularly important as it leads to 
large differences in quantitative results. Specifically, splitting the data at 
too fine GV can lead to data leakage as necessarily correlated datapoints 
find themselves on separate sides of the ‘Training’/‘Testing’ divide. 
Depending on the LA, the different biases caused by different data 
splitting GV could be important. For example, images that are taken from 
the same centre have some degree of correlation, having been acquired 
by the same device with the same parameters and possibly by the same 
technician, with patients having more similar geographic, 
socio-economic, and potentially ethnic/racial distributions which 

validation at a higher LA may want to be more robust to and will split the 
data with a very coarse GV. At a lower LA, showing technical feasibility is 
more important than controlling potentially subtle biases like these. 

However, even at alower LA, the data splitting GV should not be finer 
that the patient-level (that is, all the data arising from a single patient 
must lie on a single side of the ‘Training’/‘Testing’ split) as violating this 
is well-known to grossly overestimate measures of accuracy [62]. Un
fortunately, this level of attention is not always given and, in some fields, 
only half of the machine learning methods proposed meet this minimal 
threshold [55]. 

2.6. Dataset splitting 

Once the validation technique has been determined, the clinical data 
can be processed for the experiment in terms of splitting (which datasets 
are used for training) and augmentation/sampling (how those datasets 
are used) as shown in Fig. 5. Splitting in particular consists of the par
titioning of the dataset into (potentially multiple instances of) ’Training’ 
and ’Testing’ sets according to specified validation granularity. At this 
stage, the amount of data used for training, Ntrain and for testing Ntest can 
be determined. This should be stated at the training granularity and 
validation granularity at minimum in order to interpret the results both 
in terms of the data consumption required by the framework and the 
certainty of the distributions constructed in the validation process. The 
purpose of applying the model to ‘Training’ data is to determine or to 
refine the model parameters, which is often done in an iterative manner. 
The application of the model to ‘Testing’ data is to create the output to 
compare against the reference data and is more representative of how 
the algorithm is to be used in clinic (Fig. 5). 

One key element of the creation of these datasets is ensuring that 
there is no data leakage, that is, information from the ‘Testing’ dataset 
that is available to the model as it is determining the model parameters 
and thus could influence these parameters and bias the results. The most 
obvious form of data leakage is actively using the same dataset in both 
‘Training’ and ‘Testing’ datasets, which has occurred in the literature, 
especially those that use hyperparameter optimisation. This type of data 
leakage is simple to avoid by assuring that any data splitting occurs 
before the hyperparameters are determined, even if they are constant. 

However, avoiding data leakage in general can be more difficult and 
nuanced. Of particular importance in detecting and preventing data 
leakage is considering the granularity described in Section 2.5. A more 
subtle form of data leakage frequently occurs when only part of a 
medical image (i.e. a slice or patch) is used by the model at a given time, 
thus decoupling the notion of a datapoint from a patient. Thus, data 
from the same patient could be split into both the ‘Training’ and 
‘Testing’ datasets by having some slices/patches in both sets. This 
indirectly provides some information about the ‘Testing’ set to the al
gorithm during training. The more adjacent or similar these slices/ 
patches are, the more data leakage occurs as the shared information 
between these datapoints is higher. This can also lead to extremely 
overestimated performance measurements [62,82]. Depending on the 
level of assessment, an even greater granularity may be necessary for 
evaluation, splitting the dataset by centre rather than patient for 
example to analyse robustness across independent centres [4]. 

Lastly, if the underlying algorithm or validation technique has non- 
deterministic components, it may be beneficial to repeat the valida
tion process altogether a certain number of times, VR. By repeating the 
validation procedure, the validation results are more reproducible as 
their variability arising from the underlying non-determinism can be 
estimated. This helps clarify to those reproducing the algorithm if the 
result they get is within a reasonable range in a similar clinical context. 
In the case of machine learning methods, it is especially important for 
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these repetitions to be independent and not to share model parameters 
and thus cause data leakage. 

(Examples of Ntrain, Ntest, and are given in Table 6.) 

2.7. Data Augmentation & Sampling approach 

For more complex models, the amount of ‘Training’ data is increased 
through a data augmentation approach, FA, in which a computational 
method is applied to a datapoint in order to change it in a non- 
insignificant manner. For computer vision, this often involves trans
lating, rotating or flipping the image and in medical images, more 
complex deformations can also be applied depending on the clinical 
context. These transformations may also be chosen to reflect possibly 
missing properties of the model itself. For example, if the model is not 
inherently invariant/equivariant to rotation and translation but should 
be, introducing rotation and translation into the data augmentation 
approach may allow it to learn that invariance in a robust manner rather 
than having it hard-coded. 

A crucial aspect of data augmentation is ensuring that the datapoint 
stays consistent under the applied transformation. That is, if a trans
formation is applied to one aspect of the datapoint then related aspects 
of that same datapoint should change too. For example, if our goal is to 
estimate the volume of a particular organ of interest, and part of your FA 
involves spatially scaling the image, the same scale should apply to the 
volume. For some problems, such as diagnosis problems, certain per
turbations of the data intuitively do not require any further changes to 
render them consistent (e.g. if you are diagnosing a disease, shifting the 
entire image by a few pixels does not change the disease state, but 
deformation might). Another key element to consider for FA is what 
forms of data augmentation are clinically feasible. For example, left- 
right flipping of brain images for segmentation problems is relatively 
common, with the differences between the left and right hemisphere 
being insignificant compared to other sources of error. This however is 
not the case with diagnosing particular neurological disorders in which 
there is a defined left-right difference. In a more extreme example, 
flipping should never be used in abdominal image processing due to its 
inherent lack of symmetry, except for the detection of situs inversus in 
which such flipped images are not abherrations but completely war
ranted given the context. The scale of the data augmentation should not 
go beyond the point where the augmented data is no longer represen
tative of a reasonable clinical case. 

It is important to note that any form of data augmentation has the 
potential to introduce some level of bias, AB. For example, rotating an 

image may sound bias-free, but can introduce small interpolation errors 
when the image is resampled which may effect both the algorithm and 
the reference. Although data augmentation is used principally on the 
‘Training’ data, there are also instances in which it may need to be 
applied to the ‘Testing’ data as well in order to validate that the in/equi- 
variance properties do hold or to get a measure of the MOU. In these 
cases, a critical examination of potential biases is especially important. 

Increasingly, data augmentation via a separate generative machine 
learning process, such as generative adversarial networks (GANs) [13, 
20] or variational autoencoders [56], is being used in order to capture 
more complex invariances that are difficult to capture or to model using 
traditional descriptions. These data augmentation techniques can be 
used in tandem with some caveats, such as the possibility for com
pounding error and generating statistically unrepresentative datapoints 
[72]. In these cases, it is often not possible to specify an exact 
in/equi-variance is being targeted, implying that a validation of FA itself 
may be necessary to ensure it fits the intended clinical context. 

Complex data aumgnetation methods may also be a source of data 
leakage if not carefully considered. That is an element from the ‘Testing’ 
set could have been in the data augmentation method’s ‘Training’ set. 
This means that the data augmentation could generate datapoints that 
are very similar to the ‘Testing’ dataset only by virtue of having prior 
access to them. This again is easy to avoid by ensuring that data 
augmentation is considered part of the method as a whole (i.e. data 
splitting is performed prior to training the data augmentation method) 
or that the data augmentation method is developed on an entirely in
dependent database, even if it was created by an independent research 
group. 

Another element that can have a strong effect on the validation of the 
model is how the ‘Training’ data is sampled during the process of 
determining the model parameters. This sampling approach, FS, is often 
fairly simple including a (repeated) randomisation of the training data 
order ensuring that all the ‘Training’ data is used, but that spurious 
correlations arising from the order in which the data is presented are 
minimised. Some more complex adaptive approaches have also been 
developed, which allow for the algorithm to increasingly focus on what 
it empirically finds to be difficult cases [16,53]. 

(An example of these variables in given in Table 7, noting that data 
augmentation did not appear to be used in the cited paper, thus potential 
methods are given.) 

Fig. 5. Dataset processing containing Dataset Splitting, which dictates which sets are used for training or for evaluation of the model, and Data Augmentation & 
Sampling, which directs how the training data is accessed and extended. 

Table 6 
Example dataset splitting from Ref. [69].  

Dataset Splitting 

Ntest 10 patient images 
Ntrain 0 - no learned component 
VR No repetitions  

Table 7 
Example data augmentation and sampling approach using a registration study 
for image-guided needle biopsy for prostate cancer [69].  

Data Augmentation & Sampling 

AIE None specified - possible invariance to translation, rotation, scale, noise, etc … 
AB None specified - possible interpolation errors 
FA None specified - possible application of rigid transformations, scaling, noise 

addition, etc … 
FS Uniform  
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2.8. Hypothesis verification & the validation result 

In terms of the validation itself, the crucial terminal aspect is the 
reporting and verification of the results as shown in Fig. 6. 

In general, hypothesis verification is well-understood and papers 
already report.  

● MO, the observed distribution of results,  
● FH, the method for comparing MO to MQ, often using a statistical 

framework. 

(An example of an instantiation of these variables is given in 
Table 8.) 

Statistical methods principally work by estimating the probability of 
generating the observed distribution under some null-hypothesis, that 
only just barely misses the qualifying performance. There is a large 
degree of literature about different statistical tests to perform, with the 
most common largely being based on t-test, paired t-tests (for when the 
qualifying performance varies across patients, such as when a compar
ative method is used) or F-tests for factorial experiments. These tests 
make certain assumptions regarding properties of both MO and MQ, such 
as normality and homoscedasticity, although the degree to which these 
assumptions can be violated while still rendering the test valid is still 
debated. Non-parametric tests that use permutation testing and rank 
statistics have weaker distributional assumptions but they are less 
commonly used, less flexible, and are generally more conservative. Ul
timately, the result of the statistical test is the validation result, i.e. 
whether or not MO falls in an acceptable range. Another element of the 
statistical framework to report is the correction method (if any) for 
multiple comparisons when MV has multiple components. 

Statistical correction may also be necessary depending on the num
ber and type of validation metrics. Although simple methods such as 
Holm-Bonferroni correction work for a small number of metrics, more 
complex corrections may be needed for certain problems in which there 

are a large number of correlated metrics (for example, voxel-based 
analysis [12,54]). In some cases, authors may choose to forego statisti
cal testing altogether. This is becoming increasingly common in machine 
learning methods in which the act of training a model itself is time 
consuming and thus it may not be feasible to collect the number of 
measurements of MO necessary to make statistical conclusions. As one 
should critique papers that use statistical methods based on the appro
priateness of the method used, the same should be applied to those that 
do not use any statistical technique; some additional justification should 
be given as to if the qualifying performance is met and under what 
conditions. 

2.9. Resultant model 

The other terminal aspect is the model/algorithm to be used itself as 
shown in Fig. 7. For most traditional algorithms, the model to be used (i. 
e. the resultant model) is often the exact same as the model being vali
dated, i.e. direct use. This is also generally more common at medium- 
high and high LA’s where the model is more likely to be considered 
fixed entirely by FD with no FP. However, machine learning models 
require a more nuanced approach and thus the paper should specify its 
method of creation, FR. (An example of an instantiation of this variable is 
given in Table 9.) 

Even for simple machine learning methods, the final model intended 
for use may not be any of the models constructed during the validation 
process, but generated from them or from the entirety of the data. This is 
more common for validation techniques that generate multiple models, 
such as cross-validation. In these cases, model ensembling is often used, 
which creates a new model by aggregating the predictions of the models 
constructed during the experiment. Certain simple forms of ensembling, 
such as averaging the output of several equivalent models (i.e. bagging), 
are known to have equivalent if not better accuracy than the models in 
the ensemble at the expense of requiring more time and memory. 

For simpler models with relatively few trainable parameters or ones 
in which the trainable parameters have a known, modelable effect, the 
final model can be constructed simply retraining the model using all 
available data can be done. This has the benefit of using the same model 
in application as in validation, thus keeping aspects such as time and 
memory closer to their measured values, while also making use of all of 
the available data. Interestingly, retraining does not guarantee equal or 
improved performance, especially more complex deep learning models 
in which double descent may apply [52]. For certain models, increasing 
the amount of training data without changing its structure can actually 
reduce its performance. 

The construction of the final model is not without some nuance as it 
must still be compatible with the validation result. For example, a com
mon implicit form of resultant model construction is the selection of the 
best performing model based on the validation experiment. However, it 
should be noted that this selection itself is a source of a slight bias as the 

Fig. 6. Hypothesis Testing & Validation Result describes how the performance of the system is quantified, reported, and then compared to a pre-defined level 
or hypothesis. 

Table 8 
Example hypothesis verification using a registration study for image-guided 
needle biopsy for prostate cancer [69]. Quotations are taken directly from the 
text. Non-quotations are either implicit in the text or are generated for the sake 
of providing a reasonable example.  

Hypothesis Testing & Validation Result 

MO “TRE values of 1.97 mm, 1.58 mm and 1.74 mm respectively”, 
“the proposed method generated a favorable DSC value of 92.9 ± 2.6% for the 
mid-gland, 83.0 ± 5.6% for the apex, and 80.1 ± 4.7% for the base.”, 
“The mean registration time of our method per patient was 90 ± 5s in addition 
to 30 ± 5s for initialisation.” 

FH Not statistically defined but frequency-based - “Fig. 3(b) shows that 80% of the 
TRE values for WG and 76% for PZ are below the desired values.”  
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reason why the model has the best performance could be due to random 
variations. This is exacerbated as more models are included in the anal
ysis, especially if they have similar performance and thus their relative 
differences are lessened in comparison to random variation [6, 38]. 

3. Literature review examples 

One of the primary uses of the proposed framework is to structure 
elements of literature reviews in order to make them more sensitive to 
how the algorithms under investigation are validated and interpreted in 
comparison to each other. Our recent literature [55] incorporated ele
ments of an early version of this framework, using them to find that over 
half of machine learning methods used in the context of deep brain 
stimulation involved potential data leakage between ‘Training’ and 
‘Testing’ datasets. However, the framework was not the focus of said 
article and its instantiation wasn’t shown in great detail. The following 
small literature reviews are therefore not designed to be exhaustive in 
terms of the literature, but to give a more complete example of the 
framework in use. For both, we have attempted to get a variety of 
techniques spanning the previous decade in order to illustrate the gen
eral usability of this framework to different paradigms in their respec
tive fields. 

Elements of the clinical context and data are used to limit the scope 
of the literature being reviewed, ensuring the methods being compared 
are attempting a similar problem and could in theory be used inter
changeably. The remaining categories form the basis for how the 
different methods in the literature differ from each other and are to be 
critically appraised. Specifying the LA in this case is crucial to best 
control the scope of the techniques under investigation while not 
overlying constraining them to look at a particular validation objective. 
This also allows for research systems, which are generally validated at 
lower LA’s, to be easily distinguished from systems that are in current 
clinical use where higher LA’s are more common. 

We have structured the literature reviews in a tabular format 
following the notation established in Section 2. This allows for valida
tion information to be reported in a systematic manner. Depending on 
the subject, the information regarding the clinical context, clinical data, 
and model structure used could be greatly expanded cognisant of the 
particular literature being investigated. For example, if the literature 

review concerns MR imaging, it could include the scan parameters as a 
dedicated column. For investigating the use of a particular class of 
models, FO, FD, and FP may need to be expanded to identify particular 
architectures. Despite this, our proposed framework still necessitates 
that these added columns be clearly delineated into the different cate
gories, particularly for the model structure in which there is a strong 
distinction between parts of the model that are fixed prior to the 
experiment (i.e. FO & FD) and parts that are affected by the particular 
data used (i.e. FP). This is because maintaining this separation is 
particularly important to maintaining a ‘Training’/‘Testing’ divide. 

3.1. Segmentation of the subthalamic nuclei in MRI 

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an 
increasingly common treatment for drug-resistant Parkinson’s disease. 
During this procedure, electrodes are placed within the STN, which re
quires it to be segmented during the pre-operative planning stage in 
order to develop appropriate electrode trajectories. As the subcortical 
anatomy in this region is quite complicated with several structures of 
interest, automatic segmentation methods are sometimes used. How
ever, due to the small size of the STN and its low contrast with sur
rounding tissue on T1-weighted imaging, these methods need to be 
highly accurate and robust to noise. 

Given the clinical context outlined in Table 10, which was designed 
to specify comparable clinical scenarios and thus methods that could 
potentially be used interchangeably, a Google Scholar search was per
formed (search string: “subthalamic nucleus” “MRI segmentation” “deep 
brain stimulation”, date range: 2015-present, accessed November 15, 
2022) and the first seven methods selected (chosen to ensure the tabular 
results fit on a single page) which all occurred in the first 50 results and 
more than half occurring within the first 10 results. Some methods were 

Fig. 7. Resultant Model describes how the model to be used is or can be constructed from those investigated during the process of validation.  

Table 9 
Example resultant model construction using a registration study for image- 
guided needle biopsy for prostate cancer [69].  

Resultant Model 

FR Direct use  

Table 10 
Clinical context for the STN segmentation literature review.  

Clinical Context 

C MRI-based pre-operative planning for deep brain stimulation of the STN 
LA Medium-low level - accuracy on clinical dataMedium level - margin of error in 

clinic 
LI Fully automatic 
TH Visualisethe location and extent of the STN in a pre-operative MR image 
TI Image selection only (i.e. no initialisation/correction) 
TA Segmentation of the left and right STN 
Clinical Data 
PD Singular clinical quality (i.e. 1.5T or 3T) T1w and/or T2w MR scans (res. 

approx. 1 mm iso.)  
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very close to meeting the criteria, such as Varga et al. [77] which had a 
small manual initialisation step but was otherwise automatic. Another 
interesting paper [57] implemented and compared several techniques, 
benchmarking their performance as well as providing metrics of 
inter-rater variability for manual STN segmentation. 

The results of the literature review are given in Tables 11 and 12, 
with the first table reporting the context and methodology with the 
second reporting the more validation-centric criteria. From a method
ological point of view, one particular group [32–34,63] was dominant, 
using a 7T atlas (with deformable registration and some post-processing) 
as their method. However, their papers varied in terms of validation, 
notably moving from a medium-low LA in Refs. [32–34] to a medium LA 
in Ref. [63] as the algorithms were no longer validated against manual 
segmentation but against electrophysiological recordings taken within a 
DBS intervention. Reinacher et al. [59] used the same medium LA with a 
very similar validation objective, receiving extremely comparable re
sults to Ref. [63] despite using a completely different algorithm for STN 
segmentation. Li et al. [36] attempted to bridge the two LA’s by not only 
comparing against electrophysiology, but also having a manual seg
mentation which acts as a reference as well as a MQ for the medium LA. 
However, the limited data used as well as the strong assumption that 
brain-shift is negligible makes it more difficult to draw conclusions 
about the relationship between segmentation overlap and agreement 
with electrophysiology. The remaining papers [4,47] used similar met
rics which would make them appear similar at a surface level, but [47] 
uses a reference defined by an atlas. From a data point of view, the two 
methods also differ greatly in terms of granularity, with one treating 
patches as the fundamental unit of data for network training and the 
other using the entire volume at once) (see . 

One interesting point for the papers [4,33,36] that used manual 
segmentation as a reference is that none provided a measurement of 
MRU. For this particular clinical context and problem, MRU for manual 
segmentation has since been estimated to be on the order of a 63% Dice 
co-efficient [57] which adds credence to methods with a similar per
formance [4,33] while questioning those with much higher reported 
accuracy [36]. For the methods that used deformable registration as 
their reference [34,47], again, MRU was not provided. This can be 
problematic as atlas registrations are generally less variable but higher 
error than manual segmentation, meaning that an increase in Dice 
performance could be due to the erroneous consistencies of atlas-based 
segmentation. The fact that all of these papers lack a reference uncer
tainty and most lack an observation uncertainty shows how unfortu
nately uncommon these contextualising pieces of information are in this 
particular subfield. 

In terms of statistical testing, only half the papers [33,59,63] 
explicitly provided information on FH; one paper [4] gave enough in
formation for a two-tailed t-test to be performed, and two [34,47] did 
not give enough information for any statistical test to be performed. 
Again, this may call into question to what degree the methods presented 
achieve their MQ. 

The use of our framework makes it easier to compare and contrast 
papers that are extremely different in their methodology, noting that the 
algorithms used included deformable registration [33], level-set seg
mentation [36], shape/transform regression [33,34,63], and completely 
different types of convolutional neural networks [4,47]. 

Table 11 
Papers used in STN segmentation literature review - Part 1.  

Paper Clinical Data 

PP PI SID SOD A 

Baxter and Jannin [4] Parkinson’s disease patients (6 M+4F) Intensity normalisation (divide by 95 
percentile) and smart cropping 

T1/T2 
pair 

Binary 
mask 

Images are perfectly coregistered 

Kim et al. [33] Parkinson’s disease patients Registered to 7T atlas T1/T2 
pair 

Mesh 7T registration does not fail 

Kim et al. [34] Mixed Parkinson’s, tremor patients and 
healthy subjects (61 M + 19F) 

N/S T2 image Mesh Accurate 7T image registration 

Li et al. [36] Parkinson’s disease patients (6 M+4F) N/S T2 image Mesh STN in central image location 
Milletari et al. [47] N/S N/S SWI image Binary 

Mask 
N/S 

Reinacher et al. [59] Parkinson’s disease and dystonia patients N/S T1, T2, 
images 

N/S Brain shift is negligible, electrical 
recordings well registered 

Shamir et al. [63] 
(method: [32]) 

Parkinson’s disease patients (8 M+8F) N/S T1w 
image 

Mesh Brain shift is negligible, electrical 
recordings well registered  

Paper Model Structure Resultant Model 

GF FO FD FP FR 

Baxter and Jannin 
[4] 

Image pair Minimize voxel-wise 
BCE 

U-Net architecture, number of layers, 
widths, etc … 

Network weights Voxel-wise voting 

Kim et al. [33] Image Align points and 
maximise information 
gain 

Procrustes, kernel PCA, regression 
forests to find transform 

regression tree weights, kernel 
PCA transform 

Direct use 

Kim et al. [34] Image Maximise shape model 
fit 

Regression-based shape prediction 
(active contours + active shapes) +
ensembling 

Active contour + active shape 
params, ensemble weights, etc 
… 

Direct-use 

Li et al. [36] Image Level set functional Initial thresholding/cropping, level-set 
opt., spline mesh fitting 

N/S Direct use 

Milletari et al. [47] Patch (CNN) & image 
(post-processing) 

Custom Dice-based loss 
(seg.), N/S (voting) 

Multiple comparative architectures Network weights Selection of best- 
performing 
architecture 

Reinacher et al. 
[59] 

Image N/S Surgiplan software N/S Direct use 

Shamir et al. [63] 
(method: [32]) 

Image Maximise shape model 
fit 

Regression-based shape prediction 
(active contours + active shapes) +
ensembling 

Active contour + active shape 
params, ensemble weights, etc 
… 

Direct-use 

N/S meaning not specified i.e. said information is not present in the paper, N/A meaning not applicable i.e. when said information is not sensible in the validation 
context. 
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3.2. Point localisation for transcranial magnetic stimulation 

Repetitive transcranial magnetic stimulation (TMS) is a therapeutic 
technique for various neurological disorders due to its ability to affect 
and disrupt pathological cortical behaviour. As early as 2001, studies 
[22] have found that the traditional methods for guiding these proced
ures in clinic are inaccurate and have advocated for personalised image 
guidance based on MRI. This involves several components, the first 
being the registration of the TMS probe into the co-ordinate space of the 
patient image, allowing for visually guided TMS which was shown to 
improve the consistency for finding cortical points in the motor region 
with the help of electromyography feedback [18,28]. However, there 
was still a question of whether or not this could be further improved by 
automatically finding the target stimulation sites in pre-operative im
ages rather than through this feedback mechanism. With the growing 
popularity of machine learning algorithms, this latter step could be 
automated, with a computer determining stimulation sites based 
immediately on the patient image. Functional MRI images soon became 
the standard for identifying TMS cortical target points [67], although it 
was less useable in clinic due to the additional scanning requirements. 
This review looks at the papers that propose automatic cortical point 
localisation for TMS from only T1-weighted MRI representative of 

clinical use. 
As with the previous subsection, the specific clinical context of the 

literature review is presented in Table 13 using the symbols suggested in 
the previous section. For the human task, we have specified that the task 
to the pre-/peri-operative determination of the location of potential 
stimulation sites, rather than the intra-/post-operative task of coil 
positioning or determining what sites is stimulated or the selection of a 

Table 12 
Papers used in STN segmentation literature review - Part 2.  

Paper Validation Objective Validation Technique Data Splitting 

V MV I MQ MOU MRU GV VT Ntest Ntrain VR 

Baxter and 
Jannin [4] 

⋅ overlap Dice coeff. Manual 
segmentation 

Within M0 

(implicit) 
1 mm shift/ 
dilate (50.5 
± 2.8% to 
55.0 ± 5.5%) 

N/S Patient- 
level 

LOOCV 10 10 5 

Kim et al. 
[33] 

⋅ distance Dice, rMS 
orientation error, 
CoM distance 

Manual 
segmentation 

Compare to 7T 
atlas 

N/S N/S Patient- 
level 

‘Testing’ set 36 10 1 
⋅ 
orientation 
⋅ overlap 

Kim et al. 
[34] 

⋅ distance Dice, CoM dist., 
MSD 

Registered 7T 
manual 
segmentation 

Compare to 
registration 
methods 

N/S N/S Patient- 
level 

LOOCV+
‘Testing’ set 

92 46 +
34 

1 
⋅ overlap 

Li et al. [36] ⋅ overlap Dice, dist. 
between positions 
(undefined) 

Manual 
segmentation, 
registered electric 
signals 

overlap: N/S N/S N/S Patient- 
level 

‘Testing’ set 
only 

N/A 10 1 
⋅ distance distance: 

equivalent to 
expert 

Milletari 
et al. [47] 

⋅ distance Dice, mean 
contour dist., 
failure rate 

Atlas registration Compare to 
traditional CNN 

N/S N/S N/S N/S 135k to 
13.5 M 

10 8 
or 
9 

⋅ overlap 
⋅ 
robustness 

Reinacher 
et al. [59] 

⋅distance Distance along 
trajectory 

Registered inter-op 
electrical recordings 

Negligible 
difference from 
I 

N/S N/S Patient- 
level 

‘Testing’ set 
only 

N/A 30 1 

Shamir et al. 
[63] 

⋅extent electrode 
trajectory length 
in STN 

Registered inter-op 
electrical recordings 

Equivalent to 
reference 

N/S N/S Patient- 
level 

‘Testing’ set 
only (pre- 
trained) 

N/A 16 1  

Paper Data Processing Hypothesis Verification 

FA FS MO FH 

Baxter and Jannin 
[4] 

Rotation and 
translation 

Uniform 58.2 ± 12.1% N/S 

Kim et al. [33] either none or N/S Uniform 1.2 ± 0.5 mm (left) 1.2 ± 0.5 mm (right) N/S 
13.1 ± 6.4◦ (left) 17.6 ± 12.9◦ (right) 
61 ± 12% (left) 56 ± 15 (right) 

Kim et al. [34] either none or N/S Uniform 1.28 ± 0.65mm62 ± 13% One-way ANOVA with multiple comp. correction, Tukey post-test 
(sign. 0.1%) 

Li et al. [36] either none or N/S N/A 88 ± 4% (left) 86 ± 5% (right) overlap: N/S 
1.1 ± 0.6 mm (left) 1.1 ± 0.7 mm (right) distance: N/S 

Milletari et al. [47] either none or N/S Uniform multiple results due to multiple architectures N/S 
Reinacher et al. [59] either none or N/S N/A 0.6 − 1.9 mm (entry) Two-tailed t-tests 

1.35 − 3.0 mm (exit) 
Shamir et al. [63] either none or N/S N/A 5.8 ± 0.9 mm (versus 6.2 ± 0.7 for electric 

signals) 
Paired t-tests (sign. 5%) 

N/S meaning not specified i.e. said information is not present in the paper, N/A meaning not applicable i.e. when said information is not sensible in the validation 
context. 

Table 13 
Clinical context for the TMS point localisation literature review.  

Clinical Context 

C Pre-/peri-operative planning for therapeutic repetitive transcranial magnetic 
stimulation, specifically for neurological disorders with stimulation sites in the 
frontal cortex 

LA Medium-low level - accuracy on clinical data 
Medium level - immediate effect on symptoms 

LI Fully automatic 
TH Determining the position of potential stimulation sites given an unannotated 

T1-weighted MR image 
TI Image selection only (i.e. no initialisation/correction) 
TA Estimation of a fixed-length vector of points coordinates in image-coordinate 

space 
Clinical Data 
PD Clinical (i.e. 1.5T or 3T) T1w MRI (res. 1 mm iso.)  
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particular site based on the patient’s symptoms, both of which are also 
investigated in the literature but address fundamentally different 
problems. 

By specifying the level of interaction as being fully automatic, we 
limited the type of systems under investigation to ones that are inter- 

changeable from a clinical workflow perspective. Due to the speci
ficity of process, only five papers filling these objectives were identified 
in the first two hundred results from a Google Scholar search (search 
string: ”transcranial magnetic stimulation” MRI navigation automatic, date 
range: 2001-present, accessed November 15, 2022). An additional paper 

Table 14 
Papers used in TMS point localisation literature review - Part 1.  

Paper Clinical Data 

PP PI SID SOD A 

Baxter et al. [1] Chronic pain and depression patients Intensity normalisation (divide by 95 
percentile) and resizing 

RAS 
images 

Point 
vector 

N/S 

Reijonen et al. 
[58] 

Patients including those with depression and 
schizophrenia 

N/S Image Painted 
mesh 

N/S 

Rusjan et al. 
[60] 

Healthy subjects (10 M+5F) N/S Images Point 
Vector 

Negligible tracking error 

Sparing et al. 
[67] 

Healthy subjects (6 M+4F) N/S Images Heat Map Probe positioning is done with 
zero error 

Zosso et al. [85] Images from patients who have undergone 
TMS 

N/S Images Point 
vector 

N/S  

Paper Model Structure Resultant Model 

GF FO FD FP FR 

Baxter et al. 
[1] 

Image Minimize error on a training dataset ⋅ CNN with a fixed structure⋅ Layer resolutions, 
loss function parameters, etc … 

Network 
weights 

Bagging (ensembling by 
prediction averaging) 

Reijonen et al. 
[58] 

Image N/A FreeSurfer cortical reconstruction and 
Brainnetome atlas fitting 

N/S Directed use 

Rusjan et al. 
[60] 

Image N/S SPM2 registration to Talairach atlas N/S Direct use 

Sparing et al. 
[67] 

Image Minimize registration cost between patient and 
ICBM152 atlas 

Atlas heat-map determined by population fMRI N/S Direct use 

Zosso et al. 
[85] 

Image Minimize mutual information between a 
registered image and an atlas image 

⋅ Rigid registration N/S Direct use 
⋅ B-spline non-rigid registration 

N/S meaning not specified i.e. said information is not present in the paper, N/A meaning not applicable i.e. when said information is not sensible in the validation 
context. 

Table 15 
Papers used in TMS point localisation literature review - Part 2.  

Paper Validation Objective Validation Technique Dataset Splitting 

V MV I MQ MOU MRU GV VT Ntest Ntrain VR 

Baxter 
et al. [1] 

⋅distance ⋅ mean dist. Manual (3 experts) Compare to reg. 
6.38 ± 3.30 mm to 
13.32 ± 3.33 mm 

N/S 5.65 ± 3.95 mm 
to 8.84 ± 5.45 
mm 

Patient- 
level 

LOOCV 26 26 5 
⋅consistency ⋅st.dev. 

Reijonen 
et al. 
[58] 

⋅distance shortest 
distance to 
boundary 

Expert selection, TMS 
mapping, and [50] 
(DLPFC) 

N/S N/S N/S for expert & 
mapping, 
otherwise in 
[50] 

Patient- 
level 

‘Testing’ 
set only 

N/ 
A 

22 1 

Rusjan 
et al. 
[60] 

⋅distance ⋅mean dist Experimentally 
determined point 

Compare to blind 
methods 

N/S N/S Patient- 
level 

LOOCV 15 15 1 
⋅consistency ⋅tracking 

stdev. in MNI 
space 

Sparing 
et al. 
[67] 

⋅immediate 
physiolog- ical 
effect 

evoked motor 
potential 
amplitude 

N/A Compare to blind/ 
manual/ 
registration 
methods 

N/S N/A Patient- 
level 

‘Testing’ 
set only 

N/ 
A 

10 1 

Zosso et al. 
[85] 

⋅ distance ⋅ inter-means Mean of comparative 
registration locations 

N/S N/S 7.96 to 9.22 mm Patient- 
level 

‘Testing’ 
set only 

N/ 
A 

10 1 
⋅consistency ⋅st.dev.  

Paper Data Processing Hypothesis Verification 

FA FS MO FH 

Baxter et al. [1] Translation (std. 10 mm) Rotation (std. 
10◦) 

Uniform distance: 5.54 ± 3.25 to 9.08 ± 8.29 mm Wilcoxon test for mean error, sign. 5% Bonferroni 
correction consistency: 1.33 ± 0.93 to 3.24 ± 5.60 

mm 
Reijonen et al. 

[58] 
none N/A distance: 5 ± 2 to 23 ± 4 mm none 

Rusjan et al. [60] none N/A distance: 12.6 ± 6.7 mm Wilcoxon signed-rank test 
consistency: only in figure 

Sparing et al. [67] none N/A relative ampl: 72 ± 7% One-way repeated measures ANOVA, sign. 0.1% 
Zosso et al. [85] none N/A distance: 5 to 7 mmconsistency: 7.8 to 11 

mm 
none 

N/S meaning not specified i.e. said information is not present in the paper, N/A meaning not applicable i.e. when said information is not sensible in the validation context 
- (st.dev) standard deviation of predicted co-ordinates. 
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was found that was close to meeting the requirements, but had a higher 
LA involving a medium-term clinical trial [28]. 

The results of the literature review are given in Tables 14 and 15. In 
terms of the methods used, two of the three papers made use of 
deformable registration and an atlas in order to determine the location 
of the potential TMS stimulation points. Table 14 contains information 
about the general context of the experiments and the specific algorithms 
implemented (and, for a long literature review or a more method- 
focused literature review, it should be further extended and sub
divided based on more specific elements of the methodology). Inter
estingly, every paper used atlas registration either as the proposed 
method [58,60,67,85] or as the comparative method [1]. In terms of 
data granularity, each method used a single T1-weighted image per 
patient and the algorithms processed the entire image at once, leading to 
an equivalence between image-level and patient-level granularity used 
throughout each method. Interestingly, none of the methods specified 
the parameters used for registration and how they were determined, 
which may lead to a lack of reproducibility and potential bias in the 
results. 

As with the previous literature review, the second table (Table 15) is 
dedicated to aspects of validation and shows much more heterogeneity, 
even amongst only five methods. For example, for the three methods 
with the same V (i.e. distance and consistency), MV is defined in 
completely different ways due to one having a manual reference [4], one 
having a reference derived from TMS mapping [60], and one deriving it 
from more well-known registration method [85]. Although the two of 
the three methods produce similar numeric accuracies, the numbers 
themselves are not directly comparable because they only appear to 
measure the same thing. The method with the numerically worst accu
racy uses a more objective and possible higher quality reference, 
meaning that it may not truly underperform the other two. For the other 
papers, LA and V themselves were fundamentally different. For example, 
Sparing et al. [67] used a more middling LA, measuring the effect that 
changing the point localisation method would have on the immediate 
symptoms by measuring the evoked potential at the desired target 
anatomy (e.g. the hand) due to stimulating a cortical region. 

Again, the papers overall tended to lack MRU and MOU information to 
contextualise their results. In the case of Baxter et al. [1], MRU was 
provided, which was used to contextualise the performance of the al
gorithm in terms of approaching human expert performance. Reijonen 
et al. [58] used a citation from the literature for MRU [50], although this 
literature used different validation metrics, making it still difficult to 
contextualise the results. In the case of Sparing et al. [67], no MRU is 
needed as a reference-free approach was used for validation. None of the 
papers defined MOU, as the consistency metric used by Baxter et al. [1] is 
a function of the random initialisation of the model parameters (some
thing controlled by the training process) rather than randomness or 
uncertainty in the data itself. 

Another interesting point is the number of papers that are missing an 
aspect of validation that is usually considered critical: a statistical test 
that gauges if an improvement is large enough as to not be caused by 
random chance. In both cases [58,85], this was because the papers did 
not have even an implicit notion of MQ which is more common for 
exploratory papers rather than those which validate a technical method. 
It is not necessarily a negative thing for exploratory papers to be purely 
observational rather than define a level for clinical use as, at that stage, 
the technology may be sufficient far from clinical use that immediately 
comparing the performance with a qualifying level would prevent these 
explorations from seeing publication, regardless of their technological 
novelty, which could stifle necessary initial innovation. 

3.3. Connections to framework 

Aside from their use of Section 2’s catalogue of symbols and defini
tions to both filter and summarise papers, these mini-literature reviews 
demonstrate the importance of giving a higher degree of attention to 

validation details. One initial observation is the heterogeneity in which 
papers are validated as observed in these mini-literature reviews as well 
as in other validation-critical literature reviews [55,73]. 

This arises because the validation of medical information processing 
algorithms does not follow a singular path in practice, but is composed 
of a series of decisions, techniques, and best-practices that are not al
ways mutually consistent. This inherently poses issues for the MIC 
community as a whole as it would mean that in addition to different 
teams having access to different data and expertise in different meth
odological techniques, the algorithms being produced are not evaluated 
on a consistent and globally understood manner. Recently, several re
searchers have openly worried that machine learning in general may be 
experiencing a reproducibility crisis [24,45,68] largely because of this. 

4. Improving validation at a community level 

As noted by both Jannin et al. [26] and Maier-Hein et al. [41] and is 
also argued for in this paper, it is clearly necessary to formalise vali
dation procedures and ensure that papers adhere to this formalism,. This 
could be either by encouraging reviewers to look for all the elements of 
the formalism, or by necessitating a specific author-filled checklist for 
submission. This will unarguably improve validation through making 
the procedures clearer and better reported, it also may draw the atten
tion of people performing the validation to specific sources of systemic 
bias that can be account for or corrected through relatively small 
changes to the validation procedure. Other, more community-level ap
proaches could also be taken, using this standardisation as the basis for 
validation-critical literature reviews, publication of recommended 
validation approaches, standardised open datasets, comparison papers, 
and competitive challenges. 

4.1. Validation-critical literature reviews 

As shown in Section 3, one can easily use this framework to structure 
information to make validation-critical literature reviews which do not 
neglect nor blindly accept numeric results reported in papers. Although 
validation information does not make up all information normally pre
sent in a literature review (notably the enumeration and distillation of 
methods used) it provides another lens through which to critique the 
literature and the research community. These reviews cannot change the 
validation quality of past papers but they could provide an opportunity 
to identify common trends in how algorithms for a particular problem 
are validated, which may encourage others to structure their own ex
periments more conscientiously. 

Encouraging validation-critical literature reviews is by far the least 
intrusive way to improve validation quality, however, it is also the 
weakest as it would still allow for multiple mutually incompatible types 
of validation for a single technical problem to exist at the same time 
without clarifying which is best in terms of translating technology into 
clinical use. In order to address this, it would have to take a normative 
stance, advocating for a particular validation structure rather than 
relying on the research community to coalesce around one organically. 

4.2. Publication of recommended validation approaches 

To proactively standardise validation, a team of expert researchers 
and clinicians could publish recommendations on what validation con
figurations are correct, meaningful, and of use to their community and 
for authors to adhere to these recommendations. This would allow cli
nicians to specify reasonable limits on the clinical context and data (e.g. 
what imaging sequences are used for a particular problem, what 
computational/temporal resources are allotted for a particular compu
tational task) and for domain experts to judge (i.e. recommended vali
dation techniques based on the number of images a centre is likely to 
have, appropriate validation metrics, etc …). In the approach described 
by Jannin et al. [26], this would be necessary for almost all levels of 

J.S.H. Baxter and P. Jannin                                                                                                                                                                                                                  



Intelligence-Based Medicine 7 (2023) 100090

16

validation standardisation. Some initial forays have been made into this 
in a general context, notably for selecting appropriate validation metrics 
in image segmentation and classification problems [40]. 

By publishing recommended validation approaches that are detailed 
and precise, the burden (and thus the variability) of developing these 
procedures is lifted from researchers engaged in developing or vali
dating new technologies. One could imagine the majority of papers 
could simply cite the guideline being used. In addition, any systemic 
issues with the guideline could be addressed in a more open manner 
through meta-analysis papers or through papers that compare these 
guidelines against a more accurate (and likely more time-consuming) 
approach. 

For papers that depart from these guidelines, the burden is then on 
the authors to justify differences between their approach and the 
guideline and to minimize the negative effects of these differences. For 
example, if the guideline recommends a particular pre-processing 
method that is unavailable to the researcher for computational rea
sons, they can substitute it for another, justifying its validity. 

Overall, this approach would encourage more modularity in terms of 
submitted papers, no longer requiring extensive detail required to 
adequately describe their validation approach, but rather a citation. 
These papers would become a tool for authors and for reviewers for 
standardisation, facilitating meta-analyses and literature reviews. It 
would also be more flexible than using a particular published verifica
tion phantom or dataset. 

However, there are some disadvantages. For many evolving appli
cations, there may not be enough information to determine these vali
dation guidelines, leaving researchers to have to initially develop them 
on their own. The second issue is that these guidelines must avoid being 
too restrictive, which could raise the barrier-to-entry for novel tech
niques, and being too relaxed and not provide a uniform validation 
approach. 

4.3. Standardised open datasets 

Possibly the most common way to improve validation in terms of 
comparability across the published literature is via the creation and 
distribution of standardised open datasets. Several of these datasets 
already exist in the medical imaging community as part of larger lon
gitudinal initiatives such as the Parkinson’s Progression Markers 
Initiative (PPMI) [42] or the Alzheimer’s Disease NeuroImage (ADNI) 
database [49]. These datasets are often a result of a large-scale collab
oration between multiple centres that have structured methods for 
ensuring dataset quality and consistency, as well as reporting patient 
distributions that are representative of the patient population as a 
whole, bringing these methods closer to clinical use. 

One of the issues with standardised open datasets however is that 
they engender a particular type of bias resulting from their availability 
to the community and their acceptance as a gold standard for compari
son. Essentially, an open dataset that is ubiquitously used allows for 
methods to become tailored specifically to that dataset and not neces
sarily to clinical use [4]. For example, the Shepp-Logan phantom [64] 
and its variants [15] have been heavily used in the literature for MRI and 
CT reconstruction with innumerable articles validated solely using this 
phantom. But, it is known that this phantom biases methods towards 
piece-wise constancy [66] with one early method even having zero 
reconstruction error for the original phantom [74] which obviously 
cannot happen in a real clinical scenario. For open datasets consisting of 
real images rather than phantoms, this can be at least partially addressed 
by periodically adding to the database, creating new indexed versions 
with more heterogeneous data for more extensive, on-going, and 
less-biased validation. 

The potential contribution of our framework to standardised open 
datasets would be to again encourage more structured and complete 
reporting especially in terms of the quality and certainty of the dataset 
itself. In addition, our framework also suggests ways in which structured 

open datasets could become more useful, such as the inclusion of data 
augmentation procedures and guidelines. Although simple data 
augmentation procedures (e.g. image translation/rotation, etc …) are 
relatively easy for researchers to construct, more problem-specific or 
annotation-specific augmentation capabilities could be envisioned. For 
example, certain problems such as medical image segmentation and 
registration, have invariances regarding deformable transformations. 
However, for some anatomies, such as the brain, what deformations are 
possible is itself constrained (i.e. by brain symmetry) and the plane of 
symmetry could be an annotation provided by the group constructing 
the dataset which would be more standardised and efficient than having 
the groups that use the dataset develop their own annotations. 

4.4. Comparison papers 

Comparison papers are similar to standardised open datasets in that a 
singular dataset is applied to various algorithms, but stronger in that the 
validation technique is also standardised, meaning that algorithms are 
not only validated on the same data, but that they do so in the same way 
and are compared in a uniform way as well. However, unlike with 
standardised datasets, there is always a doubt that the methods are being 
implemented fairly. That is, with the complexity of methods being 
presented today, there are innumerable parameters that would need to 
be set in a manner that is both cognisant of the problem domain and the 
algorithm itself. Thus, for all but a few very well-understood algorithms 
with open implementations, the team that is comparing the algorithms 
lacks some of the information of the original algorithm designers which 
can lead to sub-optimal versions of the algorithms being compared. This 
can at least partially be addressed through properly constructing shared 
code bases and using common tools and libraries. The capability of 
implementing a paper is at least a minimum metric of reproducibility. 

However, the authors of a comparison paper may also (consciously 
or subconsciously) have a preferred method that receives additional 
attention which could subtly bias the validation results. Even if the exact 
code for a paper is provided, the variability in validation methodology 
across papers (as we’ve seen in Section 3) still provides an opportunity 
for a differential amount of effort to be applied in comparison of mul
tiple frameworks. 

4.5. Challenges 

Challenges may address the issues with standardised open datasets 
and comparison papers at the same time. A challenge is a time-limited 
competition in which independent groups submit models (or results 
on pre-identified ‘Testing’ data) which are evaluated by the challenge 
organisers. Often, these challenges feature a leaderboard which ranks 
submissions according to one or more MV. The idea of a challenge builds 
on that of standardised open datasets and comparison papers in that (at 
least) the ‘Testing’ data and validation procedure as a whole is stand
ardised and uniformly applied across a variety of papers. In some ways, 
challenges combine the benefits of standardised open datasets as well as 
recommended validation approaches as they often involve teams who 
collect the data and design the experiment explicitly to cover a variety of 
metrics which are of clinical interest. The crucial difference between a 
challenge and a comparison paper is the separation of the group that 
constructs the algorithm, who are incentivised to create as high- 
performing an algorithm as possible given the particular data, and the 
group that performs the validation, who are incentivised to create a 
validation scheme that is both descriptive (covers a wide array of ap
plications and metrics) and discriminative (i.e. distinguishes the per
formance of different algorithms). 

A recent paper [41] explaining the Biomedical Image Analysis 
Challenges (BIAS) initiative emphasised the importance of challenges 
specifically in the MIC community as benchmarks to evaluate and 
reproduce a large number of algorithms. One of the issues discussed by 
this paper is the heterogeneity of challenge reporting, both in terms of 

J.S.H. Baxter and P. Jannin                                                                                                                                                                                                                  



Intelligence-Based Medicine 7 (2023) 100090

17

the datasets and objectives, but also in terms of how submissions are 
validated. In addition to the elements outlined earlier in this paper, BIAS 
includes validation information that is inherently specific to challenges, 
such as details on the ranking process, the challenge life-cycle, sub
mission procedures, etc…These aspects do not reflect the validation of 
individual algorithms but are instead designed to make challenges more 
transparent and interpretable. 

Maier-Hein et al. [39] has also demonstrated that quality control 
aspects such as ranking specifics, ‘Testing’ data composition, and 
reference determination have rendered the reproducibility and inter
pretation of challenge results problematic. Although the BIAS initiative 
can alleviate some of these issues by structured reporting, rendering the 
challenge results more interpretable by clearly specifying the framework 
for their interpretation, several theoretical and practical issues remain. 

The design of challenges is difficult as it must not only provide a 
standard basis for comparison across multiple algorithms that may differ 
vastly in their technical specifics, but also address the underlying 
problems of human competitiveness and fallibility in a rigorous manner. 
For example, challenges tend to rely on the hold-out method as the 
validation technique, which is known to be less accurate than cross- 
validation techniques [8]. In addition, this burdens challenge de
signers to acquire sufficient data not only to evaluate the algorithms 
presented but also to give a meaningful opportunity for more 
data-hungry algorithms to compete. Maier-Hein et al. [39] found that 
the removal of a single ‘Testing’ case can change challenge rankings up 
to 67% of the time which reflects the instability of ranking procedures 
with respect to actual validation being performed. This is also important 
due to the uncertainty in the reference data. For example, the 
BRATS2014 segmentation challenge [46] had an inter-rater variability 
of 70-85% Dice with a few method approaching that level of accuracy. 
Maier-Hein et al. [39] found that for segmentation challenges in 
particular, the choice of observer (the clinician manually segmenting the 
imaging data) can result in changing the challenge ranking for between 
15 and 62% of validation metrics. In over 60% of segmentation chal
lenges, it is even unclear if multiple observers have segmented the data 
[39]. The lack of MRU and/or MOU information implies that, after a 
certain point, ranking results cannot be meaningfully interpreted as 
there is no mechanism to tell if two high-performing algorithms have 
truly different results. 

Aside from reference data, challenges also struggle to eliminate data 
leakage. Often, the challenge organisers giving groups dedicated 
‘Testing’ data (for ’hold-out’ validation) to which the algorithms are 
applied, but this could still cause human data leakage when the partic
ipants change their algorithm based on the perceived results on said 
data. In order to completely eliminate this, some challenges are organ
ised in which the participants give their models to the challenge orga
nisers to be applied on standardised hardware to completely unseen 
‘Testing’ datasets, although that is less common, requires the challenge 
organisers to have more extensive resources, and limits the scope of 
computing resources available to the participants. 

None of this is to detract from the importance of challenges. By 
merely comparing multiple algorithms on the same datasets, challenges 
have significantly improved aspects of cross-algorithmic validation by 
controlling variability in experimental design. The contribution of this 
framework to challenges extends along the same lines as the previous 
section on open datasets (i.e. encouraging data augmentation features, 
reference uncertainty information, etc …) although the additional 
control available in challenges could lead to other opportunities. One 
possibility for improving challenges could be to use a cross-validation 
technique in order to evaluate how algorithms perform with limited 
access to data. This would however require more work for the organisers 
as they would have to create a structured environment for performing 
both the training and evaluation rather than only provide data. 

5. Conclusion 

This article has aimed to clarify the nature of medical information 
processing validation regarding both traditional methods and learning- 
based methods that have come to the forefront of MIC research since the 
advent of deep learning. Validation is an inherent part of any technical 
research, but is especially important in MIC as the difference between 
proper and improper validation can lead to problems in the integration 
of research into the clinic, a reduction in the trust a clinician would have 
for algorithmic assistance, or a negative impact on patient care. 

This paper presents a framework for understanding the validation of 
medical information processing algorithms from a data-flow point of 
view, isolating the various components and considerations into distinct 
parts of a greater validation workflow. Although more complex than 
simpler work-flow based models previously proposed [26,27], this 
model is expressive enough to capture both traditional algorithms and 
machine-learning based algorithms into a singular framework which 
takes advantage of the similarities in validation philosophies between 
the two while highlighting crucial differences. 

The overall result of this paper is a way of breaking down the process 
of validation in a way that facilitates comparison between different 
works in the literature. We demonstrated this through two literature 
reviews (one in subthalamic nucleus segmentation for deep brain stim
ulation interventions and another in cortical point localisation for 
transcranial magnetic stimulation) that are specifically catered towards 
a comparison of validation techniques. These literature reviews show 
how our framework can be easily put into place to rigorously analyse the 
validation aspects of different methods from the literature. 

This framework, as well as helping to expose common issues in MIC 
algorithm validation, motivates methods for improving validation. 
Aside from providing a checklist of elements to include (and thus higher 
visibility of possible reporting issues and biases), such a framework 
motivates concrete mechanisms for community-wide improvements 
such as the creation of validation-critical literature reviews, published 
recommendations for validation approaches, standardised open data
sets, comparison papers, and competitive challenges. These recom
mendations are not a panacea but they each represent possible methods 
for moving towards more robust algorithm validation. 
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