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A splitting method for semi-Lagrangian Vlasov-Poisson solvers

with a strong external uniform magnetic field

Michel MEHRENBERGER ∗, Anh-Tuan VU †

(March 6, 2023)

Abstract

We solve numerically the Vlasov-Poisson system with a splitting method suited for
strong external magnetic field. Our splitting scheme is inspired by J. Ameres [2] but uses
the semi-Lagrangian solver instead of a Fourier spectral discretization solver. We show
that when the magnitude of the external magnetic field becomes large while the time step
is independent of the fast oscillation in time, this scheme is able to provide a consistent
semi-Lagrangian discretization of the guiding-center model. In addition, we propose some
numerical simulations to validate the method under the Kelvin-Helmholtz instability test
case.

Keywords: Vlasov-Poisson system, Guiding-centre model, Asymptotic analysis, Splitting
schemes.
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1 Introduction

We consider a plasma consisting of massm with individual electric charge q, which is described
by the Vlasov equation coupled with the Poisson to compute the self-consistent fields E in
the presence of an external magnetic field B, motivated by the magnetic confinement. The
unknown f(t, x, v), depending on the time t, the position x, and the velocity v, represents
the distribution of particles in the phase space with (x, v) ∈ Rd × Rd, d = 2, 3. The Vlasov
equations reads:

∂tf + v · ∇xf +
q

m
(E(t, x) + v ∧B) · ∇vf = 0, (t, x, v) ∈]0, T ]× R3 × R3, (1)
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To simplify, the curvature of magnetic field lines is neglected and we assume that the external
magnetic field only applies in the x3-direction

B = (0, 0, B),

where B is a given constant.
In the two dimensional setting x = (x1, x2), v = (v1, v2) the Vlasov equation writes

∂tf + v · ∇xf +
q

m

(
E(t, x) +B⊥v

)
· ∇vf = 0, (t, x, v) ∈]0, T ]× R2 × R2, (2)

where ⊥v = (v2,−v1), while the Poisson equation is

E(t, x) = −∇xΦ(t, x), −ε0∆xΦ = ρ(t, x) = q

∫
R2

f(t, x, v)dv, (3)

where ε0 is the permittivity of the vacuum. We complete the above system with the initial
condition

f(0, x, v) = f0(x, v).

The well-posedness of the Vlasov-Poisson problem is well known, see [9] for the weak solution,
and [10, 11, 12, 13] for the strong solution. The numerical solution of the Vlasov equation can
be classically performed by Lagrangian, Eulerian, or semi-Lagrangian methods. Lagrangian
particle methods like particle in cell methods (PIC) consist of approximating the plasma by
a finite number of macro-particles. The trajectories of these particles are computed from the
characteristic curves given by Vlasov equation, whereas self-consistent fields are computed by
gathering the charge densities of the particles on a mesh of the physical space (see [14]). Eule-
rian methods have been used to discretize Vlasov’s equation on a phase space grid instead of
particles. Semi-Lagrangian methods can be viewed as a combination of Lagrangian methods
and Eulerian methods which consist in computing the distribution function on a grid by fol-
lowing the characteristic curves, backward in time for a one-time step and interpolating the
value at the feet of the characteristics using the grid point values of the distribution function
at the previous time step, see [8, 15]. This method is usually coupled with a time splitting.

We are interested in the long-time behavior of particles under the regime of intense mag-
netic field, i.e. T → +∞ and |B| → +∞ in order to observe a drift phenomenon in the plane
orthogonal to the magnetic field direction. Therefore, we first introduce a set of characteristic
scales. The characteristic length scale x̄ is the Debye length

x̄ = λD =

(
kBε0T̄

4πn̄q2

)1/2

,

where kB is the Boltzmann constant, T̄ is the temperature scale and n̄ is the density scale.
Then, the characteristic velocity v̄ is the thermal velocity

v̄ = vth =

(
kBT̄

m

)1/2

.

The characteristic magnitude of the electric field Ē can be expressed from n̄ and x̄ by

Ē =
4πqn̄x̄

ε0
.

Finally, we denote by B̄ the characteristic magnitude of the magnetic field and f̄ =
n̄

v̄2

the distribution function scale. Next, we introduce various time scales that appear in the
problem:
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• T0 the observation time scale,

• Tp = w−1
p =

x̄

v̄
the reciprocal plasma frequency,

• Tc = w−1
c =

m

qB̄
the reciprocal cyclotron frequency.

The above regime i.e. (T → +∞, |B| → +∞) corresponds to the following scaling assumption
in [1] given by

T0

Tp
=

1

ε
,
Tc
Tp

= ε. (4)

The small parameter ε > 0 is related to the ratio between the reciprocal Larmor frequency
and the advection time scale. Then we define the new variables and given fields by

x′ =
x

x̄
, v′ =

v

v̄
, t′ =

t

T0
, E′(t′, x′) =

E(t, x)

Ē
, B′ =

B

B̄
,

and the new unknown

f ′(t′, x′, v′) =
f(t, x, v)

f̄
.

Inserting all these changes into (2), we obtain the dimensionless equation

1

wpT0

∂f ′

∂t′
+ v′ · ∇x′f ′ +

q

m

[
E′ +

wc
wp
B′⊥v′

]
· ∇v′f ′ = 0, (t′, x′, v′) ∈]0, T ′]× R2 × R2.

For the sake of clarity and simplicity, we drop the primes in the above equation. Therefore,
under the scaling assumption (4), the Vlasov equation can be recast in dimensionless variables,
as follows:

ε
∂fε
∂t

+ v · ∇xfε +
q

m
Eε · ∇vfε +

1

ε

qB

m
⊥v · ∇vfε = 0, (t, x, v) ∈]0, T ]× R2 × R2, (5)

where the Poisson equation for the potential Φε satisfies Eε(t, x) = −∇xΦε(t, x) and

− ε0∆xΦε(t, x) = qρε(t, x) = q

∫
R2

fε(t, x, v)dv. (6)

We are interested in the behavior of the Vlasov-Poisson equation (5)-(6) as ε → 0. At
the continuous level, following the work of L. Saint Raymond [5] or more recently of Miot [7]
using the characteristic curves, it can be proved that the density particle (ρε)ε>0 converges
in some ways to the solution of the guiding center model

∂tρ(t, x) +
⊥E(t, x)

B
· ∇xρ(t, x) = 0, (t, x) ∈]0, T ]× R2, (7)

E(t, x) = −∇xΦ(t, x), −ε0∆xΦ(t, x) = qρ(t, x). (8)

This means that when watching the dynamic of particles on a long enough time as the
intensity of the magnetic field |B| is large enough (i.e ε << 1), the density particles of the
Vlasov-Poisson system (2)-(3) is approximated by the density of the system (7)-(8). Hence,
the asymptotic model (7)-(8) is sufficient to describe the Vlasov-Poisson system in this regime
and it only requires solving a two-dimensional problem instead of a four-dimensional problem
like the Vlasov-Poisson problem, thus reducing the cost of numerical simulation. Moreover,
since it does not contain any stiff term, standard numerical methods can be employed to
approximate it, c.f [8] using the backward semi-Lagrangian methods. Readers can refer
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to the semi-Lagrangian method for guiding center simulations on different meshes, see for
example [18, 19, 20].

In this work, we perform the numerical solution of the Vlasov-Poisson equation (5)-(6)
by semi-Lagrangian methods coupled with a time splitting, inspired by the splitting schemes
introduced in [2]. Before describing and analyzing our numerical methods for the Vlasov-
Poisson equation, we need to observe the motion of each individual charged particle in the
electromagnetic field. The trajectories of particles are computed from the characteristic
curves corresponding to the Vlasov equation (5) as follows:

dXε(t)

dt
=

1

ε
Vε(t), Xε(0) = x ∈ R2,

dVε(t)

dt
=

q

m

Eε(t,Xε(t))

ε
+
ωc
ε2
⊥Vε(t), Vε(0) = v ∈ R2,

whereas the electric field is computed from a discretization of the Poisson equation on a
mesh of the physical space. When the electromagnetic field is constant and given, by direct
computation, one sees that the trajectory of particle is described by

Vε(t) = R
(
−ωc
ε2
t
)
Vε(0) + ε

⊥E

B
,

Xε(t) =

[
Xε(0) + ε

⊥V ε(0)

ωc

]
︸ ︷︷ ︸

center circle

+ t
⊥E

B︸︷︷︸
slow drift

+R
(
−ωc
ε2
t+ π/2

)
ε
Vε(0)

ωc︸ ︷︷ ︸
fast Larmor rotation

.

The evolution of a given particle’s position is a combination of two different time movements:
a slow dynamic of the center of the circle xg = x + ε⊥v/ωc, usually called guiding center,
which is given by the drift velocity and a fast rotation of period about Tc = ε22π/ωc, with a
small radius ε|v|/ωc around guiding center. Thus, the Vlasov-Poisson system is multi-scale.
Due to high oscillations in time, if one wants to do accurate simulation of the Vlasov problem
using classical numerical schemes, one needs small time steps, typically smaller than Tc. A
way to avoid this restriction is to use the asymptotic model (7)-(8), since it does not contain
fast oscillations in time, and so a very small time step is no longer required in order to
simulate these oscillations. However, the aim of this work is to produce a reference solution
of the Vlasov-Poisson equation for several values of the parameter ε.

From the discrete point of view, we are interested in a method which is able to capture
this singularly oscillatory limit, while the numerical parameters may be kept independent
with respect to ε, in particular the large time step, so that the numerical method provides
a consistent discretization of the limit system as ε → 0. This concept is called Asymptotic
Preserving property (see [17]). The methods of passage from Vlasov-Poisson equation to the
Guiding-center model, which satisfy this property have been studied by recent works within
the framework of PIC method, which allow to focus on the construction of a numerical scheme
in time of the characteristic equations. Readers can refer to various multi-scale techniques
that have been proposed such as the exponential integrator in velocity in [16], implicit-explicit
time discretizations in [4], and two-scale formulation integrator in [21].

In this paper, we propose an alternative to such methods allowing us to make direct
simulations of the Vlasov-Poisson system with large time steps with respect to O(ε2). This
work is based on the same splitting method as [2] but the semi-Lagrangian Vlasov solver is
used instead of a Fourier spectral discretization solver. Now, we start to summarize the basis
of the method and the results of this paper. The time splitting that is used to approximate
the solution of the Vlasov-Poisson system is based on exact computations of the following
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two equations:

ε∂tfε + v · ∇xfε +
1

ε

qB

m
⊥v · ∇vfε = 0, (9)

ε∂tfε +
q

m
Eε(t, x) · ∇vfε = 0. (10)

The time splitting presented here for the Vlasov equation in strong magnetic field into two
parts where one part includes the transport term and magnetic term, and the other part in-
cludes the electric term which has also been applied in [24] for the finite radius approximation
Larmor regime. First, we consider the approximation of the characteristic curves. The exact
characteristic curves of the Vlasov equation can be approximated by a composition of flows
associated with the equations (9)-(10) respectively. Under the first order time splitting, the
approximation of the exact characteristic curves can be written as:

Xε(t) = Xε(0) +
[
R
(
−ωc
ε2
t+ π/2

)
−R(π/2)

] ε

ωc
Vε(0),

Vε(t) = R
(
−ωc
ε2
t
)
Vε(0) +

q

mε

∫ t

0
Eε(s,Xε(s))ds,

(see (47) in Section 3). We now want to study formally the stability of this characteristic

curves. Setting Zε(t) = Xε(t) + ε
⊥Vε(t)

ωc
, the above system can be re-written for (Zε, εVε) as

Zε(t) = Zε(0) +

∫ t

0

⊥Eε
B

(s, Zε(s)− ε
⊥Vε(s)

ωc
)ds,

εVε(t) = R
(
−ωc
ε2
t
)
εVε(0) +

q

m

∫ t

0
Eε(s, Zε(0)−R

(
−ωc
ε2
s
) ε

ωc
⊥V ε(0))ds.

Under some classical smoothness assumption on the electric field Eε and initial data (Xε(0), εVε(0))
we show formally when ε → 0 that Zε ⇀ Z and εVε ⇀ V 6= 0 which satisfy the following
system:

Z(t) = Z(0) +

∫ t

0

⊥E

B
(s, Z(s)− V (s))ds,

V (t) =
q

m

∫ t

0

1

2π

∫ 2π

0
E(s, Z(0)−R (−θ)

⊥V (0)

ωc
)dθds.

We see that the limit system does not coincide with the characteristic curves corresponding
to the guiding center model (7), in contrast to the the result obtained in [4] where it has been
shown that the velocity εVε tends to 0 as ε → 0 which implies that the particle’s position
approximate the guiding center position.
Next we will study the approximation of the distribution function fε when using the split-
ting scheme (9)-(10). Since each equation can be solved exactly in time using the char-
acteristic method when the magnetic field is uniform, the error is only due to the split-
ting procedure (first order for Lie spliting, second order for Strang splitting). If we use
such a method, we have to guarantee the accuracy of the scheme, especially when consid-
ering the high frequency oscillations of the particles. By investigating the commutator, the
global error of the p-order splitting is O(∆tp+1/εp+1), see Appendix for p = 1, 2. This
error bound indicates that to obtain good results for the numerical solution of the distri-
bution function fε(t, x, v), the time step ∆t has to be the same order of ε which would
require very large CPU time cost when considering a very small ε. However, considering
the numerical solution for the density particle ρε(t, x) obtained from the approximation of
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the distribution function fε(t, x, v), we realize that it can be performed with larger time
step, and moreover it provides a consistent approximation to the guiding center model.
To see the asymptotic limit as ε goes to 0, we expect that when ε becomes very small,
the distribution function fε(t, x, v) satisfies fε(t, x, v) ≈ fε(t, x − ε⊥v/ωc, v) and so, we get
that ρε(t, x) =

∫
R2 fε(t, x, v)dv ≈

∫
R2 fε(t, x − ε⊥v/ωc, v)dv. Following [7], we work on the

gyro-coordinates (x − ⊥v, v) and focus on the equations satisfied by the shifted distribution
fε(t, x−ε⊥v/ωc, v). Performing the change variables, we get equations for fε(t, x−ε⊥v/ωc, v)
that can be written as (see Proposition 3.3):

∂tfε(t, x− ε
⊥v

ωc
, v) + ωc

⊥v

ε2
· ∇v

[
fε(t, x− ε

⊥v

ωc
, v)

]
= 0,

∂tfε(t, x− ε
⊥v

ωc
, v) +

⊥Eε
B

(t, x− ε
⊥v

ωc
) · ∇xfε(t, x− ε

⊥v

ωc
, v)

+
1

ε

q

m
Eε(t, x− ε

⊥v

ωc
) · ∇v

[
fε(t, x− ε

⊥v

ωc
, v)

]
= 0.

After integrating these equations with respect to velocity, we get the following equations∫
R2

∂tfε(t, x− ε
⊥v

ωc
, v)dv = 0,∫

R2

∂tfε(t, x− ε
⊥v

ωc
, v)dv +

∫
R2

⊥Eε
B

(t, x− ε
⊥v

ωc
) · ∇xfε(t, x− ε

⊥v

ωc
, v)dv = 0,

which do not contain the stiff term. Formally passing to the limit as ε→ 0 we obtain∫
R2

∂tf(t, x, v)dv = 0,∫
R2

∂tf(t, x, v)dv +

∫
R2

⊥E

B
(t, x) · ∇xf(t, x, v)dv = 0,

which corresponds to the guiding center approximation

∂tρ(t, x) = 0, ∂tρ(t, x) +
⊥E(t, x)

B
· ∇xρ(t, x) = 0.

Finally, we will construct the full discretized numerical scheme for the distribution function
fε(t, x, v) from the splitting scheme (9)-(10) by using the backward semi-Lagrangian method.
The first order scheme in time and second one of solutions are presented. Then we perform
a formal analysis of the first order full-discretized scheme for the density particle ρε(t, x) to
show that the numerical method provides a consistent discretization to the guiding center
model. During the implementation, we have to filter out the fast rotation of velocity and
then remove the fast translation of the electric field that occur in the characteristic curves
by making a change of variable in the direction of the velocity.

The paper is organized as follows. In Section 2 we briefly first recall the main steps of
the semi-Lagrangian method for solving the Vlasov-Poisson system, and we present then two
splitting schemes: exponential Boris and Scovel’s method. Section 3 is devoted to investigate
the asymptotic limit for the approximation of characteristic curves and then the density of
the Vlasov equation under the Scovel method. Then the full discretized numerical solution
is constructed from the Scovel method using the semi-Lagrangian method in Section 4. In
Section 5 we write an algorithm for the second order accuracy of the exponential Boris and
the Scovel method. Finally, in Section 6 we present some numerical results for the Kelvin-
Helmholtz instability test case.
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2 The time-splitting problem

Now we will recall the principles of semi-Lagrangian method for the Vlasov-Poisson equation
cf. [8] in two dimensions of the phase space. In this Section, we work on the unscaled
Vlasov-Poisson equation (2)-(3) for the sake of simplicity in the presentation. We return
to the scale system when we study the asymptotic limit in Section 3. The characteristic
curves corresponding to the Vlasov equation (2) are the solutions of the following first order
differential system: Ẋ(t; s, x, v) = V (t; s, x, v),

V̇ (t; s, x, v) =
qB

m
⊥V (t; s, x, v) +

q

m
E(t,X(t; s, x, v)),

(11)

with the initial conditions

X(s; s, x, v) = x, V (s; s, x, v) = v.

We denote by (X(t; s, x, v), V (t; s, x, v)) the position in phase space at time t, of a particle
which was in (x, v) at time s. Then, the solution of the Vlasov equation (2) is given by

f(t, x, v) =f(s,X(s; t, x, v), V (s; t, x, v)) (12)

=f0(X(0; t, x, v), V (0; t, x, v)), (x, v) ∈ R2 × R2, t ≥ 0. (13)

Replacing s by tn and t by tn+1 in (12), and denoting Xn = X(tn; tn+1, x, v) and V n =
V (tn; tn+1, x, v) we have

f(tn+1, x, v) = f(tn, Xn, V n).

For each point of the phase space grid (x, v), the distribution function is updated thanks to
the two following steps:

i. Find the starting point of the characteristic curves ending at (x, v), i.eXn = X(tn; tn+1, x, v)
and V n = V (tn; tn+1, x, v) by solving (11).

ii. Compute f(tn, Xn, V n) by the method based on Lagrange interpolation, f being known
only at mesh points at time tn.

We now perform a time discretization in the step i. of (11) by introducing a splitting proce-
dure.

2.1 The exponential Boris algorithm

The characteristics of the splitting underlying the exponential Boris algorithm reads [15]:{
Ẋ(t; s, x, v) = V (t; s, x, v),

V̇ (t; s, x, v) = 0,
(14)

 Ẋ(t; s, x, v) = 0,

V̇ (t; s, x, v) =
qB

m
⊥V (t; s, x, v),

(15)

{
Ẋ(t; s, x, v) = 0,

V̇ (t; s, x, v) =
q

m
E(t,X(t; s, x, v)),

(16)

which leads us to the equations associated with the first order differential systems (14), (15)
and (16) respectively:

∂tf + v · ∇xf = 0, (17)
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∂tf +
qB

m
[v2∂v1f − v1∂v2f ] = 0, (18)

∂tf +
q

m
E(t, x) · ∇vf = 0. (19)

We denote ϕ
[f ]
∆t, ϕ

[B]
∆t and ϕ

[E]
∆t the exact solutions corresponding to the equations (17), (18)

and (19) on one time step ∆t from the initial condition f0(x, v). The solutions ϕ
[f ]
∆t and ϕ

[E]
∆t

can be computed exactly in time since the advection fields in the equations (17) and (19)

do not depend on the variable to be advected. The solution ϕ
[B]
∆t of (18) can also be solved

exactly in time, since the fact that characteristic equation (15) can be computed exactly.
With the two-dimensional rotation matrix

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

the characteristic solution to equation (15) on one time step ∆t writes

X(∆t; 0, x, v) = x, V (∆t; 0, x, v) = R(−θ)V (0), with θ =
qB

m
∆t.

Hence, the solution to (18) by the method characteristic (13) writes

ϕB∆t = f0(X(0; ∆t, x, v), V (0; ∆t, x, v))

= f0(x,R(θ)v), θ =
qB

m
∆t.

For step ii., a two-dimensional interpolation has to be performed in the variable v of ϕ
[B]
∆t to

update the numerical unknown. However, high-dimensional interpolation is known to be non
conservative and it is obviously more demanding in terms of complexity and time. To remedy
this difficulty, we use the method in [3] where the authors proposed a splitting strategy to
reduce the problem into very simple one-dimensional linear transport equations which can be
solved efficiently with a semi-Lagrangian method. The splitting is based on the fact that the
two-dimensional rotation matrix R(θ) is decomposed into a product of three shear matrices:

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
=

(
1 − tan(θ/2)
0 1

)(
1 0

sin(θ) 1

)(
1 − tan(θ/2)
0 1

)
, (20)

for θ 6= kπ, k ∈ Z?. This formula has been generalized to arbitrary dimension, the reader can

refer to [22, 23]. As a consequence, the computation of ϕ
[B]
∆t can be done by solving three one

dimensional linear equations (in v1, v2 and v1 direction successively), i.e.

f0(x, v)→ f?(x, v) = f0(x, v1 − tan(θ/2)v2, v2)→ f??(x, v) = f?(x, v1, sin(θ)v1 + v2)

→ ϕB∆t = f??(x, v1 − tan(θ/2)v2, v2). (21)

This factorization is very useful to compute the rotation, since, using the semi-Lagrangian
methods, it requires one dimensional interpolations instead of two dimensional interpolation.
Moreover, when the angle θ is small (i.e. B∆t << 1), by approximating sin(x) ≈ x and
tan(x) ≈ x, we get the approximate decomposition of rotation (20) given by

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
≈
(

1− θ2/2 −θ + θ3/4
θ 1− θ2/2

)
=

(
1 −θ/2
0 1

)(
1 0
θ 1

)(
1 −θ/2
0 1

)
,
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which correspond exactly to the computation of ϕ
[B]
∆t by using a Strang splitting for equation

(18), where the splitting steps read:

∂tf +
qB

m
v2 · ∇v1f = 0, ∆t/2

∂tf −
qB

m
v1 · ∇v2f = 0, ∆t

∂tf +
qB

m
v2 · ∇v1f = 0, ∆t/2.

Note that, contrary to the exact splitting (20), this factorization is not exact: there is re-
mainder term which is evaluated as O(B2∆t2). Consequently, it is less accurate than (21)
and then the time step can not be taken quite large.

Now, we want to use the splitting methods to approximate the solution f in (12) of the
system (2)-(3). A first order Lie method based on the exponential Boris algorithm writes

χLie
∆t = f(∆t) +O(∆t2)

where
χLie

∆t = ϕ
[f ]
∆t ◦ ϕ

[B]
∆t ◦ ϕ

[E]
∆t ,

and then the Strang method based on the exponential Boris algorithm writes

χStrang
∆t = f(∆t) +O(∆t3)

(which is a second order accurate splitting method) with

χStrang
∆t = ϕ

[f ]
∆t/2 ◦ ϕ

[B]
∆t/2 ◦ ϕ

[E]
∆t ◦ ϕ

[B]
∆t/2 ◦ ϕ

[f ]
∆t/2. (22)

To achieve the second order accurate as Strang splitting, one can consider the composition of
a first-order method like Lie method with its adjoint cf. [3]. This composition method writes

χCompo
∆t = χLie

∆t/2 ◦
(
χLie

∆t/2

)?
, (23)

where the adjoint method
(
χLie

∆t/2

)?
of the Lie method χLie

∆t/2 is denoted the inverse map of

the original method with reserved time step, and it writes(
χLie

∆t/2

)?
=
(
χLie

)−1

−∆t/2
=
(
ϕ[E]

)−1

−∆t/2
◦
(
ϕ[B]

)−1

−∆t/2
◦
(
ϕ[f ]

)−1

−∆t/2
.

Since ϕ
[E]
∆t/2 is the exact solution of equation (19) on the half-time step ∆t with the initial data

f0, and so ϕ
[E]
∆t/2 = f0(v−E0 ·∆t/2) where the electric field E0 is computed from discretization

of the Poisson equation (3) at the initial time, it yields that
(
ϕ

[E]
∆t/2

)−1
= f0(v+E0 ·∆t/2) and

hence
(
ϕ[E]

)−1

−∆t/2
= f0(v − E0 ·∆t/2) = ϕ

[E]
∆t/2. Similarly, we also have

(
ϕ[f ]

)−1

−∆t/2
= ϕ

[f ]
∆t/2.

For
(
ϕ[B]

)−1

−∆t/2
, from (21), we have the inverse solution

(
ϕ

[B]
∆t/2

)−1
writes

f0(x, v)→ f??(x, v) = f0(x, v1 + tan(θ/2)v2, v2)→ f?(x, v) = f??(x, v1,− sin(θ)v1, v2)(
ϕ

[B]
∆t

)−1
= f?(x, v1 + tan(θ/2)v2, v2), θ =

qB

m

∆t

2

hence it yields that
(
ϕ[B]

)−1

−∆t/2
= ϕ

[B]
∆t/2. Combining these computations, we deduce that the

adjoint of the Lie method
(
χLie

∆t/2

)?
writes(

χLie
∆t/2

)?
= ϕ

[E]
∆t/2 ◦ ϕ

[B]
∆t/2 ◦ ϕ

[f ]
∆t/2 = χLie

∆t/2.

Therefore χCompo
∆t = χStrang

∆t is of order 2 in time.
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2.2 The Scovel method

The characteristic of the splitting underlying Scovel’s method reads cf. [2]: Ẋ(t; s, x, v) = V (t; s, x, v),

V̇ (t; s, x, v) =
qB

m
⊥V (t; s, x, v),

(24)

{
Ẋ(t; s, x, v) = 0,

V̇ (t; s, x, v) =
q

m
E(t,X(t; s, x, v)),

(25)

which leads us to the equations associated with the characteristic equations (24) and (25)
respectively:

∂tf + v · ∇xf +
qB

m
⊥v · ∇vf = 0, (26)

∂tf +
q

m
E(t, x) · ∇vf = 0. (27)

Note the following properties of the rotation matrix:

d

dθ
R(−θ + π/2) = R(−θ), (28)

since

d

dθ
R(−θ + π/2) =

(
d

dθ
R(−θ)

)
R(π/2) =

(
− sin(θ) cos(θ)
− cos(θ) − sin(θ)

)(
0 −1
1 0

)
= R(−θ).

Thanks to (28), the exact solution of the characteristic curves in the equation (24) on one
time step ∆t reads:

V (∆t; 0, x, v) = R(−θ)v, θ =
qB

m
∆t. (29)

X(∆t; 0, x, v) = x+

∫ ∆t

0
V (τ ; 0, x, v)dτ = x+

∫ ∆t

0
R(−qB

m
τ)vdτ

= x+
m

qB

∫ ∆t

0

d

dτ
R(−qB

m
τ + π/2)vdτ

= x+
m

qB

[
R
(
−qB
m

∆t+ π/2

)
−R(π/2)

]
v

= x+
m

qB

(
sin(θ) 1− cos(θ)

cos(θ)− 1 sin(θ)

)
v, θ =

qB

m
∆t. (30)

We can therefore rewrite the equations (29) and (30) in matrix form as follows:

(
X(∆t; 0, x, v)

V (∆t; 0, x, v)

)
=


1 0 m

qB sin(θ) m
qB (1− cos(θ))

0 1 m
qB (cos(θ)− 1) m

qB sin(θ)

0 0 cos(θ) sin(θ)
0 0 sin(−θ) cos(θ)

(xv
)
, θ =

qB

m
∆t. (31)

We denote γ
[B]
∆t and γ

[E]
∆t the exact solutions corresponding to the equations (26) and (27) on

one time step ∆t from an initial condition f0(x, v). From (31), we can deduce that the exact
solution of equation (26) writes

γ
[B]
∆t = f0(X(0; ∆t, x, v), V (0; ∆t, x, v)), (32)
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where

(
X(0; ∆t, x, v)

V (0; ∆t, x, v)

)
=


1 0 m

qB sin(−θ) m
qB (1− cos(θ))

0 1 m
qB (cos(θ)− 1) m

qB sin(−θ)
0 0 cos(θ) sin(−θ)
0 0 sin(θ) cos(θ)

(xv
)
, θ =

qB

m
∆t. (33)

For step ii., a four-dimensional interpolation needs to be used in order to update the func-
tion values of the numerical unknown on the phase space grid. Therefore, to avoid four-
dimensional interpolation, we propose an exact splitting that allows us to reduce four-
dimensional interpolation to one-dimensional interpolations. To do so, the matrix (33) can
be expressed into two shears:

1 0 0 0
0 1 0 0
0 0 cos(θ) sin(−θ)
0 0 sin(θ) cos(θ)




1 0 m
qB sin(−θ) m

qB (1− cos(θ))

0 1 m
qB (cos(θ)− 1) m

qB sin(−θ)
0 0 1 0
0 0 0 1

 , (34)

where the first matrix is decomposed into three shears as (20) and the second one can be
expressed into a product of four shear transformations:

1 0 m
qB sin(−θ) 0

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 m

qB (cos(θ)− 1) 0

0 0 1 0
0 0 0 1




1 0 0 m
qB (1− cos(θ))

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 m

qB sin(−θ)
0 0 1 0
0 0 0 1


leads to an exact splitting in time. In consequence, we just have to solve shear transformations
which are nothing but one-dimensional linear advections. Moreover, for the small angle θ,
by approximating sin(x) ≈ x and 1− cos(x) ≈ x2/2 ≈ 0, the product of two matrices in (34)
becomes 

1 0 0 0
0 1 0 0
0 0 cos(θ) sin(−θ)
0 0 sin(θ) cos(θ)




1 0 −∆t 0
0 1 0 −∆t
0 0 1 0
0 0 0 1

 , θ =
qB

m
∆t

which implies that

γ
[B]
∆t = ϕ

[B]
∆t ◦ ϕ

[f ]
∆t, (35)

where ϕ
[f ]
∆t and ϕ

[B]
∆t are exact solutions of equations (17) and (18) and this is equivalent to

splitting the equation (24) into successive equations (14) and (15). We see that γ
[B]
∆t does not

remain the exact solution of equation (26).

We consider now the adjoint solution of γ
[B]
∆t . The adjoint solution

(
γ

[B]
∆t

)?
reads

(
γ

[B]
∆t

)?
=
(
γ[B]

)−1

−∆t
= f0(X(−∆t; 0, x, v), V (−∆t; 0, x, v)),

because of the fact that
(X(−∆t;0,x,v)
V (−∆t;0,x,v)

)
is just the inverse of

(X(0;∆t,x,v)
V (0;∆t,x,v)

)
with the time step

reversed. From (31) and (33), we get (X,V )(−∆t; 0, x, v) = (X,V )(0; ∆t, x, v) which yields

that
(
γ

[B]
∆t

)?
= γ

[B]
∆t . Hence

(
γ

[B]
∆t

)?
is still exact solution to equation (26). Therefore, we can

use the decomposition as in (34) to compute the adjoint solution. For symmetric composition

11



with the adjoint method, the matrix created by
(X(−∆t;0,x,v)
V (−∆t;0,x,v)

)
can be decomposed into two

shears that is the inverse of the product of two matrices in (34) with the time step reversed
1 0 m

qB sin(−θ) m
qB (cos(θ)− 1)

0 1 m
qB (1− cos(θ)) m

qB sin(−θ)
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 cos(θ) sin(−θ)
0 0 sin(θ) cos(θ)

 (36)

where the second matrix is decomposed into three shears as (20) and the first matrix can be
decomposed into a product of four shear transformations:

1 0 0 0
0 1 0 m

qB sin(−θ)
0 0 1 0
0 0 0 1




1 0 0 m
qB (cos(θ)− 1)

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 m

qB (1− cos(θ)) 0

0 0 1 0
0 0 0 1




1 0 m
qB sin(−θ) 0

0 1 0 0
0 0 1 0
0 0 0 1


For the small angle θ, the product of two matrices in (36) becomes

1 0 −∆t 0
0 1 0 −∆t
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 cos(θ) sin(−θ)
0 0 sin(θ) cos(θ)

 , θ =
qB

m
∆t.

Hence, we get (
γ

[B]
∆t

)?
= ϕ

[f ]
∆t ◦ ϕ

[B]
∆t . (37)

and
(
γ

[B]
∆t

)?
is not the exact solution of (26). This is equivalent to splitting the equation

(24) into successive equations (15) and (14). It is clear that, in this situation i.e. θ is small,

from (35) and (37) the solution γ
[B]
∆t and its adjoint are different, since these solutions are not

exact solutions for the equation (26).
Now, we want to use the Scovel method in combination with Strang’s splitting or the

composition with adjoint method to approximate the solution (13) of the system (2)-(3).
The second order Strang splitting based on the Scovel method writes ΓStrang

∆t = f(∆t)+O(∆t3)
with

ΓStrang
∆t = γ

[B]
∆t/2 ◦ γ

[E]
∆t ◦ γ

[B]
∆t/2. (38)

The composition with adjoint method based on the Scovel method writes

ΓCompo
∆t =

(
γ

[E]
∆t/2 ◦ γ

[B]
∆t/2

)?
◦
(
γ

[E]
∆t/2 ◦ γ

[B]
∆t/2

)
. (39)

Since
(
γ

[E]
∆t/2

)?
= γ

[E]
∆t/2 and

(
γ

[B]
∆t/2

)?
= γ

[B]
∆t/2 we obtain

ΓCompo
∆t =

(
γ

[B]
∆t/2

)?
◦
(
γ

[E]
∆t/2

)?
◦ γ[E]

∆t/2 ◦ γ
[B]
∆t/2

= γ
[B]
∆t/2 ◦ γ

[E]
∆t/2 ◦ γ

[E]
∆t/2 ◦ γ

[B]
∆t/2 = ΓStrang

∆t .

Therefore the composed Scovel coincides with the Strang splitting based on the Scovel method
and so it is of order 2 in time. Moreover from (35) and (37), for the small values of B ·∆t,
it is easily seen that the method splitting based on Scovel method is same the one based on
exponential Boris algorithm.

12



3 Consistency in the limit ε→ 0 of Scovel method

In this section, we consider the characteristic system of the Vlasov equation (5) given by εẊε(t; s, x, v) = Vε(t; s, x, v),

εV̇ε(t; s, x, v) =
qB

m

⊥Vε(t; s, x, v)

ε
+

q

m
Eε(t,Xε(t; s, x, v)), (t, s) ∈ [0, T ],

(40)

and the characteristic equation of the guiding-center approximation (7)-(8) given by

Ẏ (t; s, x) =
⊥E(t, Y (t; s, x))

B
, (t, s) ∈ [0, T ]. (41)

In the sequel we will denote Xε(t) = Xε(t; s, x, v) and Vε(t) = Vε(t; s, x, v).
We define then the following combination of the characteristics:

Zε(t) = Xε(t) +
m

qB
ε⊥Vε(t), (42)

which is the formula giving the Guiding center position.

Proposition 3.1 For all (x, v) ∈ R2×R2, the evolution of the Guiding Center Zε(t) satisfies:

Żε(t) =
⊥Eε(t,Xε(t))

B
.

Proof. By direct computation and using of equations (40) we have:

Żε(t) = Ẋε(t) +
m

qB
ε⊥V̇ε(t)

=
Vε(t)

ε
+

m

qB

⊥
(
qB

m

⊥Vε(t)

ε
+

q

m
Eε(t,Xε(t))

)
=
⊥Eε(t,Xε(t))

B
.

We consider now the Vlasov equation (5) under the Scovel method, that means the distribu-
tion function fε(t, x, v) solves successively

ε∂tfε(t, x, v) + v · ∇xfε +
ωc
ε
⊥v · ∇vfε = 0, (t, x, v) ∈]0, T ]× R2 × R2, (43)

and
ε∂tfε(t, x, v) +

q

m
Eε(t, x) · ∇vfε = 0, (t, x, v) ∈]0, T ]× R2 × R2, (44)

where the electric field Eε is computed from the Poisson equation after performing the equa-
tion (43).

3.1 The asymptotic limit for the characteristic curves

First, we observe the approximation of the exact Guiding center position Zε in (42) when
computing the composition of the characteristic equations associated with equations (43) and
(44) respectively. Then we formally analyse the asymptotic behavior of the sequence (Zε)ε as
ε goes to zero and compare with the position of guiding center approximation in (41). The
characteristic equation associated with equation (43) is

E1
ε (t) :


εẊε(t) = Vε(t),

t > 0

εV̇ε(t) =
qB

m

⊥Vε(t)

ε
,
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and with equation (44) being

E2
ε (t) :


εẊε(t) = 0,

t > 0

εV̇ε(t) =
q

m
Eε(t,Xε(t)),

where the electric field Eε is computed from the Poisson equation.
Using the formulae (29)-(30), the exact solution of the subflow E1

ε (t) reads then

εXε,? = εXε(0) +
mε2

qB

[
R
(
−qB
m

t

ε2
+ π/2

)
−R(π/2)

]
Vε(0),

Vε,? = R
(
−qB
m

t

ε2

)
Vε(0), (45)

and the exact solution of the subflow E2
ε (t) with the initial condition (Xε,?, Vε,?) reads

εXε(t) = εXε,?,

εVε(t) = εVε,? +
q

m

∫ t

0
Eε(s,Xε,?)ds. (46)

Combining (45) and (46) we get the approximate characteristic curves of the Vlasov equation
under the Scovel method

Xε(t) = Xε(0) +
m

qB

[
R
(
−qB
m

t

ε2
+ π/2

)
−R(π/2)

]
εVε(0),

εVε(t) = R
(
−qB
m

t

ε2

)
εVε(0) +

q

m

∫ t

0
Eε(s,Xε(s))ds. (47)

Substituting the second equation into the first one of (47), we obtain that

Xε(t) = Xε(0) +
m

qB
R(π/2)ε [Vε(t)− Vε(0)] +

q

m

∫ t

0

⊥Eε(s,Xε(s))

B
ds.

Then, using (42), this equation becomes:

Zε(t) = Zε(0) +

∫ t

0

⊥Eε
B

(
s, Zε(s)−

m

qB
ε⊥Vε(s)

)
ds.

Therefore, the system (47) can be re-written for (Zε, εVε) as:

Zε(t) = Zε(0) +

∫ t

0

⊥Eε
B

(
s, Zε(s)−

m

qB
ε⊥Vε(s)

)
ds,

εVε(t) = R
(
− q

mB

t

ε2

)
εVε(0) +

q

m

∫ t

0
Eε

(
s, Zε(0)− m

qB
R
(
− m

qB

s

ε2

)
ε⊥Vε(0)

)
ds. (48)

We expect that the family of trajectories (Zε, εVε)ε>0 is stable as the parameter ε becomes
small, and we are looking for the limit trajectory (Z, V ) = limε→0 (Zε, εVε). Obviously, we
see the appearance of two time scales, a slow time scale depending on the variable t and also
a fast time scale depending on the variable s = t/ε2. In order to establish the convergence of
(Zε, εVε)ε>0, we appeal to a standard result in homogenization theory, c.f [6].
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Proposition 3.2 Let U = U(z, t, s) : O×R+×R+ → R be a function in Lp (O × R+;C](R+)),
where O is an open set of RN and C](R+) stands for the set of continuous periodic of
period functions of period L > 0. We consider rapidly oscillating function of the form
Uε(z, t) = U(z, t, t/ε). Then we have Uε → < U > (z, t) as ε→ 0 weakly in Lp(O × R+) for

p ∈ [1,∞) and ?-weakly in L∞(O ×R+), where < U > (z, t) =
1

L

∫ L
0 U(z, t, s)ds is the mean

value of U with respect to s.

Now, we formally show that the limit trajectory (Z, V ) of (Zε, εVε)ε>0 in (48) satisfies the
following equations:

Z(t) = Z(0) +

∫ t

0

⊥E

B

(
s, Z(s)− m

qB
⊥V (s)

)
ds,

V (t) =
q

m

∫ t

0

1

2π

∫ 2π

0
E

(
s, Z(0)− m

qB
R (−θ)⊥V (0)

)
dθds. (49)

Indeed, by Proposition 3.2 we have the following weak-? convergences in L∞(R2)2

R
(
− q

mB

t

ε2

)
εVε(0) ⇀

1

2π

∫ 2π

0
R(−θ)dθV (0) = 0,

and

q

m

∫ t

0
Eε

(
s, Zε(s)−

m

qB
R
(
− m

qB

s

ε2

)
ε⊥Vε(0)

)
ds

⇀
q

m

∫ t

0

1

2π

∫ 2π

0
E

(
s, Z(s)− m

qB
R (−θ)⊥V (0)

)
dθds as ε→ 0.

Substituting these approximations into the first equation of (48) and then passing to the
limit, when ε goes to 0, leads to (Z, V ) satisfies equation (49).
We see that from the first equation in the system (49) the time evolution of particle’s position
Z(t) is not compatible with the characteristic position (41) of the guiding center model. Thus
when ε→ 0, the guiding center position Zε does not approach the correct trajectory.

3.2 The asymptotic limit for the density particle

We will use the splitting scheme (43)-(44) to approximate the distribution function fε(t, x, v)
and then compute the density particle ρε(t, x). We show formally that the limit ρ(t, x) of the
sequence (ρε)ε when ε goes to 0 is consistent with the guiding center equation, based on the
work of Miot in [7]. Motivated by the computation in the Proposition 3.1, we introduce the
change of coordinates (x, v)→ (x̄, v) and consider the gyro-coordinates given by

x̄ = x+ ε
⊥v

ωc
, v = v, ωc =

qB

m
.

At any time t ∈ [0, T ], we introduce the new distribution of particles f̄ε(t) in the new coor-
dinates (x̄, v), that is

f̄ε(t, x̄, v) = fε(t, x, v), x = x̄− ε
⊥v

ωc
.

Performing the above change of coordinates allow us transform the equations (43)-(44) of
presence density fε into equations of f̄ε which give respectively by:
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Proposition 3.3 We have

∂tf̄ε(t, x̄, v) + ωc
⊥v

ε2
· ∇vf̄ε = 0, (t, x̄, v) ∈ [0, T ]× R2 × R2, (50)

and

∂tf̄ε +
⊥Eε
B

(
t, x̄− ε

⊥v

ωc

)
· ∇x̄f̄ε +

q

m

Eε
ε

(
t, x̄− ε

⊥v

ωc

)
· ∇vf̄ε = 0, (t, x̄, v) ∈ [0, T ]× R2 × R2.

(51)

Proof. We compute:

∂tfε = ∂tf̄ε, ∇xfε = ∇x̄f̄ε,

and

∇vfε = t (∂vx̄)∇x̄f̄ε +∇vf̄ε =t

(
ε

ωc
R(−π/2)

)
∇x̄f̄ε +∇vf̄ε =

ε

ωc
R(π/2)∇x̄f̄ε +∇vf̄ε.

Combining the above computations we obtain that

ε∂tfε + v · ∇xfε +
ωc
ε
⊥v · ∇vfε = ε∂tf̄ε + v · ∇x̄f̄ε +

ωc
ε
⊥v ·

[
ε

ωc
R(π/2)∇x̄f̄ε +∇vf̄ε

]
= ε∂tf̄ε + v · ∇x̄f̄ε − v · ∇x̄f̄ε +

ωc
ε
⊥v · ∇vf̄ε

= ε∂tf̄ε +
ωc
ε
⊥v · ∇vf̄ε,

and we also have

ε∂tfε +
q

m
E(t, x) · ∇vfε = ε∂tf̄ε +

q

m
Eε(t, x) ·

[
ε

ωc
R(π/2)∇x̄f̄ε +∇vf̄ε

]
= ε∂tf̄ε + ε

⊥Eε
B

(
t, x̄− ε

⊥v

ωc

)
· ∇x̄f̄ε +

q

m
Eε

(
t, x̄− ε

⊥v

ωc

)
· ∇vf̄ε,

which yield the result.

We then consider the macroscopic density in the gyro-coordinates x̄, that is

ρ̄ε(t, x̄) =

∫
R2

f̄ε(t, x̄, v)dv =

∫
R2

fε(t, x̄− ε
⊥v

ωc
, v)dv.

After integrating into the equations in Proposition 3.3 with respect to the velocity v, the
density ρ̄ε solves successively the following equations:

Proposition 3.4 We have

∂tρ̄ε(t, x̄) = 0, (t, x̄) ∈ [0, T ]× R2, (52)

and

∂tρ̄ε(t, x̄) + divx̄

[∫
R2

⊥Eε
B

(
t, x̄− ε

⊥v

ωc

)
f̄εdv

]
= 0, (t, x̄) ∈ [0, T ]× R2. (53)

Proof. The first equation is obvious since∫
R2

⊥v · ∇vf̄εdv = 0.
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For the second equation we have to show that∫
R2

Eε

(
t, x̄− ε

⊥v

ωc

)
· ∇vf̄εdv = 0.

After using the integration by partial w.r.t the variable v, we have to compute the divergence
of the following term

divv

[
Eε

(
t, x̄− ε

⊥v

ωc

)]
= ∂v1E

1
ε

(
t, x̄− ε

⊥v

ωc

)
+ ∂v2E

2
ε

(
t, x̄− ε

⊥v

ωc

)
=

ε

ωc

(
∂x2E

1
ε

)(
t, x̄− ε

⊥v

ωc

)
− ε

ωc

(
∂x1E

2
ε

)(
t, x̄− ε

⊥v

ωc

)
= 0,

where we used Eε = (E1
ε , E

2
ε ) = −(∂x1Φε, ∂x2Φε), hence the second equation of Proposition

3.5 follows.

Remark 3.1 We see that the evolution of the density particle from the equations (52)-(53)
does not contain the fast scale, so a very small time step is no longer required to simulate
well. Then we compare it with the exponential Boris algorithm presented in Section 2 when
applying the above procedure. In this procedure splitting, the simulation of density particle
will be affected by the time step. Indeed, we appeal the exponential Boris algorithm for the
Vlasov equation as

ε∂tfε(t, x, v) + v · ∇xfε = 0,

ε∂tfε(t, x, v) +
ωc
ε
⊥v · ∇vfε = 0,

ε∂tfε(t, x, v) +
q

m
Eε(t, x) · ∇vfε = 0.

When we apply the above change of coordinates, the above equations becomes:

ε∂tf̄ε(t, x̄, v) + v · ∇x̄f̄ε = 0,

ε∂tf̄ε(t, x̄, v)− v · ∇x̄f̄ε +
ωc
ε
⊥v · ∇vf̄ε = 0,

∂tf̄ε(t) +
⊥Eε
B

(
t, x̄− ε

⊥v

ωc

)
· ∇x̄f̄ε +

q

m

Eε
ε

(
t, x̄− ε

⊥v

ωc

)
· ∇vf̄ε = 0.

Integrating these equations w.r.t the variable v, we obtain

ε∂tρ̄ε(t) +∇x̄ ·
∫
R2

vf̄εdv = 0,

ε∂tρ̄ε(t)−∇x̄ ·
∫
R2

vf̄εdv = 0,

∂tρ̄ε(t, x̄) + divx̄

[∫
R2

⊥Eε
B

(
t, x̄− ε

⊥v

ωc

)
f̄εdv

]
= 0.

We see that the stiff term is still present in the above system. Therefore, in order to obtain
good results with this method, the time step ∆t has to be the same order of ε which penalizes
the method in terms of CPU time cost when we consider a very small ε.
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Finally, we will formally check the asymptotic behavior of the sequence of density particle
(ρε)ε. Passing formal to the limit as ε→ 0 in the equations of Proposition 3.4 yield

∂tρ(t, x) = 0, ∂tρ(t, x) + divx

[∫
R2

⊥E(t, x)

B
f(t, x, v)dv

]
= 0.

Therefore we get the density limit ρ solves successively the following equations:

∂tρ(t, x) = 0, ∂tρ(t, x) +
⊥E(t, x)

B
· ∇xρ(t, x) = 0.

Proposition 3.5 (formal) Assume that the family (Eε)ε>0 is uniformly bounded in L∞(R+×
R2) and the sequences (ρ̄ε)ε>0 satisfy the equations in Proposition 3.4, with the initial data
(fε,0)ε>0 be a non negative presence density satisfying

sup
ε>0

∫
R2

∫
R2

fε,0(x̄, v)dx̄dv < +∞.

Then, there is a sequence (εk)k such that ρεk → ρ, Eεk → E as εk → 0 and the limit (ρ,E)
solves successively the following equations:

∂tρ(t, x̄) = 0,

∂tρ(t, x̄) +
⊥E

B
(t, x̄) · ∇x̄ρ(t, x̄) = 0, (54)

in the sense of distribution.

Proof. The uniform boundedness w.r.t ε > 0 of the total mass
∫
R2

∫
R2 fε(t)dxdv and the

electric field Eε implies that there exists ρ ∈ L∞([0, T ],M+(R2)) and E ∈ L∞([0, T ] × R2),
such that up to extraction of a subsequence (ρεk)k, the following convergences hold as k →
+∞

ρεk → ρ in L∞([0, T ],M+(R2)) weak− ?,
Eεk → E in L∞([0, T ]× R2) weak− ?.

Let Ψ ∈ C∞0 ((0, T )× R2), from the equation (53) we have

d

dt

∫
R2

ρ̄εk(t, x̄)Ψ(t, x̄)dx̄ =

∫
R2

ρ̄εk(t, x̄)∂tΨ(t, x̄)dx̄

+

∫
R2

∇x̄Ψ(t, x̄) ·
(∫

R2

⊥Eεk
B

(
t, x̄− εk

⊥v

ωc

)
f̄εk(t, x̄, v)dv

)
dx̄.

Observing the first term in the above expression we get∫
R2

ρ̄εk(t, x̄)∂tΨ(t, x̄)dx̄ =

∫
R2

∫
R2

f̄εk(t, x̄, v)∂tΨ(t, x̄)dx̄dv

=

∫
R2

∫
R2

fεk

(
t, x̄− εk

⊥v

ωc
, v

)
∂tΨ(t, x̄)dx̄dv

=

∫
R2

∫
R2

fεk (t, x̄, v) ∂tΨ(t, x̄+ εk
⊥v

ωc
)dx̄dv.
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Similarly for the second term,∫
R2

∇x̄Ψ(t, x̄) ·
(∫

R2

⊥Eεk
B

(
t, x̄− εk

⊥v

ωc

)
f̄εk(t, x̄, v)dv

)
dx̄

=

∫
R2

∫
R2

∇x̄Ψ(t, x̄+ εk
⊥v

ωc
) ·
⊥Eεk
B

(t, x̄) fεk(t, x̄, v)dvdx̄.

Finally, we obtain

d

dt

∫
R2

ρ̄εk(t, x̄)Ψ(t, x̄)dx̄ =

∫
R2

∫
R2

fεk (t, x̄, v) ∂tΨ(t, x̄+ εk
⊥v

ωc
)dx̄dv

+

∫
R2

∫
R2

∇x̄Ψ(t, x̄+ εk
⊥v

ωc
) ·
⊥Eεk
B

(t, x̄) fεk(t, x̄, v)dvdx̄.

The expression on the right of this equality can be rewritten as∫
R2

ρεk (t, x̄) ∂tΨ(t, x̄)dx̄+

∫
R2

∇x̄Ψ(t, x̄) ·
⊥Eεk
B

(t, x̄) ρεk(t, x̄)dx̄

+

∫
R2

∫
R2

fεk (t, x̄, v)

[
∂tΨ(t, x̄+ εk

⊥v

ωc
)− ∂tΨ(t, x̄)

]
dx̄dv

+

∫
R2

∫
R2

[
∇x̄Ψ(t, x̄+ εk

⊥v

ωc
)−∇x̄Ψ(t, x̄)

]
·
⊥Eεk
B

(t, x̄) fεk(t, x̄, v)dvdx̄.

By using Lebesgue’s dominated convergence theorem and the fact that we assumed that
the uniform boundedness of electric field Eεk ∈ L∞, as εk → 0, we deduce, for any Ψ ∈
C∞0 ((0, T )× R2), that

d

dt

∫
R2

ρ(t, x̄)Ψ(t, x̄)dx̄ =

∫
R2

ρ (t, x̄) ∂tΨ(t, x̄)dx̄+

∫
R2

∇x̄Ψ(t, x̄) ·
⊥E

B
(t, x̄) ρ(t, x̄)dx̄,

which yields the equation (54) after integrating w.r.t the variable time t.

4 Numerical scheme

This Section will be devoted to the construction of a numerical scheme for the splitting
scheme (43)-(44) using the semi-Lagrangian method. We will perform the analysis of the first
order numerical scheme: we check formally that this numerical scheme provides a consistent
discretization.

Let ∆t > 0 be the time step and denote tn = n∆t for n ≥ 0 as the discretisation of
the t-variables. Then denoting fε,n(x, v) with the approximation of fε(tn, x, v), ρε,n(x) with
the approximation of ρε(tn, x) and Eε,n(x) with the approximation of Eε(tn, x). We define
(Xε,n, Vε,n) = (Xε, Vε)(tn; tn−1, Xε,n−1, Vε,n−1).

4.1 The first order numerical scheme

The numerical scheme of the forward trajectory of particles (Xε(t), Vε(t))
Now we give a time discretizations for equations (45)-(46) based on the explicit Euler scheme.
The discretization in time of the equation (45) on a time step ∆t can thus be written as follows:

εXε(tn+1/2; tn, Xε,n, Vε,n) = εXε,n +
mε2

qB

[
R
(
−qB
m

∆t

ε2
+ π/2

)
−R(π/2)

]
Vε,n,

Vε(tn+1/2; tn, Xε,n, Vε,n) = R
(
−qB
m

∆t

ε2

)
Vε,n,
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and we evaluate the distribution function at time tn at the foot of the characteristics starting
(x, v) at time tn+1/2 as

fε,?(x, v) = fε,n(Xε(tn; tn+1/2, x, v), Vε(tn; tn+1/2, x, v)).

Then we compute the electric field Eε at time tn+1 by substituting fε,? in the Poisson equation.
Hence the discretization in time of the equation (46) on the time step ∆t becomes{

εXε,n+1 = εXε(tn+1/2; tn, Xε,n, Vε,n),

εVε,n+1 = εVε(tn+1/2; tn, Xε,n, Vε,n) +
q

m
∆tEε,n+1(Xε(tn+1/2; tn, Xε,n, Vε,n)).

Therefore the numerical solution at the time tn+1 for trajectory particles is
Xε,n+1 = Xε,n +

m

qB

[
R
(
−qB
m

∆t

ε2
+ π/2

)
−R(π/2)

]
εVε,n,

εVε,n+1 = R
(
−qB
m

∆t

ε2

)
εVε,n +

q

m
∆tEε,n+1(Xε,n+1).

(55)

We now study the position of the guiding center by substituting the second equation in the
first one of (55)

Xε,n+1 = Xε,n +
m

qB
R(π/2)ε [Vε,n+1 − Vε,n] + ∆t

⊥Eε,n+1(Xε,n+1)

B
.

Using then the formula (42), we can rewrite this equation as

Zε,n+1 − Zε,n = ∆t
⊥Eε,n+1(Xε,n+1)

B
.

Finally, the system (55) can be re-written for (Zε,n, εVε,n) as

Zε,n+1 − Zε,n
∆t

=
⊥Eε,n+1

B

(
Zε,n+1 −

m

qB
ε⊥Vε,n+1

)
,

εVε,n+1 −R
(
−qB
m

∆t

ε2

)
εVε,n =

q

m
∆tEε,n+1

(
Zε,n −

m

qB
R
(
−qB
m

∆t

ε2

)
ε⊥Vε,n

)
, (56)

with the initial data (Zε,0, Vε,0) =

(
Xε,0 +

m

qB
ε⊥Vε,0, Vε,0

)
.

Proposition 4.1 (formal) Assume that (Eε,n)ε>0 is uniformly bounded in L∞([0, T ]×R2)
and consider a time step ∆t > 0, a final time T > 0 and set NT = [T/∆t]. Assume
that the sequences (Xε,n, Vε,n)ε>0 and (Zε,n)ε>0 given by (55) and (56) respectively, for all
1 ≤ n ≤ NT , and the initial data (Xε,0, εVε,0)ε>0 is uniformly bounded in L∞(R2)4 with
respect to ε > 0. Then, for 1 ≤ n ≤ NT , Zε,n ⇀ Zn and εVε,n ⇀ Vn weak-? in L∞(R2)2, as
ε→ 0 and the limit (Zn, Vn)0≤n≤NT−1 satisfies the following equations:

Zn+1 − Zn
∆t

=
⊥En+1

B

(
Zn+1 −

m

qB
⊥Vn+1

)
,

Vn+1 = ∆t
1

2π

∫ 2π

0

q

m
En+1

(
Zn −

m

qB
R (−θ)⊥ Vn

)
dθ. (57)

Proof. For all 1 ≤ n ≤ NT , we consider (Zε,n, εVε,n) the solution to (56) now labeled w.r.t
ε > 0. Since the family of electric field (Eε,n)ε>0 and the initial sequence (Xε,0, εVε,0) are
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uniformly bounded in L∞(R2)4 w.r.t ε > 0, hence the sequence (Zε,n, εVε,n) is too. Therefore,
we can extract a subsequence labeled by εk and find some (Zn, Vn) such that

Zεk,n → Zn, εVεk,n → Vn weak− ? in L∞(R2)2 as εk → 0.

Thanks to the Proposition 3.2 we get the following weak-? convergence in L∞(R2)2

R
(
− m

qB

∆t

ε2
k

)
εVεk,n ⇀

1

2π

∫ 2π

0
R(−θ)dθVn = 0,

and

Eεk,n+1

(
Zεk,n −

m

qB
R
(
−qB
m

∆t

ε2
k

)
εk
⊥V εk,n

)
⇀

1

2π

∫ 2π

0
En+1

(
Zn −

m

qB
R (−θ)⊥ Vn

)
dθ.

Substituting these limits in the equations of (56) and passing to the limit as εk → 0, we
obtain that the limit (Zn, Vn) satisfying (57). We are done if we show that the limit point
(Zn, Vn) is uniquely determined. The uniqueness of the limit point Vn can be easily seen by
the second equation of (57) and that of the limit point Zn by observing that the first equation
of (55) can be written as

Zε,n+1 = Zε,n −
m

qB
R
(
−qB
m

∆t

ε2

)
ε⊥V ε,n +

m

qB
ε⊥Vε,n+1.

The full-discretized numerical scheme for the distribution function fε,n(x, v)
First of all, we assume that the initial distribution f0 ∈ C1

c (R2×R2) whose support is included
in some Ω = [−R,R]2×[−vR, vR]2 ⊂ R2×R2 for R > 0, vR > 0 large enough and we introduce
the finite uniform mesh points (xi,j , vk,l) whose coordinates are denoted by

xi,j = (xi, xj), (i, j) ∈ 0, 1, 2, ..., Nx − 1 and vk,l = (vk, vl), (k, l) ∈ 0, 1, 2, ..., Nv − 1

to discretize the phase-space computional domain (x, v) ∈ Ω where ∆x1,∆x2 are the sizes of
one cell in xi, xj directions and ∆v1,∆v2 are the sizes of one cell in vk, vl directions. Then,
we give the value of distribution function fε at the mesh points (xi,j , vk,l) at any given time
tn. Therefore, the numerical scheme which allow us go to from time tn to tn+1 and compute
fε,n+1(xi,j , vk,l) using the characteristics backward in time can be described as follow:
(A1) Computing the distribution function at time tn+1/2 at the foot of the characteristic
subflow E1

ε starting (xi,j , vk,l) at time tn+1 using the Lagrange interpolation operator. This
action is given by the operator T̃1 as follow:

T̃1fε,n(xi,j , vk,l) = ΠT1fε,n(xi,j , vk,l),

where Π is the Lagrange interpolation operator with

T1fε,n(xi,j , vk,l) = fε,n(Xε(tn+1/2; tn+1, xi,j , vk,l), Vε(tn+1/2; tn+1, xi,j , vk,l)),

and 
Xε(tn+1/2; tn+1, xi,j , vk,l) = xi,j +

[
R
(
qB

m

∆t

ε2
+ π/2

)
−R(π/2)

]
ε
vk,l
ωc

,

Vε(tn+1/2; tn+1, xi,j , vk,l) = R
(
qB

m

∆t

ε2

)
vk,l.
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The output from above is integrated with respect to velocity to provide an approximation
for the density at time tn+1,

ρ[T̃1fε,n](tn+1, xi,j) =

∫
R2

T̃1fε,n(xi,j , v)dv,

which is then substituted into the Poisson equation to compute the approximation of the
electric field at time tn+1, that is

Eε,n+1(xi,j) = −∇xΦε,n+1(xi,j), −ε0∆xΦε,n+1(xi,j) = q

∫
R2

T̃1fε,n(xi,j , v)dv.

(A2) The result obtained from (A1) is computed the distribution function at time tn at the
foot of the characteristic subflow E2

ε starting (Xε(tn+1/2; tn+1, xi,j , vk,l), Vε(tn+1/2; tn+1, xi,j , vk,l))
at time tn+1/2 with the electric field Eε,n+1 using the Lagrange interpolation operator. This

action is described by the operator T̃2 as follow:

T̃2fε,n(xi,j , vk,l) = ΠT2fε,n(xi,j , vk,l),

with
T2fε,n(xi,j , vk,l) = fε,n(Xε(tn; tn+1/2, xi,j , vk,l), Vε(tn; tn+1/2, xi,j , vk,l)),

where {
Xε(tn; tn+1/2, xi,j , vk,l) = xi,j ,

Vε(tn; tn+1/2, xi,j , vk,l) = vk,l −
q

m

∆t

ε
Eε,n+1(xi,j).

If we use such a method, due to the 1
ε -frequency oscillations of the electric field, we have to

guarantee the accurate simulation of the scheme using the semi-Lagrangian solvers. There-
fore, the time step ∆t must satisfy the following condition:

∆t < O(ε|vR|), (58)

where vR denotes the maximum value in the velocity grid.
Finally, the full-discretized numerical scheme can be written as:

fε,n+1(xi,j , vk,l) = T̃2 ◦ T̃1fε,n(xi,j , vk,l), (59)

and then we compute the density ρε,n+1 given by

ρε,n+1(xi,j) = ∆v1∆v2

Nv−1∑
k,l=0

fε,n+1(xi,j , vk,l).

The asymptotic limit of full discretization for density (ρε,n)ε>0

In the Section 3.2, we have been analysed the asymptotic limit of the semi-discretization in
time for density particle ρε. Now, we want to study the asymptotic limit property of the
full discretized density ρε,n+1(xi,j), as ε → 0. To do this, we rewrite the formula of the
distribution function fε,n+1 in (59) as:

ΠT2 ◦ΠT1fε,n(xi,j , vk,l) = Π[T2 ◦ T1]fε,n(xi,j , vk,l) +O((∆x1)p(∆x2)p) +O((∆v1)p(∆v2)p),

where p denotes the degree of the Lagrange interpolation operator. Hence, considering the
fine phase space mesh, we can expect that

ΠT2 ◦ΠT1fε,n(xi,j , vk,l) ≈ Πfε,n(Xε(tn; tn+1, xi,j , vk,l), Vε(tn; tn+1, xi,j , vk,l)),
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where [T2 ◦ T1]fε,n(xi,j , vk,l) = fε,n(Xε(tn; tn+1, xi,j , vk,l), Vε(tn; tn+1, xi,j , vk,l)) with
Xε(tn; tn+1, xi,j , vk,l) = xi,j +

[
R
(
qB

m

∆t

ε2
+ π/2

)
−R(π/2)

]
ε
vk,l
ωc

,

Vε(tn; tn+1, xi,j , vk,l) = R
(
qB

m

∆t

ε2

)
vk,l −

q

m

∆t

ε
Eε,n+1(xi,j).

We now give a formal proof that the density ρε,n obtained from fε,n

ρε,n+1(xi,j) ≈ ∆v1∆v2

Nv−1∑
k,l=0

Πfε,n(Xε(tn; tn+1, xi,j , vk,l), Vε(tn; tn+1, xi,j , vk,l)) (60)

is a consistent first order approximation w.r.t ∆t of the guiding center model, that is

ρε,n → ρn, as ε→ 0,

and the limit (ρn)n is a first order numerical solution w.r.t ∆t of the guiding center equation
provided by the semi-Lagrangian method. Before passing to the limit, we need the following
Lemma:

Lemma 4.1 Let us consider a time step ∆t > 0, a final time T > 0 and set NT = [T/∆t].
Assuming that the initial distribution function f0(x, v) whose support is included in Ω =
[−R,R]2 × [−vR, vR]2 and (fε,n)0≤n≤NT−1 is the numerical solution of the Vlasov-Poisson
system, computed by the numerical scheme in (59). Then, for 1 ≤ n ≤ NT , we have

T1fε,n(xi,j , vk,l) = T1fε,n(xi,j − ε
⊥vk,l
ωc

, vk,l) +O(ε).

Consequently, we get

T2 ◦ T1fε,n(xi,j , vk,l) =

fε,n(xi,j +R
(
qB

m

∆t

ε2
+ π/2

)
ε
vk,l
ωc

,R
(
qB

m

∆t

ε2

)
vk,l −

q

m

∆t

ε
Eε,n+1(xi,j)) +O(ε).

Proof. Since

T1fε,n(xi,j , vk,l) = fε(tn, Xε(tn; tn+1/2, xi,j , vk,l), Vε(tn; tn+1/2, xi,j , vk,l))

= fε(tn, xi,j +

[
R
(
qB

m

∆t

ε2
+ π/2

)
−R(π/2)

]
ε
vk,l
ωc

,R
(
qB

m

∆t

ε2

)
vk,l),

we get

T1fε,n(xi,j − ε
⊥vk,l
ωc

, vk,l)

= fε(tn, xi,j − ε
⊥vk,l
ωc

+

[
R
(
qB

m

∆t

ε2
+ π/2

)
−R(π/2)

]
ε
vk,l
ωc

,R
(
qB

m

∆t

ε2

)
vk,l)

= fε(tn, xi,j +R
(
qB

m

∆t

ε2
+ π/2

)
ε
vk,l
ωc

,R
(
qB

m

∆t

ε2

)
vk,l).

Hence we deduce by the mean-value theorem that

|T1fε,n(xi,j , vk,l)− T1fε,n(xi,j − ε
⊥vk,l
ωc

, vk,l)| ≤
ε

ωc
‖∇fε(tn)‖∞|vk,l| ≤ Cε,
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where C = C(ωc, f0, vR) and then it implies that

T1fε,n(xi,j , vk,l) = T1fε,n(xi,j − ε
⊥vk,l
ωc

, vk,l) +O(ε). (61)

Finally, we apply the operator T2 to (61) and we obtain

T2 ◦ T1fε,n(xi,j , vk,l) = T2 ◦
[
T1fε,n(xi,j − ε

⊥vk,l
ωc

, vk,l)

]
+O(ε)

= fε,n(xi,j +R
(
qB

m

∆t

ε2
+ π/2

)
vk,l
ωc

,R
(
qB

m

∆t

ε2

)
vk,l −

q

m

∆t

ε
Eε,n+1(xi,j)) +O(ε),

since the operator T2 is linear.

Thanks to the Lemma 3.1 we have that

∆v1∆v2

Nv−1∑
k,l=0

ΠT2 ◦ T1fε,n(xi,j , vk,l)

= ∆v1∆v2

Nv−1∑
k,l=0

Πfε,n(xi,j − εR
(
qB

m

∆t

ε2

) ⊥vk,l
ωc

,R
(
qB

m

∆t

ε2

)
vk,l −

q

m

∆t

ε
Eε,n+1(xi,j)) +O(ε)

= ∆v1∆v2

Nv−1∑
k,l=0

Πfε,n(xi,j − ε
⊥vk,l
ωc

, vk,l −
q

m

∆t

ε
Eε,n+1(xi,j)) +O(∆v1∆v2) +O(ε),

where we used the change of variable vk,l 7→ R(−qB
m

∆t

ε2
)vk,l to filter the fast rotation in

velocity. The error O(∆v1∆v2) comes from the fact that the discrete integral over the
velocity variable is not conserved by a rotation. Performing then the translation vk,l 7→

vk,l +
q

m

∆t

ε
Eε,n+1(xi,j) to remove the stiff term, with the condition (58) to ensure that this

change of variable is well defined in the velocity grid. If we consider a fine mesh in the
direction of velocity, we can expect that the density ρε,n+1 in (60) can be approximated by

ρε,n+1 ≈ ∆v1∆v2

Nv−1∑
k,l=0

Π[T2 ◦ T1]fε,n(xi,j , vk,l)

≈ ∆v1∆v2

Nv−1∑
k,l=0

Πfε,n(xi,j −
∆t

B
⊥Eε,n+1(xi,j)− ε

⊥vk,l
ωc

, vk,l) +O(ε). (62)

Formally passing to the limit as ε→ 0 in (62), we obtain that

ρn+1(xi,j) ≈ ∆v1∆v2

Nv−1∑
k,l=0

Πfn(xi,j −
∆t

B
⊥En+1(xi,j), vk,l)

=

Nv−1∑
k,l=0

Πρn(xi,j −
∆t

B
⊥En+1(xi,j)),

which is a consistent first order approximation with respect to ∆t of the guiding center model
provided by the semi-Lagrangian method.
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4.2 The first order adjoint scheme

Now we consider the first order which is an adjoint of Lie method in Section 4.1

E1
ε (t) :


εẊε(t) = 0,

over ∆t > 0

εV̇ε(t) =
q

m
Eε(t,Xε(t)),

E2
ε (t) :


εẊε(t) = Vε(t),

over ∆t > 0

εV̇ε(t) =
qB

m

⊥Vε(t)

ε
.

We give a time discretization for these equations based on explicit Euler scheme. The dis-
cretization in time of the equation E1

ε (t) on a time step ∆t can thus be written as follows:{
εXε,? = εXε,n,

εVε,? = εVε,n +
q

m
∆tEε,n(Xε,n),

and the equation E2
ε (t) with the initial condition (Xε,n, Vε,n) given by

Xε,n+1 = Xε,? +
m

qB

[
R
(
− qB

mε2
∆t+ π/2

)
−R(π/2)

]
εVε(tn+1/2; tn, Xε,n, Vε,n),

Vε,n+1 = R
(
− qB

mε2
∆t

)
Vε,?.

Therefore, the numerical solution at time tn+1 for the trajectory particles reads:
Xε,n+1 = Xε,n +

m

qB

[
R
(
− qB

mε2
∆t+ π/2

)
−R(π/2)

](
εVε,n +

q

m
∆tEε,n(Xε,n)

)
,

εVε,n+1 = R
(
− qB

mε2
∆t

)(
εVε,n +

q

m
∆tEε,n(Xε,n)

)
.

(63)
We then evaluate the distribution function at time tn at the foot of the characteristic curves
starting (x, v) at time tn+1

fε,n+1(x, v) = fε,n(Xε(tn; tn+1, x, v), Vε(tn; tn+1, x, v)),

which is substituted into the Poisson equation to compute the approximation of the electric
field at time tn+1.
In order to study the guiding center position, we substitute the second equation into the first
one of (63) to get

Xε,n+1 = Xε,n +
m

qB
R(π/2)ε[Vε,n+1 − Vε,n] + ∆t

⊥Eε,n(Xε,n)

B
.

Using then the formula (42), we can write this equation for Zε,n as

Zε,n+1 − Zε,n
∆t

=
⊥Eε,n(Xε,n)

B
.

Finally, the equation (63) can be rewritten for (Zε,n, Vε,n) as

Zε,n+1 − Zε,n
∆t

=
⊥Eε,n
B

(Zε,n −
m

qB
ε⊥Vε,n),

R
(
qB

mε2
∆t

)
εVε,n+1 = εVε,n +

q

m
∆tEε,n(Zε,n −

m

qB
ε⊥Vε,n). (64)
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Proposition 4.2 Assume that (Eε,n)ε>0 is uniformly bounded in L∞(R2)2 and consider a
time step ∆t > 0, a final time T > 0 and set NT = [T/∆t]. Assume that the sequences
(Xε,n, Vε,n)0≤n≤NT

and (Zε,n)ε>0 given by (63) and (64) respectively, for all 1 ≤ n ≤ NT ,
and the initial data (Xε,0, εVε,0)ε>0 is uniformly bounded in L∞(R2)2 with respect to ε > 0.
Then, for 1 ≤ n ≤ NT , Zε,n ⇀ Zn and εVε,n ⇀ Vn weak-? in L∞(R2)2, as ε → 0 and the
limit (Zn, Vn)0≤n≤NT−1 satisfies the following equations:

Zn+1 − Zn
∆t

=
⊥En
B

(
Zn −

m

qB
⊥V n

)
,

Vn = − q

m
∆tEn(Zn −

m

qB
⊥V n). (65)

The full discretized numerical scheme for the distribution function fε,n(x, v)
(A1) Computing the distribution function at time tn+1/2 at the foot of the characteristic
subflow E1

ε starting (xi,j , vk,l) at time tn+1 using the Lagrange interpolation operator. This
action is described by:

T̃1fε,n(xi,j , vk,l) = ΠT1fε,n(xi,j , vk,l),

where

T1fε,n(xi,j , vk,l) = fε,n(Xε(tn+1/2; tn+1, xi,j , vk,l), Vε(tn+1/2; tn+1, xi,j , vk,l)),

with

Xε(tn+1/2; tn+1, xi,j , vk,l) = xi,j ,

Vε(tn+1/2; tn+1, xi,j , vk,l) = vk,l −
q

m

∆t

ε
Eε,n(xi,j).

(A2) The result obtained from (A1) is evaluated at time tn at the foot of the characteristic
subflow E2

ε starting (Xε(tn+1/2; tn+1, xi,j , vk,l), Vε(tn+1/2; tn+1, xi,j , vk,l)) at time tn+1/2 using
the Lagrange interpolation operator. This action is given by:

T̃2fε,n(xi,j , vk,l) = ΠT2fε,n(xi,j , vk,l),

with
T2fε,n(xi,j , vk,l) = fε,n(Xε(tn; tn+1/2, xi,j , vk,l), Vε(tn; tn+1/2, xi,j , vk,l)),

where

Xε(tn; tn+1/2, xi,j , vk,l) = xi,j +
m

qB

[
R
(
qB

m

∆t

ε2
+ π/2

)
−R(π/2)

]
εvk,l,

Vε(tn; tn+1/2, xi,j , vk,l) = R
(
qB

m

∆t

ε2

)
εvk,l.

Finally, the numerical scheme can be written as:

fε,n+1(xi,j , vk,l) = T̃2 ◦ T̃1fε,n(xi,j , vk,l).

Then we compute the density ρε,n+1

ρε,n+1(xi,j) = ∆v1∆v2

Nv−1∑
k,l=0

fε,n+1(xi,j , vk,l),

and then solve the Poisson equation at time tn+1 to get Eε,n+1.
The asymptotic limit of full discretization for the density (ρε,n)ε>0
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In the same way as the proof in the subsection 4.1, we can conclude that the limit of particle
density ρε,n+1(xi,j) approximates ρn+1(xi,j) when ε goes to zero which satisfies the following
equation

ρn+1(xi,j) ≈ Πρn(xi,j −
∆t

B
⊥En(xi,j)),

which is a consistent first order approximation with respect to ∆t of the guiding center model.

4.3 The second order scheme

We will now consider the second order scheme (39) which is the composition of Lie method
(55) and its adjoint (63) over the time step ∆t/2. Therefore, the first stage corresponds to

E1
ε :


Xε,n+1/2 = Xε,n +

m

qB

[
R
(
− qB

mε2

∆t

2
+ π/2

)
−R(π/2)

]
εVε,n,

εVε,n+1/2 = R
(
− qB

mε2

∆t

2

)
εVε,n +

q

m

∆t

2
Eε,n+1/2(Xε,n+1/2),

where the electric field Eε at time tn+1/2 is computed thanks to the resolution of the Poisson
equation with the distribution function

fε,?(x, v) = fε,n(Xε,?, Vε,?),

where the characteristic curves (Xε,?, Vε,?) are given by

Xε,? = x+
m

qB

[
R
(
qB

m

∆t

2ε2
+ π/2

)
−R(π/2)

]
εv,

Vε,? = R
(
qB

m

∆t

2ε2

)
v.

Then, the second stage is given by

E2
ε :


Xε,n+1 = Xε,n+1/2

+
m

qB

[
R
(
−qB
m

∆t

2ε2
+ π/2

)
−R(π/2)

](
εVε,n+1/2 +

q

m

∆t

2
Eε,n+1/2(Xε,n+1/2)

)
εVε,n+1 = R

(
−qB
m

∆t

2ε2

)(
εVε,n+1/2 +

q

m

∆t

2
Eε,n+1/2(Xε,n+1/2)

)
.

Finally, the numerical solution of trajectory particles at the time step tn+1 is given by

εVε,n+1 = R
(
−qB
m

∆t

ε2

)
εVε,n +

q

m
∆tR

(
−qB
m

∆t

2ε2

)
Eε,n+1/2(Xε,n+1/2),

Xε,n+1 = Xε,n +
m

qB

[
R
(
−qB
m

∆t

ε2
+ π/2

)
−R(π/2)

]
εVε,n

+∆t

[
R
(
−qB
m

∆t

2ε2
+ π/2

)
−R(π/2)

]
Eε,n+1/2

B
(Xε,n+1/2).

(66)

In order to study the guiding center position, we substitute the first equation in the second
one of (66) to obtain

Xε,n+1 = Xε,n +
m

qB
R(π/2)ε[Vε,n+1 − Vε,n] + ∆t

⊥Eε,n+1/2

B
(Xε,n+1/2).
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Using then the formula (42), this equation can be written for Zε,n as

Zε,n+1 − Zε,n
∆t

=
⊥Eε,n+1/2

B
(Xε,n+1/2), (67)

Finally the equation (66) can be re-written for (Zε,n, εVε,n) as

Zε,n+1 − Zε,n
∆t

=
⊥Eε,n+1/2

B
(X̄ε,n −R

(
− qB

mε2

∆t

2

)
m

qB
ε⊥Vε,n),

εVε,n+1 = R
(
− qB

mε2
∆t

)
εVε,n

+
q

m
∆tR

(
− qB

mε2

∆t

2

)
Eε,n+1/2(Zε,n −R

(
− qB

mε2

∆t

2

)
m

qB
ε⊥Vε,n).

Passing formally to the limit as ε→ 0, we get

Zn+1 − Zn
∆t

=
1

2π

∫ 2π

0

⊥En+1/2

B
(Zn −R(−θ) m

qB
⊥Vn)dθ,

Vn+1 =
q

m
∆t

∫ 2π

0
R(−θ)En+1/2(Zn −R(−θ) m

qB
⊥Vn)dθ.

The full discretized numerical scheme for the distribution function fε,n
(A1) Computing the distribution function at time tn,?? intermediate between tn+1/2 and tn+1

at the foot of the characteristic subflow E1
ε starting (xi,j , vk,l) at time tn+1 using the Lagrange

interpolation operator. This action is described by:

T̃1fε,n(xi,j , vk,l) = ΠT1fε,n(xi,j , vk,l)

where
T1fε,n(xi,j , vk,l) = fε,n(Xε(tn,??; tn+1, xi,j , vk,l), Vε(tn,??; tn+1, xi,j , vk,l))

with 
Xε(tn,??; tn+1, xi,j , vk,l) = xi,j +

m

qB

[
R
(
qB

m

∆t

2ε2
+ π/2

)
−R(π/2)

]
εvk,l

Vε(tn,??; tn+1, xi,j , vk,l) = R
(
qB

m

∆t

2ε2

)
vk,l.

The output from above is integrated with respect to velocity to obtain an approximation for
the density at time tn+1/2, which is then substituted into the Poisson equation to compute
the approximation of the electric field at time tn+1/2, that is

E(tn+1/2, xi,j) = −∇xΦ(tn+1/2, xi,j), −ε0∆xΦ(tn+1/2, xi,j) = q

∫
R2

T̃1fε,n(xi,j , v)dv.

(A2) The result obtained from (A1) is computed at time tn+1/2 at the foot of the charac-
teristic subflow E2

ε starting (xi,j , vk,l) at time tn,?? with the electric field E(tn+1/2) using the
Lagrange interpolation operator. This action is described by:

T̃2fε,n(xi,j , vk,l) = ΠT2fε,n(xi,j , vk,l),

where

T2fε,n(xi,j , vk,l) = fε,n(Xε(tn+1/2; tn,??, xi,j , vk,l), Vε(tn+1/2; tn,??, xi,j , vk,l)),

28



with

Xε(tn,?; tn+1/2, xi,j , vk,l) = xi,j ,

Vε(tn,?; tn+1/2, xi,j , vk,l) = vk,l −
q

m

∆t

2ε
Eε,n+1/2(xi,j).

(A3) The result obtained from (A2) is evaluated at time tn,? intermediate between tn and
tn+1/2 at the foot of the characteristic subfow E2

ε starting (xi,j , vk,l) at time tn+1/2 with the
electric field En+1/2 using the Lagrange interpolation operator. This action is described by:

T̃2fεn(xi,j , vk,l) = ΠT2fε,n(xi,j , vk,l),

where
T2fε,n(xi,j , vk,l) = fε,n(Xε(tn,?; tn+1/2, xi,j , vk,l), Vε(tn,?; tn+1/2, xi,j , vk,l)

with

Xε(tn,?; tn+1/2, xi,j , vk,l) = xi,j ,

Vε(tn,?; tn+1/2, xi,j , vk,l) = vk,l −
q

m

∆t

2ε
Eε,n+1/2(xi,j).

(A4) The result obtained from (A3) is computed at time tn at the foot of the characteristic
subflow E1

ε starting (xi,j , vk,l) at time tn,? using the Lagrange interpolation operator. This
action is described by

T̃1fε,n(xi,j , vk,l) = ΠT1fε,n(xi,j , vk,l),

where
T1fε,n(xi,j , vk,l) = fε,n(Xε(tn; tn,?, xi,j , vk,l), Xε(tn; tn,?, xi,j , vk,l)),

with 
Xε(tn; tn,?, xi,j , vk,l) = xi,j +

m

qB

[
R
(
qB

mε2

∆t

2
+ π/2

)
−R(π/2)

]
εvk,l,

Vε(tn; tn,?, xi,j , vk,l) = R
(
qB

mε2

∆t

2

)
vk,l.

Finally, the second order numerical scheme is given by

fε,n+1(xi,j , vk,l) = T̃1 ◦ T̃2 ◦ T̃2 ◦ T̃1fε,n(xi,j , vk,l),

then we compute the density ρε,n+1

ρε,n+1 = ∆v1∆v2

Nv−1∑
k,l=0

fε,n+1(xi,j , vl,k).

The asymptotic limit of full discretization for the density (ρε,n)ε>0

In the same way as the proof in the subsection 4.1, we can conclude that the limit of density
ρε,n+1(xi,j) approximates ρn+1(xi,j) when ε goes to zero which satisfies the following equation

ρn+1(xi,j) ≈ Πρn(xi,j −
∆t

B
⊥En+1/2(xi,j))

which is a consistent second order approximation with respect to ∆t of the guiding center
model provided by the semi-Lagrangian method.
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5 The Algorithm

In this Section, we review the main steps of the splitting methods which are presented in the
Subsections 2.1 and 2.2 in the case of directional splitting with constant advection.
Initialization: f0(x, v) is given. We then can compute ρ(0, x) = q

∫
R2 f0(x, v)dv and compute

the electric field E by solving the Poisson equation. Update from tn to tn+1 = tn + ∆t with
fn is known at all grid points (x, v) and En is known at x.

Algorithm for Strang-Boris method

1. Perform along the v1-axis f [1](x, v) = fn(x, v1 − tan( qBm ∆t/4), v2)

2. Perform along the v2-axis f [2](x, v) = f [1](x, v1, sin( qBm ∆t/2)v1 + v2)

3. Perform along the v1-axis f [3](x, v) = f [2](x, v1 − tan( qBm ∆t/4), v2)

4. Perform along the x1-axis f [4](x, v) = f [3](x1 −∆t/2v1, x2, v)

5. Perform along the x2-axis f [5](x, v) = f [4](x1, x2 −∆t/2v2, v)

6. Computation the charge density and the electric field at time tn+1 by substituting f [5]

in the Poisson equation

7. Perform along the v-axis f [6] = f [5](x, v − E(tn+1, x)∆t)

8. Perform along the v1-axis f [7](x, v) = f [6](x, v1 − tan( qBm ∆t/4), v2)

9. Perform along the v2-axis f [8](x, v) = f [7](x, v1, sin( qBm ∆t/2)v1 + v2)

10. Perform along the v1-axis f [9](x, v) = f [8](x, v1 − tan( qBm ∆t/4), v2)

11. Perform along the x1-axis f [10](x, v) = f [9](x1 −∆t/2v1, x2, v)

12. Perform along the x2-axis fn+1(x, v) = f [10](x1, x2 −∆t/2v2, v)

Algorithm for Strang-Scovel method

1. Perform along the v1-axis f [1](x, v) = fn(x, v1 − tan( qBm ∆t/4), v2)

2. Perform along the v2-axis f [2](x, v) = f [1](x, v1, sin( qBm ∆t/2)v1 + v2)

3. Perform along the v1-axis f [3](x, v) = f [2](x, v1 − tan( qBm ∆t/4), v2)

4. Perform along the x1-axis f [4](x, v) = f [3](x1 − m
qB sin( qBm ∆t/2)v1, x2, v)

5. Perform along the x1-axis f [5](x, v) = f [4](x1 + m
qB (1− cos( qBm ∆t/2))v1, x2, v)

6. Perform along the x2-axis f [6](x, v) = f [5](x1, x2 + m
qB (cos( qBm ∆t/2)− 1)v1, v)

7. Perform along the x2-axis f [7](x, v) = f [6](x1, x2 − m
qB sin( qBm ∆t/2)v2, v)

8. Computation the charge density and the electric field at time tn+1 by substituting f [7]

in the Poisson equation

9. Perform along the v-axis f [8] = f [7](x, v − E(tn+1, x)∆t)

10. Perform along the v1-axis f [9](x, v) = f [8](x, v1 − tan( qBm ∆t/4), v2)
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11. Perform along the v2-axis f [10](x, v) = f [9](x, v1, sin( qBm ∆t/2)v1 + v2)

12. Perform along the v1-axis f [11](x, v) = f [10](x, v1 − tan( qBm ∆t/4), v2)

13. Perform along the x1-axis f [12](x, v) = f [11](x1 − m
qB sin( qBm ∆t/2)v1, x2, v)

14. Perform along the x1-axis f [13](x, v) = f [12](x1 + m
qB (1− cos( qBm ∆t/2))v1, x2, v)

15. Perform along the x2-axis f [14](x, v) = f [13](x1, x2 + m
qB (cos( qBm ∆t/2)− 1)v1, v)

16. Perform along the x2-axis fn+1(x, v) = f [14](x1, x2 − m
qB sin( qBm ∆t/2)v2, v)

Algorithm for Composition with adjoint method

1. Perform along the v1-axis f [1](x, v) = fn(x, v1 − tan( qBm ∆t/4), v2)

2. Perform along the v2-axis f [2](x, v) = f [1](x, v1, sin( qBm ∆t/2)v1 + v2)

3. Perform along the v1-axis f [3](x, v) = f [2](x, v1 − tan( qBm ∆t/4), v2)

4. Perform along the x1-axis f [4](x, v) = f [3](x1 − m
qB sin( qBm ∆t/2)v1, x2, v)

5. Perform along the x1-axis f [5](x, v) = f [4](x1 + m
qB (1− cos( qBm ∆t/2))v1, x2, v)

6. Perform along the x2-axis f [6](x, v) = f [5](x1, x2 + m
qB (cos( qBm ∆t/2)− 1)v1, v)

7. Perform along the x2-axis f [7](x, v) = f [6](x1, x2 − m
qB sin( qBm ∆t/2)v2, v)

8. Computation the charge density and the electric field at time tn+1/2 by substituting

f [7] in the Poisson equation

9. Perform along the v-axis f [8] = f [7](x, v − E(tn+1/2, x)∆t/2)

10. Perform along the v-axis f [9] = f [8](x, v − E(tn+1/2, x)∆t/2)

11. Perform along the x2-axis f [10](x, v) = f [9](x1, x2 − m
qB sin( qBm ∆t/2)v2, v)

12. Perform along the x2-axis f [11](x, v) = f [10](x1, x2 + m
qB (1− cos( qBm ∆t/2))v1, x2, v)

13. Perform along the x1-axis f [12](x, v) = f [11](x1 + m
qB (cos( qBm ∆t/2)− 1)v1, x2, v)

14. Perform along the x1-axis f [13](x, v) = f [12](x1 − m
qB sin( qBm ∆t/2)v1, x2, v)

15. Perform along the v1-axis f [14](x, v) = f [13](x, v1 − tan( qBm ∆t/4), v2)

16. Perform along the v2-axis f [15](x, v) = f [14](x, v1, sin( qBm ∆t/2)v1 + v2)

17. Perform along the v1-axis f [16](x, v) = f [15](x, v1 − tan( qBm ∆t/4), v2)

18. Computation the charge density and the electric field at time tn+1 by substituting f [16]

in the Poisson equation.
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6 Numerical Simulation

This section is devoted to numerical illustrations of the numerical schemes introduced above.
We consider the Vlasov-Poisson system (5)-(6) with the Kelvin-Helmholtz instability type
initial data

f0(x, v) = (1 + sin(k2x2) + ν cos(k1x1))
1

2π
exp

(
−v1

2 + v2
2

2

)
, (68)

defined in Ωx×Ωv, where Ωx = [0, L1]× [0, L2] is the periodic domain with the lengths Ld =
2π/kd, d = 1, 2, kd = (k1, k2) = (0.4, 1), the amplitude ν = 0.015 and Ωv = [−vmax, vmax]2,
vmax = 8. Then the initial density of the guiding-center approximation (7)-(8) writes:

ρ0(x) = 1 + sin(k2x2) + ν cos(k1x1), (69)

defined in Ωx. The numerical parameters are Nx points in space, Nv points per velocity
direction.

We perform numerical simulation using the splitting schemes coupled with the semi-
Lagrangian method described in Section 2 for the Vlasov-Poisson equation (5)-(6). On the
orther hand, we compute an approximation of the guiding center model (7)-(8) using a
backward semi-Lagrangian method developed in [8] with Lagrangian interpolation. This
reference will be used to compare our results obtained from Vlasov-Poisson system with a
large magnetic field for a long time.

First of all, we are interested in the time evolution of the electrostatic energy in the first
dimension 1

2‖E1‖22. We focus our comparisons on the different methods presented in Section
2: the Strang splitting based on the exponential Boris algorithm, the Strang spliting and
the composition with the adjoint of Scovel method from weak to strong magnetic field whilst
holding the actual number of time steps constant. In Figure 1, we plot the time evolution of
the electrostatic energy in the first dimension with several values of ε going from 1 to 1/132.
We also compare the numerical results obtained with these schemes to a numerical solution
for the Guiding center model. The run is performed up to a final time T = 50 with the
value of the time step ∆t = 0.01. For ε = 1, 1/2, 1/4 and 1/8 all integrators show the same
performance, but in the case of the parameter ε becomes smaller, the Scovel method is clearly
better. For ε = 1/16, 1/32, 1/64 and 1/132 the Strang splitting based on the exponential Boris
algorithm fail entirely whereas the Strang splitting and the composition with adjoint based on
Scovel’s method remain unaffected, confirm the convergence of Vlasov-Poisson system (5)-(6)
towards the asymptotic model (7)-(8).

Then we investigate numerically the effect of condition (58) to the convergence of the
Vlasov-Poisson system (5)-(6) to its limit model (7)-(8). In Figure 2, we plot the time
evolution of the electrostatic energy in the first dimension for different values ε when fixing
the numerical parameters as follows: ∆t = 0.01, Nx = 128 and the ratio Nv/vmax = 4 which
is denoted the number of points per cell in the velocity grid. As we can see in Figure 2 that
when the parameter ε becomes smaller, we need to choose a large value of vmax to obtain
good results. For ε = 1/132, we take vmax = 8 as enough value to produce a good simulation,
and then for ε = 1/400 and 1/1000, this value of vmax is not sufficient, it gives bad result,
but the value vmax = 16 give better result. For ε = 1/1600, we need to choose vmax = 32.

In the following, we will do numerical comparisons between the density particle obtained
from the discretized Vlasov-Poisson system with the semi-Lagrangian method and the one
corresponding to the discretized guiding center model. More precisely, we represent in the
physical space the contours of the particle densities at several values of final fluid time T ∈
{10, 18, 25, 58, 98, 120}. First, we observe the time evolution of the density particle for the
guiding center model by using Lagrangian interpolation in Figure 3. For the densities given
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by Vlasov-Poisson system, first we consider the case where ε = 1. In this weak case, the
plasma is not well confined. The lack of confinement appears to introduce diffusion like
effects and does not develop the instability phenomena, see Figure 4. Then, we take with
several values of ε ∈ {1/32, 1/64, 1/132}, and for this case, the figures in Fig. 5, 6 and 7 show
the development of the instability of the density and it is obeyed to the same evolution as
the density of the guiding center model in above Figure 3 for final time T going from 10 to
58, but in the case of the long final time T = 98 and 120 there is no longer obeyed because
of the error in time.

On Fig. 8 and Fig. 9, we plot the time evolution of L2 and L1 for the Vlasov-Poisson sys-
tem with several values of ε ∈ {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/132} and several of number
of points in the position grid Nx = Ny ∈ {32, 64, 128, 256} and compare these results with
the guiding center model.

On Figs. 10 and 11, we investigate the kinetic effects in the case of weak and strong
magnetic fields. These figures indicate that kinetic effects are only present in the weak case.
Due to the lack of confinement the distribution does not clearly display Maxwellian. For the
strong field the distribution ressembles a sharp Maxwellian.

7 Conclusion

In this paper, we have used the semi-Lagrangian method to solve the four-dimensional Vlasov-
Poisson system with a strong external uniform magnetic field. The splitting schemes for the
Vlasov equation are presented based on the exponential Boris algorithm and Scovel method.
The exponential Boris algorithm works badly. The Scovel method presented here performs
independently of the strength of the magnetic field very well, we can choose the time step
∆t much larger than O(ε2). However, due to the high oscillation in the electric field by
the Scovel method, the time step ∆t is imposed to the condition (58) within the semi-
Lagrangian method. As the parameter ε becomes smaller we need to take the larger value
of vmax and then increase the number of points in the direction of velocity to produce good
results. Since the semi-Lagrangian schemes are based on interpolation on a phase space
mesh, we have to pay attention to the number of point in the velocity grid as vmax is larger.
Therefore, for an intermediate value of ε, the Scovel method is an appropriate method to
the Vlasov-Poisson model, but for a very small value of ε, the fluid model is an appropriate
approximation to the kinetic model because it contains all the relevant dynamics and will
be much cheaper. Moreover, we have shown numerically that the Scovel method provides a
consistent discretization with respect to the limiting guiding center model.

8 Appendix: A priori estimate

In this Appendix, we will give the global error of the p-order Scovel method (p = 1, 2)
presented in Section 4. We want to evaluate the global error at time tn+1:

e1 = ‖fε(tn+1, x, v)− T2 ◦ T1fε(tn, x, v)‖L∞ ,
ẽ1 = ‖fε(tn+1, x, v)− T1 ◦ T2fε(tn, x, v)‖L∞ ,
e2 = ‖fε(tn+1, x, v)− T1 ◦ T2 ◦ T1fε(tn, x, v)‖L∞ ,

where the transport operators Ti, i = 1, 2 are given by

T1fε(tn, x, v) = fε(tn, x+
[
R
(ωc
ε2

∆t+ π/2
)
−R(π/2)

]
ε
v

ωc
,R
(ωc
ε2

∆t
)
v),

T2fε(tn, x, v) = fε(tn, x, v −
q

m

∆t

ε
Eε(t, x)).
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Lemma 8.1 Assume that fε ∈ C1
b (0, T ;C1(R2×R2)) and Eε ∈ C1

b (0, T ;C1(R2)), then there
exists a constant C such that

e1 ≤ C(‖fε‖C1
b
, ‖Eε‖C1

b
)
[
(∆t/ε)2 + (∆t/ε)3

]
,

ẽ1 ≤ C(‖fε‖C1
b
, ‖Eε‖C1

b
)(∆t/ε)2,

e2 ≤ C(‖fε‖C1
b
, ‖Eε‖C1

b
)(∆t/ε)3.

Proof. As fε is constant along the characteristic curves, we have

fε(tn+1, x, v) = fε(tn, Xε(tn; tn+1, x, v), Vε(tn; tn+1, x, v)),

where (Xε, Vε) are the characteristic solutions of d
dtXε(t) = 1

εVε(t) and d
dtVε(t) = q

m
1
εEε(t,Xε(t))+

ωc
ε2
⊥Vε(t). We therefore have by integrating these equations between t and tn+1

Xε(t; tn+1, x, v) = x− 1

ε

∫ tn+1

t
Vε(s; tn+1, x, v)ds, (70)

Vε(t; tn+1, x, v) = R
(ωc
ε2

(tn+1 − t)
)
v − q

mε

∫ tn+1

t
R
(ωc
ε2

(s− t)
)
Eε(s,Xε(s; tn+1, x, v))ds.

(71)

We will first estimate ẽ1 = ‖fε(tn+1, x, v)− T2 ◦ T1fε(tn, x, v)‖L∞ .
We have

T1 ◦ T2fε(tn, x, v) = fε(tn, X̄ε(tn; tn+1, x, v), V̄ε(tn; tn+1, x, v)),

where

X̄ε(tn; tn+1, x, v) = x+
[
R
(ωc
ε2

∆t+ π/2
)
−R(π/2)

] ε

ωc

(
v − q

m

∆t

ε
Eε(tn, x)

)
,

V̄ε(tn; tn+1, x, v) = R
(ωc
ε2

∆t
)(

v − q

m

∆t

ε
Eε(tn, x)

)
.

Now using the right rectangle rule to approximate the integral in (71) we obtain

Vε(t; tn+1, x, v) = R
(ωc
ε2

(tn+1 − t)
)
v − q

mε

[
(tn+1 − t)R

(ωc
ε2

(tn+1 − t)
)
Eε(tn+1, x) +O(∆t2)

]
,

(72)

then using (72) for t = tn we get

Vε(tn; tn+1, x, v) = R
(ωc
ε2

∆t
)
v − q

mε

[
∆tR

(ωc
ε2

∆t
)
Eε(tn+1, x) +O(∆t2)

]
.

Hence, we deduce that

Vε(tn; tn+1, x, v)− V̄ε(tn; tn+1, x, v) = O(∆t/ε)(Eε(tn, x)− Eε(tn+1, x)) +O(∆t2/ε)

= O(∆t2/ε). (73)

Substituting the equality (72) into the equation (70) to get

Xε(tn; tn+1, x, v) = x+
[
R
(ωc
ε2

∆t+ π/2
)
−R(π/2)

] ε

ωc
v +O(∆t3/ε2)

+
[
−∆tR

(ωc
ε2

∆t+ π/2
)

+ ∆tR(π/2) +O(∆t2)
] Eε(tn+1, x)

B
,
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where we used the formula
d

dθ
R(−θ + π/2) = R(−θ) and hence

Xε(tn; tn+1, x, v)− X̄ε(tn; tn+1, x, v)

= O(∆t) (Eε(tn, x)− Eε(tn+1, x)) +O(∆t3/ε2) +O(∆t2) = O(∆t3/ε2) +O(∆t2). (74)

Finally, using (73) and (74) we obtain

ẽ1 = ‖fε(tn+1, x, v)− T1 ◦ T2fε(tn, x, v)‖L∞ ≤ C(‖fε‖C2
b
, ‖Eε‖C1

b
)O(∆t2/ε2).

Next, we will estimate e1 = ‖fε(tn+1, x, v)− T2 ◦ T1fε(tn, x, v)‖L∞ .
We have

T2 ◦ T1fε(tn, x, v) = fε(tn, X̄ε(tn; tn+1, x, v), V̄ε(tn; tn+1, x, v)),

where

X̄ε(tn; tn+1, x, v) = x+
[
R
(ωc
ε2

∆t+ π/2
)
−R(π/2)

] ε

ωc
v,

V̄ε(tn; tn+1, x, v) = R
(ωc
ε2

∆t
)
v − q

m

∆t

ε
Eε(tn+1, X̄ε(tn; tn+1, x, v)).

Using now the left rectangle rule to approximate the integral in (71) we obtain

Vε(t) = R
(ωc
ε2

(tn+1 − t)
)
v − q

mε

[
(tn+1 − t)Eε(t,Xε(t; tn+1, x, v)) +O(∆t2)

]
, (75)

which implies for t = tn that

Vε(tn; tn+1, x, v) = R
(ωc
ε2

∆t
)
v − q

mε

[
∆tEε(tn, Xε(tn; tn+1, x, v)) +O(∆t2)

]
.

Substituting the equality (75) into the equation (70) and re-use the left rectangle rule to get

Xε(tn) = x+
[
R
(ωc
ε2

∆t+ π/2
)
−R(π/2)

] ε

ωc
v − q

m

∆t2

ε2
Eε(tn, Xε(tn)) +O(∆t3/ε2).

Hence we deduce that

Xε(tn; tn+1, x, v)− X̄ε(tn; tn+1, x, v) = O(∆t2/ε2) +O(∆t3/ε2), (76)

and, as a consequence

Vε(tn)− V̄ε(tn) =
q

m

∆t

ε

[
Eε(tn+1, X̄ε(tn))− Eε(tn, Xε(tn))

]
+O(∆t2/ε)

= O(∆t/ε)
[
∆t+ |X̄ε(tn; tn+1, x, v)−Xε(tn; tn+1, x, v)|

]
+O(∆t2/ε)

= O(∆t2/ε) +O(∆t3/ε3) +O(∆t5/ε3) +O(∆t2/ε). (77)

Thus from (76) and (77) we obtain

e1 = ‖fε(tn+1, x, v)− T2 ◦ T1fε(tn, x, v)‖L∞ ≤ C(‖fε‖C1
b
, ‖Eε‖C1

b
)(O(∆t2/ε2) +O(∆t3/ε3)).

Finally, we estimate e2 = ‖fε(tn+1, x, v)− T1 ◦ T2 ◦ T1fε(tn, x, v)‖L∞ .
We have

T1 ◦ T2 ◦ T1fε(tn, x, v) = fε(tn, X̄ε(tn; tn+1, x, v), V̄ε(tn; tn+1, x, v))
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where

X̄ε(tn; tn+1, x, v) = x+

[
R
(
qB

mε2
∆t+ π/2

)
−R(π/2)

]
ε
v

ωc

−∆t

[
R
(
qB

mε2

∆t

2
+ π/2

)
−R(π/2)

]
Eε
B

(tn+1/2, X̄ε(tn; tn+1/2, x, v)),

V̄ε(tn; tn+1, x, v) = R
(
qB

mε2
∆t

)
v − q

m

∆t

ε
R
(
qB

mε2

∆t

2

)
Eε(tn+1/2, X̄ε(tn; tn+1/2, x, v)),

with X̄ε(tn; tn+1/2, x, v) = x+

[
R
(
qB

mε2

∆t

2
+ π/2

)
−R(π/2)

]
ε
v

ωc
.

Using now the midpoint rectangle rule to approximate the integral in (71) we obtain

Vε(t; tn+1, x, v) = R
(ωc
ε2

(tn+1 − t)
)
v

− q

mε

[
(tn+1 − t)R

(ωc
ε2

(tn+1/2 − t)
)
E(tn+1/2, Xε(tn+1/2; tn+1, x, v)) +O(∆t3)

]
,

(78)

which implies for t = tn that

Vε(tn) = R
(ωc
ε2

∆t
)
v − q

mε

[
∆tR

(
ωc
ε2

∆t

2

)
Eε(tn+1/2, Xε(tn+1/2; tn+1, x, v)) +O(∆t3)

]
.

Substituting the equality (78) into the equation (70) for t = tn+1/2 and using the left rectangle
rule to get

Xε(tn+1/2) = x+

[
R
(
qB

mε2

∆t

2
+ π/2

)
−R(π/2)

]
ε
v

ωc

+O(∆t4/ε) +
q

mε2

∆t2

4
E(tn+1/2, Xε(tn+1/2)) +O(∆t2/ε2),

and hence we deduce that

Xε(tn+1/2)− X̄ε(tn; tn+1/2, x, v) = O(∆t4/ε) +O(∆t2/ε2) + (∆t2/ε2) = O(∆t2/ε2). (79)

Do it again for t = tn we have

Xε(tn) = x+

[
R
(
qB

m

∆t

ε2
+ π/2

)
−R(π/2)

]
ε
v

ωc
+O(∆t4/ε)

− ∆t

B

[
R
(
qB

m

∆t

2ε2
+ π/2

)
−R(π/2)

]
Eε(tn+1/2, Xε(tn+1/2; tn+1, x, v)) +O(∆t3).

(80)

where we computed the integral∫ tn+1

tn

(tn+1 − s)R
(
qB

m

tn+1/2 − s
ε2

)
ds =

ε2

ωc

∫ tn+1

tn

(tn+1 − s)
d

ds
R
(
qB

m

tn+1/2 − s
ε2

+ π/2

)
ds

=
ε2

ωc

[
−∆tR

(
qB

m

∆t

2ε2
+ π/2

)
+

∫ tn+1

tn

R
(
qB

m

tn+1/2 − s
ε2

+ π/2

)
ds

]
=
ε2

ωc

[
−∆tR

(
qB

m

∆t

2ε2
+ π/2

)
+ ∆tR

(
qB

m

tn+1/2 − tn+1/2

ε2
+ π/2

)
+O(∆t3)

]
= − ε

2

ωc
∆t

[
R
(
qB

m

∆t

2ε2
+ π/2

)
−R(π/2)

]
+ ε2O(∆t3).
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Using (79) and (80) we have

Xε(tn; tn+1, x, v)− X̄ε(tn; tn+1, x, v) = O(∆t3/ε3),

Vε(tn; tn+1, x, v)− V̄ε(tn; tn+1, x, v) = O(∆t3/ε3).

Finally we get

e2 = ‖fε(tn+1, x, v)− T2 ◦ T1 ◦ T1fε(tn, x, v)‖L∞ ≤ C(‖fε‖C1
b
, ‖Eε‖C1

b
)O(∆t3/ε3).
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Figure 1: Comparison between the time evolution of electrostatic energy in first dimension
from Vlasov-Poisson system and the guiding center model. Nx = 128, Nv = 64, vmax =
8,∆t = 0.01. The number of time steps stays constant N = 5000.
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Figure 2: The time evolution of electrostatic energy in first dimension under strong magnetic
field with Scovel’s splitting. Nx = 128,∆t = 0.01.
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Figure 3: Simulation for time evolution of the density of Guiding center model using the
Lagrangian interpolation. Nx = Ny = 128,∆t = 0.01. From left to right we present the
densities’s contours at fluid times scale T = 10, T = 18, T = 25, T = 58, T = 98 and
T = 120.
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Figure 4: Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1.
Nx = 128, Ny = 128, Nvx = 64, Nvy = 64,∆t = 0.01.
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Figure 5: Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1/32.
Nx = 128, Ny = 128, Nvx = 64, Nvy = 64,∆t = 0.01.
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Figure 6: Simulation for time evolution of the density of Vlasov-Poisson system with ε = 1/64.
Nx = 128, Ny = 128, Nvx = 64, Nvy = 64,∆t = 0.01.
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Figure 7: Simulation for time evolution of the density of Vlasov-Poisson system with ε =
1/132. Nx = 128, Ny = 128, Nvx = 64, Nvy = 64,∆t = 0.01.
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Figure 8: Comparison between the time evolution of theoretically quantities of Vlasov-Poisson
system with several values of ε and the guiding center model. Nx = Ny = 128, Nvx = Nvy =
64, vmax = 8,∆t = 0.01.

Figure 9: Comparison between the time evolution of theoretically quantities of Vlasov-
Poisson system when ε = 1/32 with several values of Nx and the guiding center model with
Nx = 128. Nvx = Nvy = 64, vmax = 8,∆t = 0.01.
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Figure 10: Simulation for time evolution of the kinetic effect of Vlasov-Poisson system with
ε = 1. Nx = 128, Ny = 128, Nvx = 64, Nvy = 64,∆t = 0.01.

Figure 11: Simulation for time evolution of the kinetic effect of Vlasov-Poisson system with
ε = 1/32. Nx = 128, Ny = 128, Nvx = 64, Nvy = 64,∆t = 0.01.47
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