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Abstract. A distributed system is made of interacting components. The
current manual, ad-hoc approach to composing them cannot ensure that
the composition is correct, and makes it difficult to control performance.
The former issue requires reasoning over a high-level specification; the
latter requires fine control over emergent run-time properties. To address
this, we propose the Varda language (a work in progress) to formalize
the architecture of a system, i.e., its components, their interface, and
their orchestration logic. The Varda compiler checks the architecture de-
scription and emits glue code, which executes the orchestration logic and
links to the components. The Varda system relies on a generic inter-
ception mechanism to act upon distribution-related system features in a
transparent and uniform manner. Varda also takes into account impor-
tant non-functional system properties, such as placement.

Keywords: Distributed Programming · Language · Distributed System · Com-
position · Orchestration · Architecture.

1 Introduction

The developer of a distributed system rarely implements it from scratch, as a
monolithic program. Instead, a common approach is to compose independent
components, either off-the-shelf or bespoke. For instance, a sharded key-value
store might be composed of shard servers servers (a and b in Figure 1a), with a
router to direct client requests to the correct shard.

The composed system should both be safe and have good performance. This
requires the developer to be able to: (1) formalize the individual components;
(2) specify how they communicate [17,25,30]; (3) reason over both the static
effects of the composed object [25], and its dynamic effects; and, (4) control and
other non-functional and performance-related properties, such as co-location or
inlining.

The current approach to compositional programming is ad-hoc and mostly
manual. It consists of running components as processes that send messages to
each others’ API [30]. This satisfies in part Requirements 1 and 2 above, but
does not express high-level safety [17,30], placement, or performance constraints.
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denotes a message and ts denotes a vector
clock.

An improvement is to use an orchestration engine, such as Docker Compose,
Kubernetes or OpenStack [15,3,4] to automate deployment and to control the
topology. This addresses Requirement 4 only. Alternatively, a protocol language
or an orchestration language can express some of the semantics. However, current
languages do not satisfy Requirements 3 and 4, as we detail in Section 4.

We address these issues with Varda, our framework for compositional dis-
tributed programming. A system developer specifies the architecture of a dis-
tributed system in the Varda language. This enables to formally define the com-
ponents of a system, their interface, their interconnection, and their placement.
In particular, our orchestration sublanguage prescribes the run-time interactions
between the components. Based on this specification, the Varda compiler per-
forms static and run-time checks, and generates the interaction code between
components, called the glue.

Note that an architecture description abstracts over issues not related to
distribution. In particular, the individual components are imported and linked
into the generated glue, but assumed implemented outside of our framework
(written for instance in Java).

We claim the following contributions for this work:

– A language for expressing the component architecture and the orchestration
of a distributed system (Section 2).

– A general interception mechanism for imposing orchestration logic and other
transformations onto components (Section 3).

– As an example, we show how to impose transparently a common pattern:
sharding (Section 3).

This paper does not yet provide an experimental evaluation, as the imple-
mentation is progress.
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2 Programming model

2.1 Concepts

Let us first explain the Varda concepts and terminology, based on the example in
Figure 1a. It represents the architecture of a key-value store. Its components are
a client on the left, and the key-value store proper on the right, itself composed
of a router in the centre and two servers on the middle right. The router forwards
client requests to the appropriate server.

The two servers are distinct activations of the same schema; these concepts
are somewhat to instantiations and classes in object-oriented languages respec-
tively.

A schema, written in the Varda language, describes the component’s inter-
actions with other components. In our example, a server schema accepts get
and put invocations, which it executes against its storage backend. The router
schema accepts the same get/put signature as a server, but its behaviour is dif-
ferent: based on the arguments, it forwards the invocation to the appropriate
server activation, awaits the response, and forwards the response to the client.

An activation can link to an implementation, a black-box executable com-
ponent exported as a library. In the figure, the implementation of Activation a
stores its data in a Redis implementation [36], whereas that of Activation b uses
a custom storage logic.

Finally, the figure shows places, i.e., physical or logical locations in the dis-
tributed system. In this example, the client is in its own place, and Server a is in
the same place as its implementation. Placement is an important consideration,
for instance for performance, fault tolerance or physical security.

2.2 Components

Recall that a schema is the code for a class of components. The Varda schema
code has several parts, each described in an appropriate sublanguage. Its sig-
nature declares the names and types of messages it can send and receive, using
both classical (declarative) types and (imperative) safety assertions. Its protocol
describes the sequencing of such messages, expressed in the language of session
types [14]. Ports are communication entry and exit points; a port is described
by its name, signature, and protocol.

The orchestration logic describes how the component behaves, in a Turing-
complete imperative sublanguage. It can specify a callback method to be invoked
when a given type of message is received. It also includes specific methods for
creating and destroying an activation of the component (called onStartup and
onDestroy respectively). Orchestration logic can maintain local state, can send
messages, and can invoke the implementation.

The binding between the component, and its implementation written in some
external programming language, is expressed using imperative templates that
embed fragments of the external language.3

3 Currently our compiler supports only Java bindings.
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A component schema may contain sub-components. The scope of a sub-
component is the enclosing component, i.e., a sub-component cannot be invoked
from the outside.

An instance of a schema at run time is called an activation. The activation
is the smallest grain of distribution and concurrency. Computation within an
activation is sequential. Receiving a message, instantiating the activation or ter-
minating it run the corresponding callback method. A method executes until it
terminates, or until it waits for an asynchronous invocation.

2.3 Interaction interface

This subsection details how two components interact. Activations communicates
by sending messages to each other. Programmers group message into protocols.
A protocol describes the type and the order of events. Session types [14] directly
inspire protocols. Between activations, those messages are flowing through chan-
nels. A channel interconnects ports of multiple components. A programmer for-
malizes components interface by defining ports: inport, to communicate with
the outside, and outport, to listen for incoming messages.

The interaction should both be safe and have good performance. This re-
quires the developer to be able to: (a) constraints the communication topology
to explicitly specify which component is talking to whom; (b) interacting com-
ponent have to agree on the order and the type of messages they exchange to
perform lightweight verification and to drive the code-generation of the net-
working interfaces; (c) represents the underlying network layer to do specialize
the code-generation and to represents assumption on the underlying network in
the architecture description; and, (d) (weakly) isolate component functionalities
from each other.

Events To communicate, activations exchange events. Each event is strongly
typed and can carry a payload. Its payload should be serializable.

A programmer can manually define an event key carrying a string pay-
load with event key of string;. Otherwise, a programmer can send classical
serializable types without defining events. The Varda compiler auto-box those
types into events and un-box them at reception. Event auto-boxing alleviate the
programmer from the burden of defining events for base types (e.g., int).

Varda type system supports type evolution of event through subtyping. Sub-
typing define a relation of substitutability between data types. Substitutability
is a property where code written to operate on the supertype can safely be
substituted for any of the subtypes in the subtyping relationship [27].

A component can send a message with more information than expected.
For instance, lets assume than Activation b expects messages of type record:
{value: string}. An Activation a can send to b a message of type: {checksum:
string; value: string; }. At reception, b considers only the field value.
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Protocols Protocols address Requirement b. It constraints communication be-
tween activations: programmer attaches a protocol to each channel and each
port. A (binary) session represents one instance of a protocol. An Activation i
can creates a session s with Activation j by calling initiate_session_with(
outport_of_i, j). Let’s assume that the protocol of the port is protocol
p_get = !key?value. ;. Where key and value are event types. The session
type implicitly bound to p_get guarantees that a communication thorugh s is
as follows: i starts by sending a message of type key and ends by receiving a
message of type value.

Varda exposes classical communication primitives managing session [14]: asyn-
chronous message sending fire(s, msg), asynchronous receiving using callback
(ports) or receive primitive, non-deterministic branching branch and recursive
protocol. Each of this operations returns a new session types with the protocol
of the continuation and preserves the session identity.

Channels Channels address Requirement c and their types solves the static part
of Requirement a. A channel can interconnect multiple activations, of different
component schemas. A channel can represents different communication guaran-
tees, provided by the underlying network primitives. For instance, a channel can
be protected by TLS encryption or can guarantee point to point FIFO communi-
cation, which is the default guarantee. A channel is compiled directly to network
layer code to preserve performance.

A channel definition is asymmetric for communication establishment to stat-
ically constrain communication topology. A channel of type channel<A, B,
protocol> guarantees that only activations of type A can initiate a request
to activations of type B. Bidirectional channels can be constructed using union
type: channel<A|B, A|B, protocol>.

Ports The set of ports of a schema defines its interaction signature. Ports solves
Requirement d. Each port define a functionality of a component: A port only
accept communication that follow a given session type. Moreover, ports reduce
the complexity of the component code: Ports abstract away the communication
interconnection between the component inner logic (statically defined) and the
activations interactions over channels (dynamic bindings). For instance, sessions
primitives take ports as arguments and not channels.

Ports are static since they define the signature of a component schema: new
ports can not be added nor removed at runtime. However, bindings between
ports and channels depend of activation identity. Those bindings can evolve
dynamically, and transparently for the inner activation logic. Operationally, a
programmer binds a channel with port using the initial knowledge provided at
activation creation (thanks to parameters) or by exchanging channel identity
over existing sessions.
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1 protocol p_kv = &{ (* non-deterministic choice *)
2 "get": !key?value.; (* send key, receive value *)
3 "put": !tuple<key,value>?bool.; (* or send tuple, receive ack *)
4 };
5

6 (* channel<active,passive,protocol> *)
7 channel<Client, KVServer, p_kv> chan = channel(p_kv);
8 (* start new component at a given location *)
9 activation_ref<KVServer> kv_a = spawn KVServer(chan) @ place_redis;

10 (* start and connect a client *)
11 activation_ref<Client> c = spawn Client(chan, kv_a);

Listing 1: The minimal key-value store in Varda.

2.4 Orchestration logic

The objective of the orchestration is to write executable code doing dynamic
interaction whereas the interaction interfaces describes what messages can be
exchanged between components.

The main work of orchestration is to spawn activations and to interconnect
ports using channels. Inside a component schema, the orchestration logic is in
charge of doing the bindings between communication interfaces with procedural
ones. For instance, this is the only work of the callback method of Listing 2.
A programmer can also write the core behaviour of orchestration schemas (e.g.,
KVRouter) using the Varda orchestration logic in order to be completely ag-
nostic to the underlying langauge. The Varda compiler generates the effective
implementation.

In addition to component schema description language, Varda proposes a
small imperative and Turing-complete language to write the orchestration logic.
Varda language contains classical language constructs (e.g., binders, expression,
function, control-flow statement and inductive type) ; communication primitives
to exchange between activations using sessions; and, activation creation primi-
tive: spawn Schema(arguments) @ place;.

2.5 Example: a minimal key-value store

Listing 1 presents the architecture of a warm-up case study: a key-value store
composed of one server and one client. This warm-up example is a piece of
Figure 1a: a KVServer (kv_a), without sharding, that serves requests of one
client such that the server use a Redis backend and is collocated with it. This
example assumes that the Redis server is already running before spawning a
KVServer. KVServer serves as a proxy to the Redis server.

In Listing 2, KVServer specifies the interface of a Redis server. Conversely,
Client specifies of the interface of an application using the key-value store.
KVServer exposes a communication interface, composed of its port p_in and
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1 component KVServer {
2 (* Method triggered at spawn, binds the channel *)
3 onstartup (channel<Client, KVServer, p_kv> chan){
4 this.chan = chan;
5 }
6 (* Communication interface *)
7 channel<Client, KVServer, p_kv> chan;
8 (* Liste on channel [this.chan] for session with
9 (dual p_kv) type. Upon reception, message is handled by

10 [this.callback]. *)
11 inport p_in on this.chan expecting (dual p_kv) = this.callback;
12 (* Bindings between interaction interface and procedural interface *)
13 void callback (blabel msg, p_kv s) {
14 branch s on msg { (* non deterministic choice*)
15 | "get" => s -> {
16 tuple<key, ?value.> tmp = receive(s); (* wait for key *)
17 (* return the value bound to the received key [tmp.0] *)
18 fire(tmp.1, get(tmp.0));
19 }
20 | "put" => s -> { ... }
21 }
22 }
23 (* procedural interface *)
24 value get(key k);
25 bool put(key k, value v);
26 }

Listing 2: KVServer component schema

1 target akka;
2

3 impl headers {=
4 (* use the java-redis-client library *)
5 import nl.melp.redis.protocol.Parser;
6 =}
7

8 (* binding for the get method *)
9 impl method KVServer::get {=

10 (* Open a socket to the local redis backend *)
11 nl.melp.redis.Redis r = new nl.melp.redis.Redis(new

Socket({{ip(current_place())}}, {{port(current_place()))}});↪→

12 (* perform the GET request on key [k] *)
13 return r.call("GET", {{string_of_ley(k)}});
14 =}

Listing 3: KVServer::get bindings for the Akka target. The compiler interprets
Varda {{expression}} strings inside an impl body.
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the communication handling logic callback method; a procedural interface com-
posed of two abstract methods get and put bound the black-box service (resp.
implementation) and no orchestration logic. The compiler specializes the two
abstract methods get and put during code generation according to implementa-
tion bindings (Listing 3). Moreover, the communication handling logic (here the
callback method) is in charge of doing the binding between the communication
interface and the procedural interface.

A channel chan, guaranteeing FIFO delivery for point-to-point communica-
tion, interconnects the client with the server (Listing 1). Both client and server
discover chan as an argument. chan is asymmetric and constrains the communi-
cation topology: the left hand side of the channel type (e.g., Client) initiate the
communication, the right hand side can not. Moreover, communication follows
the protocol p_kv (technically, a session type [14]): a client can choose between
two operations put or get. Once client chooses the get (resp. put) case, the com-
munication must follow the pattern: client sends a key and expects to receive a
value before the session is closed (resp. put).

3 Interception

At this point, one major remaining question is how to easily and safely enrich (or
trim) system’s functionalities. For instance, manually sharding the minimal key-
value (Listing 1) would be time consuming: a programmer needs to manually (1)
create the sharding logic (the router); (2) creates new channels to interconnect
the shards (resp. the clients) with the sharding logic; (3) instantiate a router
with correct channels interconnections; and (4) for each shards, bind correctly
the new channels.

We propose that Steps (2), (3) and (4) should be automatically handled dur-
ing compilation while followings this requirements: (a) impose arbitraly inter-
ception, orthogonal from placement and communication topology, and prevent
intercepted activation to bypass the interception mechanism (b) be non invasive
and transparent to avoid to the programmer to edit the whole architecture; (c) be
generic and modular (d) should be executed efficiently to preserve performance;
and, (e) be preserved by composition: multiple alterations could be nested to
modularly build a major functionalities.

To address this problem, Varda leverages the interception mechanism as the
core Varda primitive used to uniformly apply the orchestration logic. Developers
write the interception logic at same abstraction level, and in the same language
as the orchestration logic. Then, the Varda transparently and statically rewrite
the architecture by adding proxies [38] in between groups of activations.

Varda interception is an architecture construction. This helps preserving the
preexisting semantics and formalizing the new architecture. Other approaches
work on the network layer and do dynamic interception, as we describe it in
Section 4.4.

In the following, we review what a programmer can achieve using intercep-
tion:
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– Message redirection can be achieved by using the same interception instru-
mentation as sharding, with a custom routing policy (e.g., round-robin for
loadbalancing and broadcasting for replication).

– Dynamically constraining topology (e.g., access control) can be done as long
as dropping communication take place at session establishment since sessions
can not be discard arbitrarily due to session type guarantees.

– Encapsulating messages or piggy-packing metadata between activations can
also be done even if it is a bit more tricky: the programmer needs to introduce
a new intermediate protocol without breaking transparency.

– Changing the communication behaviour can be performed by intercepting
the communication and implementing the communication behaviour inside
the interception logic. For instance, programmers can transparently replace
a point to point communication by a broadcast.

– Any combinations of those patterns can be achieved using nested interception
contexts.

3.1 What is interception?

The interception concernes a group of channels in between an internal group
of activations and the external one composed of all the remaining activations.
In Varda, the programmer has only to enclose the creations of activations, she
want to intercept, into an interception scope (using a intercept statement).
The interception scope is part of the orchestration code. Therefore, applying
interception is orthogonal to defining the logic of the both groups, their interac-
tions and their placement. This solves Requirement a. Whereas, the interception
behaviour can depend on those three elements.

Interception concerns both the session establishment and the messages ex-
changed inside the session. Interception give the ability to the programmer to
alter arbitrarily the communications between two groups of activations: message
value and session can be alter or delayed. However, the type of the protocol
can not be altered arbitrarily, this point will be discussed when detailing trans-
parency.

What is not interception ? Interception is not designed for ensuring security iso-
lation. Interception can no prevent malicious activations to communicate with
the external worlds. Indeed, interception works with Varda communication prim-
itives whereas a malicious activation could bypass it from below by using arbi-
trary communication primitives provided by external code (e.g., sockets). Even
if activations only communicate with Varda communication primitives, intercep-
tion isolation could also be breached by above if an intercepted protocol allows
channel exchange (recall that channels are first-class value) and if the inter-
cepted activation dynamically binds this received channel to one of its ports.
Varda compiler does not prevent this: breaching interception could be used to
removed interception at some point to preserved performance, for instance once
an activation has migrated. However, this kind of breaches can by either forbid-
den: by disallowing channel transmission in the protocol definition: or, mitigated :
by checking the identity of forwarded channels inside the interception logic.
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1 intercept<KVRouter, anonymous> interception_policy {
2 activation_ref<KVServer> kv_a = spawn KVServer(chan);
3 activation_ref<KVServer> kv_b = spawn KVServer(chan);
4 }
5

6 activation_ref<Client> c = spawn Client(chan, kv_a);

Listing 4: Intercepting KVServer from Listing 1 to support sharding

3.2 Example: a sharded key-value store

With Varda, transforming the simple key-value store example into a sharded
version is a matter of transparently created an interception context containing
two KVServer, Listing 4. Such that the interception logic, defined as a component
called KVRouter, implements the sharding strategy. The interception_policy
instantiates a singleton KVRouter activation for the whole interception context.
The KVRouter postpones the establishment of a session between the interceptor
and a KVServer until the client give enough knowledge (e.g., the key) to select
the right KVServer. Delaying messages can be tricky, since arbitrary long delay
between messages of the same session could be trigger a timeout depending of
session implementation.

3.3 Expressing interception

To setup interception context, programmers have three things to do: (1) de-
fine the interception logic by providing an interceptor component schema (e.g.,
KVRouter); (2) delimit the interception scope using a intercept block statement
and (3) describe what interceptor activation is in charge of which intercepted
activations thanks to an interception policy.

Interception logic The interception logic is in charge of processing (alteration,
delaying and forwarding) session establishments and messages between internal
and external activations. The interception logic is defined as annotated methods
to remains generic and not to be specific to a given interception context. That
way, programmers do not have to take care of creating the communication inter-
face of the interceptor which depends on the interception context. The compiler
is in charge of specializing the interceptor component schema, for each context,
in order to create the needed ports according to the intercepted bridges. It binds
the annotated methods with generated ports based on methods signature: inter-
cepted session type (and message type for @msginterceptor) and the topology
of the communication (defined by from and to schemas).

Varda provides three methods annotations: @sessioninterceptor, @msginterceptor
and @onboard. @onboard methods are triggered at the creation of an inter-
cepted activation. Interceptor needs onboarding to distinguish internal activa-
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tions from externals one. To preserve transparency, onboarding must be hid-
den to the intercepted activation (resp. external activations). Hence, it is up
to the activation running the interception context to trigger the onboarding.
Interception logic can access the set of in the set of onboarded_activations.
@sessioninterceptor methods are triggered when a session is established, con-
versely @msginterceptor methods are triggered when a message cross the in-
terception border

Interception context Programmers define interception context inside the or-
chestration logic using a syntactic scope introduce by the intercept statement
(Listing 4). Activations spawned inside this scope are intercepted, the others
are not. Interception context does not behave like a classical syntactic scope.
Indeed, to make the interception fully transparent in term of variable bindings,
the interception scope exposes its binders. The parent scope, of the intercept,
contains the variables bound inside the interception context. Activation and
channels must process with special care not to break isolation, we only de-
scribe the activation case for brevity. Activations variables are exposed with
the same type but, outside the interception context, they are references to their
interceptor activation. This work transparently since the compiler specialize the
interceptor schema into a subtype of any intercepted schema, i.e., communi-
cation interfaces are equivalent. Moreover, exposed activations may need to
embed additional identity information. There are two different use cases: (1)
for sharding, KVServer identity (kv_a and kv_b) are not exposed because a
Client does not need to distinguish between intercepted activation; whereas
(2) to achieve access control with interception, the intercepted activation iden-
tity must be exposed since sending a request to kv_a differs from sending one
to kv_b. Identity exposition is managed by using the anonymous modifier of the
intercept statement: intercept<BaseInterceptor> preserve identity whereas
intercept<BaseInterceptor, anonymous> erase identity of intercepted activa-
tions.

User defined interception policy Neither the interception logic nor the inter-
ception context can expressed how and where interceptor activations are spawned
and what is the relation between intercepted activation and interceptor activa-
tion (e.g., one to one or many to one). To achieve this, the intercept statement
expect a user defined function called interception policy. Listing 5 defines a
singleton interceptor activation in charge of all intercepted KVServer.

Programmers can use the interception policy to (1) define the relation be-
tween intercepted activations and interceptor activation by splitting intercepted
activation in groups managed by an interceptor (according to their place, schema
and identity); (2) to reuse interceptor activation(s) between interception context
; (3) to choose where to place interceptors ; and, (4) to customize interceptor ar-
guments in a per context basis.

The policy is called at each spawn of an intercepted activation and it at-
tributes an interceptor activation to each spawned activations. The arguments
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1 activation_ref<KVStore> policy(
2 place -> activation_ref<KVStore> factory,
3 string intercepted_component_schema,
4 place p_of_intercepted
5 ){
6 if(this.singleton_interceptor == none()){
7 this.singleton_interceptor = some(factory(current_place()));
8 }
9

10 return option_get(this.singleton_interceptor);
11 }

Listing 5: Interception policy for S-KV

intercepted_component_schema denotes the schema of the intercepted acti-
vation and p_of_intercepted denotes its place. To make policy generic and
strongly typed, the compiler does not pass arguments of the intercepted spawn
to the policy.

To relieve programmers of binding the generated ports, of the specialized in-
terceptor, with intercepted bridges (remember that both depends on the context
and not only of the interceptor schema). The factory function spawns intercep-
tor’s activations to relieve programmers of binding the generated ports, of the
specialized interceptor, with intercepted bridges (remember that both depends
on the context and not only of the interceptor schema). The compiler provides
and specializes a factory function for each context.

4 Related work

4.1 Programming languages

Classical programming models for distributed computing are actor model [6,8,13],
service oriented computing [26], dataflow [9] or reactive programming and tierless
programming [10]. Recent evolutions tend to focus on easing specific distribu-
tion features by incorporating them into programming languages like consistency
handling [18,29,32,33], placement aware-computation [37,40] and builtin fault-
tolerance with [13,23,34] or without manual control [13]. However, they are not
designed to compose black boxes easily and transparently while preserving pro-
grammer control on low-level details. This has a high cognitive cost for the
programmer and a performance overhead.

4.2 Interface Description Languages

Interface description languages permits to formalize API to some extent and
often to derive serialization mechanism and interfaces skeleton. Google’s Protocol
Buffer [21] and Apache’s Thrift [19] provide basic typed specification of exchange
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messages. Hagar [1] extends the type system with polymorphism and generics.
However, all of them tend to be limited on what they can specify : they can not
reason on values; and, they must be used manually in combination with other tools
to build a system which implies that they can not capture the orchestration nor
the non-functional requirements.

4.3 Composition framework

Currently composition mostly rely on interconnecting containerized application
[16,12,5] or even serverless approach [7,20,22,31]. However, composition frame-
works do not achieve safe composition[17,30]. They mostly work at the network
layer which hamper reasoning on the semantics of the composition and of work-
ing on non-functional requirements. At a higher level of abstraction, CORBA [39]
permits to transparently compose heterogeneous components with well-defined
interfaces. They all deport the dynamic interconnections description and man-
agement into each component implementation without any general plan, except
in English written documents. Regis [28] models communications and dynamic
interconnection logic. However, this work do not address non-functional aspect
of composition and they do not provide the ability to transform the architec-
ture (like our interception mechanism) which means that every patterns must
be established by hand.

4.4 Dynamic interception

Other approaches providing interception mostly focus on dynamic interception.
The use network based interception mechanisms: firewall-like features (e.g., ipt-
ables [2], mesh-services [24,11]) or service workers [35] embedded in browsers.
They all lack the ability to describe the effects of the interceptions on the sys-
tem’s behaviour.

5 Conclusion

We present Varda, an architectural framework designed to build performant and
safe distributed systems by composing heterogeneous components. Furthermore,
it discharges the programmer from bridging the gap between implementation and
design architecture; and that simplifies the writing of classical distribution pat-
terns using a language-based interception mechanism. Varda model rests on three
principles: (1) strict separation of concern between architecture and component
implementation: one architecture can be used to generated multiple distributed
systems; (2) interception is the core primitive to uniformly and transparently
apply distribution patterns using static architecture rewriting; and, (3) preserve
programmer control on distribution by incorporating dynamic aspects of the ar-
chitecture (orchestration logic) and by embedding low-level details as first class
value (e.g., place, bridges).
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We are currently working on the evaluation of Varda: we are investigating
the cognitive cost of the model and the performance overhead of the generated
glue. Futures works can be divide in two branches: a) the first one targets per-
formance, for instance optimizing the architecture using rewriting (e.g., merging
components to avoid context switching); whereas, b) the second one explores how
to improve the dependability of distributed system using Varda (e.g., enriching
the type system or adding dynamic contracts).
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