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Abstract. One approach to deal with a common criticism towards the
utilitarian approach to computational ethics consists in introducing dif-
ferentiated modalities of the Good, where modalities are defined as philo-
sophical values that correspond to different components of the Good.
Differentiation then does not allow that any modality can compensate
for any other one, distinct classes of modalities are defined. Pareto op-
timality models an extreme case of differentiation, where each modality
constitutes its own class. This paper proposes a new, ordinal, approach to
deal with differentiated modalities: differentiation is modelled by a strict
partial order on the modalities, that expresses which modalities super-
sede others. The paper proposes an axiomatisation of superiority, to take
into account these declared modality comparisons in the determination
of ethical actions: it discusses how to derive an ethical preference rela-
tion between the possible actions, based on the partial order between the
modalities. In addition, it studies the properties of this induced relation,
establishing it is asymmetric and transitive, thus proving it constitutes
a sound order relation.
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1 Introduction

Automatic decision making tools are becoming more and more complex. They
call for tools allowing to verify that they respect laws and ethical principles,
within the growing field of machine ethics [1, 8]. Many ethical principles have
been proposed by philosophers that can help computer scientists to address this
issue of ethical compliance of algorithms. Utilitarianism, promoted by Bentham
and Mill at the end of the 18th century, is one of the most famous moral theories,
but also one of the most implemented ethical principles [3, 7]. Indeed, from a
computational point of view, the utilitarian principle is attractive because it
is easily representable: it quantifies the Good with numerical values, named
utilities, that are then summed up. However, this principle is the subject of
philosophical debates, notably because it conceals the notion of modalities of
the Good. The term modality refers, here and in this paper, to the different
philosophical values which allow to define the Good.

Consider the example of a physician in a hospital to illustrate the fact that
utilitarianism assumes that the modalities are equivalent. He or she has the
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choice between treating a patient, which will result in saving a life, and dis-
tributing chocolates to a large number of patients, which will simply result in
pleasing them. This example confronts two modalities: human life and the plea-
sure of eating chocolate. If a sufficiently large number of patients is considered,
the sum of the utilities assigned to the pleasure of eating chocolate will exceed
the utility assigned to saving a life, whatever the value of the latter. Thus util-
itarianism will conclude that the physician should distribute chocolate rather
than treating the patient. Such a case shows that any modality can be compen-
sated by another one: utilitarianism does not take into account the conflicting
nature of the modalities.

The main criticisms of this equivalence assumption appeal to a differentiation
of modalities [6]. Some argue that the status of physician implies that he or she
should care for the lives of patients rather than the pleasure of eating chocolate,
others argue that human life is more important than the small pleasure of eating
chocolate. This last criticism introduces a notion of superiority between the
modalities by granting some of them a special status [4]: superior modalities
must be considered first when a decision has to be made.

Following these lines, this paper proposes a new, ordinal approach, to deal
with differentiated modalities within an ethical compliance system: it proposes a
first attempt, to the best of our knowledge, to connect this philosophical concern
with ordinal preferences. More precisely, it considers that the notion of superi-
ority is expressed by a strict partial order on the modalities and it proposes an
axiomatisation of superiority, to take into account these modality comparisons
to compare the actions and make an ethical choice.

The proposed principle can be seen as going beyond the Pareto optimality
principle: the latter, first applied for decision making problems and then also
used in ethical ones [7] can be considered as an extreme case of modality differ-
entiation. Indeed, modalities are compared only to themselves, and not to each
other. In the previous example of the physician, no action is then considered
as ethically dominating the other: for the Pareto principle, the modalities are
incomparable to each other. The proposed superiority approach generalises this
property, supplementing it with modality superiority comparison.

This paper is structured as follows. Section 2 proposes a formalisation of
ethical compliance problem in order to represent the utilitarian and the Pareto
principles, as well as the notion of modality comparisons. Section 3 presents
the proposed axiomatisation of superiority that takes into these comparisons to
determine an ethical preference relation between the possible actions. Section 4
studies the properties of the proposed induced relation, establishing it constitutes
an order relation, proving it is asymmetric and transitive. Section 5 discusses the
assumptions made on the modality comparison relations, beyond the asymmetric
and transitive case. Section 6 concludes the paper and discusses some directions
for future works.
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2 A Formalisation of Ethical Compliance

This section describes the considered formalism for representing an ethical com-
pliance problem, first presenting the considered ordinal framework and the nota-
tions used throughout the paper. It then introduces the representation of modal-
ity differentiation through a strict partial order and finally shows how the clas-
sical utilitarian and Pareto principles are expressed in this framwework.

2.1 An Ordinal Formalisation of Ethical Compliance

An ethical problem consists in selecting, among a set A of possible actions (e.g.
treating a patient or distributing chocolate), the setAp of the permissible actions,
defined as the ones that are ethically acceptable to perform according to a given
ethical principle [9].

Among the possible ethical principles that have been proposed by philoso-
phers and implemented in the machine ethics domain, act utilitarianism [9], a
common version of utilitarianism, can be decomposed into three steps. First, the
consequences of actions are ethically quantified by a utility value. In the second
step, these utility values are aggregated for each action in order to obtain a
number representing the global utility produced by the action. In the final step,
the permissible actions are defined as the ones that maximise utility.

These steps can be formalised as follows. Each action is represented by a
vector, composed of the aggregation of the utility values of its consequences.
Each vector component corresponds to a modality, that corresponds one of the
philosophical values which allow to define the Good (e.g. human life or chocolate
pleasure). We noteM the considered finite set of modalities and consider the case
where A ⊂ R|M|: the higher the vector component, the more ethically interesting
the action according to that modality. With this characterisation of actions,
the modalities can be interpreted as criteria in multi-criteria decision making.
This quantification of the Good of consequences is debatable, as it hides causal
relations by assigning a single value per modality for all consequences. However,
this discussion is beyond the scope of this paper and this characterisation is
sufficient to show the interest of a differentiated consideration of modalities.

As recalled above, act utilitarianism orders actions based on their utilities and
defines the ones with highest utilities as permissible. To formalise this ordinal
view, we introduce a comparison relation ≿e to denote these ethical preferences.
The question is how to define this relation on the actions, from which Ap is
derived.

2.2 Ordinal Differentiation of the Modalities

As discussed in the introduction, we propose to formalise modality differenti-
ation as a strict partial order on the modalities, which we denote ≻m, i.e. an
asymmetric and transitive relation: x ≻m y means that modality x supersedes
modality y. Modality x is said dominant and modality y dominated. The strict
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partial order can be seen as a set of pairs: ≻m⊂ M2. Each pair of modalities
(x, y) is called a comparison.

The issue of defining superiority then consists in taking into account these
declared modality comparisons in the determination of the permissible actions:
by adding to the characterisation of the actions a strict partial order on the
modalities, the aim is to obtain information on the pre-order relation ≿e, which
will then allow to obtain the set Ap. We can already notice that superiority will
not provide equivalence information between the actions, but strict preference
information. We are therefore particularly interested in the asymmetric part of
the preorder ≿e which is noted ≻e.

2.3 Formalisation of Classical Ethical Principles

Formally, the global aim of implementing ethical principles is to define the pref-
erence order ≿e among possible actions, usually inferred from is asymmetric
part ≻e. In this paper, it will be defined using properties of the following form:

∀o, o′ ∈ A, [some constraints on o, o′ and modalities] ⇒ o ≻e o
′

Act Utilitarianism The act utilitarian principle recalled in the previous sec-
tion can be expressed as follows:

∀o, o′ ∈ A,

[ ∑
x∈M

ox >
∑
x∈M

o′x

]
⇒ o ≻e o

′ (1)

Pareto Optimality The classical Pareto principle used in multi-decision frame-
work can be expressed with the property of increasing monotonicity, whose strict
version can be written as

∀o, o′ ∈ A,
[
∃x ∈ M, (ox > o′x) ∧ (∀y ∈ M\{x}, oy ≥ o′y)

]
⇒ o ≻e o

′ (2)

Discussion The two previous principles ensure the transitivity and asymmetry
of ≻e. The utilitarian principle considers that the modalities are equivalent,
since in Eq.1 the sum is a commutative aggregation function. On the contrary,
the Pareto principle considers the modalities are incomparable: in Eq. 2, only
quantifications of the same modality are compared for the considered actions.

The contribution of this paper, as described in the next sections, focuses on
defining a new constraint to introduce superiority among modalities by combin-
ing the quantifications of consequences by modalities and the ≻m order among
modalities.

3 Proposed Axiomatisation of Superiority Among
Modalities

This section describes the proposed definition of an ethical preference relation
between the possible actions, based on the partial order between the modalities,
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resulting in an axiomatisation of superiority, as a generalisation of the Pareto
principle. It first formalises the definition of the desired superiority behaviour
and then describes in three steps the proposed definition, depending on the
number of dominant and dominated modalities.

3.1 Definition of Superiority

In order to define the desired superiority behaviour, we first consider the case
where the strict partial order on the modality contains a single comparison,
denoted x ≻m y. Superiority is then defined as

x ≻m z ⇔
[
∀o, o′ ∈ A, [(ox > o′x ∧ ∀y ∈ M\{x, z}, oy ≥ o′y)] ⇒ o ≻e o

′] (3)

The important point of this definition is that quantifications of the domi-
nant modality are sufficient to determine the preference between two actions
regardless of the quantifications of the dominated modality. There is therefore
no compensation possible between a dominant and a dominated modality.

Considering the medical example discussed in the introduction, with the
comparison human life≻m chocolate pleasure, , whatever the number of patients
receiving chocolat, this model leads to treat patient ≻e distribute chocolat.

Like increasing monotonicity, this superiority is conditioned by the value of
the other modalities, those that are neither dominant nor dominated.

3.2 One Over One: Single Dominant, Single Dominated

In the case where the comparison set defines a single dominant modality and
a single dominated modality, the definition of the induced ≻e follows from the
superiority definition recalled in the previous section:

∀o, o′ ∈ A, [ ∃x, z ∈ M, x ≻m z ∧ (ox > o′x) ∧
(∀y ∈ M\{x, z}, oy ≥ o′y)

]
⇒ o ≻e o

′ (4)

3.3 One Over Many: Single Dominant, Many Dominated

In a complex problem, one may have to consider a set of comparisons. This
section considers the case where a single dominant modality supersedes a set of
dominated modalities. In this case, we consider the following generalisation of
Eq. 4: whatever the number of dominated modalities, they cannot counter the
preference induced by the dominant modality.

∀o, o′ ∈ A, [ ∃x ∈ M,∃Z ⊂ M\{x}, (∀z ∈ Z, x ≻m z) ∧ (ox > o′x) ∧
(∀y ∈ M\{x} ∪ Z, oy ≥ o′y)

]
⇒ o ≻e o

′ (5)

This property is equivalent and therefore reformulated as follows:

∀o, o′ ∈ A,∃x ∈ M, (ox > o′x)∧ (∀y ∈ M\{x}, x ≻m y∨oy ≥ o′y) ⇒ o ≻e o
′ (6)
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The latter formula underlines that it can be seen as a generalisation of the
increasing monotony. Indeed, if no comparison is considered, then x ≻m y is
false for all modalities and the formula is identical to that of the increasing
monotonicity.

3.4 Many Over Many: General Case

In the general case, for any pair of actions o and o′, three subsets of modalities
of M must be distinguished

– The set of dominant modalities X, which must be non-empty to obtain a
strict preference and thus favour an action o over an action o′:

X = {x ∈ M | ox > o′x}

– The set of dominated modalities, which represents the modalities dominated
by at least one dominant modality:

{y ∈ M\X | ∃x ∈ X, x ≻m y}

– The set of non-dominant and non-dominated modalities, which must be in
agreement with the dominant modalities:

{y ∈ M\X | oy ≥ o′y}

In this case, we propose the following definition:

∀o, o′ ∈ A, ∃X ⊂ M, X ̸= ∅, (∀x ∈ X, ox > o′x)

∧ [∀y ∈ M\X, (∃x ∈ X, x ≻m y) ∨ oy ≥ o′y] ⇒ o ≻e o
′ (7)

This property is equivalent and therefore reformulated as follows:

∀o, o′ ∈ A, ∃x ∈ M, (ox > o′x) ∧
[∀y ∈ M, (∃x′ ∈ M, x′ ≻m y ∧ ox′ > o′x′) ∨ oy ≥ o′y] ⇒ o ≻e o

′ (8)

If no comparison is considered, then x′ ≻m y is false for all modalities and the
formula is identical to that of the increasing monotony. The general case of the
axiomatisation we proposed, given in Eq. 8, is therefore a generalisation of the
Pareto principle.

3.5 Definition of the Minimal Preference Relation ≻m
e

Among the set of all ≻e preferences that satisfy Eq. 8, the minimal preference
relation is defined as the one that contains only the pairs induced by the equation:

Definition 1. The minimal ethical preference, noted ≻m
e , is the preference re-

lation induced only by Eq. 8:

∀o, o′ ∈ A, ∃x ∈ M, (ox > o′x) ∧
[∀y ∈ M, (∃x′ ∈ M, x′ ≻m y ∧ ox′ > o′x′) ∨ oy ≥ o′y] ⇔ o ≻m

e o′
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Using this definition, an order ≻e satisfies the axiomatisation of superiority
we propose in Eq. 8 if and only it is a superset of this minimal relation: ≻m

e ⊆ ≻e.
The next section studies the properties of this minimal preference relation, es-
tablishing that it is both asymetric and transitive, which means that it is a strict
partial order.

4 Properties of the Proposed ≻m
e Relation

This section establishes that the proposed ≻m
e relation satisfies the required

property of defining an order relation on the actions:

Theorem 1. ≻m
e is a strict partial order.

Sections 4.1 and 4.2 respectively prove that it is asymmetric and transitive.
Both proofs use the following lemma:

Lemma 1. For any non-empty set X ⊆ M and the set of maximal modalities
max≻m

(X) = {x ∈ X | ∀x′ ∈ X, x′¬ ≻m x}, it holds that

∀x ∈ X, (x ∈ max≻m
(X)) ⊕ (∃x′ ∈ max≻m

(X), x′ ≻m x)

Proof. We are going to prove this lemma by recurrence on |X|.

– If |X| = 1, then X = {x} and by definition of max≻m(X), x ∈ max≻m(X).
– If |X| = n+ 1, with n ∈ N∗. We have X = X ′ ∪ {x}, with |X ′| = n. In that

case, either:

• x ∈ max≻m(X).
• x /∈ max≻m

(X), by definition of max≻m
(X), we get ∃x′ ∈ X, x′ ≻m x.

With ≻m asymmetry, we can conclude that x ̸= x′ and x′ ∈ X ′. By
recurrence hypothesis on X ′ we get either x′ ∈ max≻m(X ′), and we
note x′′ = x′, or ∃x′′ ∈ max≻m

(X ′), x′′ ≻m x′. By transitivity and
asymmetry, we get x′′ ≻m x and x¬ ≻m x′′. Therefore we have x′′ ∈
max≻m

(X) and x′′ ≻m x.

4.1 Asymmetry of the Proposed ≻m
e Relation

Proposition 1. ≻m
e is asymmetric: it verifies o ≻m

e o′ ⇒ ¬(o′ ≻m
e o).

Proof. We suppose that o ≻m
e o′, and by absurd, let’s suppose that o′ ≻m

e o. By
using Def. 1, we get:

– ∃x0 ∈ M, (ox0
> o′x0

) (A)
– ∀y ∈ M, oy ≥ o′y ∨ (∃x′ ∈ M, x′ ≻m y ∧ ox′ > o′x′) (B)
– ∃x1 ∈ M, (o′x1

> ox1) (C)
– ∀y ∈ M, o′y ≥ oy ∨ (∃x′ ∈ M, x′ ≻m y ∧ o′x′ > ox′) (D)
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Let’s call S the set of modalities which have a preference for o over o′ and I
the set of modalities which have a preference for o′ over o. S = {x ∈ M | ox > o′x}
and I = {x ∈ M | o′x > ox}. With (A) and (B), we know that these sets are not
empty. S being non empty and by using Lemma 1, we can take z ∈ max≻m(S).
Thus, z ∈ S ⇒ oz > o′z and oz > o′z ∧ (D) ⇒ ∃x2 ∈ M, x2 ≻m z ∧ o′x2

> ox2
.

o′x2
> ox2

⇒ x2 ∈ I and by using Lemma 1 on I:

– x2 ∈ max≻m
I and we say that x3 = x2.

– ∃x3 ∈ max≻m
I, x3 ≻m x2, and by transitivity of ≻m, we get x3 ≻m z.

x3 ∈ I ⇒ ox3
> o′x3

and o′x3
> ox3

∧ (B) ⇒ ∃x4 ∈ M, x4 ≻m x3 ∧ ox4
> o′x4

.
ox4

> o′x4
⇒ x4 ∈ S. By transitivity x4 ≻m z, however by definition of

max≻m(S), x4 ∈ S ∧ x4 ≻m z ⇒ z /∈ max≻m S. It is absurd, thus we conclude
that ¬(o ≻m

e o′ ∧ o′ ≻m
e o).

4.2 Transitivity of the Proposed ≻m
e Relation

Proposition 2. ≻m
e is transitive: it verifies (o ≻m

e o′∧ o′ ≻m
e o′′) ⇒ (o ≻m

e o′′).

Proof. Let’s consider o,o′,o′′ such that o ≻m
e o′ and o′ ≻m

e o′′. By using Def. 1,
we get:

– ∃x0 ∈ M, (ox0
> o′x0

) (E1)
– ∀y ∈ M, oy < o′y ⇒ (∃x′ ∈ M, x′ ≻m y ∧ ox′ > o′x′) (E2)
– ∃x1 ∈ M, (o′x1

> o′′x1
) (F1)

– ∀y ∈ M, o′y < o′′y ⇒ (∃x′ ∈ M, x′ ≻m y ∧ o′x′ > o′′x′) (F2)

We have to prove o ≻m
e o′′, that is (given Def. 1), P1 : ∃x ∈ M, ox > o′′x and for

all y ∈ M, P2(y) : oy < o′′y ⇒ ∃z ∈ M.z ≻m
e y ∧ oz > o′′z .

Proof of P1. By E1, we have x0 such that ox0
> o′x0

. If o′x0
≥ o′′x0

then ox0
> o′′x0

and P1 is satisfied. Otherwise, o′x0
< o′′x0

. By Lemma 1, F2, S0 = {x ∈ M|x ≻m

x0 ∧ o′x > o′′x} is not empty, so we can choose x2 in max≻m
S0. If ox2

≥ o′x2

then ox2 > o′′x2
and P1 is satisfied. Otherwise, ox2 < o′x2

. From E2, we get a
modality x3 such that x3 ≻m x2 and ox3 > o′x3

Since x2 maximal for ≻m in S0,
we have x3 ̸∈ S0 and thus o′x3

≤ o′′x3
. But if o′x3

< o′′x3
, applying F2 would give

a a modality of S0 superior to x2 which would contradict its maximality. Thus
o′x3

= o′′x3
. Together with ox3

> o′x3
, this implies P1.

Proof of ∀y, P2(y). Consider a modality y0 ∈ M. If oy0 ≥ o′′y0
, P2(y0) is trivially

satisfied. Otherwise, we have oy0
< o′′y0

(H1). We then have two cases :

(A) Suppose oy0
< o′y0

(H2). By Lemma 1, E2 and H2, S2 = {x ∈ M|x ≻m

y0 ∧ ox > o′x} is not empty, so we can choose x′ in max≻m
S2.

(A.1) Suppose o′x′ < o′′x′ (H3). By F2 and H3, we get a modality z such that
z ≻m x′ ∧ o′z > o′′z . We have z ≻m x′ and x′ ≻m y0, thus, by transitivity
of ≻m, z ≻m y0. Since this and the fact that x′ is maximal for ≻m, we
must have z ̸∈ S2 which gives us oz ≥ o′z. Having oz > o′z is not possible
as it would allow us to derive from E2 a modality that would belong to
S1 while being superior to x′, contradicting again the maximality of x′.
We can conclude oz = o′z, and thus oz > o′′z , which proves P2(y0).
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(A.2) Otherwise, o′x′ ≥ o′′x′ . Given x′ ∈ S1, this implies ox′ > o′′x′ . We thus also
have (taking x′ for z), P2(y0).

(B) Otherwise, oy0
≥ o′y0

(H4). We then consider the modalities that are superior
to y0.

(B.1) Suppose that ∃y′ ∈ M, y′ ≻m y0∧oy′ < o′y′ . Then, by applying reasoning
of case A.1 to y′, we get some z ∈ M such that z ≻m y′ and oz > o′′z .
By transitivity of ≻m, z ≻m y0, which proves P2(y0).

(B.2) Otherwise, we must have : ∀y′ ∈ M, y′ ≻m y0 ⇒ oy′ ≥ o′y′ (H5). From
H1 and H4, we have o

′
y0

< o′′y0
. Applying F2 gives a modality z such that

z ≻ y0 and o′z > o′′z . Given H5 we get oz ≥ o′z and thus oz > o′′z , which
proves again P2(y0).

We have thus proven P2(y0) in all cases for any y0.

This concludes the proof of the theorem 1. ≻m
e is indeed a strict partial order.

5 Short Discussion on the Assumptions Made on ≻m

It has been assumed that the ≻m relation is asymmetric and transitive, it already
encompasses many situations, but this is not necessarily the case. We briefly
discuss in this section two alternatives.

5.1 Case of a Connected ≻m

Adding other assumptions can give additional information about ≻e. For exam-
ple, if we assume that ≻m is also connected, then our axiomatisation becomes
a lexicographic ordering on the modalities [5]. Thus for any non-equal pair of
actions o and o′, the proposed axiomatisation in Eq. 8 will infer a preference.
This property is useful if we want an unique action to perform. However if only
one action is permissible, it is a restrictive property for an ethical compliance
system.

5.2 Case of a Non Transitive ≻m

One can also wish that the relation ≻m is not transitive. However this is not
a very credible case in an ethical decision context where we define superiorities
between modalities. Doing so would allow loops: x is superior to y which is
superior to z which is superior to x. Nevertheless, removing this hypothesis
implies a modification of the axiomatisation. Indeed the transitivity of ≻m is
essential to the proofs of asymmetry and transitivity for ≻e.
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6 Conclusion and Future Works

This paper proposes an axiomatisation of the philosophical concept of superi-
ority between the modalities of the Good. To do so, an ordinal multi-criteria
decision formalism adapted to ethical decision making has been defined, based
on a utilitarian approach. As a generalisation of the Pareto optimality principle,
the proposed axiomatisation makes it possible to deduce preferences from the
differentiation of modalities.

As this paper is a first attempt to connect philosophical concerns with ordinal
preferences, ongoing works aim at studying existing formal frameworks that offer
properties similar to the ones we propose, such as e.g. hard and soft constraints
hierarchies [2].

The work presented in this paper also opens multiples perspectives. Firstly,
one limitation of the current work lies in the simplifications made on the causal
relations in our formalism. In a more concrete problem, it would be ethically
more precise to take into account each consequence separately. Therefore, we
consider to extend the formalism to be able to encompass such cases.

Furthermore, the ability to extend the minimal ethical preference set that
respect superiority raises questions about mixing multiples principles to get a
single set of permissible actions. Thus, we intend to formalise a more generalised
version of the concept of ethical principle and the constraints that they must
fulfill.
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