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Abstract 
The phenomenon of discontinuous shear thickening (DST) is observed in suspensions of solid particles 

with a very high-volume fraction. For suspensions of ferromagnetic particles this transition can also be 

triggered by the application of a magnetic field (Bossis et al. 2016). Here we explore the rheological 

behavior of a bidisperse suspension made of magnetic -carbonyl iron(CI)- and non-magnetic -calcium 

carbonate (CC)- particles with a brush like coating of the same superplasticizer molecule. We highlight 

the synergetic effect of non-magnetic particles whose inclusion in the percolated frictional network 

amplifies the effect of the magnetic field on the remaining fraction of magnetic particles. In plate-plate 

geometry, a small fraction of ferromagnetic particles (about 5%) is sufficient to trigger the transition by 

the application of a magnetic field and optimum for the increase of viscosity. The progressive 

interpenetration of the coating layers of polymer and the demagnetizing field can explain this behavior.  

 

Keywords: discontinuous shear thickening, rheology, magnetorheology, bidisperse suspensions 

 

Introduction 
Magnetorheological (MR) suspensions are usually made of magnetic particles presenting a high saturation 

magnetisation and a low hysteresis in the curve M(H) where M is the magnetisation and H the magnetic field. 

Particles like carbonyl iron (CI) are good candidates with a magnetization saturation 0M~2T and they are used in 

a very large number of formulations of MR fluids. In the presence of a high enough applied magnetic field, the 

particles are attracted against each other and form columnar aggregates whose resistance to an applied mechanical 

stress is characterized by the yield stress which can reach 100kPa under an induction B ~0.8T (Genç and Phulé 

2002). Besides the technical difficulty to apply such a high field, the main problem encountered with these 

suspensions is the high density of the CI particles (CI~7.7g/cm3). This high density creates in the absence of flow, 

a rapid sedimentation, and more seriously, an irreversible aggregation between the particles if the suspension 

remains unmixed during a long time. To prevent this aggregation either due to the pressure of the sedimented 

particles or to the magnetic pressure in the presence of the field, particles are coated with different molecules which 

provide a repulsive force either due to an ionic charge or to entropic forces which prevents polymer brushes to 

interpenetrate each other. A review of the different attempts to reduce sedimentation, still keeping a high yield 

stress are summarized in some reviews (Ashtiani et al. 2015; Morillas and de Vicente 2020). For instance oleic 

acid was currently used for iron particles in non-polar liquid (Van Ewijk et al. 1999) also aluminium stearate or 

lecithin which is the best one with mineral oil (López-López et al. 2008). In polar solvents like water or mixture 

of ethylene glycol and water, polyelectrolytes are good surfactants. The density of the iron particles can be reduced 

by grafting a thick polymer shell on their surface-for instance polymethyl metacrylate PMMA but at the expense 

of a reduced yield stress (Cho et al. 2005; Choi et al. 2006) since the magnetic force between two iron particles 
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decreases very quickly with the gap between the particles (Klingenberg and Zukoski 1990; Bossis et al. 2019). A 

way to overcome this problem of sedimentation is to use core-shell particles, but with the core made of polymer 

and the shell containing magnetic nanoparticles (Choi et al. 2005; Jun et al. 2005). Another way to stabilize the 

particles against sedimentation and aggregation is to use bidisperse suspensions, or more precisely to mix magnetic 

particles of diameter in the micron range to magnetic nanoparticles. The nanoparticles are Brownian and their 

random motion acts like a thermodynamic force which can be repulsive if their concentration is high enough to 

fill the gap between the large particles. On the other hand if these nanoparticles are magnetic like in ferrofluids, 

they form a halo at the surface of the large magnetic particles due to the magnetic force between their permanent 

magnetic moment and the soft magnetic particles (López-López et al. 2010); this shell of nanoparticles prevents 

the aggregation of the larger particles and also slow down their sedimentation. This is true for bidisperse 

suspensions of magnetite particles (Viota et al. 2007, 2009) and of CI particles dispersed in a ferrofluid -also made 

of magnetite nanoparticles- (Chaudhuri et al. 2005; López-López et al. 2006; Wereley et al. 2006; Burguera et al. 

2008). Simulations of bidisperse systems of magnetic particles also show an increase of yield stress compared to 

monodisperse ones (Ekwebelam and See 2009; Wu et al. 2016) due to a stronger microstructure induced by the 

magnetic field. The same kind of behavior with a smaller sedimentation rate and a better re-dispersibility was 

observed with bidisperse suspensions of CI particles with magnetic nanorods (Chin et al. 2001; Ngatu and Wereley 

2007) or with mixture of iron platelets of different sizes (Shah et al. 2013). More recently bidisperse MR fluids 

made of CI and magnetite nanoparticles coated with graphite oxide and gelatine were also shown to present a 

higher yield stress than pure CI particles and a better re-dispersibility (Fu et al. 2018). Nevertheless, the stability 

of the ferrofluid itself is often difficult to maintain in the presence of the high shear rates occurring in the gaps 

between the CI particles and it appears that the optimum of concentration of ferrofluid can vary a lot between 10% 

and 40% depending on the precise composition of the suspensions. Other kind of nanoparticles like, for instance, 

organic clay (Chae et al. 2015; Aruna et al. 2019; Roupec et al. 2021) or fumed silica (Iyengar and Foister 2002) 

can also be used to reduce sedimentation but, being non-magnetic, the yield stress of these suspensions is also 

reduced compared to the one based on magnetite nanoparticles and furthermore the zero field state has a higher 

yield stress and plastic viscosity.  

Another way to increase the performances of magnetorheological suspensions is to use the phenomenon of 

discontinuous shear thickening (DST) which is found in very concentrated suspensions of solid particles like 

polymer latex (Laun et al. 1991), corn starch (Fall et al. 2010), silica or alumina (Franks et al. 2000), acicular 

calcium carbonate (Egres and Wagner 2005), gypsum (Neuville et al. 2012) etc… 

Thanks to numerical simulations (Seto et al. 2013; Mari et al. 2014; Johnson et al. 2017; Singh et al. 2018; Guy et 

al. 2020), it is now well established that this transition which appears as a sudden increase of the viscosity, is due 

to the abrupt onset of frictional contacts between the surfaces of the particles. These contacts appear when the 

hydrodynamic shear forces are strong enough to overcome the repulsive forces due to ionic layers in the case of 

polar solvents or to the adsorption or grafting of polymer layers at the surfaces of the particles. 

By mixing a DST fluid made of fumed silica particles with CI particles Zhang et al (Zhang et al. 2008) have 

observed that they could keep the DST behavior at low volume fraction of CI particles. Nevertheless, the change 

of viscosity associated with the shear thickening was decreasing with the application of an external magnetic field. 

With a suspension of CI particles in silicone oil at a quite low volume fraction (<25%) in silicone oil (Tian et al. 
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2010; Jiang et al. 2015) a DST transition was observed with a large increase of the shear stress at a low shear rate 

(below 1s-1) by applying a large magnetic field (B>0.4 Tesla) on the suspension. This was also the case for a 

suspension of CI particles containing sheets of graphite oxide but the DST transition disappeared if the CI particles 

were coated with graphite oxide, showing the role of the friction on this transition (Chen et al. 2014). These 

previous works have shown that the application of a strong magnetic field could induce the DST transition in 

suspensions of magnetic particles. More recently we have used with CI particles in ethylene glycol, a 

superplasticizer molecule used in cement industry which adsorbs on the surface of mineral particles through 

electrostatic interactions. This coating layer reduces the friction and allows to obtain high volume fraction (up to 

68%), keeping a low yield stress. Above a certain critical shear rate, which depends strongly on the volume fraction 

of CI particles and can vary from 0.1 to a few hundred s-1, we have a strong DST transition that we associate with 

the local expulsion of the coating molecules when the shearing stress overcomes a critical value. More interesting 

is the fact that this transition can be triggered with a low magnetic field and produces very high stresses (Bossis et 

al. 2016). For instance it is possible to get a yield stress of more than 100kPa with a field as low as 20kA/m  (Bossis 

et al. 2019). Still there is always the problem with rapid sedimentation of CI particles having a density ~7.7g/cm3 

and with the pressure exerted by the weight of sedimented particles which can end up with irreversible aggregation. 

A way to deal with this problem is to use mixtures of magnetic and non-magnetic particles whose average density 

would be much smaller than with a suspension of CI particles only. In this case we could worry that adding a part 

of non-magnetic particles will lower the field induced yield stress, but it is not the case: for the same volume 

fraction of CI particles, adding non-magnetic particles will, on the contrary, increase the field induced yield stress 

(Ulicny et al. 2010) although it is not always systematic (Pierce et al. 2022),  (Cvek 2022). This result was obtained 

with volume fraction of 30% of CI particles and different volume fractions of hollow glass spheres. Numerical 

simulation show that non-magnetic particles participate to the construction of field induced aggregates, so the 

higher total volume fraction contributes to enhance the yield stress even if the added particles are not magnetic 

(Wilson and Klingenberg 2017).  

Our aim here is to see if a mixture of magnetic and non-magnetic particles can show DST and to which 

extent the triggering of the DST by a magnetic field can be realized with a volume fraction of magnetic particles 

as low as possible. In a first section we shall present the materials we are using for these experiments, namely CI 

and CC particles. In a second section, we shall present the evolution of the DST transition for different fractions 

of CI particles at a given total volume fraction =0.705 in the absence of a magnetic field and we shall discuss 

the prediction of the homogenization model which considers the interstitial suspension between the large CC 

particles as a continuum. In the last section, we shall present the synergetic effect of the non-magnetic particles in 

the presence of a magnetic field and show that counterintuitively, it is maximum for a low fraction ( ~ 5%) of 

magnetic particles; we shall discuss this result with the help of  the homogeneous model  used in the interpretation 

of the viscosity of bidisperse suspensions. 

 

I. Materials and methods 

A. Particles, suspensions, and suspension preparations 

The particles we are using are made on one hand of carbonyl iron obtained from BASF (grade HQ) with a density 

=7.7g/cm3 measured by gas pycnometer and, on the other hand of calcium carbonate particles (BL200 from 

Chryso) of density 2.72g/cm3. Their size distribution was obtained with the help of several SEM images analysed 
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with ImageJ with a total of 2300 particles for CI and 600 for CC particles. Typical images are shown in Fig.1. We 

see that the iron particles are well spherical whereas the CC particles have an irregular shape close to rhomboidal 

one, but they have approximately equal sizes in all directions: as proved by the analysis of their sphericity with 

ImageJ: the ratio of the large axis over the small one is only 1.2. The average radius and standard deviation 

calculated from the experimental data were aCI=0.297m; std_CI= 0.15m and aCC =1.75m. std_CC= 0.809m 

The size distribution density is correctly represented by a Lognormal distribution:  

 

𝑃(𝑅) =
1

𝑅𝜎√(2𝜋)
exp [−

(𝑙𝑛 𝑅−)2

2𝜎2 
]       (1) 

The fits of the two size distributions are represented in Fig.2; the parameters of the fit were respectively = - 1.292, 

=0.575 for CI particles and = -0.475, =0.4027 for CC particles. Even for iron particles, the Brownian force 

(kT/aCI) remains negligible compared to the shear force 6𝜋𝜂�̇�𝑎2 in all experimental situations The ratio of the 

shear force to the Brownian force is the Péclet number and for instance with a shear rate  �̇� >1𝑠−1 and a viscosity 

>1 Pa.s  we have Pe>100 

For both types of particles, we used the same superplasticizer molecule whose commercial name is Optima 100 

made of a short polyethylene oxide (PEO) chain (in average 44 O-CH2CH2 groups) and a diphosphonate head with 

sodium counter ions. As in a preceding work where we have used it with calcium carbonate particles we shall 

name it PPP44 (Bossis et al. 2017). It is the phosphonate head negatively charged which binds electrostatically 

with the positive charges of iron and CC surfaces (Morini 2013; Bossis et al. 2017). In all the suspensions the mass 

of PPP44 used was 2mg/g of solid corresponding to the beginning of the “plateau” of the adsorption isotherm for 

both particles (cf Annex B). The detailed balance of the interaction forces acting between particles in the presence 

of a superplasticizer is described in the reference Bossis et al 2017. In this reference it is shown that, for the same 

superplasticizer, the resulting force between two coated particles is always repulsive at rest. The suspending liquid 

was a mixture of polyethylene glycol and water with respective proportions 85%, 15%, this proportion 

corresponding to a minimum of evaporation of the mixture as obtained by recording the variation of mass with 

time of a sample for different ratios of water and polyethylene glycol. 

 

 
Fig.1 SEM image of CaCO3 (CC) particles on the left side and carbonyl iron(CI) particles  on the right side.  
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After adding the components, the suspensions were stirred for 5 min using a vortex mixer, placed in an ultrasound 

bath for 5 min, and vortex-stirred again for 5 min. Then the suspension was stored at 4°C during about 12h. Just 

before starting rheometric experiments the suspension was mixed again with the vortex and briefly degassed under 

vacuum to remove remaining bubbles.  

 

 
Fig.2 Number density of probability versus the radius of the particles for CI particles (red symbols) and CC 

particles (black symbols) The solid lines are fits with a Lognormal distribution. 

 
A pre-shear was realized on all experiments with a ramp of stress from 0 to typically 100Pa which is below the 

critical one. It is then maintained constant during 3mn and followed by a rest time of 30s at zero stress. Then a 

linear ramp of stress was applied at a rate of 0.5 or 1 Pa/s and with an acquisition rate of 1 or 2 points/s. As shown 

in Fig. 3a, where we have done three experiments at different rates of stress increase, this rate is slow enough to 

reach the equilibrium. Note that the effect of a fast increase (10 Pa/s) is mainly to delay the DST transition. For all 

the experiments the temperature was T=20°C and a solvent trap was used with the composition of 85% water 15% 

polyethylene glycol already mentionned. 

  

Fig. 3a   Effect of the rate of rising stress for the 

three rates: 0.3, 1, 10 Pa/s. Total volume fraction: 

=0.705; solid fraction of CaCO3: FCC=:89% 

Fig. 3b   Effect of a rest of 10mn after the first ramp of 

stress. =0.705;  solid fraction of CaCO3: FCC=:89% 

. 
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In concentrated suspensions, the positioning of the sample requires special care to allow the relaxation of the 

normal forces that are generated during the compression of the initial droplet. In the last step from 2mm to 1mm, 

the descent speed is regulated to a few micron/s with a typical rotating speed of 0.1 rpm and we check that we end 

up with a negligible axial force on the upper plate. 

B. Experimental results at zero magnetic field 

 

We have used the plate-plate geometry with a gap of about 1mm. The plate-plate geometry is interesting relatively 

to the sedimentation since, because of the small gap in the vertical direction, the redispersion of the sedimented 

particles is quickly obtained under a pre-shear of a few minutes. Actually, we did not observe any significant 

differences on the rheogram before the transition if we do a second stress ramp at a low enough rising rate (Fig 3a 

at 0.3 Pa/s and 1 Pa/s) or also after a rest of 10mn (Fig 3b). Furthermore even if an outward migration of particles 

was observed (Merhi et al. 2005) in torsional flow it is a slow phenomenon which tends to disappear at high volume 

fraction (Kim et al. 2008). So, this plate-plate geometry is likely more adapted if we want to keep a homogeneous 

volume fraction and repartition of the two different kinds of particles. One problem related to this geometry is the 

fact that at high shear rates the centrifugal forces become high enough to eject the suspension outside the gap 

between the plates; also above the jamming transition the normal pressure generated by the motion of the 

aggregated network of particles can overcome the capillary pressure and produces granular lump of particles 

protruding outside the gap (Cates et al. 2005). The second well known problem is the fact that the shear rate varies 

from zero at the centre of the disk to its maximum �̇�=R/h on the rim where r=R. In the case of a Non Newtonian 

fluid where the stress is not just proportional to the shear rate, the relation between the stress and the shear rate 

must be corrected with the help of the Mooney-Rabinovitch equation: which relates the true yield stress, , to the 

stress, N, given by the software for a Newtonian fluid: 

N N

N

d
3

4 d

  
 = + 

  
                                          (2) 

Where 𝜏𝑁(�̇�) is the curve given by the software of the rheometer based on a Newtonian fluid. On the contrary with 

the cylindrical Couette flow we do not need to do this correction assuming that, due to the small gap, the shear rate 

can be considered to be equal to its mean value: �̇� = (𝑅𝑒-𝑅𝑖)/ℎ. The other advantage of the cylindrical Couette 

geometry is that the suspension can’t be expelled from the gap at high shear rates. On the other hand, the main 

disadvantage is that we can have a strong shear induced migration in the presence of a shear rate gradient. This 

migration was first observed by Nuclear Magnetic Resonance in concentric cylinders (Abbott et al. 1991; Graham 

et al. 1991; Chow et al. 1994).with monodisperse suspensions. With bidisperse suspensions, as the shear induced 

diffusion is proportional to �̇� 𝑎2 (Fall et al. 2010) we expect a stronger diffusion of the bigger particles towards 

the zone of lower shear rate gradient (here the outer cylinder) and so a possible segregation of the particles 

depending on their sizes. The larger particles were observed to migrate towards the outer cylinder in bidisperse 

suspensions both experimentally (Graham et al. 1991) and by numerical simulation (Pesche et al. 1998; Shauly et 

al. 1998). In a wide gap cylindrical Couette cell (Fall et al. 2015) a large migration towards the outer cylinder was 

observed by Magnetic Resonance Imaging on a polydisperse Corn-starch suspension at =0.44. Due to this 

possibility of differential migration, and although the use of Eq. (2) needs a careful smoothing or a fit by parts of 
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the experimental curves, we have used plate-plate geometry in our experiments except when high shear rates were 

required. 

 

 

 
Fig.4 Total volume fraction =0.705 for different volume percentage FCI of carbonyl iron. Raw curves in plate-

plate geometry. The dotted lines are for fractions FCI ≥50%; the dashed dotted lines are for fractions FCI which 

do not present a DST transition. 

 

In Fig.4, we present the raw curves, stress versus shear rate, obtained at a total volume fraction =0.705 for 

different volume percentage of iron particles: FCI = VCI/(VCC+VCI). These curves are not corrected and are in a 

Log-Log scale. The dotted curves correspond to the fractions of iron larger or equal to 50%. The fractions FCI= 

21% ,32%, 42% represented by the dash-dotted lines do not present a DST transition. This is due to that, in this 

range, the viscosity of the mixture is the lowest and, if there is a jamming transition, it is at a shear rate too high 

to be observed because the fluid is expelled before as we can see already in the upper part of these curves .On the 

other hand, we see that already at FCI =0.72, the jamming transition takes place at a shear rate smaller than 0.1 s-1 

and it is very difficult to get a flowing mixture above FCI=0.72. As already told, these rheograms obtained in plate-

plate geometry should be corrected with the help of Eq. (2). In order to extract the main information from the 

corrected curve we have fitted the upper part (stopping at the jamming stress) with a Herschel Buckley (HB) law: 

𝜏 = 𝜏𝑦𝐻𝑏 + 𝐾�̇�𝑝 and the lower part with a Bingham (B) law: 𝜏 = 𝜏𝑦𝐵 + 𝜂𝐵�̇� . The parameter p is the exponent 

of the HB law. All the values of the viscosity given in this paper except in Fig.13a are the Bingham viscosity. We 

are using this Bingham viscosity instead of the apparent one /�̇� because we want to be able to identify a shear 

thickening behavior independently of the yield stress whose origin comes in residual adhesive forces between 

particles.  The presence of shear thickening is associated to the formation of frictional contacts in the Wyart-Cates 
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model and the use of the apparent viscosity could hide a part of this shear thickening, if any, especially in the 

presence of a magnetic field. 

 
Fig.5 The black curve is the raw one for FCI=0.11. The solid red line is the corrected one given by Eq. (2). The 

green dashed line is the fit of the corrected curve with the Herschel Buckley law and the purple dashed line with 

the Bingham law. 
 

An example of the corrected curve, in red, and of these two fits (dashed lines) are presented in Fig.5. The upper 

part after the jamming point is just a shift of the initial curve by a quantity equal to the difference between the 

corrected critical stress and the initial one. The transition between the two fits takes place at the shear rate �̇�𝑡 (here 

2.2 s-1). The values obtained for the two fits are recorded in the last six columns of table 1 for all the volume 

fractions as well as the coordinates of the corrected DST transition point (�̇�𝑐 , 𝑐).  

= �̇�𝑐 𝑐0 c yB B �̇�𝑡 yHB K p 

0%CI 0.38 45.0 46.9 2.5 110 0.28 6.62 158.3 1.33 

5% CI 2.07 150 218 2.17 30.6 0.63 18.4 17.8 3.30 

11% CI 5.33 178 238 3.07 17.0 2.2 28.8 1.01 3.19 

21% CI    7.6 7.1 6.5 9.38 2.41 1.56 

32%CI    6.7 5.4 13 24.5 0.66 1.71 

42%CI    8.43 3.95 18 48.8 0.115 1.95 

52% CI 27.3 237 257 15.0 6.23 7.2 33 1.02 1.62 

62% CI 8.59 220 217 28.4 20.9 2.1 38.2 13.7 1.19 

72%CI 0.083 31.0 25.2 15.5 145 0.04 10.6 41.8 0.43 
 

Table 1 Parameters defining the corrected curves at =0.705 
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The column c0 is the initial value of the DST critical stress before applying Eq. (2). We see that the corrected 

values are usually above the raw ones when the suspension is shear thickening, but it is the contrary at the highest 

volume fraction where the suspension is shear thinning. We shall discuss this point in more details in the next 

section. The last point to remark is that the value yHB is just a fitting parameter without any physical meaning 

whereas yB is the dynamic yield stress, the stress needed to break continuously the aggregates in the regime of 

low shear rates, which is associated with B, the Bingham viscosity. At last p, the exponent of the Herschel Buckley 

law, gives an indication of the importance of the shear thickening before the DST transition. Above the DST 

transition we observe a kind of stick slip behavior which is due to the dynamic of adsorption/desorption of the 

polymer PPP44  on the surfaces of the particles and whose apparent amplitude depends strongly on the acquisition 

rate since its characteristic time is about 0.1s (Bossis et al. 2022). 

 
Fig.6 Corrected rheograms; total volume fraction =0.705 for different volume fractions FCI of CI particles. 

The insert is a zoom in the low shear rate zone. Same legend as in Fig. 4 

 

We have presented all the corrected curves at =0.705 in Fig.6. Note that in the following, all the rheograms 

presented without indications are corrected with Eq. (2) if they are done in plate-plate geometry. The colors are 

the same than in Fig.4, but we are now in linear coordinates which allows a better appreciation of the range of 

changes in the critical point for the same total volume fraction. We see for instance that the critical stress passes 

from 48 Pa for FCI=0% (black curve in the insert) to 210Pa for FCI=5% (solid green curve) and 222Pa for FCI=11% 

(brown curve). If we believe that the critical stress depends only on a balance between the applied stress and the 

repulsive force between the particles, here mostly the CC particles coated with the superplasticizer molecule, it is 

difficult to understand why this repulsive force would be much stronger if we add a small quantity of small CI 

particles. It seems rather to be correlated with the strong decrease of the Bingham viscosity when FCI increases (cf. 
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Table 1), passing from 110 Pa.s  for FCI 0% to 17 Pa.s for FCI=11% . This behavior is still amplified for the 

coefficient K of the Herschel Buckley fit. It appears that the balance between the global applied stress and the 

repulsive force between two particles is not the only quantity which triggers the jamming transition. The mean gap 

between the large particles which will allow the propagation of the network of frictional contacts is likely also a 

key parameter which is also correlated to the viscosity. This mean gap tends to zero and the viscosity diverges 

close to the maximum volume fraction for the pure CC suspension but adding a part of small particles-and so 

removing CC particles for the same total volume fraction will increase the average gap between the CC particles. 

Even if locally some CC particles are pushed in frictional contact by a fluctuation in the local stress, this fluctuation 

will decrease quickly if the average gap between the particles is larger, allowing to rearrange the structure and to 

dissipate this fluctuation, whereas it will propagate if the particles were already close to each other. It is interesting 

to note that the parameter p indicating the degree of shear thickening is very high at low volume fraction of iron 

like 5% or 11% but low at high volume fraction like 62% and even smaller than unity at 72%. It means that a low 

volume fraction of iron particles can contribute strongly to the formation of aggregates of CC particles when the 

shear rate is increased, but on the contrary if the quantity of small particles dominates, the CC particles, when they 

are sheared contribute to destroy the aggregates of small particles and produce a shear thinning behavior. 

The rheograms corresponding to the suspension of pure CI particles (FCI=1) can be found elsewhere  (Bossis et al. 

2022); here we have plotted in Fig. 7  the ones corresponding to the pure suspension of CC particles. 

 

Fig.7 Rheograms of pure CC suspension for different volume fractions 

 

The rheograms   are shear thickening at high volume fraction, then become quasi Newtonian from =0.58 with a 

yield stress that is less than 1Pa, so their Bingham viscosity at low shear rate was quite easy to define. Note that 

the DST transition is absent below  =65.8%.  The Bingham viscosity at low volume fraction, which will be used 

in Table 2, can be fitted for <0.3 by 0.0115+0.0238+0.15142+0.2753. In Fig. 8a and 8b we have plotted 

respectively the Bingham viscosity of the pure CC  and of the pure CI suspensions versus the volume fraction. The 

error bars represent an uncertainty of 30% which reflects mainly the uncertainty on the choice of the range of shear 



 

11 

 

rate for the Bingham fit at low shear rate. In the Wyart Cates model the Bingham viscosity,B, is represented by 

the law: 

𝜂𝐵() = 𝐴/ (1 −


𝑗
0)

2

          (3) 

where  𝑗
0 is called the jamming frictionless volume fraction,. In this case we obtain ACC=0.13 Pa.s  and 

j_cc
0 =0.721 for the calcium carbonate particles. For the suspension of CI particles, the thickness of the polymer 

layer is not completely negligible compared to the radius of the particles. It can be approximated by the gyration 

radius of the polymer in a good solvent which is d=b.P3/5 with b=0.526nm the Kuhn length of the PEO group and 

P=44 the number of monomers; we obtain =5.1nm. The volume fraction eff is obtained from the third moment 

of the size distribution which is proportional to the volume of the solid, so taking (a+)3 instead of a3 we obtain 

for the effective volume fraction of the solid phase: 

𝑒𝑓𝑓 =
1

1+
𝑀3  (1−)

𝑀3𝛿  .

                                                             

where M3=0.0642 and M3 =0.066 are respectively the moments of the experimental distribution based on a3 and 

(a+)3.  We have then plotted the Bingham viscosity versus the effective volume fraction which takes into account 

the polymer thickness. The experimental curve is well represented by Eq. (3) with . j_CI
0 =0.684 and ACI=0.01 Pa.s 

(cf Fig.8b black solid line) instead of respectively 0.013Pa.s and 0.678 if we do not consider the thickness of the 

polymer 

 

 

Fig.8a Bingham viscosity of a suspension of pure CC 

particles versus the volume fraction. The solid line is 

a fit by Eq. (3) 

Fig8b Bingham viscosity of a suspension of pure CI 

particles versus the effective volume fraction of CI 

particles. The black red line is a fit by Eq. (3) 

 
In Fig.9a we have plotted the Bingham viscosity of the bidisperse suspension versus the solid volume fraction of 

CI particles. As expected, it drops rapidly when a small fraction of iron particles replaces the CC particles since 

these smaller particles can occupy the voids between the large particles and be more or less considered as a part 

of the suspending fluid. This is the approach of Chateau (Chateau et al. 2008) , that we shall develop in the next 

section. Another way to express this fact is to say that the maximum volume fraction of the mixture is higher than 

the one of the monodisperse suspension, thus explaining the decrease of the viscosity (Barnes et al. 1989; Pednekar 

et al. 2018). The study of the stacking of grains with different sizes and shapes has been the subject of numerous 

studies, in particular in the context of the formulation of concretes (De Larrard 1999). The change of the maximum 

packing fraction for bidisperse suspensions was studied for the same kind of particles. In this case they are heuristic 
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relations based on experimental data (Probstein et al. 1994; Shauly et al. 1998) and numerical simulations (Morris 

and Brady 1998; Farr and Groot 2009; Guy et al. 2020). In the case of bidisperse spheres, the maximum volume 

fraction for size ratios of the order of 5 is obtained for a proportion by volume of small spheres between 0.2 and 

0.3 (Gondret and Petit 1997), (He and Ekere 2001), (Poslinski et al. 1988). Other models involve a loosening 

parameter expressing the dilation necessary to introduce a small particle into the space left between the large ones 

and another parameter to express the decrease in compactness near the wall of a large particle (Bournonville et al. 

2004), (Vu et al. 2010). In our case, where the particles have different morphologies and are quite widely 

polydisperse, a sophisticated model whose parameters would remain arbitrary is useless. For a semi-quantitative 

approach, we will use the maximum volume fraction taken from the results of numerical simulation of a bidisperse 

suspension of spheres (Farr and Groot 2009). They gave data for several size ratios, in particular for 2, 3.3, 5  

allowing an extrapolation to our ratio :<Rmoy_CC>/< Rmoy_CI >=5.8. Then we approximate the maximum volume 

fraction 0 versus FCI in the following way. Firstly we take into account that, for the pure suspension of CC 

particles, the maximum volume fraction is not RCP=0.643 (the value obtained by Farr et al for monodisperse 

spheres) but in our case 0.721, so for a given fraction FCI of iron particles we write j
0(FCI)=(0.721/0.643) 

j_simu

0 (FCI)   where j_simu

0 (FCI)is the value extrapolated for a ratio of 5.8 of the diameters. The values of 

jsimu

0 (FCI) were interpolated for different solid volume fraction by a polynomial fit; we obtain: 𝑗
0(FCI < 0.35) =

1.201𝐹𝐶𝐼
3 − 2.294𝐹𝐶𝐼

2 + 1.095𝐹𝐶𝐼 + 0.722. For larger values of FCI this approach can’t work since we have j_CI
0

 

≠ j_cc
0

.  So for values of FCI larger than 0.35 we start from the pure iron suspension and write 

j
0(FCI)=(0.684/0.643) j_simu

0 (FCI) and we obtain for the polynomial fit: 𝑗
0(FCI > 0.35) = 1.029𝐹𝐶𝐼

3 −

1.972𝐹𝐶𝐼
2 + 0.944𝐹𝐶𝐼 + 0.687. Then we use Eq.(3) with  𝑗

0° determined as described above and the parameter A 

adjusted to give either the viscosity for FCI=0 (A=0.121 Pa.s; green line of Fig.9a) or the last point at FCI=0.72 

(A=0.082 Pa.s ; black line of Fig.9a). We see that this approach reasonably well reproduces the amplitude of the 

decrease of the viscosity and the U shape of the experimental curve. From this process ending by the two 

polynomial functions for the maximum volume fraction versus FCI we obtain a maximum volume fraction of 0.87 

around FCI= 0.3 if we start from the pure CC suspension or max=0.82 if we start from the pure CI suspension, 

explaining that the two curves of Fig 9a do not merge. These values of max  can be compared to the maximum 

packing fraction:RCP+(1-:RCP)RCP ~ 0.87 for a bidisperse suspension of spheres in the large aspect ratio limit 

(Furnas 1931), (Dörr et al. 2013). Of course our system composed of two polydisperse suspensions with 

furthermore the irregular shape of the CC particles is far from a bidisperse suspension of spheres, and we must 

keep in mind that it is only a semi quantitative approach. 
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Fig.9a Bingham Viscosity of a mixture CaCO3/CI 

particles versus the solid volume fraction of CI 

particles. Red triangles: experiment; Green line and 

black line from the maximum volume fraction of a 

mixture of bidisperse spheres obtained from 

simulation (Farr et al. 2009) 

Fig.9b Bingham Viscosity of a mixture CaCO3/CI 

particles versus the solid volume fraction of CI 

particles. Red triangles: experiment; Green sqares: Eq. 

(7). Green line: with a shell of volume fraction 

s=0.563 

 

Since the ratio of the diameters is quite large (almost a factor of six) we can take the limit where the CI particles 

have no real diameter and are simply a part of the suspending medium. In this case we can consider that we have 

a suspension of CaCO3 particles at a volume fraction CC =VCC/Vtot in a suspension made of CI particles in the 

liquid composed of the mixture ethylene glycol-water. This is the homogenization approach, used to predict the 

Bingham viscosity in Fig.9b, that we develop in the next section in order to predict the rheology of a bidisperse 

suspension from the one of each of its components.  

 

Homogenization model for the viscosity of bidisperse suspensions 
 
We are going to use the homogenization approach for the rheology of suspensions  as derived by Chateau et al 

(Chateau et al. 2008) in the context of particles suspended in a non-Newtonian fluid and applied more recently 

adapted to the case of a suspension of calcium carbonate containing a small proportion of millimetric size fibers 

(Sidaoui et al. 2019). This model can be applied to a bidisperse suspension if there is a large size difference between 

the two species of particles, so we can consider that the CC particles are suspended in an homogeneous medium 

having a viscosity (’CI) where ’CI  is the interstitial volume fraction of the CI particles in the suspending 

liquid: ’CI =VCI/(VL+VCI) ,where VL is the volume of the suspending liquid. The total volume fraction of particles 

being given by =( VCI+VCC)/Vtot , we shall end up with: 

𝐶𝐼
′ =

.𝐹𝐶𝐼 

.𝐹𝐶𝐼 +1−
   𝐶𝐶 =

𝑉𝐶𝐶

𝑉𝑡𝑜𝑡
= 𝐹𝐶𝐶  .         (4) 

Where FCI is the iron fraction of solid: FCI=VCI/(VCI+VCC) already defined. The viscosity of the whole suspension 

is then given by: 

𝜂(, 𝐹𝐶𝐼) = 𝜂𝑚(𝐶𝐼
′ )𝜂𝑟(𝐶𝐶)        (5) 

 Where r is the relative viscosity of a suspension of CC particles in a Newtonian liquid and ’CIeff the interstitial 

volume fraction of CI particles, considering the thickness of the polymer layer. We are looking for the rheological 

law �̇�() of the bidisperse suspension from the rheological law �̇�𝑚(𝑚) applying to the suspension of pure iron at 

the volume fraction  ’CI. The important point is that the stress m is the one in the matrix of CI particles when a 

stress  is applied to the whole suspension. For the sake of completeness we have put in appendix  the derivation 
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of the relation between the stress and the shear rate in the matrix relatively to the stress and the shear rate in the 

whole suspension (Chateau et al. 2008): 

𝑚=/√(1 − 𝐶𝐶 ). 𝜂𝑟(𝐶𝐶)      and    �̇�𝑚 = √
𝜂𝑟(𝐶𝐶)

1−𝐶𝐶

 �̇�    (6) 

So we need to do a measurement of the rheogram �̇�𝑚(𝑚) of a suspension of iron at the right volume fraction: 𝐶𝐼
′  

corresponding to the fraction FCI and the total volume fraction  (cf. Eq.(4) ) and also of  a suspension of pure 

calcium carbonate at the volume fraction 𝐶𝐶  in order to use the correspondence between the applied stress and 

the stress in the iron matrix(cf. Eq. (6)).  

Note that from Eq. (6) we have: 

 


�̇�
=

𝑚 

�̇�𝑚
 𝜂𝑟(𝐶𝐶 )     (7) 

If the suspension of CI particles is Newtonian, which is practically true below the DST transition, we  recover 

Eq.(5) with m the Newtonian viscosity of the suspension of CI particles. Before trying to apply this  Newtonian 

approach to predict the variation of the Bingham viscosity with FCI, at =0.705, let us look at the whole 

experimental curves for high values of FCI.  

 

 
Fig10 Shear stress versus shear rate  in cylindrical Couette geometry; total volume fraction: =0.65 and CI 

volume percentage of solid: FCI=0.91; FCI=0.815; FCI=0.72. 

 

We have reported in Fig.10 the stress versus shear rates curves for a total volume fraction =0.65 and three high 

values of FCI namely FCI=0.91,0.815,0.72. To avoid expulsion at high shear rate we have used cylindrical Couette 

geometry For the three solid fractions of iron, we have a DST transition corresponding to the point of zero slope 

of 𝑑�̇�/𝑑  The viscosity increases when FCI tends towards unity as already seen for the total volume fraction 

=0.705. Again, we note that the critical stress c is much higher for FCI=0.72 than for FCI=0.815 or 0.91. 
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From Eq. (4) the corresponding volume fractions of the interstitial suspension of iron particles are respectively: 

𝐶𝐼
′ = 0.628, 0.601, 0.568 and the apparent volume fraction of CC particles is respectively  𝐶𝐶 =

0.06, 0.121, 0.182. These values are reported in table 2 as well as those of the relative viscosity of the pure 

suspension of CC particles: 𝜂𝑟(𝐶𝐶). The viscosity of the suspending fluid (mixture water-ethylene glycol) was 

0= 0.012 Pa.s at 20°C. 

In Figs.11a-11c we have reported in blue, the experimental curves of Fig. (10) at =0.65. The curves in black are 

the ones obtained for pure CI particles at the corresponding interstitial volume fractions 𝐶𝐼
′ = 0.628,

0.602, 0.572, where we did not represent the fluctuating part for the clarity of the figure. Last the red ones are the 

predictions using the correcting factors of Eq. (6). In this aim we obtain the function �̇�𝑚(𝑚) from the inversion 

of the axes of the black curve with the help of a smoothing and of an  interpolation functions; then we replace m 

by  using the correcting factor of Eq.(6) and we multiply by the second correcting factor to pass from �̇�𝑚()  

𝑡𝑜 �̇�(). 
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Fig.11  Comparison between experiment(blue line) and homogenization theory(red line) for a) FCI=0.91; b) 

FCI=0.815, c) FCI=0.72 The solid black line corresponds to the experiment for pure iron at the respective 

interstitial volume fraction volume fraction ’CI=0.628 , ’CI=0.602, ’CI=0.572 

 

We see that in the three cases it does not work since the theoretical curves are well below the experimental ones. 

and We can easily understand why because here, before the DST transition, the suspension is almost Newtonian, 

at least for FCI=0.91 and FCI=0.815, and the Bingham viscosity of the suspension is given by Eq.(5): 𝜂() =

𝜂𝑚(𝐶𝐼
′ )𝜂𝑟(𝐶𝐶 ). The ratio of the experimental value to the theoretical one is shown in table 2 and we see that in 

the three cases the use of the homogeneous approach strongly underestimates the viscosity of the mixture. In this 

range of viscosity (of a few Pa.s) and shear rate, the reproducibility is good and the uncertainty on the viscosity is 

lower than 3% . Note that for FCI=0.72 the suspension is shear thickening and we have taken for () the 

Bingham viscosity for �̇� <50 s-1. In any event, as there is no DST transition in the pure iron suspension (Fig. 11c); 

the use of Eqs (5)-.(6) could never give a DST transition as  shown by the blue curve. We can also notice that, in 

this theory for the Newtonian case before the transition, the ratio of the slope of the theoretical curve to the one of 

the pure suspension is just the relative viscosity of a suspension of the pure CC particles: r(CC) given in table 2. 

For instance, in the case FCI=0.91 we should have r(CC) =1.92 instead of the experimental value of 1.15 to get 

the agreement between theory and experiment. One reason of this failure could be that there is some overlap 

between the two size distributions but  the volume of small CC particles which overlap with large CI particles is 

only 0.3% of the total volume of CC particles. 
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FCI 𝜂() 

=0.65 
𝐶𝐶 𝜂𝑟(𝐶𝐶) 𝐶𝐼

′  𝜂𝐶𝐼
′  𝜂()

𝜂𝑟𝜂𝐶𝐼
′  

𝐶𝐼
′′  

(sh=0.52) 

𝜂()

𝜂𝑟𝜂′𝐶𝐼
′  

0.91 5.28 0.0605 1.15 0.628  2.73 1.670.15 0.638 1.04 

0.815 2.87 0.121 1.45 0.602 1.39 1.430.13 0..62 0.93 

0.720 2.04 0.182 1.91 0.572 0.66 1.620.15 0.594 1.07 

Table 2.  Values of the volume fraction and viscosities entering in Eq. (7) for =0.65. The two last columns 

correspond to the volume fraction of CI particles in a zone excluding the shell of lower volume fraction 

(s=0.52) around the CC particles. 

 

An other reason could be the increase of the interstitial density of the CI particles due to the presence of a depleted 

shell of CI particles at the surface of the large CC particles. This phenomenon was previously described (Madraki 

et al. 2018) in the case of a suspension of Corn-starch particles with larger PMMA particles where they observed 

that, increasing  the part of the large particles for the same internal volume fraction of small particles, (in our case 

𝐶𝐼
′  ) was triggering a DST transition. 

To get an estimation of this excluded volume effect we call sh the volume fraction of iron particles in a shell of 

thickness dCI=2 aCI and sh =VCI_sh/Vsh the volume fraction of CI particles inside the shell. The new volume 

fraction of iron particles in the domain outside this excluded volume is now: 𝐶𝐼
′′  = (VCI-sh Vsh)/(Vtot -Vex) where 

Vex=Vcc+Vsh or with previously defined quantities: 

  

𝐶𝐼
′′ =

1−𝑠ℎ.𝑓𝑠[
1

𝐹𝐶𝐼
−1]

1

𝐶𝐼
′  −𝑓𝑠[

1

𝐹𝐶𝐼
−1]

=
𝐶𝐼

′ (1−𝐶𝐶)−𝑠ℎ.𝑓𝑠𝐶𝐶

1−𝐶𝐶(1+𝑓𝑠)
   with     𝑓𝑠 =

𝑉𝑠ℎ

𝑉𝐶𝐶
=

(𝑎𝐶𝐶+𝑑𝐶𝐼)3−𝑎𝐶𝐶
3

𝑎𝐶𝐶
3   (8) 

The volume fraction sh of the iron particles inside the shell is an unknown. One approach is to consider that the 

particles are reduced to their center of mass (Madraki et al. 2018); in that case there is an excluded volume of 

thickness aCI instead of dCI and sh=0 in Eq.( 7). We can rather consider that we have a layer of thickness dCI and 

take sh as a parameter. Taking sh=0.52, the homogeneous approach is now predicting the right order of 

magnitude for the viscosity of the three bidisperse suspensions (cf. table 2) at =0.65.  

In Fig.9a we have shown that the use of the maximum volume fraction inferred from numerical simulation of a 

bidisperse suspension of spheres was able to quite well reproduce the drop of viscosity of the mixture, especially 

for FCI>0.4. We can also try to use the homogeneization approach to predict the evolution of the viscosity with FCI 

for =0.705 (Fig.9b). The green squares in Fig.9b are obtained with the use of Eq. (7) and the first point at FCI=0 

is just the experimental value.  We see that it reproduces quite well the drop of viscosity up to FCI=0.4 but after it 

overestimates the drop of viscosity and, above all, fails by an order of magnitude to predict the strong increase of 

viscosity above FCI=0.5. Now, if we consider the existence of this depleted shell of CI particles -this time with 

sh=0.58 instead of 0.52- we can recover the increase of viscosity (Fig.9b, green solid line). It highlights the 

fundamental role of the organization of the small particles in a corona around the large ones for the DST of a 

bidisperse suspension. A volume fraction between 0.5 and 0.6 for sh is slightly above the one of a cubic network 

(sh=/6) and seems plausible but only numerical simulations of a bidisperse suspension with the real geometries 

of the particles could give a correct estimation of the volume fraction inside this depleted shell. It is also worth 

noting that Eq. (8) only applies for 𝐶𝐶 < 1/(1 + 𝑓𝑠) since the denominator of the second expression, which is 

the volume accessible to CI particles outside the surface shell and normalized by Vtot, must remain positive. 
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C . Synergetic effect of non-magnetic particles in the presence of a magnetic field 

 
The effect of the magnetic field on the rheology of a magnetorheological suspension, usually made of CI particles 

in a suspending fluid, is to produce a yield stress whose value is related to the attractive magnetic forces between 

the particles. Once the applied stress has overcome the magnetic stress, the suspension flows with a plastic 

viscosity which is quite insensitive to the yield stress. In Fig.12 we have plotted three series of raw curves for 

values of fields: H=0kA/m, H=7.2kA/m, H=14.4 kA/m and H=21.5kA/m. The lowest one with dashed dotted lines 

correspond to a pure suspension of CI particles at a volume fraction CI=VCI/Vtot =0.23. We recover the increase 

of the yield stress with the field and a Bingham viscosity which remains approximately the same. The next two 

series of four dashed curves correspond to the same fields and to the same volume fraction CI =0.23 of CI 

particles, but a part of the suspending fluid was replaced by CC particles corresponding either to =0.73 and 

FCI=0.32 or to =0.74 and FCI=0.31. In Fig.13a we have plotted the plastic viscosity defined as 𝜂𝑝 =
𝑐−𝜏𝑦𝐵

�̇�𝑐
    for 

=0.73 and 0.74 and by a Bingham fit between 100 s-1 and 200s-1for the pure CI suspension. One remarkable thing 

is that we have a very large increase of viscosity with the field in the presence of CC particles contrary to what 

happens for the same volume fraction of CI particles without CC particles. This is a manifestation of the synergetic 

effect since the presence of nonmagnetic particles should not give a supplementary response in the presence of the 

magnetic field. When non-magnetizable spheres are included in the clusters formed by the application of the field, 

they enhance the interparticle forces on the compression axis as shown by numerical simulations (Wilson and 

Klingenberg 2017). Note that this behavior is opposite to the one observed by  Zhang et al. (2008)  where the DST 

transition was disappearing at high field and high fraction of CI particles. It could be due to the absence of a coating 

polymer on the surface of their CI particles, that make them to aggregate in the presence of the field like in a 

conventional MR fluid. 

The fact that we have a DST transition at zero field is also surprising because the corresponding interstitial volume 

fraction ’CI=0.464 is well below the volume fraction (CI=0.53) corresponding to the onset of DST transition for 

the pure suspension of CI particles (Bossis et al. 2022). The same remark is true for the total volume fraction 

=0.74 with FCI=0.31. A plausible explanation is that the onset of the DST transition for CI particles squeezed 

between CC particles is shifted towards lower volume fraction due to the perturbation of their piling in the presence 

of CC particles. This is related to the fact that, for the corresponding highvolume fraction of CC particles 

(
𝐶𝐶

~0.5), the denominator of Eq. (8) is negative, meaning that the volume of the first shell of CI particles is 

already larger than the total volume devoted to CI particles; it will cause a smaller loose random packing than in 

the absence of boundaries. Coming back to the huge increase of the Bingham viscosity with the magnetic field, it 

is related to the combination of the particle pressure induced by the high total volume fraction and the attractive 

force imposed by the application of the magnetic field. The magnetic pressure triggers the interpenetration of the 

brush like polymers coating both the CC and the CI particles. This enhanced friction between the polymers attached 

to different surfaces is likely responsible for the observed increase of viscosity with the magnetic field and finally 

for the DST transition when the shearing forces are large enough to sweep the polymer out of the surfaces. We 

also observe that the suspension is shear thickening at low field but becomes shear thinning for the two highest 

fields. This is evidenced in Fig.13b where we have plotted both the raw curves and the ones corrected with Eq. (2) 

When the corrected curve (solid curve) is below the raw one and diverges more and more, it means that the 
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suspension is shear thinning. For H=14.4 kA/m the curves are parallel, and we have a Newtonian behavior whereas 

the two lowest ones are slightly shear thickening.  

 
 
Fig.12 Stress versus shear rate for three series of identical magnetic fields H=0kA/m, 7.2kA/m, 14.4kA/m, 

21.5kA/m. Dashed dotted lines: pure CI suspension at =0.23. Dashed lines bidisperse suspensions: =0.73; 

FCI=0.32. Solid lines =0.74, FCI=0.31. In the three suspensions CI=VCI/Vtot= 0.23 

 

 

 
 

Fig.13a Plastic viscosity versus magnetic field for the 

three set of curves of Fig.12. The volume fraction of CI  

particles: CI=0.23  is the same for these three curves. 

Fig.13b Same as Fig.12 in linear scale for =0.73, 

CI=0.23. The dashed lines are the raw curves and the 

solid lines the corrected curves using Eq (2). 

 

 
We have seen the synergetic effect of the non-magnetic particles on the change of viscosity and ,to a less extent of 

yield stress, in the presence of a magnetic field at an intermediate fraction of CI particles: FCI=31-32%. In Figs 

14a,14b we have plotted the evolution of the relative viscosity B(H)/B(H=0) and of  the Bigham yield stress  yB 

versus the fraction of CI particles for different magnetic fields. 
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Fig 14a Bingham yield stress versus solid volume 

fraction of CI particles. Total volume fraction: 

=70.5%. 

Fig 14b Relative viscosity B(H)/B(H=0) versus solid 

volume fraction of CI particles. Total volume fraction 

=70.5% 

 
In the absence of iron particles (FCI=0), the Bingham yield stress is small (y=3.4Pa) and of course, does not depend 

on the magnetic field. In the graph of Fig.14b we have plotted the Bingham viscosity divided by the one at zero 

field which is the one of Fig. 9a. Both for the yield stress and the plastic relative viscosity we see that there is a 

huge increase at a small value of FCI, around FCI=5% and that, on the contrary, for high values of FCI, this increase 

does not exist for the yield stress or is much more moderate with the viscosity. This is quite counter intuitive since 

we have more iron particles and less CC particles, and these are the iron particles which are sensitive to the 

magnetic field. Note that here, we are dealing with the part of the rheogram which is below the DST transition. 

One explanation of this observation is that ,under the magnetic field, a small quantity of iron particles between CC 

particles can more easily form elongated structures which are, like fibers, very efficient to increase the viscosity 

and the yield stress due to their large effective volume fraction (Powell 1991). Furthermore, the internal magnetic 

field inside these needle like aggregates is much higher than inside spherical ones due to the absence of local 

demagnetizing field (Bossis et al. 1997) which increases the internal cohesion of these linear aggregates, whose 

rotation under the shear flow will be blocked by the presence of CC particles. More importantly we have to take 

into account that, when the fraction of iron particles increases, the magnetic permeability, , of the suspension also 

increases. For instance, in our experimental range of field, the relative  permeability of the suspension of CI 

particles is approximately linear with the volume fraction: r=1+8.46CI (de Vicente et al. 2002). In the plate-

plate geometry the average field inside the suspension is Hi=H/r here H is the external applied field and it is 

almost divided by a factor of 5 between FCI=0.05 and FCI=0.7. As the yield stress 𝜏𝑦 ∝ 𝐻𝑖
3/2

 at low fields (Ginder 

et al. 1996), it would give a decrease of the yield stress by a factor of eleven between =0.05 and =0.7 and 

experimentally we have a decrease by a factor of nine. Furthermore, the structure of the aggregates becomes more 

and more isotropic when FCI increases, which, on a local scale, also contributes to decrease the internal field in the 

aggregates themselves and the presence of CC particles, just contributes to introduce defects in the network of CI 

particles whose cohesion is due to short range forces induced by the magnetic field. Thus, the effect of the 

demagnetizing field in plate-plate geometry can explain why the Bingham yield stress is decreasing with the 

increase of FCI. This qualitative explanation is based on the hypothesis that the presence of nonmagnetic particles 

is as efficient as magnetic ones to transmit the magnetic stress so that the yield stress should not depend too much 

on FCI ,except through the change of permeability. Also the decrease of the maximum volume fraction with FCI 
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can play a role in the decrease of the field induced yield stress. This will likely play a similar role for the Bingham 

viscosity, although, to our knowledge, there is no theoretical model for the evolution of the Bingham viscosity 

with the magnetic field. Actually, it is often supposed that the only effect of the magnetic field is to produce a yield 

stress which is the stress necessary to break the aggregates built by the attractive magnetic forces, but once the 

flow has started, the particles become free to move as in the absence of field. In other words, the Bingham viscosity 

is not changed by the application of the field. It is more or less true at low to intermediate volume fraction, but not 

at all at high volume fraction since the absence of free space between the particles combined to the attractive 

magnetic forces oblige the particles to remain in close contact and modifies the interpenetration length between 

the coating polymer layers. The higher is the field the more interpenetration we have, and the higher will be the 

Bingham viscosity. Nevertheless, we see that, unlike the yield stress, above FCI=0.5 we have a plateau followed 

by a clear increase of the viscosity at FCI=0.7. The cause which could counterbalance the decrease of the internal 

field is the one we have already described for =0.65 (cf. Table 2), that is to say the increase of the interstitial 

volume fraction of CI particles due to a lower concentration, sh, of the layer of CI particles on the surface of 

calcium carbonate particles.  

In any event the fact that both the yield stress and the viscosity increase a lot with the magnetic field whereas the 

fraction of CI particles is low is an interesting observation for the applications, since it allows to decrease the 

sedimentation effect and the irreversible aggregation of CI particles when the suspension remains at rest.  

 

Fig. 15  Evolution of the rheology with the magnetic field for a solid volume fraction of   magnetic particles: 

FCI=5% and a total volume fraction of solid =0.705  

 

We have plotted in Fig.15 the evolution with the magnetic field of the rheograms obtained at the optimum fraction 

FCI=5% and total volume fraction =0.705. We better see on this graph the huge increase of viscosity produced 

by small magnetic fields (Note that 1 Tesla corresponds to H= 800kA/m). For instance the low shear rate viscosity 

is 36 Pa.s at zero field and  22000 Pa.s at a field H=21.5 kA/m. In order to better understand the cause of this huge 

increase let us see what is the prediction of the homogenization model in the presence of a magnetic field. If we 

apply Eq.(7) we can write: 

𝜂(, 𝐻) = 𝜂𝑚(𝐶𝐼
′ , 𝐻) 𝜂𝑟(𝐶𝐶 )         (9) 
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In Eq. (9) m is the viscosity of the suspension of CI particles at the interstitial volume fraction which , for FCI=5% 

and =0.705 , is equal to:𝐶𝐼
′ = 11% .On the other hand  we have CC=0.67 and  𝜂𝑟(𝐶𝐶 ) = 2203. The Bingham 

viscosity of the pure iron suspension at 𝐶𝐼
′ = 11% increases from 0.017 Pa.s at zero field  to 0.082Pa.s at H=21.5 

kA/m. The application of Eq. (8) gives (,H)=37.4 Pa.s  at H=0  and 181 Pa.s for H=21.5kA/m . Experimentally 

from the curves in Fig. 15 we get B=36Pa.s at H=0 and B=22000 Pa.s at H=21.5 kA/m. The first prediction in 

the absence of field is in the uncertainty range, as it was noted in Fig. 9b, but it is two orders of magnitude smaller 

than the experiment at H=21.5kA/m. Once again this huge disagreement with the homogeneous model caused by 

the application of the field likely comes from the chain formation of CI particles in the gaps between CC particles 

whose compression by the local shear rate between CC particles can induce a large interpenetration between the 

brush polymers and consequently an important increase of viscosity. A second observation, similar to the one 

made on Fig.13b  is that, before the transition, the suspension is shear thickening at low field but becomes shear 

thinning for the highest fields. In the frame of the Wyart-Cates theory, the shear thickening before the DST 

transition is related to the progressive formation of frictional contacts, but if it was the case here, we should expect 

that, increasing the field, would produce more frictional contacts and then would increase the shear thickening. 

We propose that the observed shear thickening is mainly due to an increase of the interpenetration zone between 

the layers of polymer adsorbed on the particles which can increase the viscosity both through the formation of 

transient aggregates of particles and through the increased dissipation in the interpenetration zone. When the field 

is increased, the thickness of this interpenetration zone will saturate due to the non-linear increase of osmotic and 

elastic repulsive forces. This saturation of the anisotropy of the pair distribution function will give a shear thinning 

behavior (Bossis and Brady 1989)  until the applied stress overcomes the repulsive one and ejects the polymer 

from the surfaces of the particles, provoking the DST transition with dry friction between the particles. In this 

approach the frictional contacts appear abruptly at a critical stress whereas below the critical stress the viscous 

behavior of the suspension is ruled by the interpenetration of the coating polymer layers. This interpretation was 

already developed in the case of pure CI suspensions (Bossis et al,2022). 

 

 

Conclusion 
 
In this work we have seen first that the evolution of the Bingham viscosity of a mixture of carbonyl iron and 

calcium carbonates particles versus their relative volume fraction can be fairly reproduced from the dependence 

of the maximum volume fraction of a bidisperse suspension versus its composition. When the fraction FCI of CI 

particles increases, keeping the same total solid volume fraction (here =0.705; cf. Fig.6), the critical stress of the 

DST transition strongly increases until the transition disappears for 0.2<FCI <0.5 and then decreases until at 

FCI>0.72 the suspension is jammed. At the same time, we observe that the shear thickening behavior before the 

DST transition is strong at intermediate values of FCI but disappears at FCI=0.72. The homogenization model, 

where the small particles are integrated to the suspending fluid, works well for FCI<0.4 but does not predict the 

strongly underestimate the increase of viscosity above FCI=0.6. Introducing the volume fraction sh of CI particles 

in a corona around the CC particles allows to better recover the experimental behavior for FCI>0.6 (cf fig.9b) and 

at =0.65 (cf. table 2). We must nevertheless keep in mind that we have applied the homogenization model to 

polydisperse suspension instead of monodisperse ones, even if the overlap of the two size distributions is very 
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small (cf Fig.2). The introduction of a depleted zone around the CC particles seems  reasonable, due to geometrical 

constraints, and is supported by previous works (Vu et al. 2010), (Madraki et al. 2018), but other phenomena like 

specific interactions between CC and CI particles, either hydrodynamic or deriving from their interaction energy 

,could also play a role. Numerical simulations would be useful to clarify what happen in this corona zone.  

 In the presence of a magnetic field we highlight the synergetic effect of non-magnetic particles predicted by 

numerical simulations (Wilson and Klingenberg 2017) whose presence allows to transmit the forces induced by 

the magnetic forces throughout the measuring cell. Measuring the increase of yield stress and viscosity versus FCI 

we have obtained an unexpected result: their increase was maximum for a small quantity of magnetic particles: 

FCI~0.05. This result was mainly explained by the fact that the internal field in the plate-plate geometry used in 

rheometry decreases when FCI increases due to demagnetization effect. The effect of the magnetic field on the 

increase of viscosity for FCI>0.6 (cf. Fig. (14b)) can again could perhaps be explained by considering the volume 

fraction sh as in the absence of field but already, in the presence of the magnetic field, the homogenization  theory 

no longer works even at low values of FCI. Another observation worth exploring is the fact that, increasing the 

field,  the suspension can pass from shear thickening to shear thinning (cf. Fig.13b) which is contradictory with 

the scheme of an increase of the fraction of frictional contacts until the DST transition occurs (Wyart and Cates 

2014).We think that, in the presence of a brush like coating of polymers, it is the increase of the interpenetration 

zone of the coating polymer, and not a progressive increase of frictional contacts, which trigger the DST transition. 

At last, we want to emphasize that using a matrix of large non-magnetic particles enclosing in its pores the small 

CI particles should be an efficient way to reduce their sedimentation and their aggregation due to the gravitational 

pressure .g.h, since here h would be of the order of the diameter of non-magnetic particles instead of the height 

of the cell. The reduction of the sedimentation allied with the maximum effect of the field at low volume fraction 

of CI particles should allow to considerably improve the area of application of MR suspensions. 
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Appendix  A: Homogenization theory  
The homogenization approach starts from Eq.(5): for the viscosity of the bidisperse suspension 

 

𝜂(�̇�) = 𝜂𝑚(𝜎𝑚)𝜂𝑟(Φ𝑐𝑐)                                                               (A-1) 

 

m  is the viscosity of the matrix composed of the CI particles and of the liquid phase; r  is the relative viscosity 

of a suspension of CC particles and  m  is the average stress in the matrix . The equality of dissipation calculated 

both in the macroscopic approach and the microscopic one reads 

 

 

𝜎�̇�𝑉𝑡𝑜𝑡 = ∫ 𝜎𝑚𝑉𝑚
�̇�𝑚 ⇒

𝜎2

𝜂(�̇�)
𝑉𝑡𝑜𝑡 =

𝜎𝑚
2

𝜂𝑚(𝜎)
𝑉𝑚              (A-2) 

 

Where Vm=Vtot-Vcc is the volume of the homogenous matrix. From (A-2) we have: 
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𝜎2

𝜂𝑟(Φ𝑐𝑐)
= 𝜎𝑚

2 (1 − Φ𝑐𝑐)               (A-3) 

Hence  

𝜎𝑚 =
𝜎

√(1−Φ𝑐𝑐)𝜂𝑟(Φ𝑐𝑐)
                          (A-4) 

 

On the other hand �̇�𝑚 =
𝜎𝑚

𝜂𝑚
  and from (A-4) and (A-1) we get:  

�̇�𝑚 = 𝛾√
𝜂𝑟(Φ𝑐𝑐)

1−Φ𝑐𝑐

̇
                    (A-5)        

 

 

 

 

 

Appendix B    Adsorption isotherm of PPP44 on iron and calcium carbonate 

particles 

 

The measurement of the adsorption isotherm was realized with the method called Total Organic Carbon (TOC). 

A suspension is made with a given mass of the superplasticizer molecule and of the particles (CI or CC 

particles). The suspension is rotated on a rotating bench for 12 hours, then is centrifuged so as to recover only 

the suspending fluid. The TOC method works by combustion of the sample at a temperature of 680°C. At this 

temperature the organic or inorganic matter is transformed into CO2 and an infrared cell makes it possible to 

measure it. From the final concentration of the superplasticizer in the suspending liquid, knowing the initial one, 

we can deduce the adsorbed mass versus the initial one. The results for carbonyl iron and calcium carbonate 

particules are presented in the following figures 

  

Fig. B1 -Adsorption isotherm of PPP44 on 

CaCO3 particles in water at T=20°C 

Fig. B2 -Adsorption isotherm of PPP44 on 

carbonyl iron  particles in water at T=20°C 
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The beginning of the adsorption plateau corresponds to the adsorption of a first layer of PPP44 on the surface of 

the particles and we have chosen to work with a concentration of  PPP44 of 2mg/g of particles which in both 

cases well represent this adsorption of a monolayer. 
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