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H-Matrices
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Abstract

In a recent article the authors showed that the radiative Transfer equa-
tions with multiple frequencies and scattering can be formulated as a
nonlinear integral system. In this article, the formulation is extended to
handle reflective boundary conditions. The fixed point method to solve
the system is shown to be a monotone. The discretization is done with a
P 1 Finite Element Method. The convolution integrals are precomputed
at every vertex of the mesh and stored in 2K compressed hierarchical ma-
trices, using Partially Pivoted Adaptive Cross-Approximation, where K
is the number of different values of absorption. Then the fixed point iter-
ations involve only matrix vector product. The method is O(N 3

√
N lnN),

with respect to the number of vertices, when everything is smooth. A nu-
merical implementation is proposed and tested on a simple example. As
there are some analogies with ray tracing the programming is complex.

Keywords MSC classification 85A25, 37N30, 31A10, 35Q30, 68P30, 74S05,
Radiative Transfer, Reflective boundaries, Integral equation, H-Matrix , Finite
Element Methods.

Introduction

The Radiative Transport Equations (RTE) describe the behavior of electromag-
netic radiation in a domain Ω as it interacts with matter [13]. It is used to model
a wide range of physical phenomena, including the propagation of light through
plasma, tomography [17], atmospheric media [12], etc.
The RTE is derived from the basic principles of quantum and statistical me-
chanics; it is a partial differential equation (PDE) that describes the distribu-
tion of radiation intensity in space, time and frequencies, coupled with a budget
balance equation (BBE) for the electronic temperature. The PDE takes into
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account both absorption and scattering of radiation by matter, as well as emis-
sion of radiation by sources, which, in the present case, will be restricted to the
boundaries of the emitting material.
In [6],[7] the authors have shown that the PDE can be converted into an integral
equation for the total radiation at each point in the domain and that the coupling
with the BBE can be handled by fixed point iterations. The method leads also
to a general proof of existence, uniqueness and regularity of the solution. The
difference with earlier studies such as [4] is in the coupling with the equation
for the temperature, BBE or even the full temperature PDE.
In [5] the authors have presented an implementation of the method using H-
Matrix compression, a crucial ingredient which makes the evaluation of the
integrals O(N

3
√
N lnN) with respect to the number of vertices N in the 3D

mesh which discretizes the domain Ω; N lnN is the complexity of the H-Matrix
part but each element of the matrix requires an integral along a line in the
domain. Compared with a brute force solution of the equations as in [10], the
integral method has still a usable computing time for problems with frequency
dependent physical parameters. However it did not handle reflective boundary
conditions [16].

H-Matrix compression [8], [1],[3], is a mathematical technique used to efficiently
represent and manipulate large matrices that arise in a variety of applications.
The technique uses a hierarchical structured representation of the matrices
which allows a fast and accurate numerical computations when the integrals
have a convolution type integrand which decays with the distance.
H-Matrix compression works by partitioning a large matrix into smaller sub-
matrices, and then approximate these submatrices by hierarchical low-rank ap-
proximations. The resulting representation allows for efficient matrix-vector
multiplication, among other operations of linear algebra. The technique is par-
ticularly important and popular for computational electromagnetics in integral
form such as boundary element methods.
With the Partially Pivoted Adaptive Cross-Approximation (ACA) [3] only the
needed coefficients of the matrices are computed. However the theory requires
geometrical smoothness [2].

We have extended the implementation done in [5] using FreeFEM [9] and htool1;
htools is a C++ toolbox for boundary element methods with electromagnetism
in sight. FreeFEM is a popular open-source software package used for solving
PDE systems with the finite element method (FEM).
FreeFEM provides a wide range of pre-built FEM, as well as tools for mesh
generation. It has a dedicated high level programming language that allows
users to meet their specific needs. FreeFEM also supports parallel computing
with mpi.
One of the main advantages of FreeFEM for the present study is its ability to
handle complex geometries and boundary condition, especially because of its
powerful interpolations from volume to surface meshes.

1https://github.com/htool-ddm/htool
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Adding reflective conditions (RC) to the FreeFEM code presented in [5] turned
out to require solving the following difficulties:

• Integrate the RC into the integral formulation of the problem

• Show that the fixed point iterations are still monotone.

• Find a formulation compatible with the use of H-Matrices

• Implement the method in the FreeFEM code.

This paper presents the solutions found to resolve these 4 difficulties. It ends
with a numerical test proposed in [11].

1 The Radiative Transfer Equations

The problem is formulated in a domain Ω ⊂ R3 with boundary Γ. The unit
sphere in R3 is called S2. One must find the radiation (called light from now
on) intensity Iν(x,ω) at all points x ∈ Ω, for all directions all ω ∈ S2 and all
frequencies ν ∈ R+, satisfying:

ω ⋅ ∇Iν + κνIν = κν(1 − aν)Bν(T ) + κνaνJν , Jν ∶=
1

4π ∫S2
Iνdω , (1)

∫

∞

0
κν(1 − aν)(Jν −Bν(T ))dν = 0 , (2)

Iν(x,ω) = Rν(x,ω)Iν(x,ω − 2(n ⋅ω)n) +Qν(x,ω),

on Σ ∶= {(x,ω) ∈ Γ × S2
∶ ω ⋅ n(x) < 0}, (3)

where Bν(T ) = ν3

e
ν
T −1

is the (rescaled) Planck function. In the RC (3), Rν is the

portion of light which is reflected and Qν is the light source; n(x) is the outer
normal of Γ at x. κν and aν are the absorption and scattering coefficients; in
general they depend on ν and x.

Example 1 If an object O inside a box B radiates because it is at temperature
T0, then, Ω = O/B, Qν = Q0[ω ⋅ n]−Bν(T0) on O and zero elsewhere and Σ ⊂

∂B × S2.

1.1 An Integral Formulation

For clarity we drop the subscript ν on κ, a and I. Assume that Ω is bounded
and convex (see remark 1). Let

Sν(x) = κ(1 − a)Bν(T ) + κaJν , (4)

For a given x and ω, let τx,ω be such that (xΣ(x,ω) ∶= x − τx,ωω,ω) ∈ Σ; the
method of characteristics tells us that

I(x,ω) = I(xΣ(x,ω),ω)e−∫
τx,ω
0 κ(x−ωs)ds

+ ∫

τx,ω

0
e−∫

s
0 κ(x−ωs

′
)ds′Sν(x −ωs)ds.

(5)
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Notice that τx,ω = ∣xΣ − x∣ (see Figure 1), therefore, let

Jν(x) ∶=
1

4π ∫S2
I(x,ω)dω = SEν (x) + J [Sν](x) with

SEν (x) ∶= 1
4π ∫S2

I(xΣ(x,ω),ω)e−∫
τx,ω
0 κ(x−ωs)dsdω,

J [S](x) ∶= 1
4π ∫S2

∫

τx,ω

0
e−∫

s
0 κ(x−ωs

′
)ds′S(x −ωs)dsdω

= 1
4π ∫

Ω
S(y)

e−∫[x,y] κ

∣y − x∣2
dy.

(6)

where, ω′(ω) ∶= ω − 2(n ⋅ω)n and ∫
[x,y]

f ∶= ∣y − x∣ ∫
1

0
f(sy + (1 − s)x)ds.

To justify the last formula we refer to the following lemma with Ψ(x,y) =

S(y)e−∫[x,y] κ. Again, for clarity, we drop the first argument x.

Lemma 1 Let Ω be a convex bounded open set of R3; let Γ be its boundary. Let
Ψ ∶ Ω↦ R be continuous. Let τx,ω ≥ 0 be such that x − τx,ωω ∈ Γ, x ∈ Ω. Then

∫
S2
∫

τx,ω

0
Ψ(x −ωs)dsdω = ∫

Ω

Ψ(y)

∣y − x∣2
dy.

Proof : Denote Ψ̃ the extension of Ψ by zero outside Ω. Let ω = (cos θ sinϕ, sin θ sinϕ, cosϕ)T ,
θ ∈ (0,2π), ϕ ∈ (−π

2
, π

2
). Consider a partition of the semi infinite line starting

at x in direction −ω into segments of size δs and denote xn = x − nδsω. Then

∫
S2
∫

τx,ω

0
Ψ̃(x −ωs)dsdω = lim

δs→0
∑
n>0

δs∫
2π

0
∫

π
2

−
π
2

Ψ̃(xn) cosϕdϕdθ

= lim
δs→0

∑
n>0
∫

2π

0
∫

π
2

−
π
2

Ψ̃(xn)

∣x − xn∣2
∣x − xn∣

2
∣xn+1 − xn∣ cosϕdϕdθ

(7)

We note that ∣x − xn∣
2∣xn+1 − xn∣ cosϕdθdϕ is the elementary volume in the

sector dθdϕ between the spheres centered at x and of radii ∣x−xn∣ and ∣x−xn+1∣.

Therefore the right handside is an integral in x′ ∈ R3 of Ψ̃(y)
∣x−y∣2

∣x − xn∣
2. ◻

Remark 1 When Ω is not convex, on may apply the lemma to its convex closure
Ω̄ with κ extended to +∞ in Ω̄/Ω.

Remark 2 When Rν ≡ 0, SE is known. As (2)defines a map T ∶ J ↦ T ,

T (x) = T [Jν](x), ∀x ∈ Ω,

then, (4), (6) is a nonlinear integral formulation for J :

Jν(x) = S
E
ν (x) + J [κ(1 − a)Bν(T [Jν]) + κaJν](x), ∀x ∈ Ω. (8)
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The following fixed point method was shown in [6] to be monotone and conver-
gent:

Jk+1
ν (x) = SEν (x) + J [κ(1 − a)Bν(T [Jkν ](x)) + κaJ

k
ν ](x), k = 0,1, . . . (9)

Let us extend these properties to the RTE with RCs.
For clarity let xΣ be short for xΣ(x,ω) and let ω′ be

ω′
(ω) = ω − 2ω ⋅ n(x′) n(x′), with ω =

x − x′

∣x − x′∣
.

Let us insert (5) and (3) in (6). Then,

SEν (x) = SEν,1 + S
E
ν,2 + S

E
ν,3 with

SEν,1(x) ∶=
1

4π ∫S2
Qν(xΣ,ω)e−∫

τx,ω
0 κ(x−ωs)dsdω,

SEν,2(x) ∶=
1

4π ∫S2
Rν(xΣ,ω)Qν(xΣ(xΣ,ω

′
),ω′

) [e−∫
τxΣ,ω

′
0 κ(xΣ−ω

′s)ds

e−∫
τx,ω
0 κ(x−ωs)ds

]dω,

SEν,3(x) ∶=
1

4π ∫S2
[Rν(xΣ,ω)e−∫

τx,ω
0 κ(x−ωs′)ds′

∫

τxΣ,ω
′

0
e−∫

s
0 κ(xΣ−ω

′s′)ds′Sν(xΣ −ω′s)ds ]dω.

Hypothesis 1 Let us rule out multiple reflections and focal points

1. If Rν(xΣ(x,ω),ω) > 0, then Rν(xΣ(xΣ(x,ω),ω′),ω) = 0.

2. Given x and y, there is only a finite number N of x′n ∈ Γ such that [x′n,y]
is the reflected ray of [x,x′n]. Note that x′n depends on x and y.

Proposition 1 Under Hypothesis 1

SEν,3(x) ∶=
M

∑
n=1

1
4π ∫

Ω
Rν(x

′

n,
x−x′n
∣x−x′n∣

)
e
−∫[x,x′n]∪[x′n,y] κ

(∣x − x′n∣ + ∣x′n − y∣)2
S(y)dy

Proof Let x(s) ∶= xΣ − ω′s. By Lemma 1, (7) can be written as

∫
S2
∫

τxΣ,ω
′

0
[Rν(xΣ,ω)e

−∫[x,xΣ]∪[xΣ,x(s)] κS(x(s))ds ]dω

= ∫
Ω
Rν(xΣ,ω)S(y)

e
−∫[x,xΣ]∪[xΣ,y] κ

(∣x − xΣ∣ + ∣xΣ − y∣)2
dy,

provided that [xΣ,y] is reflected from [x,xΣ]. Now, by hypothesis, if x and
y are given in Ω there are only a finite number of xΣ ∈ Γ for which [xΣ,y] is
reflected from [x,xΣ], (see Figure 1). ◻
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Proposition 2 Let Hypothesis 1 hold. Then the source terms from the bound-
aries are

SEν,1(x) =
1

4π ∫
Γ
Qν(y,

y−x
∣y−x∣

)
[(y − x) ⋅ n(y)]−

∣y − x∣3
e−∫[x,y] κdΓ(y), (10)

SEν,2(x) =
M

∑
n=1

1
4π ∫

Γ
Rν(x

′

n,
x−x′
∣x−x′∣)Qν(y,

x′n−y
∣x′n−y∣

)

[(x′n − y) ⋅ n(y)]−e
−∫[x,x′n]∪[x′n,y] κ

∣x′n − y∣ (∣x − x′n∣ + ∣x′n − y∣)2
dΓ(y). (11)

Recall that x′n depends y.

Proof : Recall that a solid angle integral at x of a surface Σ is

∫
S2
f(x,x′)dω(x′) = ∫

Σ
f(x,x′)

[(x − x′) ⋅ n(x′)]−
∣x − x′∣

dΣ(x′)

∣x − x′∣2
,

Hence from the definition of SEν,2 above we see that (10) holds.

To prove (11) we start from the definition of SEν,2 above. For clarity let us
assume that Qν and Rν do not depend on ω.
Observe that if a ray from x in the direction −ω does not hit, after reflection at
x′ on some ΓR, a boundary ΓQ at y where Qν(y) is non zero then that ω does
not contribute to SEν,2. So we can use the solid angle of ΓQ. However the solid
angle is not seen from x but from x̄, the symmetric of x with respect to the
tangent plane of ΓR at x′. As the distance from x̄ to y is also ∣x − x′∣ + ∣x′ − y∣,
we obtain (11). ◻

Corollary 1
Jν(x) = S̄

E
ν (x) + J̄ [Sν](x), (12)

with S̄Eν (x) ∶= SEν,1(x) + S
E
ν,2(x) given by Proposition 2 and

J̄ [S](x) = 1
4π ∫

Ω

⎡
⎢
⎢
⎢
⎢
⎣

e−∫[x,y] κ

∣y − x∣2
+
M

∑
n=1

e
−∫[x,x′n]∪[x′n,y] κ

(∣x − x′n∣ + ∣x′n − y∣)2
Rν(x

′

n,
x−x′n
∣x−x′n∣

)

⎤
⎥
⎥
⎥
⎥
⎦

S(y)dy

(13)

1.2 Example

Assume that Γ = ΓQ ∪ΓR and Qν(x,ω) = [ω ⋅n(x)]− Q
0 with Q0 > 0 on ΓQ and

0 on ΓR. Assume Rν(x,ω) = R0 with R0 > 0 on ΓR and 0 on ΓQ. Assume that
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there is never more than one reflection point on ΓR, i.e. N = 1. Then

S̄Eν (x) =
Q0

4π
∫

ΓQ

⎡
⎢
⎢
⎢
⎢
⎣

(
[(y − x) ⋅ n(y)]−

∣y − x∣2
)

2

e−∫[x,y] κ

+ R0 ([(x
′

1 − y) ⋅ n(y)]−)
2e
−∫[x,x′

1
]∪[x′

1
,y] κ

∣x′1 − y∣2 (∣x − x′1∣ + ∣x′1 − y∣)2

⎤
⎥
⎥
⎥
⎥
⎦

dΓ(y),

J̄ [S](x) = 1
4π ∫

Ω

⎡
⎢
⎢
⎢
⎢
⎣

e−∫[x,y] κ

∣y − x∣2
+R0 e

−∫[x,x′
1
]∪[x′

1
,y] κ

(∣x − x′1∣ + ∣x′1 − y∣)2

⎤
⎥
⎥
⎥
⎥
⎦

S(y)dy.

x

x̄

ω

xΣ ∶= xΣ(x,ω)

ω′ = ω − 2(n(xΣ) ⋅ω)n(xΣ)

n(xΣ)

xΣΣ ∶= xΣ(xΣ,ω
′)

n(xΣΣ)

Figure 1: In this configuration the source ΓQ is the upper square. An RC is
imposed on the lower plane ΓR. SEν has an integral of the solid angle of the
upper square seen from x plus an integral of the solid angle of the upper square
seen from x̄, the symmetric of x with respect to ΓR.

1.3 Fixed Point Iterations

Consider the fixed point iterations initialized with T 0 and J0 = 0.

Algorithm For k = 0,1, . . . :

Set Skν (x) = κ(1 − a)Bν(T
k
) + κaJkν ,

Set Jk+1
ν (x) = S̄Eν (x) + J̄ [Skν ](x).

Compute T k+1 by solving (using Newton algorithm) for each x ∈ Ω

∫

∞

0
κν(1 − aν)(J

k+1
ν −Bν(T

k+1
))dν = 0.

(14)
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Proposition 3 Let {J∗ν , T
∗} be the solution. If T 0(x) > T ∗(x), ∀x ∈ Ω then the

iterations are monotone decreasing: T k(x) > T k+1 > T ∗(x), ∀x ∈ Ω. Conversely
if T 0(x) < T ∗(x), ∀x ∈ Ω then the iterations are monotone increasing: T k(x) <
T k+1 < T ∗(x), ∀x ∈ Ω.

Proof : Le us prove it for the monote increasing sequence.
By subtracting the definition Jkν from that of Jk+1

ν and using the linearity of J̄ ,
we obtain

Jk+1
ν (x) − Jkν (x) = J̄ [Skν − S

k−1
ν ](x).

As J is a strictly positive operator, if Skν > S
k−1
ν for all x then Jk+1

ν (x) > Jkν (x).
The equation for T k+1 is also monotone in the sense that

Jkν (x) > J
k
ν (x) Ô⇒ Bν(T

k+1
) > Bν(T

k
) Ô⇒ T k+1

> T k,

because Bν is increasing in T .
Conclusion: if T 1 > T 0 and S1 > S0 then T k+1 > T k for all k. One sure way to
impose it is to choose T 0 = 0 and J0 = 0.
To prove that T k < T ∗ we observe that

Jkν (x) − J
∗

ν (x) = J̄ [Sk−1
ν − S∗ν ](x).

Hence Sk−1
ν < S∗ν Ô⇒ Jkν (x) < J

∗

ν (x) Ô⇒ T k < T ∗.

◻

Remark 3 Henceforth, convergence and uniqueness can probably be proved as
in [7], but there are technical difficulties of functional analysis which may not
be appropriately discussed here.

2 FEM discretization and Compressed H-Matrices

For clarity consider exemple 1.2. As the values of Q0 and R0 depend on the
boundary name, we write Q0(x) and R0(x).
The domain Ω is discretized by a tetraedral mesh; the boundary Γ is discretized
by triangular mesh, not necessarily conforming with the volume mesh.
Let {xj}N1 be the vertices of the tetraedra of Ω and {x̃l}L1 the vertices of the
triangles of Γ .
A continuous P 1 interpolation of J on the tetraedral mesh is:

J(x) =
N

∑
1

Jjŵ
j
(x) where ŵj is the P 1- Finite Element hat function of vertex xj .
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Then

Sν,j ∶= aJν,j + (1 − a)Bν(Tj), Jν,i ∶= S̄
E
ν,i +∑

j

Gijκ Sν,j where

Gijκ = 1
4π ∫

Ω

⎡
⎢
⎢
⎢
⎢
⎣

κ
e−∫[xi−y] κ

∣xi − y∣2
dy +

M

∑
n=1

R0
(x′n)

e
−∫[xi,x′n]∪[x′n,y] κ

(∣xi − x′n∣ + ∣x′n − y∣)2

⎤
⎥
⎥
⎥
⎥
⎦

ŵj(y)dy

and where S̄Eν,i =
1

4π ∫
Γ
Q0

(y)

⎡
⎢
⎢
⎢
⎢
⎣

(
[(xi − y) ⋅ n(y)]−

∣xi − y∣2
)

2

e−∫[xi,y] κ

+
M

∑
n=1

R0
(x′n)

([(x′n − y) ⋅ n(y)]−)
2e
−∫[xi,x′n]∪[x′n,y] κ

∣x′n − y∣2(∣xi − x′n∣ + ∣x′n − y∣)2

⎤
⎥
⎥
⎥
⎥
⎦

dΓ(y)

The integrals are approximated with quadrature at points {xjq}
Mq

1 . The points

are inside the elements; consequently ∣xi−xjq ∣ is never zero. A formula of degree

5, with Mq = 14, is used when ∣xi − y∣ is small and of degree 2, with Mq = 4,
otherwise; the results do not change when higher degrees are used. Luckily
when xi is closed to Γ an analytical formula can be used [7].
To compute x′n such that [y,x′n] is the reflected ray of [x′n,x

i] a loop on all
the elements of the reflecting boundaries is necessary. This can be expensive,
but in the case of planar reflective boundaries the symmetric point x̄i is easy to
compute and so is the intersection of [x̄i,y] with the reflective boundary.

Finally, to the vector {S̄Eν,i}
N
i=1 we associate a matrix {S̄Ei,l}

N,L
i,l=1 by replacing

Q0(y) above by w̃l(y). Then:

Q0
(y) =

L

∑
1

Q0
l w̃

l
(y) Ô⇒ S̄Eν,i =

L

∑
1

S̄Ei,lQ
0
l .

2.1 Compression

So, for each ν we have two very large matrices, {Ḡi,j}
N,N
i,j=1 and {S̄Ei,l}

N,L
i,l=1.

Remark 4 Note that for each value of ν two matrices are needed. However on
close inspection it is really two matrices for each value of κν . Very often, less
than ten values are sufficient to represent a general κν .

Both matrices can be compressed as H-matrix [2],[14],[15] (and the references
therein) so that the matrix-vector product has complexity O(N lnN).
The method works best when the kernel in the integrals, decays with the distance
between xi and y. In both matrices the kernel decays with the square of the
distance. The H-matrix approximation views G as a hierarchical tree of square
blocks. The blocks correspond to interactions between clusters of points near
xj and near xi. A far-field interaction block can be approximated by a low
rank matrix because its singular value decomposition (SVD) has a fast decaying
singular value. We use the Partially Pivoted Adaptive Cross-Approximation
(ACA) [3], to approximate the first terms of the SVD of the blocks, because
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only r-rows times r-columns are needed instead of the whole block, where r
is the rank of the approximation. The rank is a function of a user defined
parameter ε connected to the relative Frobenius norm error. Another criteria
must be met: if R1 (resp. R2) is the radius of a cluster of points centered at
x1 (resp. x2), then one goes down the hierarchical tree until the corresponding
block satisfies max(R1,R2) < η∣x1 − x2∣ where η is a user defined parameter. If
the end of the tree is reached, the block is not compacted.
The precision is not guaranteed on account of [(x−y) ⋅n(y)]− if the jump from
one triangular face to another is large. A similar singularity caused by normals
is analyzed for a double layer potential formulation in [2] (Example 3.38, p148)
and a remedy is proposed. To check whether this remedy is needed here we
ran two cases, one without compression and one with 97% compression. No
difference was observed.

20 40 60 80 100

0

2 ⋅ 10−2

4 ⋅ 10−2

6 ⋅ 10−2

8 ⋅ 10−2

0.1

0.12

y in cm

J

n=5
n=10
n=15
=20
n=25
n=0
n=5
n=10
n=15
n=20
n=25

Figure 2: Values of J along the y axis at x = z = 15 computed with a RC.
Convergence versus iteration number n. When the scaled temperature is initial-
ized to T 0 = 0.001 at n = 0 the convergence is monotonously increasing. When
T 0 = 0.44 the convergence is monotonously decreasing.

3 A Test Case

In [11] a semi-analytic solution of the RTE is given for a geometry shown on
Figure 3. In this test a = 0 and κ is not a function of ν. Hence the grey
formulation can be used. Define Ī = ∫

∞

0 Iνdν. By averaging (14) in ν and due
to the Stefan-Boltzmann relation, the following holds (for clarity aν = 0):

∫

∞

0
Bν(T )dν = σT 4 with σ =

π4

15
Ô⇒

J̄k+1
(x) = S̄E(x) + J̄ [κσ(T k)4

](x), κσ(T k+1
)
4
= κJ̄k+1.

(15)
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3.1 The Geometry

The outer container is D = (0,60)×(0,100)×(0,60), in cm. A cube C = [0,10]3

radiates with intensity Q0 = 0.1. A rectangular cylinder prolonging the radiating
cube (0,10)×(10,100)×(0,10) has a low absorption κ = 10−4 while the rest has
κ = 0.1. In Kobayaski’s test case 1A there is no scattering, and the three planes
containing the origin reflects the radiations: (O,x, z), (O,x, y), (O,y, z).
Unfortunately the present method cannot handle volumic radiating region. Con-
sequently we have kept the geometry but only the 3 faces of C inside Ω radiate
in all directions ω with intensity Q0[ω ⋅n]−, where n is the normal to the cube’s
face pointing inside the cube. The domain is Ω =D/C.

3.2 Results

Figure 3: A small cube (colored
blue and red on the figure) ra-
diates normally to its faces in a
medium which has a very small
absorption coefficient κ = 10−4

in the cylinder prolonging the
cube and κ = 0.1 elsewhere.

To assert the precision of the method we con-
sider first only one reflective plane, ΓR =

(0, y, z). So, Rν = 1 on that plane and zero
elsewhere and Q0 is non zero only on the faces
of the C. We also take κ = 0.1 everywhere.
First we verify that the convergence is mono-
tone increasing if T 0 is small and monotone
decreasing if T 0 is large (Figure 2). Note that
the monotone increasing sequence converges
faster.
Next, we compare the results with a compu-
tation on a domain D̄ = (−60,60) × (0,100) ×
(0,60) which is D plus the symmetrized of
D with respect to the plane (0, y, z). This
is because reflection on a plane is equivalent
to extending the domain by symmetry with
respect to that plane.
Figure 4 shows level surfaces of J computed
on the symmetrized domain (but restricted to
the original domain) and compared with the
same level surfaces but computed with the RC. Surfaces with similar colors
should be near each other. In fact the difference is not viible except near z = 0 .
Figure 5 shows level surfaces of J computed with the RC, κ = 10−4 or 0.1, and
the same level surfaces but computed without any RC on the (O,y, z) plane. It
is seen that surfaces with similar color are far from each others. By comparing
Figure 4 with Figure 5 we see that the RC does almost the same as symmetry
and that no condition at all is a non viable approximation for this problem.
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Figure 4: Level surfaces of J using a log scale computed with κ = 0.1 and only
one reflective plane, (0, y, z) facing us, slightly to the left. Comparison between
a computation done with the RC and a computation done on a symmetrized
domain, double in size.Surfaces of equal colors are so near each other that it is
hard to distinguish them.

Figure 5: Same as in Figure 4 but the RC is not used in one computation.
Surfaces of equal colors are far from those using the RC, indicating the absolute
necessity of a RC.Here κ is not constant.

Similarly, figure 6 shows x ↦ J(x,15,15), computed on the symmetrized do-
main, or with the radiative condition or without it.

12



Finally, Figure 7 shows x ↦ J(x,15,15), computed with the RC on 3 meshes,
coarse, medium and fine. The same 3 meshes are used in Table 1 where the
theoretical complexity N

3
√
N lnN is approximately observed. The compressing

ratio for the surface and the volume matrices are shown too.
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6
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x in cm

J

With RC
Symmetrized domain

No RC

Figure 6: Values of J along the x axis at
y = z = 15 computed by different meth-
ods on the coarse mesh.
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N=84042
N=26189
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N=2758

Figure 7: Values of J along the x axis
at y = z = 25 computed with a RC with
different meshes.

Table 1: CPU time, complexity and compression for 3 meshes with one reflective
plane and non constant κ.

N vertices Surf. Space Saving Vol. Space Saving. CPU 105CPU

N
3√
N logN

2758 0.41 0.60 5.2” 1.6971
8003 0.59 0.77 13.9” 0.97
26189 0.67 0.89 60.7” 0.77
84042 0.95 0.74 312” 0.75

But since the radiative sources are different (volumic in Kobayashi’s and surfacic
in our case) we have scaled the result with Kobayashi’s value at x = 5, y = 15, z =
5 by their values at y = 15.

3.3 Kobayashi’s Test 1A

Test 1A of [11] has been computed, i.e. non constant κ and 3 reflective planes.
Surface levels of J are shown on Figure 10.
The comparison with the data in [11] on the line (5, y,5) is shown on Figure 8.
Finally the L2 error is computed using values on the line (x,15,15). The ref-
erence solution to compute the error is the solution on a mesh with N=26189 .
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The results are displayed on Figure 9. It shows an L2-error on the line O(h3).

20 40 60 80 100

0

0.5
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1.5

y in cm

J

Kobayashi
Present method

Figure 8: Values of J versus y ≥ 15
at x = z = 5 and comparison with
the values given in [11]. A scal-
ing is applied to each curve so that
they coincide at y = 15 (because [11]
is given for volumic source and the
present method handles only surface
sources).
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Figure 9: Log-log plot of L2 error
versus N . The line − logN+1.5 indi-
cates an error O( 1

N
). The reference

solution is computed on a mesh with
26189 vertices. The plotted points
are computed on meshes with N as
in Table 1.

Conclusion

Compressed H-matrices is an ideal tool for RTE in integral form because the
complexity of the method is O(N

3
√
N lnN) where N is the number of vertices

in the 3D mesh and because it can handle frequency dependent absorption and
scattering coefficients at the expense of a finite number of compressed matrices
and a finite number of matrix-vector products.
The integral nonlinear formulation of RTE proposed in [5] has been extended
to cases with reflective boundary conditions. The monotonicity property of the
iterative solver is kept. The discretization with the finite element method is
the same. However it is hard to write a general computer code because of the
complexity of potential multiple reflections, as in Ray Tracing. Hence in this
article the numerical validation has been done only for a finite number of plane
reflective boundaries and for an academic geometry.
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Figure 10: Kobayashi’s test: Level surfaces of J using a log scale. The reflective
planes are the (O,x, z), (O,y, z), (O,x, y). The originO is the lower right corner.
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