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Abstract

Certification through auditing allows to ensure that critical embedded systems are secure. This
entails reviewing their critical components and checking for dangerous execution paths. This lat-
ter task requires the use of specialized tools which allow to explore and replay executions but are
also difficult to use effectively within the context of the audit, where time and knowledge of the
code are limited. Fault analysis is especially tricky as the attacker may actively influence execution,
rendering some common methods unusable and increasing the number of possible execution paths
exponentially. In this work, we present a new method which mitigates these issues by reducing the
number of fault injection points considered to only the most relevant ones relatively to some security
properties. We use fast and robust static analysis to detect injection points and assert their impact-
fulness. A more precise dynamic/symbolic method is then employed to validate attack paths. This
way the insight required to find attacks is reduced and dynamic methods can better scale to realis-
tically sized programs. Our method is implemented into a toolchain based on Frama-C and KLEE
and validated on WooKey, a case-study proposed by the National Cybersecurity Agency of France.

Keywords: fault injection robustness evaluation, source code static analysis, symbolic execution, WooKey

bootloader use-case

1 Introduction

From our credit cards to medical equipment
and methods of transport, embedded systems are
relied upon in nearly all aspects of modern life,
including critical and sensitive applications. Trust
in these devices and their protective mechanisms

This work is partially supported by ANR-15-IDEX-02. All
data generated or analysed during this study are included in
this published article.

is therefore paramount to ensure the viability of
our professional endeavors and lifestyles.

One way the security of such devices can be
ascertained is through certification processes such
as Common Criteria [19]. This allows to gauge
the difficulty of finding and performing attacks
on the target system by measuring the time
and level of expertise required to do this for a
group of approved auditors leveraging state-of-
the-art equipment and techniques [11]. Included in
their arsenal are perturbation attacks, also known
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as fault injection attacks, which aim to cause
exploitable faulty behavior in a system by sub-
jecting it to extreme operating conditions. Vectors
of fault injection include applying strong electro-
magnetic fields to some components using a laser,
causing power jolts or stressing DRAM memory
via software to induce bitflips [13, 28]. This can
lead to secret information such as bits of crypto-
graphic keys leaking through side channels [37] or
even to loading an outdated firmware [23, 40].

The tasks auditors must fulfill include review-
ing the critical components of the target pro-
gram such as cryptographic code, bootloaders or
authentication procedures by exploring execution
paths looking for dangerous behaviors, for exam-
ple allowing to bypass said cryptographic code.
This latter task requires the use of tools which
can have difficulties scaling to large programs
due to path space explosion and infinite loops.
Moreover these issues only get worse when con-
sidering an active attacker who may influence
execution by injecting faults. Methods which could
be used to reduce the analysis perimeter such
as slicing are inadequate in this context as well.
Considering that auditors have limited time and
knowledge of the code, fault analysis tools tend to
be impractical on realistically sized programs.

To mitigate these issues, we propose an
approach using static analysis to detect the most
relevant fault injection points in a program rel-
atively to security properties which an opponent
may want to attack. It involves finding faultable
instructions in the dependencies of the proper-
ties and formally checking that they may have an
impact. This way the number of execution paths
to consider is reduced to only those which cannot
be formally proven harmless. As a result more pre-
cise tools such as fault simulators, which generate
mutated programs with simulated faults, and fault
analysis tools based on dynamic symbolic execu-
tion [18, 26], which only generate a single mutated
program for analysis, can be used on realistically
sized programs more effectively.

In Section 2 of this paper we place our con-
tributions within the current state of the art. We
then present our method in Section 3, discuss
some additional heuristics in Section 4 and pro-
vide experimental validation in Section 5. Finally,
we discuss related works in Section 6.

2 Context and Contributions

2.1 Security Evaluation and Fault
Analysis

As part of the certification process, the auditors
working for the Information Technology Secu-
rity Evaluation Facilities (ITSEFs) must identify
potential vulnerabilities to fault attacks in their
target. This fault analysis either helps to discover
actual exploits or to assert that the target is secure
against some attacker models. It also allows to
find theoretical exploits which could not be per-
formed within the limited time frame of the audit
and would have been missed otherwise.

When sources are available, auditors analyze
them first in order to familiarize themselves with
the target. Potential attacks can be detected based
on fault models (i.e. known high-level effects of
hardware faults), giving insight on what parts of
the code are likely to be vulnerable to fault injec-
tion as it has been shown that a combination of
a powerful fault model and multi-fault analysis
effectively covers low-level attacks [35]. This infor-
mation can then be used by developers to decide
where additional countermeasures are needed as
well as to guide further evaluation at instruction
and hardware levels. Thus source-level fault anal-
ysis is an important first step in evaluating the
resistance to fault injection attacks of a program
despite being often overlooked.

Fault analysis is often associated with the eval-
uation of cryptographic implementations. While
fault attacks are a major threat in that con-
text, another equally dangerous application of
fault injection is to disrupt program logic outside
of cryptographic components, sometimes bypass-
ing them entirely. For example, faults have been
used to alter the control-flow of bootloaders and
perform exploits on real hardware [16].

The main distinction between these two appli-
cations of fault injection is that the types of faults
considered differ. If the fault models chosen in
a crytographic context tend to focus on altering
data, for example by allowing to set values to
zero, those used for evaluating non-cryptographic
code focus more on altering control-flow as it
is often more logic- and decision-centric rather
than computation-heavy. As a result the skillsets
required to evaluate these two types of code are
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different and thus they are handled by separate
teams.

In this work we focus primarily on the evalua-
tion of non-cryptographic programs with complex
control-flow resulting in a large set of possible
execution paths, which grows exponentially when
faults are taken into account. However we also dis-
cuss its application in a cryptographic setting at
the end of section 5.

2.2 Motivating Example

The following is a discussion of an example pro-
gram which contains vulnerabilities to fault injec-
tion despite the presence of countermeasures. We
will also use this example to illustrate our fault
analysis method later.

The function presented on Figure 1 prints a
message based on its size, both of which are con-
trolled by the user. Under nominal circumstances
this is not an issue since a mask is applied to the
size on line 8, limiting its maximum effective value
to 255 and thus preventing buffer overflows. The
index is also checked to be within the expected
bound of the buffer on line 10 in an attempt to
thwart fault injection attacks.

However, attacking the countermeasure on line
8 by forcing the mask to Oxffffffff with a fault,
which is a commonly considered outcome, results
in the exact user provided size being used. This
also bypasses the index check on line 10. In this
example a secret cryptographic key is conveniently
stored near the message in memory. Inputting a
greater than 255 value as the message size will
therefore result in bytes of the key leaking in a
similar way as with the Heartbleed OpenSSL vul-
nerability [1] and violating the property expressed
on line 121,

Ignoring the fact that storing a secret key in
such a fashion is inadvisable, detecting such vul-
nerabilities to fault injection can be difficult when
they are buried deep within an application. In
fact, our example was inspired by an attack that
was found on the ANSSI’s WooKey project? in a
library comprised of roughly 2.5k lines of code [2]3,
which violated a similar property to the one on line
12, leading to a stack buffer overflow. Additionally,

'In ACSL, wvalid_read allows to check that the content of
pointers can be safely read as per the C standard.

2See the 2020 Inter-CESTI challenge report [12], section 9.
3See the SC_get_ATR function.

the presence of some commonly used counter-
measures may hide the issue to visual inspection.
The use of automated analysis tools would there-
fore allow to not only more reliably detect fault
injection vulnerabilities, but also to evaluate the
effectiveness of countermeasures.

2.3 Usage of Tools in Security
Evaluation

As part of their job, security evaluators must dis-
cover vulnerabilities within a limited time frame
while taking into account the current state-of-
the-art. Automated tools are therefore of interest
to them as they allow to speedup analysis while
offering specific guarantees in terms of coverage.
Another point of interest is that they allow to eas-
ily replay analyses, rendering cross-checking and
updating results much more efficient.

Using such tools presents its own set of chal-
lenges however, as parameterizing them, creat-
ing attack scenarios and interpreting results all
require extensive knowledge and experience to be
done correctly. One particular difficulty of inter-
est to us is the definition of an analysis perimeter,
which is an area of the target program containing
relevant elements toward the chosen attack sce-
nario that the analysis will be restricted to, with
the intention of improving scalability. This is espe-
cially important when analyzing large programs
which tools may struggle to handle if considered in
their entirety. For example, evaluators may want
to only analyze a few functions while stubbing the
rest, with restrictions on inputs.

Ideally, a sound approach to extracting an
analysis perimeter should be favored in order to
ensure that no attack will be missed. However this
is often impractical when tools are suffering from
scalability issues, which may cause the analysis to
not terminate within a reasonable time frame or
precision to be insufficient. A solution is to pro-
gressively restrict the analysis perimeter based on
heuristics, but since it can be difficult to judge
the progress of analyses, determining when to
interrupt them and apply further restrictions is a
blind process. For this reason, a perimeter widen-
ing approach consisting in progressively analyzing
more code with less restrictions is often preferred
as previous terminating analyses give a frame of
reference for forming expectations on runtime.
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1 typedef struct data{

2 size_t msg_size; //input > 255

3 char msg[256]; //input

4 uint32_t key [8]; //secret

5 } data_t;

6

7 wvoid print_-message (data_t xd){

8 unsigned int size = d->msg_size & 0xff; //countermeasure, fault 0x000000ff to Oxffffffff
9 for (unsigned int i = 0; i <= size; i++}{

10 if(i > size) //bypassed countermeasure

11 return;

12 //@ assert \wvalid_read(6d—>msg[i]) ; <— ezpected security property

13 printf (”%c”, d—>msg[i]); //bytes of the key in the output!
14

15 printf(”\n”);

16

Fig. 1: Example of a function vulnerable to fault injection

In this context, using scalable but less precise
static analysis techniques in order to guide the
usage of more precise but less scalable dynamic
ones is becoming common practice [24].

2.4 Program Analysis Techniques

Many program analysis methods and tools can be
used for security evaluation. The following is a suc-
cinct presentation of commonly used ones which
are relevant to this work.

Abstract Interpretation

Abstract Interpretation is a static analysis theory
for the sound approximation of program seman-
tics applied to ordered domains such as lattices.
It is used to gain some insight on the proper-
ties of the program without fully executing it.
Applications include computing value ranges for
variables, data-flows and dependencies as well as
checking assertions. Implementations tend to scale
well to realistically sized programs, although with
stubbed functions and some loss of precision.

Dynamic Symbolic Execution (DSE)

DSE is a dynamic analysis technique consisting
in exploring execution paths in a program while
constructing constraint formulas for variables with
unspecified values, which are referred to as sym-
bolic variables. These constraints can then be
solved using SMT solvers to check the feasibility
of execution paths and to obtain inputs triggering
them. DSE implementations tend to have scala-
bility issues when constraint formulas become too
complex or due to path space explosion. They

can also get stuck in infinite loops and never
terminate.

Concolic execution is a variant which allows
to concretize symbolic variables (i.e. give them
a concrete value) to mitigate these issues. How-
ever this is not always enough and may induce a
loss of correctness and completeness [25], i.e. some
explored paths may not actually be feasible and
some feasible paths may not be explored.

2.5 Difficulties of Fault Analysis

Fault analysis is particularly tricky as most
widely used analysis techniques and tools are not
designed with faults in mind. The main issue is
that faulty behavior must be accounted for at var-
ious program points, which we refer to as fault
ingection points. This introduces a large number
of new feasible execution paths, which increases
exponentially with the number of faults consid-
ered. Thus the choice of the analysis perimeter
becomes crucial as it directly impacts this issue.

Extracting an analysis perimeter is usually
done by expressing assertions related to security
properties and slicing [27, 39] based on dependen-
cies. This allows to produce a minimal program
corresponding only to relevant execution paths
with regard to the assertions. The issue with this
method is that faults may redirect control flow
and induce paths which are normally unfeasible. It
could therefore result in the loss of attack paths,
especially in a multi-fault context.

The example from Figure 2 shows a program
setup for the analysis of the process function. In
this case, both a and b are set to 1, which should
result in the test on line 2 being always positive
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void process(int a,

if(a && b){ //nominal path
if(la || !'b) exit(1); //countermeasure
assert (a && b);
return

}

if (a){
if(la) exit(1); //countermeasure

assert (a && !b);
return;
}
}

int analysis_main () {
process (1, 1);
return 0;

int b){ //function to analyze

//reachable by faulting the previous test

Fig. 2: Program with an unfeasible execution path becoming feasible with a fault

under nominal condition. However a fault can be
used to invert the result of this test, which would
result in the execution reaching the one on line

8.

Since the countermeasure there does not check

that b is null, the assertion line 10 would be vio-
lated. However this execution path would be lost
after slicing since it would be detected as unfea-
sible by a precise dependency analysis, resulting
in a potential attack being missed and illustrat-
ing the fact that this approach is not adapted for
fault analysis. Slicing may also result in counter-
measures being removed since they often appear as
redundant or dead code under nominal conditions.

Another issue with slicing is that code may be

modified to the point that making the connection
to the original is difficult. This can make the inter-
pretation of results difficult as well as resuce trust
in the accuracy of the analyses.

The consequence of these difficulties is that

reducing the size of the analyzed program in any
meaningful way is often not possible in the con-
text of fault analysis. There is however another
way in which we may effectively reduce the anal-
ysis perimeter, which is to reduce the number of
fault injection points considered.

2.

6 Contributions

We propose an approach using formal meth-
ods to find the injection points that a security
property depends on and eliminate those which
can be proven to have no impact. Faulty behav-
ior is simulated using a generic fault model

adapted to source-level analysis. Relevant injec-
tion points are then selected for further analysis
with a dedicated fault analysis tool.

¢ We implement our method as a toolchain based
on proven and widely used tools which is
suitable for both single- and multi-fault anal-
ysis. The static analysis part is implemented
as a Frama-C plugin. Our fault analysis tool
of choice is Lazart, which is itself based on
dynamic symbolic execution by KLEE.

® We present and test various heuristics allow-
ing to deal with the scalability issues that arise
when using dynamic symbolic execution for
fault analysis.

® We validate our method by using our implemen-
tation to find fault injection vulnerabilities in
the ANSSI’s WooKey secure USB storage device
[3]. This results in weaknesses being discov-
ered in the countermeasures of the bootloader
part. We also complement our experiments with
an analysis of the verifyPIN program from the
FISSC fault injection test suite [4] and the sudo
unix command [5].

This paper presents multiple extensions of our
original work.

® We revised our method to streamline it, with
a greater emphasis on our generic fault model.
Our implementation was also updated to use
the latest version of Lazart.

® New selection heuristics designed to help with
the scalability of analyses were added and
tested.
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® We tested our method on new targets from
FISSC and validated our proposed fixes
to WooKey’s bootloader against single-fault
attacks. We also showed that these new coun-
termeasures do not hold against double-fault
attacks.

Our method allows to reduce the number of
fault injection points considered in the fault anal-
ysis of a program by removing those which can
be formally proven to have no impact on secu-
rity properties. The use of static analysis to this
end allows to handle difficult execution paths
and should result in better scalability when elim-
inating false positives using dynamic symbolic
execution, as illustrated in section 5.

3 Our Method

Our goal with this work is to design a method
allowing to improve the scalability of fault analysis
tools by reducing the number of injection points
considered without risking to remove important
parts of the target program nor losing attack
paths. We chose to use static source code analysis
as a front-end in order to help with the evaluation
of code-level countermeasures. Additionally this
helps to approach unknown code as the relevant
parts to the targeted security properties can be
easily pointed out. Dynamic symbolic execution
analysis then provides more precise information
which is easier to interpret in this context.

3.1 Tools

We based our method and its implementation on
proven and widely used tools, which need to be
discussed as they impacted design decisions. It is
however important to note that the general con-
cepts of our method should be applicable to any
other tools.

Frama-C

Frama-C [38] is a static analysis platform for the C
language. It parses .c files into a formal AST struc-
ture (based on CIL) which supports annotations
detailing specifications and properties using the
ACSL specification language [6]. Frama-C then
manages plugins which implement various kinds
of analyses. We will be interested in the following
ones:

e Eva [7, 14] performs abstract interpretation
and computes abstract domains for variables in
a program, including aliases. It can then use
this information to correctly prove or disprove
assertions expressed in ACSL, with inconclusive
attempts being labeled as such. Eva is thus use-
ful not just for bug-finding but also for proving
properties.

e Pdg [8] computes intra-procedural memory,
data and control dependencies as dependency
graphs. It is based on data-flow analysis using
Eva, which allows for greater precision as values
can be taken into account.

® From computes inter-procedural dependencies
using data-flow analysis through Eva.

Lazart

Lazart [15, 33] is a multi-fault analysis tool based
on the KLEE concolic engine [17] which detects
multi-fault injection attack paths. This is achieved
by mutating the program using a Clang compi-
lation pass in order to simulate faulty behavior
based on some fault models. A dynamic symbolic
execution analysis is then performed at LLVM
IR level to find execution paths violating a secu-
rity property. Correctness and completeness are
inherited from KLEE, thus false positives may
appear or attack paths may be lost if variables are
concretized. Lazart is a state-of-the-art tool with
concrete use-cases in the context of fault analysis
and security evaluation by ITSEFs [12].

As previously discussed, dynamic symbolic
execution suffers from scalability issues mainly
due to path space explosion. For this reason
large programs with many potential fault injec-
tion points are difficult to analyze with Lazart,
especially in a multi-fault context. However since
the static analyses implemented by Frama-c’s plu-
gins are based on abstract interpretation, they are
less prone to these issues and can thus be used to
mitigate those from Lazart.

3.2 A Generic Fault Model

Inferring the effect of hardware level faults on
programs is very difficult as it would require a
full understanding of the target platform from
micro-architectural details to its firmware’s imple-
mentation. For this reason, most fault analysis
techniques rely on fault models to determine
faulty behaviors that may occur during execution.
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Commonly considered fault models include the
following:

¢ Data Load: The value obtained when reading
a variable can be altered (e.g. set to zero).

e Test Inversion: The outcome of a conditional
jump can be inverted.

¢ Control-flow Violations: Instructions may be
skipped and jumps may lead to unexpected
locations.

These do not correspond to distinct types of
faults but are rather higher level interpretations
of faulty behavior which may overlap depending
on scenarios. For example, faulting the value of
a test condition (data load model) is equivalent
to inverting the test itself (test inversion model).
The data load and test inversion models are par-
ticularly relevant to us since they are available in
Lazart.

Given our goal of evaluating at source level
which potential fault injection points in a pro-
gram are worth considering, we should choose a
fault model generic enough to be relevant toward
those previously described. We should also take
into account the limitations of source analysis,
namely the lack of information on the runtime
memory and the compiled binary layouts. Our
fault model should therefore be restricted to faulty
behaviors which can be statically processed with-
out this information. For example, it should not
allow to skip control instructions such as condi-
tional jumps as what code would be executed next
cannot be inferred at source level. This is accept-
able as such behavior would be extremely difficult
to explore with current fault analysis tools. Addi-
tionally some scenarios can be simulated in more
source-friendly ways e.g. skipping function calls
can be done by encapsulating them in tests.

We thus propose the following fault model:

¢ Expression Fault: The evaluation of an
expression can be altered. ”Expression” refers
here to exp objects in the CIL AST, which cor-
respond to C expressions as defined in the C
standards minus assignments?.

Additionally, we restrict our fault model to
non-pointer expressions®. This, along with the

4In this case, only the right-side of the assignment is
translated to exp.

5Note that array indexes can still be faulted.

fact that control instructions cannot be skipped,
ensures that the control-flow graph of the program
is never violated.

Figure 3 shows how this fault model affects our
motivating example. Our fault model encompasses
the effects of data load faults (lines 8, 9 and 12)
and allows for test inversion since test conditions
can be directly faulted (lines 9 and 10). The effect
of skipping instructions and faulting pointers on
non-pointer data is also covered. For example,
skipping the loop counter incrementation on line
9 is equivalent to faulting the value of i + 1. How-
ever these behaviors may require multiple faults
to be covered in general e.g. to cover the effect of
skipping a call to a function with implicit outputs
(i.e. assignments to global variables, input pointer
memory...) expressions containing them should all
be faulted.

This model also encompasses faulty behavior
which the others do not cover, such as errors
occurring during computation of operations, e.g.
obtaining an odd result from a multiplication by
two.

3.3 Overview of our Method

Figure 4 gives an overview of our method,
which takes a source file with security properties
expressed in ACSL as input. The static analysis
part is performed automatically by our Frama-C
plugin and its outputs are immediately ready to
be analyzed with lazart.

While properties can be difficult to extract
from unknown code, the knowledge required to
express them cannot be greater than that required
to find attacks. This is assuming that an attacker
would look for the most relevant security proper-
ties to violate rather than proceed blindly when
attempting to attack a system, making the def-
inition of properties a requirement for finding
attacks.

Security properties can be defined manually by
adding ACSL assertions to the potentially vulner-
able code, however this task can be challenging if
many must be introduced or if it is not obvious
which ones are relevant. These difficulties can be
mitigated by using automated tools to generate
assertions or requiring developers to provide a for-
mal specification of their programs. For example,
Frama-c’s RTE plugin can be used to automati-
cally add assertions for the purpose of discovering
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1 typedef struct data{

2 size_t msg_size;

3 char msg[256];

4 uint32_t key [8];

5 } data_t;

6

7 wvoid print_-message (data_t xd){

8 unsigned int size = fault(d—>msg_size & 0zff);
9 for (unsigned int i = fault (0); fault(i <= size); i = fault(i + 1)}{
10 if (fault(i > size))

11 return;

12 printf ("%c” , fault(d—>msg[i]));

13 }

14 printf(”\n”);

15

Fig. 3: Expression fault model applied to our motivating example

Expression Fault Properties
Model (ACSL)

Frama-c Plugin / \

Mutated Source
Code

Lazart

. Dependency Analysis 5 .
Source Code Fauslt_y B:er;_awour 4 i Irr:_pacguli . Dynaémlc St)_/mbollc Attack Paths
imulation Assertion Elimination njection Points xecution
Strategy File 4

[Fom]] [[ea]] [ ]

KLEE

Fig. 4: Overview of our method

runtime errors such as buffer overflows. Another
plugin, METACSL, allows to generate assertions
based on high-level, user-defined properties [36].

3.4 Introducing Faulty Behavior

As faulty behavior must be taken into account
when analyzing programs, the first step we have to
take is to simulate it everywhere indiscriminately.
Then we will be able to conduct further analy-
sis and select the most important injection points.
As Eva is the basis for all of the Frama-c analy-
ses we will rely on, we thus need to find a way to
force value ranges computed for expressions to be
imprecise in order to enforce our fault model.

As shown on Figure 5, this is done by xoring
undefined extern variables (e.g. fault_2), which we
refer to as fault variables, to expressions (e.g. to
the test condition on line 14). Eva then treats the
fault variable, and thus the entire expression, as
potentially having any value. In the case of nested
expressions only the top-level is faulted as this will
include the effects of faulting sub-expressions.

3.5 Dependency Analysis

Once security properties have been defined and
faults simulated we build a dependency graph
for the program in order to find the instructions
impacting each assertion. To this end we compute
a procedural dependency graph for each function
using Frama-C’s Pdg plugin [8]. We then add
inter-procedural dependencies by connecting the
input and output nodes of these graphs to the
corresponding nodes in calls to their respective
functions obtained using Frama-C’s From plugin.
As Pdg and From are based on data-flow analy-
sis from Eva, the previously simulated faults are
taken into account.

All relevant injection points to an assertion are
found by exploring the dependency graph start-
ing from its node, selecting those encountered on
dependencies. This way, fault_5 on Figure 5 (line
18) is determined to not have any impact on the
assertions on lines 10, 16 and 17 (which were gen-
erated using Frama-c’s RTE plugin). We rely on
the soundness of Eva’s abstract domains compu-
tation to ensure that we do not lose dependencies
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1 extern int fault_5;

2 extern unsigned int fault_4;

3 extern int fault_3;

4 extern int fault_2;

5 extern size_t fault_1;

6 extern unsigned int fault_0;

7

8 wvoid print_message(data_-t *d_-0)

9 {

10 /*@ assert rte: mem_access: \valid_read(&8d_0—>msg_size); */
11 size_t size = (d_.0—>msg_size & (unsigned int)0xff) fault_4;
12 {

13 size_t i = (unsigned int)0 ~ fault_0;

14 while ((i <= size) fault_2) {

15 if ((i > size) fault_8) goto return_label;

16 /*@ assert rte: index_bound: i < 256; x/

17 /*@ assert rte: mem_access: \valid_-read(&d_-0->msg[i]); */
18 printf (?%c” ,(int)d-0—>msg[1i] fault_5);

19 i = (i 4+ (size_t)1l) "~ fault_1;

20 }

21

22 printf(”’\n”);

23 return_label: return;

24}

Fig. 5: Motivating example with simulated faults

void print_message(data_t *d_@)

@ok /*@ assert rte: mem access: \valid read(&d 0->msg size); */
size_t size = (d 0->msg size & (umsigned int)Oxff) ~ fault 4;
{
size_t 1 = (unsigned int)e ~ fault_e;
while ((i <= size) ~ fault 2) {
{
if ((i > size) ™ fault 3) {

goto return label;
}
}

o /*@ assert rte: index_bound: i < 256; */
@ok /*@ assert rte: mem_access: \valid_read(&d_0->msg[i]); */
@ok printf("sc", (int)d 0->msg[i]); /* printf_va 1 */

}
i
}

= (i + (size_t)1) ™ fault_ 1;

}
@ok printf("\n");
return_label:

/* printf_va 2 */

return;

Fig. 6: Motivating example with proven and
unproven assertions in presence of faults

and preserve all attack paths conforming to our
fault model.

At this point, we can try to eliminate more
injection points by proving that assertions are ver-
ified in presence of faults using Eva. Figure 6
shows which assertions can be proven or not on
our motivating example. Injection points which
are only dependencies of proven assertions can be
discarded. Assuming that Eva’s proofs are indeed
correct, this ensures that no attack path is lost.
Note that Eva assumes that an assertion is true
after its annotation (see the second walid_read
assertion on Figure 6).

3.6 Finding Attack Paths

Once we have selected injection points, we gen-
erate a strategy file for Lazart containing the
corresponding fault variables. In the case of our
motivating example we are left with five of them
as shown on Figure 7. We also output a source file
containing the simulated faults.

version: 4.0.0
tasks :
add_trace:
— _—-mut__
rename_bb:
— _-mut__
countermeasures: []
fault —space:
functions:

-1 )
models:
type: data

vars:
fault_4: __sym__
fault_3: __sym__
fault_-2: __sym__
fault-1: __sym__
fault-0: __sym__

Fig. 7: Strategy file generated for the previous
example program

We finally run Lazart to find attack paths, tar-
geting the fault variables with the data-load fault
model. Figure 8 shows the results of the analysis,
which indicate that only the fault on the masking
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of the loop bound (line 11 on Figure 5) is danger-
ous in a single fault context. One way this attack
could be fixed would be to check that the index
is smaller than 256 since the maximum size of the
buffer is fixed.

Fault Count 0—fault 1—fault
Injection Point
fault_4 0 1

Fig. 8: Attacks found by Lazart on our example
program

While our method mitigates the scalability
issues of symbolic execution, it is sometimes not
enough as shown in our experimentation. In such
instances results can be obtained by weakening
our fault model or eliminating more injection
points based on heuristics, which may result in a
loss of completeness. In the case of our motivating
example we had to use a fixed value for the size
of the message as making it symbolic caused the
analysis to be unreasonably slow for such a small
program. In the following section we will discuss a
few injection point selection heuristics which can
be used to remediate this issue.

4 Additional Selection
Heuristics

While our method helps to mitigate the scalabil-
ity issues of symbolic execution, it does not fully
eliminate them. Thus the use of additional selec-
tion heuristics is often necessary to further reduce
the number of selected injection points and obtain
results within a reasonable time frame.

4.1 Brute-Force Selection

The brute-force selection approach consists in
checking if individual injection points have an
impact on the assertions by setting all other fault
variables to zero and running Eva, with a timeout
mechanism to avoid wasting time when it strug-
gles. This is effective as only considering one fault
improves precision, however this is only valid in
a single fault context. For multi-fault analysis all
combinations of injections points would have to be
considered, which is not practical as the number

of tests that would need to be conducted increases
exponentially with the maximum number of faults
allowed.

On our motivating example, Figure 9a shows
that the fault_0 injection point has no effect on
the index bound property from line 16 on Figure
5 (the same is true for fault_1, fault_2 and fault_3)
while Figure 9b shows that faoult_4 may have a
negative impact. This is because single faults tar-
geting the index are caught by countermeasures or
restricted by the loop condition while altering the
loop bound itself allows for out of bound indexes.
fault_j is therefore the only injection point left
to analyze with Lazart and the complexity of the
analysis is drastically reduced, allowing us to test
with a symbolic message size. Using the brute-
force selection heuristic thus allowed us to ensure
completeness in this case. Note that our plugin
removes inactive faults from tests conditions as
we noticed they impacted the precision of the
analysis.

4.2 Limiting Fault Injection Point
Occurrences

While fault injection points are assimilated to
program locations for the purposes of static analy-
sis, during execution these may correspond to mul-
tiple instances where faulty behavior may occur.
For example, an single injection point within a
loop corresponds to as many potential faults as the
maximum number of iterations during execution.

Fault injection points with high occurrence
rates are more likely to induce scalability issues as
each occurrence generates new paths to explore.
We could thus use an analysis strategy consist-
ing in testing low occurrence injection points first
hoping that the analysis terminates in a reason-
able amount of time on the first try. The analysis
perimeter can then be expanded by adding higher
occurrence injection points until further analysis
becomes impractical.

We can obtain occurrence counts during a nor-
mal execution by computing the maximum value
of counters placed before each injection point
using Eva while all faults are inactive. Figure 10
shows our motivating example with injection point
occurrence counters and their maximum value. In
this case, the one we showed was dangerous in
the previous section, fault_4, only occurs once. An
analysis only over low occurrence injection points
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unsigned int fault_4 = 0;
int fault_3 =
int fault_2 =
size_t fault_-1 = 0;

extern unsigned int fault_0;

Uk W N =

void print message(data t *d @)

@0k /*@ assert rte: mem access: \valid read(&d 0->msg size); */
size_t size = (d ©->msg size & (unsigned int)exff) ~ fault 4;
{
size_t i = (unsigned int)e ~ fault O;
while (i <= size) {

if (i > size) {

}
}

Qok /*@ assert rte: index_bound: i < 256; */
@ok /*@ assert rte: mem_access: \valid_read(&d_@-=msg[i]); */
@ok printf("sc”, (int)d_o->msg[i]); /* printf_va_1 */

}
i
}

= (i + (size_t)1) ~ fault_1;

}
@ok printf("\n"); /* printf_va_2 */
return label: return;

(a) fault_0 has no effect

extern unsigned int fault_4;
int fault_-3 = 0;

int fault_-2 = 0;

size_t fault_-1 = 0;

unsigned int fault_0 = 0;

CUks W N =

void print_message(data_t *d_6)

@ok /+@ assert rte: mem_access: \valid read(&d_0-=msg_size); */
size_t size = (d_0->msg_size & (unsigned int)0Oxff) ~ fault_4;
{
size_t i = (unsigned int)e ~ fault_o;
while (i <= size) {
{

if (i > size) {

}

i
07 /*@ assert rte: index bound: i < 256; */
®ok /*@ assert rte: mem_access: \valid read(&d 0->msg[il); */
@ok printf("%sc”, (int)d @->msg[i]); /* printf_va_ 1 */

b
i=(i+ (size_t)1) ~ fault 1;
}
}
@ok printf("\n"); /* printf_va 2 */
return label: return;

}

(b) fault-4 cannot be proven to have no effect

Fig. 9: Example of an injection point with no
effect and another which may impact properties

would therefore find all single-fault attack paths
in this program.

In the case of multi-fault analysis, injection
point occurrences should ideally be computed with
simulated faults. However this yields results too
imprecise to be of use in our experience. The
single-fault method can still be used as injection
points which are troublesome in single-fault are

even more so in multi-fault, however we are miss-
ing occurrence data for injection points located in
dead code, which may become reachable due to an
earlier fault.

We can try to infer ”projected” occurrences
for these in order to get a selection criteria: when
a conditional jump is encountered and one target
is dead code, the occurrence count of the jump is
attributed to those in the dead code which can be
inferred to occur once in an execution of the dead
code.

Figure 11 shows a conditional jump with a
dead target, occurring n times. In the dead code
fault_1 and fault_3 have n projected occurrences
as they occur once in an isolated execution of that
code, while fault_2 has no projected occurrences as
such execution can loop and visit it multiple times.
We can thus infer that foult_1 and fault_3 are less
likely to cause scalability issues than fault_2.

4.3 Strategy Shrinking and Growing

Aside from static analysis, various analysis strate-
gies can be used to detect which injection points
cause performance issues during analysis with
Lazart.

Strategy shrinking consists in interrupting the
analysis after a set amount of time and analyz-
ing KLEE’s traces corresponding to unfinished
path explorations® in order to find which injec-
tion points are triggered the most in them. These
are then assumed to cause performance issues and
removed from the strategy file. This method can
be effective if only a few injection points are prob-
lematic, however it is difficult to use properly as
one need to guess how long the analysis should be
running before interrupting. It is also not compat-
ible with multi-fault analysis as in that case it is
not clear which of the multiple triggered injection
points within a trace is causing issues.

Strategy growing is a similar method con-
sisting in adding injection points to the analysis
one-by-one, keeping them if the analysis then
terminates within the allowed time frame. This
approach is more reliable as previous terminating
analyses give a point of reference to set timeouts
i.e. an analysis with one more injection point can
be expected to terminate within the same time as
the previous one plus some margin. For this reason

STraces with a .early extension.
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1 unsigned int fault_4 = 0;
2 int fault_-3 = 0;
3 int fault_-2 = 0;
4 size_-t fault_-1 = 0;
5 unsigned int fault_0 = 0;
6
7 unsigned int fault_O_counter = 0;
8 unsigned int fault_-l_counter = O0;
9 unsigned int fault_-3_counter = 0;
10 unsigned int fault_2_counter = 0;
11 unsigned int fault_4_counter = 0;
12
13 void print-message(data_t *xd_0)
14
15 fault_4_counter ++;
16 size_t size = (d_.0-—>msg_size & (unsigned int)0xff) fault_4;
17
18 fault_O_counter —++;
19 size_t i = (unsigned int)0 "~ fault_0;
20 while (1) {
21 fault_2_counter —++;
22 if (! ((i <= size) fault_2))
23 break;
24 fault_3_counter —++;
25 if ((i > size) fault_3)
26 goto return_label;
27 printf ("%c” ,(int)d_-0—>msg[i]) ;
28 fault_-1l_counter —++;
29 i = (i + (size_t)1) fault_1;
30
31 }
32 printf(”\n”);
33 return_label: return;
34
(a) Motivating example with fault occurrence counters
Injection Point fault 0 fault.1 fault.2 fault.3 fault 4
Occurrences 1 257 256 1
(b) Occurrences of each injection point
Fig. 10: Occurrences of injection points in our motivating example
1 if(true fault_0){ //n occurrences
2
3
4 else{
5 int x =0 fault_1; //n projected occurrences
6 while (... fault-2){ //mo projection
7
8 }
9 x =1 "~ fault_3; //n projected occurrences
10}

Fig. 11: Example of projected occurrences in dead code

it is better suited for multi-fault analysis, although
the order in which injection points are introduced
may impact which ones are kept. For example, if
one injection point is problematic when coupled
with n others and is added first, then the n oth-
ers will be rejected. However if these n points were

added first then only the former may be rejected.
Note that in the case of single fault analysis the
injection points can be tested individually to save
time.
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Table 1: Characteristics of the Selection Heuris-

tics
Heuristic Fault Context  Completeness
Brute-force Selection single v
Occurrence Limit single -
Strategy Shrinking single -
Strategy Growing multi -

4.4 Conclusion

To our knowledge, there is no miracle solution to
the scalability issues of symbolic execution, espe-
cially when treating it as a black box. As heuristics
are inherently unreliable, maintaining a diverse
toolbox of them is key to be efficient. Table 1
shows if those we discussed are valid in single-
or multi-fault contexts and whether they incur a
loss of completeness. In general the static analy-
sis based ones are faster and should therefore be
tried first before additionally resorting to strategy
shrinking or growing.

In the next section we will validate our method
by testing our implementation in some realistic
use-cases. In particular, we will verify that we
do not lose attack paths compared to selecting
all injection points in the target program while
exploring less executions paths and observing
better performance as a result.

5 Experiments

We tested our method by analyzing a commonly
considered example from the FISSC fault injection
test suite [4] as well as several real world programs.
In this section we first showcase our method on the
verifyPIN example from FISSC in order to illus-
trate its benefits. We then present our analysis of
the password verification part of the sudo unix
command from Linux-PAM [5]. Next we analyze
the is07816 library [2] from the ANSSI’s WooKey
project [3] and show that static analysis alone
can be very precise in some instances. Finally, we
discuss how our method helped to discover single-
fault attack paths bypassing countermeasures in
WooKey’s bootloader [9], propose some fixes and
test their effectiveness in single- and double-fault
contexts.

We used the injection point selection heuristics
discussed in the previous section when necessary.

Table 2: Results of the analysis of verifyPIN
(single faults)

(a) without countermeasures

Static Analysis Lazart Analysis

1P

Deps Time AP EP Time
- - 20 5 65 14s
v 1s 10 5 52 11s

(b) with Lalande’s countermeasure

Static Analysis Lazart Analysis

Deps Time P AP EP Time
- - 142 6 3 253 1h 43min
v 1s 15 6 1051 30min

Deps: Dependencies
IP: Injection Points
AP: Attack Paths

EP: Explored Paths

We preferred strategy growing over shrinking,
despite it being slower in some cases, as it is
less reliant on guesswork and is thus more appro-
priate in scenarios where evaluators have limited
knowledge of their target.

The main criteria we use to evaluate our
method are the number of injection points left
to analyze with Lazart and the time required to
obtain results. Symbolic execution metrics such as
the number of explored paths are also considered.

5.1 VerifyPIN

FISSC [4] is a collection of programs designed to
test fault analysis techniques. It is mainly com-
posed of variants of verifyPIN, a small PIN code
verification program, with different countermea-
sures applied to it. In a single fault context, we
analyzed the basic variant without countermea-
sure and one with Lalande’s countermeasure [29],
which consists in propagating and checking an
instruction counter to reliably detect skips of at
least two instructions. While this countermeasure
is not useful against our fault model, which does
not allow for violations of the control-flow graph
of the program, it adds a lot of complexity to the
analysis.

Table 2 shows the results of our analysis. As
expected, some attacks paths were found where
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the attacker was able to authenticate with an
incorrect PIN code.

As shown in the first part, our method yielded
a small improvement in terms of runtime and
explored paths during symbolic execution in the
case of the basic version of verifyPIN. The most
significant difference lies with the number of injec-
tion points considered, which is halved. This is
helpful to evaluators trying to interpret the results
of the analysis as only relevant parts of the tar-
get have injection points as opposed to everything
indiscriminately.

The second part shows that the dependency
analysis allowed to eliminate most injection points
introduced by Lalande’s countermeasure, result-
ing in the number of injection points to consider
being reduced by around 90%. This then induces
a greater than 66% reduction in the number of
explored paths and the duration of analysis with
Lazart, for a negligible cost.

Finally, we find the same number of attack
paths in both instances between the two
approaches. Our method thus did not induce a
loss of attack paths relatively to our fault model
in this case.

5.2 Sudo

We analyzed the pam_sm_authenticate function
from Linux-PAM, which implements password
verification in sudo, looking for paths violating
the property that one cannot authenticate with
a wrong password. Our goal was to show the
performance benefits of our method on a fairly
large program (3.6k lines of analyzed code) rather
than finding attacks, which was expected given
the lack of countermeasures against fault injec-
tion. In this case we had to use strategy growing
in order to remove a few injection points causing
path explosion issues.

Table 3 shows that the dependency analysis
allowed to reduce the number of injection points
to consider by almost 90%, which then directly
impacts the duration of the strategy growing step
as each one is tested separately. Our approach
is thus very beneficial to use this heuristic effec-
tively as it allowed to reduce the analysis time by
roughly 85% in this case, while no attack paths
were lost in the end compared to not using it.

We also tested injection points based on their
occurrences as shown in the second part of Table

3. We found that limiting occurrences to one yields
results fast, although not all attack paths are dis-
covered. However increasing the limit results in
problematic injection points being added and thus
strategy growing would have to be employed to
test the remaining ones.

5.3 Wookey

Both of our last two targets are components of the
ANSSI’'s WooKey project [3], a secure encrypted
USB storage device requiring user authentication
in order to access its content. After attacks were
found on it by ITSEFS [12], WooKey was hard-
ened with countermeasures, some against fault
injection. However the effectiveness of these had
yet to be tested in the project’s current version
(0.9). We thus chose to analyze WooKey’s is07816
[2] and bootloader [9] (2.5k and 3.2k lines of code
respectively) in order to check that the attacks
had indeed been fixed. Note that while Lazart
has been used during the evaluation of WooKey’s
Bootloader [12], only the test inversion fault model
was considered and the analysis perimeter was set
manually. In contrast, we attempted to automate
the discovery of complex fault attack paths with
Lazart using our method.

5.3.1 Iso7816

The attack on WooKey’s iso7816 library, which
implements communication with a security token
(a smartcard) containing cryptographic secrets,
consisted in using a single fault to modify a loop
bound in order to cause repeated buffer over-
flows similarly to our motivating example. We thus
chose to use memory integrity properties gener-
ated by Frama-C’s RTE plugin as the starting
point of our analysis. We also chose to disable the
test inversion part of our fault model as such faults
usually only lead to off-by-one overflows.

As we found no attack path with a single fault
on the current version of iso7816, we reverted
the originally vulnerable part of the code, in the
SC_get_ATR function, back to its previous state.
This allowed us to find the original attack as
shown on Table 4. While the dependency analysis
alone allowed to reduce the number of injection
points considered by over 75%, the brute force
selection heuristic managed to single out the injec-
tion point responsible for the violation of the three
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Table 3: Results of the analysis of sudo (single faults)

(a) without limits on injection point occurrences

Static Analysis Strategy Growing Final Lazart Analysis

Deps  BF IP Time P Time AP EP Time
- - - - 919 — 913 23min 17 737 11s
v - 104 1s 104 — 102 3min 17 670 11s

(b) with limits on injection point occurrences

D BF Static Analysis Occurrences Final Lazart Analysis
s P Time P Limit AP EP Time
v - 104 1s 104 — 40 1 10 602 10s

Deps: Dependencies

BF': Brute Force (selection heuristic)
IP: Injection Points

AP: Attack Paths

EP: Explored Paths

Table 4: Results of the analysis of WooKey’s is07816 (vulnerable version, single data faults)

Deps BF Assertions Static Analysis  Strategy Growing  Final Lazart Analysis
P Total Unproven IP  Time IP Time AP EP  Time
- - - - - - 660 — 655 16min 1 192 19s
v - 384 3 153 3s 153 — 151  6min 1 170 12s
v v 384 3 1 558 - - 1 45 1s

Deps: Dependencies

BF: Brute Force (selection heuristic)
IP: Injection Points

AP: Attack Paths

EP: Explored Paths

remaining properties and the attack as the rela-
tive simplicity of the properties in relation to the
code allowed Eva to be very precise. This is illus-
trated by the fact that over 99% of the assertion
could be eliminated.

For this example we again used the strategy
growing method in order to obtain results within
a controlled time frame. Testing injection points
based on occurrences did not help in this case as
all of them were very similar. The resulting analy-
sis times showcase the importance of reducing the
number of injection points to consider as much

as possible, as each one had to be individually
checked.

5.3.2 Bootloader

The attack that was found originally on WooKey’s
bootloader used a single fault to cause an out-
dated version of the firmware to be booted. As
WooKey uses a dual-bank system allowing to store
two firmwares (flip and flop) so that the older one
can be overwritten while the other one continues
to operate during updates, this attack was due
to the firmware selection logic being unprotected
against fault injection.
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Table 5: Results of the analysis of WooKey’s bootloader (single faults)

(a) without limits on injection point occurrences

Static Analysis

Strategy Growing

Final Lazart Analysis

Deps  BF P Time Time AP EP Time
- - - - 485 — 474 19min 12 40 246 53min
v - 226 2s 226 — 215 15min 12 38 526 45min
v v 45 3min 45 — 41 Smin 12 13 592 6min

(b) with limits on injection point occurrences
Static Analysis Occurrences Final Lazart Analysis

Deps  BF P Time Limit AP EP Time
v - 226 2s 226 — 119 1 12 3 005 19s
v - 226 2s 226 — 129 10 12 4 518 36s
v - 226 2s 226 — 161 50 12 23 664 17min
v v 45 3min 45 — 24 1 12 717 4s
v v 45 3min 45 — 25 10 12 1111 8s
v v 45 3min 45 — 38 50 12 9 345 2.5min
v v 45 3min 45 — 42 100 12 20 863 11min

Deps: Dependencies

BF: Brute Force (selection heuristic)
IP: Injection Points

AP: Attack Paths

EP: Explored Paths

Despite countermeasures being added consist-
ing in doubling tests in critical functions, our
analysis” shows that attack paths still exist as
presented on Table 5.

Performance Discussion

As we were only interested in the “no firmware
rollback” property® there were no discharged
assertions during this analysis. However the
dependency analysis and especially the brute force
selection heuristic were able to eliminate many
injection points, resulting in the total duration of
the full analysis being reduced by as much as 80%
as shown in the first part of Table 5.
Interestingly, all of the dangerous injection
points found only occur once. This is shown in the
second part of Table 5 where all 12 attack paths

"The analyzed code is available as part of FISSC [10].

8 “The most recent firmware is booted or an error / security
breach is detected.”

are found regardless of the limit put on injec-
tion point occurrences. This means that all attack
paths could be found in as low as 21 seconds”,
although there would be no indicator that there
are no more at that point.

A few injection points were eliminated in every
analysis, all of which are located within a counter-
measure. We can thus assume that they have no
impact alone.

Attack Paths Discussion

Our results allowed us to identify two attacks
which look feasible in practice, both regroup-
ing multiple possible paths, for a total of six
attack paths among the twelve found. Other paths
were dismissed due to being overly unrealistic,
e.g. requiring to directly alter the boot function
pointer, or serving no purpose to the attacker, e.g.

9With no brute-force and a occurrence limit of one.
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allowing to switch to a special mode which can be
trivially engaged by pressing on a button on the
device.

The first attack consists in exploiting logic
in the loader_exec_req_selectbank function, which
decides which firmware to boot. Figure 12 shows
a simplified version of this function. Inverting the
test on line 3 when both flip and flop are bootable
results in execution carrying on to the test on line
7 which only checks if the latter can be booted,
assuming that one firmware at least cannot. This
leads to flop being selected regardless of its ver-
sion. To fix this attack, we propose to also check
that flip is not bootable in that test as well as that
flop is not bootable in the next one, corresponding
to the highlighted text on Figure 12.

The second attack takes advantage of a lack
of countermeasures in the loader_exec_req_flashlock
function, which computes the pointer to the boot
function of the chosen firmware. Figure 13 shows
a simplified version of this function. A fault can
be used to invert the test on line 4 and boot flip
instead of flop. Simply doubling this test as shown
with the highlighted text should be enough to
solve this issue in a single fault context.

Verifying our Fixes

In order to ensure that our recommendations are
valid, we applied our patch and tested it both
in single and double fault contexts. As shown
on Table 6 our fixes prevent the six previously
identified dangerous attack paths in single-fault.
However since all countermeasures on WooKey’s
bootloader are designed to protect in this context
only, allowing a maximum of two faults should
result in them being bypassed. Unfortunately
multi-fault analysis is impractical in part due to
the strength of our fault model. To illustrate this,
we selected only injection points occurring once
with projection and ran a strategy growing anal-
ysis on a cluster, which took around 30 hours to
complete. Given that the final analysis is very
incomplete, such runtime is unreasonable in most
settings.

One way to solve this issue is to restrict our
fault model to test inversion faults only. This dras-
tically reduces the complexity of the analysis while
inducing a loss of attack paths, although we can
assume that this drawback is limited as all but

two of the attack paths found in single-fault cor-
respond to test inversions. As shown on Table 6
this analysis still yields a large amount of double-
fault attack paths while being roughly 20 times
faster compared to the cluster analysis. However
most of these paths include a fault on the same
injection point, fault_82, used in the four single-
fault attack paths, thus they are redundant. If we
remove fault_82 we see that only six attack paths
remain, which correspond to those we patched in
single fault and thus our countermeasures can be
bypassed in two faults.

5.4 Limits

Using our method can present some challenges
to the user. In general, expressing properties can
be difficult with limited knowledge of the code,
as well as determining which ones may be rele-
vant targets for an attacker. Parameterizing Eva
in order to be able to prove these properties is
also tricky and increasing precision has a signifi-
cant impact on the runtime of analyses. However
the dependency analysis works well regardless of
precision and is already helpful.

We also designed our method around the fact
that our fault model does not allow for control-
flow violations, which makes more sense at source
level. Although, our method could be used with
other fault models allowing for localized control-
flow violations such as chaining then and else
blocks after conditional jumps or skipping func-
tion calls.

Finally, multi-fault analysis remains difficult
when many injection points cannot be eliminated
but can be done with some concessions as we
showed with our analysis of WooKey’s bootloader.

5.5 Using our Method to analyze
Cryptographic Implementations

Our method is focused on the analysis of large
programs with many complex feasible execution
paths rather than cryptographic code. We already
discussed how these two analysis targets funda-
mentally differ, however we reckon that the idea
of applying the main principles of our method in
a cryptographic context should be explored.

The main hurdle with analyzing cryptographic
code with our method is that the principles of con-
fusion and diffusion in effet in this context tend
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1 static loader_request_t loader_exec_req_selectbank (loader_state_t nextstate){

3 if ((flip-shared_vars.fw.bootable == FWBOOTABLE && flop_-shared_vars.fw.bootable ==
FW.BOOTABLE) &&
4 !'(flip_-shared_vars.fw.bootable != FWBOOTABLE || flop_shared_vars.fw.bootable !=
FWBOOTABLE) ) {
6
7 if (flop-shared.vars.fw.bootable == FW.BOOTABLE
8 && flip_shared_vars.fw.bootable != FW_.BOOTABLE) {
9 if (!(flop-shared_vars.fw.bootable = FW_BOOTABLE
10 && flip_-shared_vars.fw.bootable != FW_BOOTABLE))
11 goto err;
12 ctx.boot_flop = sectrue;
13 /).
14 }
15 if (flip_-shared_vars.fw.bootable = FW.BOOTABLE
16 && flop_shared_vars.fw.bootable != FW_BOOTABLE){
17 ctx.boot_flip = sectrue;
18 /).
19 }
20 /).
21}
Fig. 12: loader_exec_req_selectbank function in WooKey’s bootloader [9] (with fizes)
1 static loader_request_t loader_exec_req-_flashlock (loader_state_t nextstate){
3 else if (ctx.dfu-mode == secfalse) {
4 if (ctx.boot_flip == sectrue) {
5 if (ctx.boot_flip != sectrue)
6 goto err;
8 ctx.next_stage = (app-entry_-t)(FW1.START) ;
9 ¥
10 /)
11 1
12}

Fig. 13: loader_exec_req_flashlock function in WooKey’s bootloader [9] (with fizes)

to render any kind of dependency analysis point-
less, as everything should depend on everything
else. As a result the selection of injection points
based on dependency becomes equivalent to naive
systematic selection. In practice, we were unable
to eliminate any injection points on neither imple-
mentations of CRT-RSA nor AES from the FISSC
benchmark [4].

Arguably, we find that the idea of limiting the
number of injection points through static anal-
ysis to improve scalability is not as helpful for
analyzing cryptographic implementations. Indeed
such programs tend to be smaller and to adhere
to well-known schemes, meaning that it is eas-
ier for experts to decide where faults should be
injected in this case. Beating human judgement
in this matter would therefore be more difficult

with an automated analysis. Additionally the scal-
ability issues encountered by tools such as Lazart
in a cryptographic context are not only related
to the number of possible execution paths but
also to the complexity of the path constraints.
We also note that Lazart can analyze the CRT-
RSA implementation from FISSC without any
issues using the state-of-the-art ”set data to zero”
fault model, including with the Aumuller and
Shamir countermeasures [34], thus optimization is
not always needed. It is only when attempting
analysis with unconstrained symbolic faults that
difficulties arise.
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Table 6: Results of the analysis of Wookey’s bootloader with fixes

Fault Model Fault Number

Static Analysis

Strategy Growing Final Lazart Analysis

1P Time P Time AP EP Time

Full 1 230 2s 230 — 219  15min 6 38 548  46min

Full 2 1452 2s 145 — 142P 30h 735 113 559  19min
Test Inversion 1 77 2s 77— 75 3.5min 4 11 724 4min
Test Inversion 2 77 2s 77 — 60 1.5h 274 25 517 2min
Test Inversion 2 77 2s 77 — 59°¢ - 6 24 907 2min

IP: Injection Points

AP: Attack Paths

EP: Explored Paths

“only injection points occurring once with projection
*done on a cluster

‘without fault-82

6 Related Works

6.1 Static Analysis

In Christofi et al. [21] the authors attempted to
prove the robustness of a CRT-RSA implementa-
tion against fault attacks using formal methods.
In particular, they used Frama-C’s Eva and WP
plugins to prove security properties on a mutated
program with simulated faults. Since their work
was focused on their target specifically, they did
not tackle issues that would arise when gen-
eralizing their method, namely scalability when
considering realistically sized programs. Addition-
ally, as they were only interested in formal proofs,
their approach lacks the versatility required to be
usable in other contexts, such as to aid with attack
path detection via symbolic execution.

Our approach is similar to that used in the
SANTE plugin for Frama-C [20], which uses static
analysis to generate tests with alarms in order to
detect runtime errors, but in the context of fault
injection. SANTE is not a dedicated fault analysis
tool and uses regular slicing in order to reduce
the size of the tests, which makes it unfit for that
particular purpose for the reasons we discussed in
Section 2.5. Fault analysis may also require the
generation of impractically large amounts of tests
depending on the chosen fault models, which is
not an issue when using symbolic execution.

Despite the existence of many fault analysis
tools, including a few using symbolic execution,
reducing the number of fault injection points to
be considered in order to improve their scalability

and tackle large targets with many possible execu-
tion paths is to our knowledge a novel approach.

6.2 High-level Fault Analysis Tools

Larsson et al. [30] first proposed to simulate faults
in Java applications by injecting symbolic bits at
specified memory addresses. Their implementa-
tion involves manually instrumenting the code to
indicate where injection points should be placed.
This method is fundamentally similar to Lazart,
with a focus on fault tolerance.

SymPLFIED [32] uses a single symbolic vari-
able to propagate the effects of fault injection
using propagation rules and model checking to
find attacks. Contrary to Lazart, SymPLFIED’s
approach introduces dangerous paths which are
false positives (i.e fault injection that do not pro-
duces crashes or violations of security properties).
Furthermore model checking is also sensitive to
path space explosion and thus suffers from the
same scalability issues as symbolic execution.

ProFIPy [22] simulates faults in python pro-
grams according to a user-defined fault model by
matching code patterns and replacing them with
faulty ones. Mutants are thus generated for further
testing. This work also focuses on fault tolerance
but our method could still be used with it.

Le et al. [31] use symbolic execution at LLVM
IR level to find faulty execution paths in C pro-
grams, with faults being simulated by intrucing
symbolic bits. This is the closest available alterna-
tive to Lazart, although it is mainly designed to
assert fault tolerance.
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None of the previously mentionned tools sup-
port multi-fault analysis. Lazart is to our known-
ledge the only available state-of-the-art option
for the purpose of high-level fault analysis of C
programs with a focus on fault injection attacks
and the ability to find attack paths with multi-
ple simulated faults. Regardless, we argue that the
previously discussed tools are similar enough to be
compatible with implementations of our method
in their respective languages.

7 Conclusion

As the need for security evaluation of not only
cryptography but also critical algorithms such as
authentication, bootloader and firmware update
logic in embedded systems grows, so does the
need for tools allowing auditors to verify their
intuitions, experiment with various properties of
their targets and evaluate countermeasures. These
tools allow to save significant amounts of time
when analyzing programs with limited insight on
their inner workings. In this work we showed some
solutions allowing to approach large applications,
where attack paths tend to be non-trivial and can
be obscured by incomplete countermeasures, using
automated tools widely considered impractical in
this context.

Future works could improve the links between
static analysis and dynamic symbolic execution.
Issues with non-terminating symbolic execution
and multi-fault analysis should also be addressed
further. Finally, our approach could be applied to
other tools such as fault simulators. It could also
be applied at binary level by performing the static
analysis part at that level or a hybrid approach
could be adopted using code analysis to reduce the
complexity of binary analysis.
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