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Abstract—IoT technologies are becoming more pervasive in
many critical applications which leads to an increase in the
deployment of the popular LoRaWAN (Long Range Wide Area
Network) networks. Therefore, it is essential to characterize
the network performance and monitor targeted end nodes.
In this paper, a passive packet sniffer is proposed that can
monitor LoRaWAN at a given geographical location. Using a
commercial gateway, a measurement is conducted to passively
collect LoRa (Long Range) packets within a duration of one
month. From the acquired data, the transmission parameters
of the received packets are analyzed. Furthermore, information
is extracted from various fields of the frame structure. Then,
a Sequence of Contiguous Packets (SCP) is introduced for
providing additional packet labeling beyond the Device Address
(DevAddr). This original SCP algorithm classifies a stream of
packets transmitted by a single end node, based on the similarities
between the packets’ parameters. The feasibility of the proposed
SCP algorithm is confirmed after presenting statistical analysis
and the characteristics of estimated SCPs from the real acquired
data.

Index Terms—IoT, LPWAN, LoRa, Received Signal Strength
Indicator (RSSI), Effective Signal Power (ESP), Packet Sniffing,
Smart City, Network Traffic Monitoring.

I. INTRODUCTION

Internet of Things (IoT) has been used in a wide spectrum
of domains, such as smart homes, industrial applications
and remote monitoring [1]. To address the challenging
communication requirements and energy constraints of IoT
devices, Low Power Wide Area Network (LPWAN) is
introduced. Within this context, LoRaWAN (Long Range
Wide Area Network) is currently considered the most efficient
technique due to its ease of deployment and operation in
the unlicensed frequency bands, i.e. 868MHz in Europe and
915MHz in the USA [2]. When an end node intends to
join the network using the Over-the-Air Activation (OTAA)
method, it sends a join request packet containing a 64-bit
Device Extended Unique Identifier (DevEUI) for that end
node [3]. Then, the network server assigns it a non-unique
32-bit Device Address (DevAddr) to do all the transmissions.

It is important to develop a LoRa monitoring tool capable of
acquiring the packet transmission parameters (signal strength,
Spreading Factor (SF), frequency, etc.), investigating the level
of congestion for frequency bands and SF [4]. Moreover, the
number of physical devices and their transmission behavior

could be estimated at a given geographical location. This
analysis could help the network operator to troubleshoot, plan
and evaluate the performance of their network. Otherwise, in
case of emergency or for administrative control, it is essential
to scan all the active end nodes as well as keeping the track
of the targeted devices is vital information in special security
operations. On the other hand, data analysis through packet
sniffing have a great impact on advancing the Research &
Development of the LoRa protocol and identifying many
security vulnerabilities.

Recently, some works investigated empirical data from the
LoRaWAN network. For example, in [5] the authors perform
an exploration of a dataset composed of real LoRa packets,
i.e. taken from [6]. Thus, the transmission characteristics,
network behavior and message exchanges are analyzed using
their software tools. While in [7], a passive packet sniffing
framework for LoRa’s Medium Access Control (MAC)
protocol is introduced. However, these previous works do
not solve the problem of classifying the packets which are
originated from the same end node while having a non-unique
DevAddr. Since DevAddr is dynamic, different end nodes
can have identical DevAddr which composes different chains
of analogous packets.

In this paper, a passive packet sniffer is proposed using a
commercial LoRa gateway and commodity tools. Within the
area of the Campus Beaulieu in Rennes, France, the network
activity and the transmission parameters of the packets
received during one month are statistically investigated. For
classifying the packets transmitted by the same end node,
a Sequence of Contiguous Packets (SCP) is proposed as
a device sub-identifier beyond the DevAddr. Hence, the
introduced SCP algorithm properly identifies the sequences
of analogous packets with the same DevAddr, using
specific criteria. Based on that, the packets, i.e. originated
from a unique device, can then be tracked and analyzed, as
envisioned in Figure 5 and explained in the upcoming sections.

The remainder of this document is organized as follows.
Section II gives an overview of the system setup. Section III
provides analysis of the acquired dataset. The SCP is then
introduced in Section IV. In Section V, the experimental re-



sults of the proposed algorithms are presented and commented.
Finally, the work is concluded in Section VI.

II. PROPOSED PASSIVE PACKET SNIFFER

A. Overview and System Configurations

LoRaWAN is a star network topology architecture, thus, an
end node broadcast an uplink message which is received by
all gateways within the coverage area. Based on that fact, the
proposed experiment utilizes a gateway that passively logs
all the LoRa packets sent by nearby end nodes, as shown in
Figure 1.

A Tektelic KONA Macro Gateway is used whose antenna
is fixed on the roof of the university building [8]. Here, the
ChirpStack Gateway Bridge service, i.e. part of the Chirp-
Stack open-source LoRaWAN Network Server stack [9], is
configured on the gateway to publish the packets’ logs to an
MQTT (Message Queuing Telemetry Transport) broker [10].
On the other hand, a desktop computer is used that has Node-
RED software installed on it [11]. Hence, a Node-RED flow
is implemented that starts by subscribing to the aforemen-
tioned MQTT broker, and then the packets are streamed to a
Python script. This Python script uses the Lora-Packet decoder
library, i.e. introduced in [12], for decoding the LoRa physical
payload. Then, the packet is timestamped and appended to a
data file for further analysis, as explained in the following
sections. Furthermore, these data are provided to the research
community on this online repository [13].
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Fig. 1: Setup of the proposed packet sniffer.

B. Data Extraction

The transmission parameters are given by the gateway for
each received packet m[n], where n is the packet index.
Beside, decoding of the Lora physical payload gives key
information from the frame header about the device identi-
fiers, message type, packet counter, etc. Accordingly, Table I
summarizes the main acquired parameters.

TABLE I: Description of key fields for a received packet m[n]

Field Type Description
t[n] float Time at which the packet is received by the gateway
f [n] float The center frequency of the received packet
SF [n] int The Spreading Factor of the received packet

RSSI[n] int The Received Signal Strength Indicator of the re-
ceived packet

SNR[n] float The Signal-to-Noise Ratio of the received packet
ESP [n] float The Effective Signal Power of the received packet

a[n] str The Device Address (DevAddr) of the received
packet

FCnt[n] int

Counter of the transmitted packets, which corre-
sponds to the total number of transmitted packets
(by a node) from the beginning until the received
packet

MT [n] str The Message Type (Unconfirmed/Confirmed mes-
sage) of the received packet

ADR[n] bool The Adaptive Data Rate bit of the received packet
PS[n] int The Payload Size of the received packet
AT [n] float The Air Time of the received packet

III. DATASET ANALYSIS

A. Transmission Parameters

The received data are initially investigated concerning its
signal strength. Accordingly, ESP is manually calculated for
each received packet as:

ESPdBm = RSSIdBm + SNRdB − 10 log10(1 + 10
SNRdB

10 ).
(1)

As shown in Figure 2, one can observe that the RSSI values
saturate when approaching −120 dBm due to the noise floor
limitation, i.e. SNR = 0dB, as proven in [14]. On contrary,
ESP breaks this limitation by its enlarged range with even most
of its values in the lower region. This recommends utilizing the
ESP rather than RSSI in many prospective IoT applications.
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Fig. 2: Comparison of the histogram of RSSI versus ESP.

On the other hand, AT [n] is subjected to the value of the
payload size and SF, as mentioned in [15]. Hence, the airtime
values of the received packets are computed and compared
to the payload size. As shown in Figure 3, it is observed
that payload size is limited depending on the SF value. For
example, SF7 can theoretically go up to a payload size of
222 bytes. Moreover, SF9 has payload size with a maximum



limitation of 115 bytes which is confirmed by the shown
results. Notice that, only one packet with SF12 has been
observed above the theoretical limit of 51 bytes.

Fig. 3: Measured AT for different SF and payload size values
of the actual packets.

B. Device Identifiers

As shown in Figure 4a, the y-axis is composed of the
distinct DevEUIs which are obtained from the measurement.
Most of these DevEUIs send many join requests within
one month. While in Figure 4b, there is a pattern of dense
regions that are observed to follow the distribution of the join
requests in Figure 4a. In fact, this behavior is reasonable as
every join request packet should be followed by a data packet
containing the newly assigned DevAddr.

Based on IEEE Standards Association [16], DevEUI is
extended from the Organizationally Unique Identifier (OUI)
of the constructor or Company ID (CID). Therefore, it is
possible to know the manufacturer of the device from the
DevEUI. Taking the measured data in Rennes as an example,
Table II shows that 29.5% of the detected devices are
registered by the IEEE Registration Authority, while 26.5%
of them have unregistered OUI. Each of the other observed
devices has different manufacturers which can reveal a wide
spectrum of sensor types and applications, such as GPS
trackers, accelerometers, smoke detectors, etc.

On the other hand, DevAddr is extended from the seven
bits of the Network IDentifier (NwkID), while the 25 last bits
are randomly chosen [17]. Therefore, the network operator
can be recognized for each distinct DevAddr. As shown in
Table III, 8.71% of the DevAddr are unassigned to any
network, while 21.33% are considered private or experimental
projects without an official network but a dedicated range
of addresses. Moreover, one of the French network operators
utilizes 53.67% of the traffic alone.

(a) The received join request packets against each DevEUI.

(b) The received data packets against each DevAddr.

Fig. 4: The received packets of join request and data types.

TABLE II: Device Manufacturer according to the DevEUI

Organization Count Percentage
IEEE Registration Authority US 147 29.5%
OUI not registered 132 26.5%
HOMERIDER SYSTEMS FR 93 18.7%
Abeeway FR 64 12.9%
Invoxia FR 15 3.0%
ADEUNIS RF FR 8 1.6%
Microchip Technology Inc. US 7 1.4%
sofrel FR 6 1.2%
Robert Bosch GmbH DE 4 0.8%
GLOBALSAT TECHNOLOGY CORPORA-
TION TW 4 0.8%

XEROX CORPORATION US 4 0.8%
TELEMECANIQUE ELECTRIQUE FR 3 0.6%
PYRESCOM FR 2 0.4%
STMicroelectronics SRL GB 2 0.4%
Itron Inc. US 2 0.4%
Shenzhen RAKwireless Technology Co.,Ltd.
CN 1 0.2%

Helium Systems, Inc US 1 0.2%
VG LABORATORY SYSTEMS LTD GB 1 0.2%
Dragino Technology Co., Limited CN 1 0.2%
BH TECHNOLOGIES FR 1 0.2%
Total 498 100%



TABLE III: Network Operator according to the DevAddr

Operator Count Percentage
Bouygues Telecom World 1127 53.67%
Private/experimental nodes Local 448 21.33%
Orange World 237 11.29%
unassigned 183 8.71%
Proximus Europe 13 0.62%
Actility World 9 0.43%
The Things Network World 8 0.38%
SoftBank World 6 0.29%
Charter Communicaton USA 6 0.29%
EveryNet Russia 5 0.24%
Loriot World 5 0.24%
Amazon World 4 0.19%
Axatel Italy 4 0.19%
Cisco Systems World 4 0.19%
Comcast World 4 0.19%
MultiTech Systems World 4 0.19%
Kerlink World 4 0.19%
Ventia World 4 0.19%
NNNCo World 4 0.19%
Netze BW GmbH World 4 0.19%
Shenzhen Tencent Computer Systems Com-
pany Limited China 4 0.19%

Swisscom World 4 0.19%
Tektelic World 4 0.19%
A2A Smart City World 4 0.19%
KPN Europe 1 0.05%
Total 2142 100%

IV. MODELLING OF PROPOSED SCP

The dataset D is composed of a stream of packets as
follows:

D =
{
m[0], . . . ,m[n], . . . ,m[N − 1]

}
, (2)

whereas each packet m[n] belongs to a specific DevAddr a, as
depicted in Figure 5. Accordingly, a dataset Da is the stream
of packets assigned to DevAddr a, this can be defined as:

Da =
{
ma[0], . . . ,ma[i], . . . ,ma[Na − 1]

}
. (3)

Moreover, a dataset Da can also be defined as a set of SCPs:

Da =

La−1⋃
l=0

P l
a, (4)

where La is the total number of SCPs in a given DevAddr a.
Furthermore, an SCP P l

a is a consecutive sequence of packets
which is defined as:

P l
a =

{
ml

a[0], . . . ,m
l
a[j], . . . ,m

l
a[J

l
a − 1]

}
, (5)

where a packet ml
a[j] is assigned to DevAddr a and belongs

to SCP index l. Accordingly,

∑
a∈SA

La−1∑
l=0

J l
a = N, (6)

whereas SA is the set of DevAddrs extracted from the whole
dataset D as:

SA = DevAddr(D). (7)

To form this SCP P l
a across a given dataset Da, sequential

packets are concatenated based on checking the comparable
parameters of each two consecutive packets. As stated in
Algorithm 1, not having a negative packet counter difference
FCntdiff while being assigned with the same DevAddr a is
the initial solid condition. In case of packet losses between
two packets whose FCnt values are relatively low, the
concatenation is avoided with condition C1. For example, if
the minimum value of Packet Delivery Rate (PDR) is set to
0.75 while FCnt[i] = 1, only one packet loss is allowed.
In fact, condition C1 tries to avert the uncertainty of the
concatenation process while having a sequence of recurrent
values of FCnt, as very often happens with low values
of FCnt. Otherwise, a limited amount of lost packets is
allowed, e.g., 20 packets in the presented algorithm, which
could be adjusted depending on the application requirements.
Accordingly, additional conditions are checked to increase
the robustness of the algorithm, such as the two appended
packets must have the same message type and ADR bit.
Besides, they must either have the same SF or payload size.

For a second aggregation phase, the same algorithm is ap-
plied to link the discontinuous SCP in each DevAddr, as shown
by the two overlapped SCPs which are colored by red and blue
in Figure 5. This overlapping scenario often happens while
using the Activation by Personalization (ABP) method with
a hardcoded DevAddr. Therefore, the probability of having
an identical DevAddr assigned to more than two devices at
the same time increases. For that, the same conditions, i.e.
stated in Algorithm 1, can be used to check the comparable
parameters between the last packet m0

a[J
0
a − 1] of SCP P0

a

to the first packets {m1
a[0], . . . ,m

La−1
a [0]} of the successive

SCPs {P1
a , . . . ,PLa−1

a }. If the conditions are True for many
consecutive SCPs, only the closest analogous SCP is assigned
to the initial SCP P0

a . This process is repeated for all the SCPs
of the dataset Da, then, the connected SCPs are detected using
a graph structure [18] to be aggregated.

DevAddr DevAddrDevAddr

0       1       2        3 0         1          2         3 0         1         2         3 0             1            2             30      1     2      3FCnt:

Time

Fig. 5: Some potential scenarios of SCP shown in different
colors, whereas the packet counter is indicated above each
packet.

V. EXPERIMENTAL RESULTS

To check the feasibility of utilizing the demonstrated
SCP algorithm on real data, the acquired data from the
implemented packet sniffer are taken as an example. Using



Data: Da

Result: P l
a

i = 0
j = 0
l = 0
P l
a ←ml

a[j]←ma[i]
for i = 0 to Na − 2 do

FCntdiff = (FCnt[i+ 1]− FCnt[i])

C1 = ( FCnt[i]+2
FCnt[i+1]+1 ≥ 0.75 )

C2 = (0 ≤ FCntdiff ≤ 1)
C3 = (2 ≤ FCntdiff ≤ 21)
C4 = (MT [i] == MT [i+ 1])
C5 = (ADR[i] == ADR[i+ 1])
C6 = (SF [i] == SF [i+ 1])
C7 = (PS[i] == PS[i+ 1])
conditions =
C1 ∧ (C2 ∨ (C3 ∧ (C4 ∧ C5 ∧ (C6 ∨ C7))))

if conditions == True then
j = j + 1

else
j = 0
l = l + 1

end
P l
a ←ml

a[j]←ma[i+ 1]
end

Algorithm 1: A heuristic of SCP initial identification
phase

the proposed algorithm, a total number of 10779 SCPs are
detected. As shown in Figure 6a, the CDF curve shows that
roughly 50% of the formed SCPs are composed of less than
3 packets, while less than 5% of them have more than 100
packets. Accordingly, Figure 6b indicates that roughly 50% of
the estimated SCPs have a duration of less than 10min, while
less than 10% of them last for more than 7 days. Indeed,
these percentages are subjected to the heuristic parameters
chosen for the presented algorithm. Otherwise, the obtained
results are primarily driven by the type of activation method
(OTAA or ABP) as well as the transmission pattern of the
monitored applications.

Among the presented results, 3 different SCPs with long
duration (> 7 days) are investigated with respect to their
ESP values. As shown in Figure 7, it is observed that the
ESP values are homogeneous for each different SCP P l

a. For
example in Figure 7a, it is observed that the ESP variation is
relatively small which most properly corresponds to a static
end node during its SCP P6866

0E15D035. Moreover, its Channel
State Information (CSI) is almost flat, on contrary, Figure 7b
shows a clear frequency selectivity, particularly at 867.9MHz
with a deep fade of more than 5 dB depth. On the other hand,
the ESP values in Figure 7c have very different fluctuation
regimes which reveal a highly changing environment model, or
most probably an end node moving across different locations.
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Fig. 6: Characteristics of the formed SCPs from the measure-
ment.

VI. CONCLUSION

This paper introduces a passive packet sniffer for monitoring
the active LoRa devices at a given geographical location.
For this purpose, a measurement campaign is carried out in
the city of Rennes to collect LoRa packets using a gateway
and some commodity tools. Hence, different transmission
parameters are acquired while information from the packets’
fields is obtained by decoding the payload header. After
having the device identifiers (DevAddr and DevEUI), some
vital information, such as the network operators and devices’
manufacturers, is revealed and then statistically analyzed. On
the other hand, the proposed SCP algorithm detects streams
of successive packets transmitted from the same end device,
after applying it to the acquired data. The practicality of such
packet classification is demonstrated through analysis of the
measured ESP values and the statistical characteristics of the
estimated SCPs.

For future work, the presented packet sniffer can be used
to troubleshoot and evaluate the operation of the LoRaWAN
networks. Moreover, the demonstrated SCP identifier can be
used to monitor all the nearby active devices and to track any
targeted ones. For Research & Development purposes, extra
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a.

information can be estimated for each SCP, such as the packet
inter-arrival time, transmission pattern, ESP values and used
frequencies.
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