
HAL Id: hal-04015911
https://hal.science/hal-04015911

Submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Effect of transverse confinement on a quasi-one
dimensional dipolar Bose gas

Stefania de Palo, Edmond Orignac, Roberta Citro, Luca Salasnich

To cite this version:
Stefania de Palo, Edmond Orignac, Roberta Citro, Luca Salasnich. Effect of transverse confinement
on a quasi-one dimensional dipolar Bose gas. Condensed Matter, 2023, Special Issue Fluctuations and
Highly Non-linear Phenomena in Superfluids and Superconductors VII), 8 (1), pp.26. �10.3390/cond-
mat8010026�. �hal-04015911�

https://hal.science/hal-04015911
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: De Palo, S.; Orignac, E.;

Citro, R.; Salasnich, L. Effect of

Transverse Confinement on a

Quasi-One-Dimensional Dipolar

Bose Gas. Condens. Matter 2023, 8, 26.

https://doi.org/10.3390/

condmat8010026

Academic Editor: Kenichi

Kasamatsu

Received: 30 January 2023

Revised: 24 February 2023

Accepted: 2 March 2023

Published: 5 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Effect of Transverse Confinement on a Quasi-One-Dimensional
Dipolar Bose Gas
Stefania De Palo 1,2, Edmond Orignac 3 , Roberta Citro 4 and Luca Salasnich 5,6,*

1 CNR-IOM-Democritos, Via Bonomea 265, I-34136 Trieste, Italy
2 Dipartimento di Fisica Teorica, Università Trieste, Strada Costiera 11, I-34014 Trieste, Italy
3 Laboratoire de Physique, Université Lyon, Ens de Lyon, CNRS, F-69342 Lyon, France
4 Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno, CNR-SPIN, Via Giovanni Paolo II,

I-84084 Fisciano, Italy
5 Dipartimento di Fisica e Astronomia “Galileo Galilei”, INFN and QTech, Università di Padova, Via Marzolo 8,

I-35131 Padova, Italy
6 INO-CNR, Unitadi Sesto Fiorentino, Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
* Correspondence: luca.salasnich@unipd.it

Abstract: We study a gas of bosonic dipolar atoms in the presence of a transverse harmonic trapping
potential by using an improved variational Bethe ansatz, which includes the transverse width of the
atomic cloud as a variational parameter. Our calculations show that the system behavior evolves
from quasi-one dimensional to a strictly one-dimensional one by changing the atom–atom interaction,
or the axial density, or the frequency of the transverse confinement. Quite remarkably, in the droplet
phase induced by the attractive dipolar interaction the system becomes sub-one dimensional when
the transverse width is smaller than the characteristic length of the transverse harmonic confinement.

Keywords: dipolar interactions; variational method; droplets

1. Introduction

Trapped ultracold atomic gases offer a convenient and flexible platform to explore the
fascinating aspects of many-body physics in one dimension [1,2]. In particular, in recent
years the one-dimensional dipolar Bose gas has been largely investigated theoretically, see
for instance Ref. [3]. This kind of study is nowadays a vibrant topic of research, triggered by
recent observations of self-bound droplets in attractive bosonic mixtures [4–6] and in dipolar
atoms [7,8]. In the real experiment, however, the system is not strictly one dimensional: the
system made of identical atoms of mass m is usually confined by a transverse harmonic
potential of frequency ω⊥. Lately, we analyzed a more realistic case of finite transverse
trapping frequency [3,9,10] by using a variational Bethe ansatz of the ground state energy of
a uniform dipolar gas in combination with a generalized Gross–Pitaevskii (GGP) equation.
It has been found [11] that the system evolves from a bright soliton-like into a droplet by
increasing the atom number or the dipolar interaction strength.

However, when the strength of the transverse trapping is reduced, the transverse width l⊥
of the bosonic cloud could be quite different from the characteristic length l0 =

√
h̄/(mω⊥) of

the transverse harmonic confinement. In the case of quasi-one-dimensional bosons with contact
interaction, a generalized Lieb–Liniger approach, which takes into account effects of the
transverse dynamics, was considered in Refs. [12,13].

In this paper, extending the procedures of Refs. [9–13], we analyze a quasi-one-
dimensional dipolar Bose gas by including, in an improved variational Bethe ansatz wave-
function, the effect of the transverse confinement. In this way we study the evolution
from a quasi-one dimensional dipolar bosonic system, where l⊥ > l0, to an effectively
one dimensional configuration, where l⊥ ' l0. We find that, by increasing the repulsive
short-range interaction, the transverse width l⊥ becomes larger and the effect is stronger
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for larger axial densities. On the contrary, when the dipolar attractive strength dominates,
producing a droplet, the system becomes effectively one dimensional with l⊥ very close to
l0 and, for large densities, it becomes sub-one dimensional with l⊥ < l0.

2. Method: The Variational Approach for the Energy Functional

We start with the interacting dipolar gas of N bosons in three-dimensions, aligned in
the x− z plane by an external field along a direction d̂ = cos θx̂ + sin θẑ, in the presence of
a transverse harmonic trap of frequency ω⊥, whose Hamiltonian reads

H =
N

∑
i

(
− h̄2

2m
∇2

i +
1
2

mω2
⊥(y

2
i + z2

i )

)
+ g3D ∑

i<j
δ(|~ri −~rj|)

+∑
i<j

µ0µ2
d

4π|~ri −~rj|3

(
1− 3

[d̂ · (~ri −~rj)]
2

|~ri −~rj|2

)
(1)

where m is the mass of the bosons, the contact strength is defined as g3D = h̄2 4πa3D
m via

the three-dimensional scattering length a3D, µ0 is the vacuum permeability and µd is the
dipole moment.

The description by means of an effectively one-dimensional system relies on the
assumption that the trapping in the transverse direction is sufficiently tight to ensure that
the gas behaves as a one-dimensional gas. Here we wish to relax the assumption that the
transverse modes are frozen in the ground state of the trapping Hamiltonian and include
their effect in the trial wavefunction ansatz [12,13]:

φ(~r1, ~r2 . . .~rN) = ψ1D(x1, x2 . . . , xN)ΠN
i=1e

−
z2
i +y2

i
2σ2 l20 (2)

where ψ1D is the wave function in the one-dimensional space while the wave function in
the transverse direction is modelled by the product of Gaussians where σ is the variational
parameter that takes care of the spread of the density in the transverse directions. When
θ = 0, the dipoles are aligned along the x axis, and the interaction has full rotational
symmetry around that axis, thus justifying the choice of an isotropic σ. For θ 6= 0, the model
only has a reflection symmetry around the xz and xy planes, and a more general ansatz

with a factor ∏i exp[− z2
i

σ2
z l2

0
− y2

i
2σ2

y l2
0
] could be considered. However, in the presence of a tight

harmonic trapping with full rotational symmetry, the isotropic ansatz is a good starting
point. Within this ansatz, the projected one-dimensional Hamiltonian is:

HQ1D = − h̄2

2m ∑
i

∂2

(∂xi)2 + N

(
h̄2

2ml2
⊥
+

1
2

mω2
⊥l2
⊥

)

+

[
g1D − l⊥

8
3

V(θ, l⊥)
]

∑
i<j

δ(|xi − xj|) + V(θ, l⊥)∑
i<j

VDDI(|xi − xj|/l⊥) (3)

with [14–16]

l⊥ = σl0 (4)

g1D =
g3D

2πl2
⊥

(5)

a1D = −
l2
⊥

a3D
(6)

V(θ, l⊥) =
µ0µ2

d
4π

1− 3 cos2 θ

4l3
⊥

. (7)
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V1D
DDI

(
x
l⊥

)
= −2

∣∣∣∣ x
l⊥

∣∣∣∣+√2π

[
1 +

(
x
l⊥

)2
]

e
x2

2l2⊥ erfc
[∣∣∣∣ x√

2l⊥

∣∣∣∣]. (8)

In the new Hamiltonian (3) the effective interaction VQ1D(x) = V(θ, l⊥)VDDI(x/l⊥)
depends explicitly on σ, at variance with previous derivations [15,16], and its effect can
be appreciated in Figure 1: a tighter effective confinement (σ < 1) leads to a stronger
interaction than in the σ = 1 case and vice versa.

 0
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l0=40 nm

V
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(σ
)3

 

 x/l0 

σ=1
σ=1.2
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Figure 1. For a fixed l0 = 40 nm we show how VDDI(x)/σ3 changes for different values of σ, namely
σ = 0.8, 1 and 1.2.

Finally we estimate the variational ground-state energy of the system by using for ψ1D
a Lieb–Liniger ground state wavefunction with dimensionless interaction γ as variational
parameter [9]. The trial energy to minimize is

E
N

[
h̄2

2m
n2

]−1

= ε(γ)−
[
γ− γ0

σ2

]∂ε(γ)

∂γ
+ 2

ad
l⊥

1− 3 cos2 θ

nl⊥{
1 +

∫ ∞

0
dq[S(q; γ)− 1]

[
1−

q2l2
⊥

2
eq2l2

⊥/2Γ(0; q2l2
⊥/2)

]}
+

1
(nl0σ)2 +

σ2

(nl0)2 (9)

with q = πnq, S(a; γ) the static structure factor [17] and Γ[0, x] is the exponential integral
function [18],

γ0

σ2 =
2
n

{
− 1

a1D
+

ad

l2
⊥

[
1− 3 cos2 θ

4
− 8

3

]}
(10)

and ad = mµ0µ2
d/(8π) and where ε(γ) is the ground state-energy of the Lieb–Liniger

model [19–21]. Using that ansatz we have minimized the trial energy with respect to both γ
and σ using standard minimization procedure [22].

3. Results and Discussions

Before looking for the variational solution of the full single-mode energy functional
(9) we consider a first approximation where the short-range dipolar potential is replaced



Condens. Matter 2023, 8, 26 4 of 8

by an effective contact interaction potential of strength A = 3.6 [9,23,24]; within this
approximation the Hamiltonian now reads:

HQ1D = − h̄2

2m ∑
i

∂2

(∂xi)2 +

[
g1D + l⊥

(
A− 8

3

)
V(θ, l⊥)

]
∑
i<j

δ(|xi − xj|)

+
Nh̄2

2ml2
⊥
+

N
2

mω2
⊥l2
⊥ (11)

Once we have dropped the short-range dipolar part, we are effectively back to the case
already treated in [13]; the minimization of the energy functional with respect to σ gives

∂E/N
∂σ

= σ4 + (nl0)2ε′
[γ0

σ2

]
= 0 (12)

where now the renormalized interaction is fixed by

γ0 =
2
n

{
− 1

a1D
+

ad

l2
0

[
1− 3 cos2 θ

4
+

(
A− 8

3

)]}
(13)

In Figure 2 we show, for a fixed scattering length a1D/a0 = −8350 (a0 being the Bohr
radius) and l0 = 57.3 nm and ad = 195a0 as from Ref. [23], the optimal σ, i.e., the rescaling
parameter for the transverse confinement l⊥. This is obtained by minimizing the full
Hamiltonian (3) or minimizing Equation (11) where we consider A = 3.6, a constant
independent from the longitudinal density n as performed in Ref. [23]. We compare results
for the repulsive case (θ = π/2, red lines) with the attractive case (θ = 0, black lines),
together with a case without dipolar interaction (ad = 0, blue line).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1  10  100

σ

n(µ m)-1 

θ=π/2
θ=π/2 A=3.6

θ=0
θ=0 A=3.6

 ad=0

Figure 2. Optimal values for σ obtained with the different approximations as a function of density n.
As a point of reference we show σ for the system without dipolar interaction, ad = 0 as a blue solid
line. The solid lines show the results obtained minimizing the energy functional (9), σsma, while the
dashed ones correspond to the minimization of the approximated Hamiltonian (11), σA. Red lines are
for the repulsive case θ = π/2 and black lines are for the attractive case θ = 0.

Figure 2 summarises the effect of the transverse confinement. Let us start with a case
with pure contact interaction, where, as expected upon increasing the density of the system,
the effective transverse width l⊥ = l0σ becomes larger due to the repulsive scattering
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between particles. When we add the repulsive dipolar interaction that effect becomes
more and more pronounced, with the optimal σsma > σA in the whole range of densities.
The situation is different when we move to the attractive case, θ = 0 (we want to stress
that for given scattering length and l0 the variational ground state energy [9] does have a
minimum). As shown in Figure 2, indeed, σA > 1 while σsma < 1, implying a reduction in
the effective transverse width and therefore a tighter, more interacting system, which can be
considered sub-one dimensional. We now devote the rest of the section to the quantitative
discussion of the effect of including the transverse confinement in the variational approach.

3.1. Repulsive Dipolar Interaction

As already discussed, when the interaction between the particles is repulsive the
renormalized transverse confinement felt by the system l⊥ is larger. As expected this
effect is more evident for loose confinement, in Figure 3 we show the equation of state,
without the transverse energy contribution Etr/N = 1

(nl⊥)2 + σ2 1
nl2

0
for σ = 1 as a function

of density in two cases where the effective interaction is repulsive.
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Figure 3. Ground state energy estimates, in h̄2/2mn2 units, within variational ansatz for l0 = 57.3 nm
and a1D/a0 = −2000 as a function of particles density. The solid black lines are the energies obtained
using σ = 1 [9] while solid red lines are using the optimal σ obtained from variational minimization.
We show results for θ = π/2 in panel (a) and θ = 0 in panel (b). We subtracted the transverse energy
for σ = 1 for clarity. In panel (c), we show the optimal values of σ as a function of density for the
cases reported in panel (a), solid red line, and in panel (b), solid blue line. The solid green line in
panel (a) is the limit of the energy in the Tonks–Girardeau limit.

For a quasi-one dimensional system such as the experimental one discussed in Ref. [23],
in which typical values of the averaged density at the center of the trap range between
0.8 (µm)−1 and 3.1 (µm)−1, the effect of the inclusion of the transverse confinement is small
with a the relative change of σ ' 5%. This justified a posteriori the approximation used in
Ref. [23].

3.2. Attractive Dipolar Interaction: Droplet Region

When the attractive dipolar interaction becomes more relevant than the repulsive
contact interaction in the variational Bethe–Ansatz [9] the estimated ground-state energy
develops a deep minimum. Such feature favors the crossover from the gas state towards
the liquid-droplet state [11]. The deep minimum occurs for quite large densities and this,
together with the variational character of the approach, ensures lower energies when we
add another variational parameter, such as σ that governs the transverse confinement. In
Figure 4, we assess the effect of varying the transverse trapping length l0. As expected,
reducing the trapping length enhances the interaction between particles and this enhances
even more the variational parameter σ.



Condens. Matter 2023, 8, 26 6 of 8

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50

a1D/a0=-6500

[ 
E
-E
tr
(σ
=
1
)]
/V

 

n(µ m)-1 

opt. σ, l0=57.3 nm
σ=1, l0=57.3 nm
opt. σ,l0=100 nm
σ=1,l0=100 nm

Figure 4. Ground state energy estimates within variational ansatz for a1D/a0 = −6500 for two
selected values of l0, namely l0 = 57.3 nm as from Ref. [23] and l0 = 100 nm. The solid black lines
are the trial energies obtained using σ = 1 while solid red lines are trial energies obtained using the
optimal σ from full minimization. The thick solid lines are for l0 = 57.3 nm, while thin ones are for
l0 = 100 nm.

In Figure 5, we observe the effect of transverse confinement in a case where the mini-
mum occurs at large densities and the lowering of the energy is sizeable. As a byproduct,
the minimum is also shifted to larger values of density. As a combined result the droplet is
more stable and less sensitive to the longitudinal harmonic trapping.
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Figure 5. Ground state energy within the variational ansatz for l0 = 40 nm and a1D/a0 = −2800 as
a function of particle density. The solid black lines are the trial energies computed using σ = 1 [9]
while the solid red lines are computed with the optimal σ obtained from variational minimization.

4. Conclusions

We used an improved variational Bethe ansatz approach to study a quasi-one dimen-
sional dipolar gas taking care of the effect of transverse confinement. We considered an
isotropic variational Gaussian wavefunction that is a good reference choice for a tight
confinement. When the interaction between particles is repulsive the effective transverse
width of the cloud is increased and the effect is visible for large densities. We found that for
densities comparable with the ones of the experiments of Ref. [23] the trapping effect is neg-
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ligible, thus justifying a posteriori the assumptions of a pure one dimensional system (σ = 1)
in Ref. [9], as well as the isotropic ansatz choice with σx = σy. By contrast, the formation
of a droplet liquid state, that occurs when the attractive dipolar attraction prevails over
the repulsive contact interaction could be more sensitive to the variation of the transverse
trapping length. The extended variational ansatz allows the system to become more tightly
trapped in the transverse direction and denser in the longitudinal direction than in the
strictly one dimensional case [9]. The net effect is a reinforcement of the stability of the
droplet phase.

Our analysis could also be extended to the anisotropic case with Gaussian wavefunc-
tion with σz, σy spreading [25] instead of a single variational parameter σ. This becomes
relevant in multi-tube systems [25]. Beyond the static properties, this more accurate ground-
state energy description could be used to assess the effect of transverse confinement on
non-equilibrium properties, e.g., using a generalized Gross–Pitaevskii equation [11,26–29].
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