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Abstract

A delay between the occurrence and the reporting of events often has practical impli-
cations such as for the amount of capital to hold for insurance companies, or for taking
preventive actions in case of infectious diseases. The accurate estimation of the number
of incurred but not (yet) reported events forms an essential part of properly dealing with
this phenomenon. We review the current practice for analysing such data and we present a
flexible regression framework to jointly estimate the occurrence and reporting of events.
By linking this setting to an incomplete data problem, estimation is performed via an
expectation-maximization algorithm. The resulting method is elegant, easy to understand
and implement, and provides refined insights in the nowcasts. The proposed methodology
is applied to a European general liability portfolio in insurance.

Keywords: EM algorithm, Nowcasting, Poisson regression model, Reporting delay

1 Introduction

This paper reviews and extends the literature on statistical models for problems where indi-
viduals (or objects) under study experience two events. The first, also called the initiating or
primary, event occurs at time x, and the second, the so-called secondary or consequent, event
only occurs at a later time s ≥ x. The presence of the delay u = s − x between the two
events leads to statistical challenges, because the currently observed number of primary events
is right-censored while observation delays are right-truncated, see e.g. the early contributions
by Lagakos et al. (1988), Kalbfleisch and Lawless (1989), Harris (1990) and Kalbfleisch and
Lawless (1991) for an introduction to the field. The term back-calculation (Brookmeyer and
Gail, 1988; Bacchetti et al., 1993) refers to the reconstruction of the past history of first events
that must have occurred to give rise to the observed pattern of second event cases, under the
assumption of a known delay distribution. Nowadays, nowcasting is often used for estimating
the current number of first events using only the available partial information on the reported
or registered secondary events (see Höhle and an der Heiden, 2014; van de Kassteele et al., 2019;
Bastos et al., 2019, for recent examples of nowcasting problems in epidemiology).

Such delays occur in different ways and in a variety of subject areas. In an insurance
setting a claim is only reported some time after its occurrence, because the damage was not
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immediately noticed or the insured needed some time to file the claim to the insurance company.
A proper estimation of these unreported claims is important, since financial regulations force
insurance companies to hold sufficient capital reserves to be able to fulfill their future liabilities
with respect to such claims. Jewell (1989) sketches first contributions to the modelling of
these occurred- or incurred-but-not-reported (OBNR or IBNR) claims in an insurance context.
In disease modelling at least two examples of these delays are studied in the literature. In
the first, x represents the time of diagnosis of a case (or another relevant event, like hospital
admission in Donker et al., 2011) and s is the time of reporting of the case to the organization
that coordinates the surveillance of the disease. This reporting delay may result from various
processes including logistics, or the time to complete a test and to report a confirmed case in
a health database. Statistical surveillance systems for the detection of outbreaks of infectious
diseases have to properly adjust for reporting delays in order to take timely preventive action
(see e.g. Farrington et al., 1996; Noufaily et al., 2015, 2016). In the second example x measures
the time of infection (with a virus, for example) and s is the time of onset of disease symptoms.
Insight in the distribution of the incubation time u = s−x is important to estimate the current
number of infections in a population. In reliability engineering and quality management, the
statistical analysis of warranty data requires taking the time between the failure and its reporting
into account in order to predict the number of future warranty claims from all units in service
(see e.g. Kalbfleisch et al., 1991; Wu, 2013).

The contribution of our paper is threefold. First, Section 2 sketches (a selection of recent)
contributions on nowcasting that appeared in actuarial, statistical or epidemiological literature.
Our literature overview stretches across multiple disciplines and structures these papers along
the time scale used in the modelling framework, where we distinguish between models for events
in continuous time and models for data aggregated over a coarser discrete time grid. Second,
we contribute to the literature by proposing in Section 3 a flexible yet practical modelling and
estimation framework capable of dealing with any parametric structure for both the occur-
rence as well as the reporting process. We employ an expectation-maximisation (EM) method
(Dempster et al., 1977) to jointly estimate the occurrence and reporting delay of the events
in the presence of covariates, allowing us to acquire the necessary insights in the dynamics
of both. Third, Section 4 presents the results of applying the model in a case study where
out-of-time evaluations are used to asses the predictive performance of the method. Moreover,
we benchmark our results against the findings obtained with a selection of modelling strategies
from the literature overview. Section 5 concludes. The supplementary document contains some
additional results regarding the case study.

2 Literature overview and notation

The event of interest (e.g. the failure of a product, the occurrence of an insured event or the
diagnosis of disease) happens at time X, though it is only reported or observed at a later time
S. The reporting delay is then U = S − X. Figure 1 represents the occurrence of multiple
events over time. When the reporting occurs before τ , the observation is complete (events 1
and 3 in Figure 1), while reporting after τ corresponds with a currently unreported case (events
2 and 4 in Figure 1). At time τ the analyst has to predict or evaluate the number of events that
incurred in the past, but will only be reported in the future. This is challenging because the
analyst faces incomplete data, with no information available for the unreported cases. Leaving
the continuous time setting, the dashed grid in Figure 1 pictures the aggregation of events when
choosing a coarser discrete time scale. The objective is to use the observed, reported events in
the upper triangle ∆r = {(X,U) | X ≤ τ, U ≤ τ −x} to predict unreported events in the lower
triangle ∆nr = {(X,U) | X ≤ τ, U > τ −X}.
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Figure 1: Occurrence and reporting of multiple events over time. Events 2 and 4 are unob-
served as these events get reported after the evaluation date τ . The dashed grid indicates the
aggregation of the continuous data towards a coarser discrete time scale. The events registered
in continuous time in the shaded regions will be aggregated into a single cell or observation in
the run-off triangle pictured in Table 1.

2.1 Continuous time models

When data are collected in (almost) real-time, predicting the number of unreported events
reduces to estimating the two-dimensional density fX,U for the occurrence and reporting of
events in [0, τ ]× [0, τ ]. Hereto, only observations observed on the upper triangle in Figure 1 are
available. Mart́ınez Miranda et al. (2013) and more recently Hiabu et al. (2021) estimate this
density with a two-dimensional kernel density estimator with support on the upper triangle. By
assuming a multiplicative kernel, the local linear density estimate can be extrapolated to the
lower triangle which then leads to a forecast for the occurred but not yet reported events. In
many applications, we are interested in the marginal densities, i.e. the occurrence intensity of
events on the one hand and the reporting delay distribution on the other hand. This interest
in the marginal densities is commonly translated into the following assumptions

(A1) The event counting process N(x) =
∑

i≥1 I{Xi ≤ x} for x ≥ 0 follows an inhomogeneous
Poisson point process with an intensity λ(x;α), which depends on some parameter vector
α.

(A2) Conditional on the occurrence time X, the reporting delay U follows a positive continuous
distribution with density fU |X(·;θ) and parameter vector θ. The reporting delay U is
independent of the event counting process N(x).

Let ∆r = {(xi, ui), i = 1, . . . , n|xi ≤ τ, ui ≤ τ − xi} denote the n observed events in the upper
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triangle. The associated log-likelihood of these reported events becomes

logL(α,θ|∆r) =
∑

(x,u)∈∆r

log
{
λ(x;α) · FU |X(τ − x|x;θ)

}
(1)

−
∫ τ

0
λ(v;α) · FU |X(τ − v|v;θ)dv +

∑
(x,u)∈∆r

log

(
fU |X(u|x;θ)

FU |X(τ − x|x;θ)

)
.

Optimization of this likelihood is complicated by the joint presence of λ(·;α) from the occurrence
process and FU |X(·|·;θ) from the reporting process, prohibiting a split of the likelihood. The
likelihood in (1) already appeared in Kalbfleisch and Lawless (1989), under the assumption
of independence between the time of the initiating event and the duration of the delay. Two
strategies for optimizing this likelihood commonly appear in the literature. First, a strand of
research directly optimizes this likelihood, despite its complexity. For example, Kalbfleisch and
Lawless (1989) use a parameterized Poisson process for infections and some parametric models
for incubation time, allowing the joint estimation of the occurrence and reporting processes
in continuous time. In actuarial science Haastrup and Arjas (1996) present a Bayesian and
Wahl (2019) a frequentist approach with the likelihood in (1) as focus. The latter contributions
build upon the fundamental ideas for the IBNR problem in actuarial science proposed by Jewell
(1989), Norberg (1993) and Norberg (1999).

A second strategy opts for simplicity by proposing a (heuristic) two-stage approach. For
example, Antonio and Plat (2014) fit a parametric distribution to the observed reporting delays
in a first step and then plug in the estimated reporting delay distribution when estimating
the parameters in the thinned Poisson process for the occurrence of reported events. The
log-likelihood of the reporting process becomes

logL(θ|∆r) =
∑

(x,u)∈∆r

log

(
fU |X(u|x;θ)

FU |X(τ − x|x;θ)

)
.

Given the occurrence time X = x of an observed event, its reporting delay is a right-truncated
variable U with truncation point τ−x. Lagakos et al. (1988), Kalbfleisch and Lawless (1991) and
Lawless (1994) (among others) focus on estimating the reporting delay under right-truncation
by inverting the direction of time, effectively transforming the right- into left-truncated data.
Standard statistical methods for left-truncated data, such as the Cox proportional hazard model
(Cox, 1972), can then be used to model the reporting of events. Badescu et al. (2016, 2019) and
Avanzi et al. (2016) follow a strategy similar to Antonio and Plat (2014), but model the event
occurrence process as a marked Cox process to allow for overdispersion and serial dependency.
Along this strand Verrall and Wüthrich (2016) decouple the full likelihood in (1) by considering
a plug-in estimate for the weekly periodic occurrence pattern of insurance claims, followed by
estimating parametric distributions for the reporting delay.

2.2 Discrete time models

2.2.1 Aggregating events towards a coarser time scale.

Events are usually not registered in continuous, but in discrete time periods. Such discrete
event counts result by aggregating the real time events towards a coarser time scale. Figure 1
sketches this aggregation from continuous to discrete time data. The day is the natural (dis-
crete) time unit in many administrative systems. Daily data are often aggregated to weekly,
monthly, quarterly or yearly event data, even though many granular data insights may get lost
in this aggregation process. For example, Becker and Cui (1997) consider discrete time units
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in quarterly periods and model the delay in entering AIDS diagnoses in a surveillance system.
Insurance studies traditionally use quarterly or yearly claim counts (Wüthrich and Merz, 2008).
In our notation and in the case study presented in Section 4 we consider event counts on a daily
level, even though our notation is generic and may refer to any other time unit of interest (e.g.,
weeks, months or years). The number of events which occurred on day t is denoted by Nt, where
the integer t indicates the occurrence date and ranges from 1 to τ . The number of these events
which have been reported after precisely d days are denoted as Ntd such that Nt =

∑∞
d=0Ntd.

Only those events that are reported before or at the evaluation date τ are observed, causing
Nt to be right-censored and the reporting delay distribution of the observed events occurring
on day t to be right-truncated at τ − t. Throughout this paper we denote the reported, and
therefore observed, number of events which occurred on day t by

N r
t =

τ−t∑
d=0

Ntd.

We denote the number of events that have happened on day t but are not yet reported by

Nnr
t =

∞∑
d=τ−t+1

Ntd ,

and the total number of such unreported events over all occurrence days by

Nnr =
τ∑
t=1

Nnr
t =

τ∑
t=1

∞∑
d=τ−t+1

Ntd.

In discrete time nowcasting the overall objective is to use the observed events N r = {Ntd | 1 ≤
t ≤ τ, d ≥ 0, t + d ≤ τ} to predict the events that are not yet reported Nnr = {Ntd | 1 ≤ t ≤
τ, d > 0, t+ d > τ}.

A convenient way to represent these event counts Ntd is with a two-way contingency table
where the rows correspond to occurrence time t and the columns indicate the reporting delay
d. Since we can only observe what has been reported, an incomplete two-way contingency table
results where the upper left-hand triangle is observed and the lower right-hand triangle is empty
and has to be predicted. Table 1 depicts the structure of such a triangle with reported events,
often called a run-off triangle in actuarial literature or a reporting triangle in epidemiology.
The shaded regions in Figure 1 and Table 1 visualize the aggregation of events registered in
continuous time into a single cell or observation in this triangle. The dimension of the triangle
depends on the granularity of the discretization. Smaller bin sizes correspond to larger triangles,
which usually result in more complex models to capture the heterogeneity present in the data.

2.2.2 A regression structure for the reporting intensity.

A first modelling strategy directly specifies a count regression model for the observed counts
Ntd in N r. Most often these counts are assumed to be independent and Poisson distributed,
i.e., Ntd ∼ POI(λtd), or, in case of overdispersion, a negative binomial distribution is used,
i.e., Ntd ∼ NB(λtd, φ), where λtd is the reporting intensity. In epidemiology, van de Kassteele
et al. (2019) model the two-dimensional surface in Table 1 using bivariate P-splines with a
smooth reporting intensity λtd and day-of-the-week effects expressed as deviations from it. This
intensity is modelled via a tensor product B-spline basis with pairwise products Bi(t)Bj(d),
where the basis functions Bi(t) capture the effect of occurrence time and the Bj(d) model the
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Table 1: Triangular display with aggregated event counts. Only the event counts in the upper
triangle are observed, whereas the occurred but not reported counts in the lower triangle have
to be predicted. The coloured cells in the triangle represent the aggregation of events registered
in continuous time in Figure 1 towards a coarser discrete time scale.

Occurrence Reporting delay

period 0 · · · τ − t · · · τ − 1

1 N10 · · · N1,τ−t · · · N1,τ−1
...

t Nt0 · · · Nt,τ−t
...

τ Nτ0

reporting delay. For the day-of-the-week effects dummy variables are included in the predictor,
taking the value 1 if a certain combination of t and d corresponds to a specific weekday, and
0 otherwise. The smooth intensity and day of the week effects are estimated simultaneously
using a penalized negative binomial regression model and the iterative reweighted least squares
algorithm. Bastos et al. (2019) correct for reporting delays in disease surveillance data with
a negative binomial regression model for the Ntd that takes spatiotemporal variation into ac-
count. In their Bayesian framework the occurred-but-not-reported cases are estimated from the
resulting posterior predictive distribution. A similar Bayesian modelling strategy is proposed
in McGough et al. (2020), which is then applied in Greene et al. (2021) to nowcast COVID-19
cases in New York City.

In actuarial science the so-called chain ladder method is probably the most widely used
technique to predict numbers of unreported claims. In this method the incremental event
counts Ntd are independently Poisson distributed (Hachemeister and Stanard, 1975; Renshaw
and Verrall, 1998) with E[Ntd] = λtd = λt · pd for all t = 1, . . . , τ and d = 0, . . . , τ − 1, where
λ1, . . . , λτ > 0 and p0, . . . , pτ−1 > 0 with sum constraint p0 + . . .+pτ−1 = 1. The latter assumes
all claims to be reported by the end of the delay period τ − 1. Beyond actuarial science, a
similar modelling strategy was also proposed in (for instance) the disease modelling examples
in Kalbfleisch and Lawless (1989) and Becker and Cui (1997). The log-likelihood corresponding
to the Poisson model formulation of the chain ladder method (also referred to as the Poisson
log-linear model in Sellero et al., 1996) is

logL(Ψ;N r) =

τ∑
t=1

τ−t∑
d=0

{−λt · pd +Ntd log(λt · pd)}+ c,

where we denote Ψ = {λ1, . . . , λτ , p0, . . . , pτ−1} and c is a constant not depending on the model
parameters. Maximizing the log-likelihood requires solving the following set of equations for Ψ,

τ−t∑
d=0

λt · pd =

τ−t∑
d=0

Ntd , t = 1, . . . , τ , (2)

τ−d∑
t=1

λt · pd =

τ−d∑
t=1

Ntd , d = 0, . . . , τ − 1 , (3)

subject to all elements of Ψ being positive and
∑τ−1

d=0 pd = 1. The Poisson maximum likelihood
conditions equate the sums of the claim counts in each row and column of the observed upper
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triangle N r to their expected value counterparts. Mack (1991, 1993) points out that this set of
equations can be solved recursively due to the triangular structure. A more standard approach
to estimate the parameters is to formulate the model as a generalized linear model and use a
numerical optimizer (see Taylor, 2000; England and Verrall, 2002; Wüthrich and Merz, 2008).

2.2.3 Modelling the occurrence and reporting processes.

An alternative approach explicitly models the underlying occurrence and reporting processes, in
line with the strategy outlined in the continuous time setting. The framework is then hierarchical
where the Nt follow an occurrence model and the Ntd|Nt are multinomially distributed. In
discrete time the assumptions (A1)-(A2) become

(A1’) The daily total event counts Nt for t = 1, . . . , τ are independently Poisson distributed with
intensity λt = exp(x′tα), where xt is the vector of covariate information corresponding to
occurrence day t and α is a parameter vector.

(A2’) Conditional on Nt, the event counts Ntd for d = 0, 1, 2, . . ., are multinomially distributed
with probabilities ptd = ptd(θ,xtd). These reporting probabilities do not depend on the
number of events that occurred on day t, sum to one and are modeled with parameter
vector θ and covariate information xtd.

The discrete occurrence intensities and reporting probabilities can be retrieved from the con-
tinuous time assumptions in (A1), (A2), when we assume λt to be piecewise constant between
integer time points and properly integrate the reporting density fU |X(·|·;θ). That is,

λ(x) = λt for x ∈ [t− 1, t),

ptd =


∫ t
t−1

(∫ t−x
0 fU |X(u|x;θ) du

)
dx for d = 0∫ t

t−1

(∫ d+t−x
d−1+t−x fU |X(u|x;θ) du

)
dx for d > 0.

The split in cases with reporting delay zero and a strictly positive delay follows from the different
shapes (i.e., the triangle in light gray versus the parallelogram in dark gray) when aggregating
continuous data in Figure 1. Note that the chain-ladder method discussed in Section 2.2.2 fits in
the framework outlined by (A1’)-(A2’) if we impose the sum constraint p0 + . . .+pτ−1 = 1. The
latter assumes all claims to be reported by the end of delay period τ−1, an assumption typically
made in an insurance context. The chain-ladder method assumes a stationary reporting process
since the probabilities pd do not depend on the occurrence period t.

We bundle the parameters to be estimated in Θ = (α,θ). Based on the model assumptions
(A1’)-(A2’) and the thinning property of Poisson random variables, the daily event counts Ntd

are independently Poisson distributed with intensities λt(x
′
tα) · ptd(θ,xtd) for t = 1, . . . , τ and

d = 0, 1, 2, . . .. Below we (often) use the more compact notation λt(x
′
tα) ·ptd(θ,xtd) = λt ·ptd to

make our writing more concise. In particular, the observed event count N r
t on day t is Poisson

distributed with intensity λt · prt where prt =
∑τ−t

d=0 ptd and the unreported event count Nnr
t is

Poisson distributed with intensity λt · pnrt where pnrt = 1− prt. Conditional on N r
t , the observed

daily event counts {Ntd | d = 0, 1, . . . , τ − t} are multinomially distributed with parameters
N r
t and {ptd/prt | d = 0, 1, . . . , τ − t}, since we have to account for the right-truncation of the

reporting delay. The likelihood of the observed data can then be written as the product of a
Poisson likelihood and a multinomial likelihood,

L(Θ;N r) =
τ∏
t=1

exp(−λtprt) (λtp
r
t)
Nr

t

N r
t !

N r
t !∏τ−t

d=0Ntd!

τ−t∏
d=0

(
ptd
prt

)Ntd

. (4)
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Equivalently, the likelihood can also be constructed by treating the daily event counts as right-
censored, since the number of unreported events is unknown,

L(Θ;N r) =
τ∏
t=1

∞∑
n=Nr

t

exp(−λt)λnt
n!

n!

(n−N r
t )!
∏τ−t
d=0Ntd!

τ−t∏
d=0

(ptd)
Ntd (pnrt )n−N

r
t .

Indeed, this expression reduces to (4) by rewriting the sum over n using the Taylor expansion
for the exponential function. The corresponding log-likelihood equals

logL(Θ;N r) =
τ∑
t=1

[
− λtprt +N r

t log(λt) +
τ−t∑
d=0

{Ntd log(ptd)− log(Ntd!)}
]
. (5)

Similar to the continuous time setting, the log-likelihood in (5) contains terms which depend
on the parameters of both the Poisson model for event occurrences (appearing in λt) and
the reporting delay distribution (appearing in ptd and prt ). This complicates direct maximum
likelihood estimation as it prevents separate optimization with respect to each of these parameter
components. In line with the continuous time literature review in Section 2.1, two strategies for
optimizing this likelihood are generally applied. A first strand puts focus on direct optimization
of this likelihood using a standard numerical method such as Newton-Raphson. This is feasible,
but we cannot rely on standard statistical modelling routines and we need to derive (analytically
or numerically) the gradient and Hessian of the log-likelihood in (5). Höhle and an der Heiden
(2014) propose a Bayesian approach for the joint modelling of the occurrence and delay process
for discrete data collected in epidemiology. Günther et al. (2021) then apply this Bayesian
model to construct nowcast estimates for the COVID-19 pandemic in Bavaria. In a second
strand, a (heuristic) two-stage approach keeps the likelihood tractable by putting focus on the
modelling of the reporting process, while using a nonparametric estimator for the occurrence
process. Examples are Lawless (1994) on random temporal fluctuations in reporting delays and
Crevecoeur et al. (2019) on the reporting of insurance claims in the presence of holiday effects.

2.3 The EM algorithm to tackle the missing data problem

Our literature overview for both continuous as well as discrete time models puts focus on either
the direct optimization of the likelihood or the use of heuristic two-stage procedures. In the ab-
sence of right-truncation the complete likelihood analogue of (1) (continuous) or (5) (discrete)
would split into an occurrence and a reporting likelihood and become tractable. This immedi-
ately suggests the use of the expectation-maximisation (EM) algorithm (Dempster et al., 1977)
to handle the missing data problem, as is recognized by a series of contributions on nowcasting.
Brookmeyer and Gail (1988) estimate a piecewise constant infection density while assuming a
Weibull distribution for the incubation time, independent of the time of infection. With an
iterative procedure similar to EM, Harris (1990) fits both categorical as well as continuous-time
models for the incidence of infections and their incubation time. Pagano et al. (1994) use the EM
algorithm but only focus on the estimation of the reporting delay distribution, while Bacchetti
et al. (1993) and Bellocco and Marschner (2000) assume a known (incubation) distribution for
the delays. These papers propose rather simple structures for the occurrence and reporting
processes, e.g. a stationary reporting delay distribution, or categorical models with separate
parameters for each t and d. In the next section we present a flexible yet practical estimation
framework capable of dealing with any parametric structure for the occurrence and reporting
processes. Because data are collected over discrete time units in administrative systems, we
propose our general model for the intensities λt(x

′
tα) and the reporting delay probabilities

ptd(θ,xtd) in (A1’)-(A2’). This framework not only allows for an easy calibration of each of
8



the models from Section 2.2.3, but also facilitates the estimation of new occurrence and report-
ing process specifications which were previously considered too difficult for joint optimization.
Aiming for flexibility, we incorporate covariates in both the occurrence process of events and the
reporting delay distribution. We capture evolutions over time or seasonal trends, by including
fluctuations in both the event counts and their reporting delays by month, day of the month
or day of the week of the occurrence date. Additionally, one can also model relationships with
external covariates which might influence the events such as economic circumstances, business
cycles and weather conditions. Day-specific particularities in the reporting delay (such as hol-
iday effects) can be modeled using designated day probabilities. The case-study developed in
Section 4 convincingly illustrates this, by letting the data set assist us in choosing an appropriate
occurrence and reporting delay structure.

3 An EM algorithm for the joint estimation of the occurrence
and reporting delay of events

3.1 Parameter estimation using an EM algorithm

Starting from the log-likelihood in (5) we choose to treat the truncation as a missing data
problem and employ an EM algorithm to simplify maximum likelihood parameter estimation.
Consider the complete version of the data N = N r ∪Nnr = {Ntd | 1 ≤ t ≤ τ, d ≥ 0} which
augments the observed daily event counts from the upper part of the triangular display in Table
1 with the unknown values of the future event counts in the lower triangle. Given the complete
data N , we construct the complete log-likelihood function

logLc(Θ;N) =

τ∑
t=1

[
− λt +Nt log(λt) +

∞∑
d=0

{Ntd log(ptd)− log(Ntd!)}
]
, (6)

which allows for a separate estimation of the parameters α of the event occurrence model
(appearing in λt(x

′
tα)) and θ of the reporting delay distribution (appearing in ptd(θ,xtd)).

From a numerical point of view, we propose to deal with the infinite sums over the reporting
delay d in (6) by introducing

Nt,τ+ =
∑
d≥τ

Nt,d

and
Nnr = {Nt,d | 1 ≤ t ≤ τ, t+ d > τ, d < τ} ∪ {Nt,τ+ | 1 ≤ t ≤ τ}.

This implies grouping all events reported with a delay of at least τ days in a remainder category.
The latter are the events reported beyond the right boundary of the reporting triangle in
Table 1. The complete log-likelihood still factorizes into occurrence and reporting contributions
and becomes

logLc(Θ;N) =
τ∑
t=1

[
− λt +Nt log(λt) +

τ−1∑
d=0

{Ntd log(ptd)− log(Ntd!)}

+Nt,τ+ · log
(∑
d≥τ

ptd

)
− log(Nt,τ+!)

]
. (7)

The EM algorithm exploits the simpler form of Lc(Θ;N) by iterating between computing
expectations in an E-step and maximization in an M-step. Applied to our setting, the numbers
of unreported events are replaced by their expected values in the E-step and the log-likelihood
of the augmented data is maximized in the M-step. While numerical optimization is required
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in the M-step, the parameters of the event occurrence model can be estimated separately from
the reporting delay parameters and standard software routines can be utilized in the absence
of truncation. We discuss the steps of the EM algorithm in more detail for the kth iteration.

E-step. We take the conditional expectation of the complete log-likelihood (7) given the
observed data N r and using the current estimate Θ(k−1) of the parameter vector Θ:

Q(Θ; Θ(k−1)) = EΘ(k−1) [logLc(Θ;N) |N r] . (8)

This requires to compute the expected values of the future event counts

N
(k)
td = EΘ(k−1) [Ntd |N r] =

{
Ntd if d ≤ τ − t
λ
(k−1)
t p

(k−1)
td otherwise,

(9)

for t = 1, . . . , τ and the total daily event counts are

N
(k)
t =

τ−t∑
d=0

Ntd +

τ−1∑
d=τ−t+1

N
(k)
td +N

(k)
t,τ+.

The terms in (8) containing EΘ(k−1) [log(Ntd!) |N r] depend on the observed event counts and
the parameter values in iteration k − 1 and these will therefore be treated as constants in the
M-step where the maximization is with respect to the parameter vector Θ.

M-step. We maximize the expected value (8) of the complete data log-likelihood obtained in
the E-step with respect to the parameter vector Θ. In order to optimize (8) with respect to
α as defined in model assumption (A1’), we have to maximize the terms related to the event
occurrence model,

−
τ∑
t=1

λt +
τ∑
t=1

N
(k)
t log(λt) = −

τ∑
t=1

exp(x′tα) +
τ∑
t=1

N
(k)
t x′tα , (10)

which is a weighted Poisson log-likelihood, possibly including an offset term (to include an
exposure-to-risk measure, as illustrated in the case study covered in Section 4). The parameter
values optimizing (10) are denoted by α(k). Updating the estimates for the parameters θ of the
reporting delay distribution requires the maximization of

τ∑
t=1

τ−1∑
d=0

N
(k)
td log{ptd(θ,xtd)}+

τ∑
t=1

N
(k)
t,τ+ · log{

∑
d≥τ

ptd(θ,xtd)}. (11)

We now have to optimize a right-censored likelihood with right-censoring at delay τ . Depending
on the problem at hand, the likelihood can be simplified by omitting the censoring term when
reporting events with a delay of more than τ − 1 days is highly uncommon, see our discussion
in the case study of Section 4.

Initial step. The first E-step of the EM algorithm with k = 1 requires a starting value Θ(0)

for the parameter set. Our strategy is to first apply the chain ladder method (see Section 2.2)

on the daily event counts to obtain initial predictions N
(0)
td of the future event counts. Then,

we initialize Θ by applying an M-step based on these initial event count estimates. More
specifically, we use the Wüthrich and Merz (2015) formulation of the chain ladder method in
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terms of the chain ladder development factors, allowing for a fast and practical implementation.
Therefore, we define the cumulative event counts as

Ctd =

d∑
j=0

Ntj for t = 1, . . . , τ, and d = 0, . . . , τ − t ,

and estimate the development factors of the chain ladder method as

f̂d =

∑τ−d
t=1 Ctd∑τ−d

t=1 Ct,d−1
for d = 1, . . . , τ − 1 . (12)

The chain ladder method applies these development factors to the latest cumulative event count
in each row to produce forecasts of future cumulative event counts:

Ĉt,d = Ct,τ−tf̂τ−t+1 . . . f̂d for t = 2, . . . , τ, and d = τ − t+ 1, . . . , τ − 1 .

We use these chain ladder estimates for the cumulative event counts to initialize the expected
incremental event counts as

N
(0)
td =


Ntd if d ≤ τ − t
Ĉt,τ−t+1 − Ct,τ−t if d = τ − t+ 1

Ĉtd − Ĉt,d−1 otherwise,

for t = 1, . . . , τ and apply an M-step, as outlined above with k = 0, to find decent starting
values Θ(0). For delays beyond the maximum observed delay (i.e. d > τ − 1) we put the initial

values N
(0)
td equal to zero.

Convergence. The log-likelihood (5) increases with each EM iteration (Dempster et al.,
1977). Given proper starting values, the sequence Θ(k) converges to the maximum likelihood
estimator (MLE) of Θ corresponding to the incomplete data log-likelihood logL(Θ;N r) in (5).
The stopping criterion we apply is based on the relative change in the log-likelihood. Namely, we
iterate until the absolute value of {logL(Θ(k);N r)−logL(Θ(k−1);N r)}/{0.1+logL(Θ(k);N r)}
becomes smaller than 10−8. The parameter vector estimate upon convergence is denoted by Θ̂.

3.2 Asymptotic variance-covariance matrix

It is expected that when the number of parameters is finite, asymptotic normality of the estima-
tors holds under quite general conditions, though they depend on the specific problem settings.
However, if the number of parameters increases with τ , such as in a chain ladder model, the
asymptotic properties of the maximum likelihood estimators are difficult to obtain and require
a more detailed and rigorous study.

While an EM algorithm by itself does not output an estimated covariance matrix of the pa-
rameter estimators, with some additional effort, such matrix may be constructed. Louis (1982)
showed how the observed information matrix can be expressed in terms of the gradient and
second derivative of the complete data log-likelihood function. This approach avoids working
with the incomplete data log-likelihood function and leads to analytic expressions which can be
computed using the model specifications. The supplemented EM algorithm (Meng and Rubin,
1991) provides a computational, iterative approach using the negative second Hessian matrix
of the expected complete-data log likelihood. Oakes (1999) explains how the matrix of second
derivatives of the observed data log-likelihood can be obtained using the derivatives of the func-
tion Q, see (8), and provides expressions for exponential family models. For models for which
analytical results are too hard to obtain, numerical derivatives could be used instead.
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3.3 Variable selection and model diagnostics

If one works with the log-likelihood from (5), in principle all known methods for likelihood
estimation are applicable, in particular the use of information criteria such as AIC (Akaike,
1973) and BIC (Schwarz, 1978) for variable selection, see Claeskens and Hjort (2008, Chap. 2,
3) for more explanation about their use. However, when an EM algorithm is used for estimation,
care needs to be taken since at convergence the function Q of (8) is not the maximized log-
likelihood. Cavanaugh and Shumway (1998) developed AICcd which allows to directly work
with Q though it requires an adjustment to the ‘penalty’ part of the AIC. Such an adjustment
is used by Claeskens and Consentino (2008) for variable selection with missing covariate data,
and by Dirick et al. (2015) for selection in multiple event mixture cure models.

The complete data AIC value for use with an EM algorithm is defined by

AICcd = −2Q(Θ̂; Θ̂) + 2trace{Ic(Θ̂;N r)I−1o (Θ̂;N r)},

with the square matrices

Ic(Θ̂;N r) = − ∂2

∂Θ∂Θ′
Q(Θ̂; Θ̂); Io(Θ̂;N r) = − ∂2

∂Θ∂Θ′
logL(Θ̂;N r),

where Io estimates the limiting covariance matrix of Θ̂, for which methods such as described in
Section 3.2 may be used.

For model selection purposes, the AICcd values are computed for each considered model
and the model with the smallest value of AICcd gets selected.

The matrix Ic(Θ̂;N r) is also the main ingredient for model diagnostic measures after using
an EM algorithm, see Zhu et al. (2001) and Barreto-Souza and Simas (2017). To define the
generalized Cook’s distance to investigate the influence of a single observation, thus of a single
Ntd with t = 1, . . . , τ and d = 0, . . . , τ − 1, we use a one-step approximation as in Zhu et al.
(2001) to avoid refitting the model. Define Q̇−[t,d](Θ; Θ̂) = E[∂ logLc,−[t,d](Θ;N)/(∂Θ)] with

observation t, d removed from the summation, which is estimated by replacing Θ by Θ̂. The
generalized Cook’s distance for use with the output of an EM algorithm now reads, for t =
1, . . . , τ and d = 0, . . . , τ − 1,

GDt,d = Q̇[t,d](Θ̂; Θ̂)′I−1c (Θ̂;N r)Q̇[t,d](Θ̂; Θ̂).

Large values should encourage further investigation of those observations. We refer to the
mentioned references for other influence measures that can be used with an EM algorithm.

3.4 Prediction and out-of-time evaluation tools

Using the estimated parameter vector Θ̂, we predict the number of daily unreported events
in the lower triangle of Table 1. Point estimators for all Ntd ∈ Nnr can be obtained using
the expected values N̂td = λ̂t p̂td. Similarly, the total number of unreported events per day is
estimated by N̂nr

t =
∑∞

d=τ−t+1 N̂td = λ̂t p̂
nr
t and the total number of unreported events over all

occurrence days by N̂nr =
∑τ

t=1 N̂
nr
t . Moreover, under the model assumptions (A1’)-(A2’), the

future daily number of events Ntd (t ≤ τ, t+d > τ) are independently Poisson distributed and we
thus have that Ntd ∼ Poisson(λt ptd), N

nr
t ∼ Poisson(λt p

nr
t ) and Nnr ∼ Poisson (

∑τ
t=1 λt p

nr
t ).

This allows us to construct prediction intervals and to make probabilistic statements concerning
the number of unreported events after replacing the intensities by their maximum likelihood
estimates. With a model defined on a daily level (by means of example) these unreported events
can be divided into daily nowcasts by occurrence date or by reporting date, as we demonstrate in
the case study in Section 4. The latter is of particular interest when using our model in practice
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as it gives the analyst a refined view on the future reporting times (at daily level or aggregated
e.g. by future reporting weeks or months). An out-of-time evaluation is then a valuable tool
to assess the predictive performance of a proposed nowcasting model. Hereby, we restrict the
time window, say to events with occurrences 1 ≤ t ≤ τ? < τ and reporting delays d ≥ 0 and
t + d ≤ τ?, calibrate the model with the adjusted evaluation date τ? and use it to nowcast
the events with 1 ≤ t ≤ τ? and τ ≥ t + d > τ?. These nowcasts can then be compared to the
actual observed reporting of events. We are particularly in favor of performing a moving window
out-of-time evaluation, where we repeat the single out-of-time evaluation multiple times with
different evaluation dates τ?. This not only allows to assess the stable predictive performance
of a model across multiple evaluation dates, but also allows to verify possible changes in the
parameters when calibrated over different subsets of data. When such (substantial) changes are
detected, the use of change-points in the modelling of the occurrence and reporting processes
may be an interesting direction to explore, see Tabnak et al. (2000) for an example in modelling
reporting delays in AIDS surveillance data.

3.5 Example: revisiting the chain ladder method with an EM algorithm

The chain ladder introduced in Section 2.2 imposes a multiplicative structure on the reporting
intensity, with a stationary reporting delay distribution. Classic ways to estimate this model
either rely on a log-linear Poisson regression model or use the development factors discussed in
the initialization step of an EM algorithm (see Section 3.1). We now revisit the estimation of
the chain ladder method and discuss how its parameters can equivalently be estimated using
our proposed estimation framework. The complete log-likelihood related to the chain ladder
method is similar to (6) with the difference that the reporting delay probabilities pd do not
depend on the occurrence period t and the sum over d runs until τ − 1. The latter is linked
to the fact that the chain ladder method does not allow for extrapolation beyond the range of
data (cfr. England and Verrall, 2002, for extensions of the classical chain ladder method which
involve the estimation of tail factors). The E-step is the same as (9) with, for t = 1, . . . , τ and

d = 0, . . . , τ − 1, p
(k−1)
td replaced by p

(k−1)
d , whereas the M-step simplifies to

λ
(k)
t = N

(k)
t =

τ−1∑
d=0

N
(k)
td and p

(k)
d =

∑τ
t=1N

(k)
td∑τ

t=1

∑τ−1
d=0 N

(k)
td

=

∑τ
t=1N

(k)
td∑τ

t=1N
(k)
t

.

In case the chain ladder factors (12) are used in the initial step (see Section 3.1), such that

in fact N
(0)
td = λ̂t p̂d for t = 2, . . . , τ and d = τ − t+ 1, . . . , τ − 1 due to the equivalence with the

Poisson model, convergence is reached immediately the first time we apply the M-step above.
Indeed, we then obtain

λ
(0)
t =

τ−1∑
d=0

N
(0)
td =

τ−t∑
d=0

Ntd +

τ−1∑
d=τ−t+1

N
(0)
td = λ̂t

τ−1∑
d=0

p̂d = λ̂t,

where we used (2). Similarly, using (3), we find

p
(0)
d =

∑τ
t=1N

(0)
td∑τ

t=1

∑τ−1
d=0 N

(0)
td

=

∑τ−d
t=1 Ntd +

∑τ
t=τ−d+1N

(0)
td∑τ

t=1 λ̂t
=

∑τ
t=1 λ̂t p̂d∑τ
t=1 λ̂t

= p̂d.

Using an EM algorithm, the iterative steps are easy and intuitive and, upon convergence, the
same parameter estimators for λt and pd are obtained compared to direct maximum likelihood
optimization. When structuring the occurrence and reporting delay parameters (as we propose
in Section 2.2.3), the model can no longer be solved analytically nor formulated as a generalized
linear model. An EM algorithm then offers an elegant solution.
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4 Case study: insurance nowcasting

We analyze a data set with the occurrence and reporting dates of claims in a portfolio of general
liability insurance policies for private individuals from a European insurance company. The goal
is to predict (or: nowcast) the number of claims that already incurred in the past, but are not
yet reported to the insurance company.

4.1 Description of the insurance dataset

Detailed claim and policy information is available from January 2000 until August 2009. This
includes the occurrence date of a claim, the time between occurrence and reporting of the claim
to the insurance company and an exposure-to-risk measure. The online supplement further
details the exposure measure that is available in this dataset. To enable out-of-time prediction,
we restrict our analysis to claims that have occurred between January 1, 2000 and August 31,
2004. We set the new evaluation date, say τ?, at the end of this time window, on August 31,
2004 and want to estimate the total incurred but not reported (IBNR) claim count, as well as
the reporting dates of these IBNR claims. Based on the full data set until August 2009, 176 671
claims have occurred during this time window. Due to a reporting delay, only 174 624 of these
have been reported by the evaluation date, as visualized in Figure 6 in the online supplement.
The remaining 2047 claims are IBNR claims, i.e. claims which have occurred between January
2000 and August 2004 but have only been reported after the evaluation date and before the
end of the observation period.

4.2 Parametric models for the occurrence and reporting processes

In line with Section 2.2.3, we work in discrete time and explicitly model the occurrence and
reporting processes.

Occurrence model. Let Nt be the total insurance claim counts that occur on day t, for
t = 1, . . . , τ? where t = 1 is Jan 1, 2000 and t = τ? refers to August 31, 2004. We model the Nt

as independent Poisson distributed random variables with intensity λt, see assumption (A1’),
structured as

λt = et · exp
(
α0 + αjan1(t) + αdec31(t) + αmonth(t) + αdow(t) + αdom(t)

)
, (13)

where et is the exposure on day t, month(t) indicates the month, dow(t) the day of the week
and dom(t) the day of the month to which t belongs. We also include parameters for occurrence
days t on January 1 and December 31, because on these days many claims occur.

Reporting model. Figures 7a and 7b in the online supplement illustrate how reporting
probabilities decrease over time and are low on Saturdays and Sundays. Supported by these
empirical findings we structure reporting delay as the product of week probabilities and day
(or intra-week) probabilities ptd(θ,xtd) = pWtw(θ,xt) · pintratd . Here, pWtw denotes the probability
of reporting an event from occurrence day t in the wth week after occurrence. The intra-week
reporting probabilities are denoted with pintratd and sum to 1 over the days within the reporting
week.

The reporting week probabilities

pWtw =
Γ(φ+ w)

w!Γ(φ)

φφµwt
(φ+ µt)φ+w

for w = 0, 1, 2, . . . ,
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are modeled using the probability mass function of a negative binomial distribution with ex-
pected value µt = exp(x′tθ) and variance µt+µ2t /φ, where φ is the dispersion parameter and xt
is the covariate vector corresponding to occurrence day t. Figure 7b in the supplement indicates
that the negative binomial distribution is a good fit. We structure the µt as follows,

µt = exp
(
θ0 + θjan1(t) + θdec31(t) + θmonth(t) + θdow(t) + θdom(t)

)
, (14)

including parameters for occurrence day t on January 1 and December 31.
A first modelling strategy for the reporting delay day probabilities symbolically writes these

probabilities as
pintratd = P(dow(t),wday(t, t+ d)) , (15)

where wday(t, t + d) orders the working days within the reporting week with separate levels
for Saturday and Sunday. For example, when the claim occurred on a Thursday, Friday is
wday2 = wday(t, t+ 1) and Monday is wday3 = wday(t, t+ 2). The 7× 7-matrix P then contains
the day probabilities related to the first week. Each element in P is between 0 and 1 and all
row sums equal 1.

Alternatively, we project the seven intra-week reporting probabilities pintratd to six probabil-
ities, inspired by the reverse time strategy of Kalbfleisch and Lawless (1991). This allows to
leave the sum-to-one restriction on the intra-week reporting probabilities. Moreover, we can now
include covariate information related to both the day of occurrence t and the actual reporting
date t+ d. We define

qt,7w+j = P (delay = 7w + j | 7w ≤ delay ≤ 7w + j)

=
pintrat,7w+j∑j
k=0 p

intra
t,7w+k

for j = 1, . . . , 6, (16)

with w =
⌊
d
7

⌋
(the reporting week after occurrence) and j = d − 7w the intra-week day of

reporting. Expression (16) takes the form of a discrete time hazard rate, but due to the reverse
time strategy we now condition on failure before day 7w + j instead of survival. We structure

logit(qt,d) = x
′
tdγ = γ0 + γworkdays(t,t+d) + γdow(t+d) + γholiday(t+d), (17)

where workdays(t, t + d) counts the number of elapsed working days in the current reporting
week, i.e. excluding the weekend and holidays, and holiday(t+ d) indicates whether t+ d is a
holiday. Reporting on holidays is exceptional in our data set. The inclusion of dummy variables
for holidays allows to capture this empirical fact in the intra-day reporting probabilities, while
distinguishing between national holidays on which all companies are closed and two unofficial
holidays (New Year’s Eve and Good Friday).

4.3 Competing strategies: directly modelling the reporting intensity and the
chain ladder method

We also study some competing modelling strategies proposed in the literature. We consider
two versions of the models discussed in Section 2.2.2 where the Ntd are independent Poisson
distributed random variables with mean λtd structured as

λtd = et · exp
(
αjan1(t) + αdec31(t) + αmonth(t) + αdow(t) + αdom(t) +

βholiday(t+d) + βholiday(t+d+1) + βdow(t+d) + βdelay(d)
)
, (18)

or

λtd = et · exp
(
αt + βholiday(t+d) + βholiday(t+d+1) +

βdow(t+d) + βdelay(d)
)
. (19)
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While (18) uses covariates capturing relevant information from t, (19) includes a parameter
αt for each t. Both model specifications structure the information on the reporting delay with
a parameter βdelay(d) for each observed delay (see e.g. Bastos et al., 2019) as well as βdow(t+d)
referring to the day of the week of the effective reporting date t + d. The βholiday(t+d) and
βholiday(t+d+1) correspond to reporting on a holiday, or the day after. No explicit reporting
delay distribution is proposed, but instead a large number of parameters is used.

We also calibrate the chain ladder method using a yearly grid. That is,

λtd = λyear(t) · pyear(t+d)−year(t), (20)

where λyear(t) is the effect of the year of occurrence to which day t belongs. Reporting delay
is modelled independently from the occurrence, with a parameter per year of reporting, thus
pyear(t+d)−year(t) describes the effect of the reporting year of the claims that occurred on day t
and were reported with d days of delay.

4.4 Parameter estimates

For the models proposed in Section 4.2, we use the EM algorithm of Section 3 to estimate the
parameters in the occurrence and reporting processes. For the models in Section 4.3, maximum
likelihood estimates are obtained with the glm4 routine in the R package MatrixModels (Bates
and Maechler, 2015).

To grasp the insights obtained via an explicit specification of the occurrence and reporting
processes, we focus on the maximum likelihood estimates of the parameters in the occurrence
model (13) combined with the reporting model with reporting week probabilities in (14) and
intra-week reporting probabilities in (15). We evaluated the impact of the censoring term
in the reporting delay likelihood used in the M-step, see (11). We obtained similar parameter
estimates when omitting the reporting of events with a delay of more than τ?−1 days compared
to the estimates obtained under the simplified likelihood that drops the censoring term in
(11) (comparison not shown). Therefore, the results below are obtained with the simplified
reporting likelihood. The parameter estimates of some alternative specifications are deferred to
Section A.3 in the online supplement.

The effects related to the categorical predictors in the Poisson occurrence model specified in
(13) are visualized in Figure 2. Figure 8 in the online supplement shows the parameter estimates
for the negative binomial regression model of the reporting delay in weeks, while Table 2 in the
online supplement collects the estimated intra-week probabilities from (15). The maximum
likelihood estimates are shown along with Bonferroni adjusted simultaneous 95% confidence
intervals based on the inverse of the expected information matrix. The intercept in the Poisson
model is estimated as -5.965 with 95% confidence interval [−6.020,−5.910].

Figure 2 reveals a seasonal pattern in which the number of claims rises in the middle of
the year and falls around the year end. Claims most likely occur in June and least likely in
December with an estimated difference in expected value of 42%. The calibrated day of the week
effect shows an increase in the expected number of claims on Saturdays and a slight decrease
on Tuesdays and Thursdays. The categorical effect of the day of the month shows a remarkable
pattern which is similar in both the claim occurrence and the reporting delay model. On the
1st and 15th, the number of claims as well as the reporting delays have significantly higher
expected values. To a lesser extent, this is also present for the 5th, 10th, 20th, 25th, and 30th
or 31st day of each month. This pattern can most likely be explained by rounding errors of the
occurrence date when insureds have to report a claim which took place several weeks or months
ago. Since this misreporting of dates is more likely to occur for claims which are only reported
after a longer time period, we simultaneously see an increase in the expected reporting delay
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Figure 2: Maximum likelihood estimates and 95% simultaneous confidence intervals for α in
the Poisson claim occurrence model.

for claims occurring on these rounded month days. There is a high number of occurrences on
December 31 and January 1 with on average 112%, respectively 135%, more claims. However,
the reporting delay of these claims is not significantly different from the other ones.

4.5 Prediction of unreported claim counts

The main goal of our proposed models is to estimate the number of unreported claims. Using
an out-of-time evaluation with τ? = August 31, 2004, we know there are 2047 IBNR claims in
the full data set, which runs until August 2009, of which we know the corresponding occurrence
date and reporting delay.

We first demonstrate the insights that can be derived from a nowcasting model using the
occurrence specification in (13) and the reporting model in (14) combined with (15). Calibrated
on the data from January 1, 2000 to August 31, 2004 this model estimates the total number of
IBNR claims as N̂nr = 2055.8, which is close to the actual count. Moreover, the distributional
assumptions of our model can be used to provide a 95% prediction interval given by [1697, 2145],
see Section 3.4. Furthermore, since the model is defined on a daily level, the total IBNR
prediction can be divided into daily forecasts by occurrence date and by reporting date. To
illustrate this strong point of our model, we predict the IBNR claim counts by reporting date
in Figure 3. Figure 9 in the online supplement shows a similar split of the IBNR claims by
occurrence dates.

In Figure 3 we disperse the total predicted IBNR claim count according to the date on which
the claims will be reported to the insurer. It means we now focus on estimating

∑τ?

t=1Nt,ρ−t
for ρ = τ? + 1, τ? + 2, . . ., i.e. the number of unreported claims reported on day 1, 2, . . . of the
out-of-time period. This forms an appealing way to use our model in practice as it gives the
insurer a refined view on the reporting times. The predictions on a daily level in Figure 3a are
accompanied by 95% simultaneous prediction intervals and range from September 1, 2004, until
November 7, 2004, i.e. the first two months following our training period. When compared to
the out-of-time actual values, the forecasts clearly capture the downward trend in the reporting
of IBNR claims and the nearly absence of reporting in weekends. This is primarily the case
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Figure 3: Predictions of the IBNR claim counts and simultaneous 95% prediction intervals by
reporting date. (a) Daily, for reporting dates in between September 1 and November 7, 2004;
(b) weekly (7 days) for the next 26 weeks; (c) monthly (30 days) for the next 12 months.

due to the day probabilities in our model which reflect the day-specific aspects of the reporting
delay. In Figure 3b (resp. 3c) the reporting dates are grouped by weeks (resp. months) after
the evaluation date and the IBNR claim counts are predicted for the next 26 weeks (resp. 12
months). We notice how, also over longer time spans, the predictions by reporting week or
month follow the pattern observed in the actual unreported counts.

4.6 Comparing nowcasting models with a moving window evaluation

We compare the performance of different model specifications via a moving window out-of-time
evaluation. We adjust the evaluation date τ?, which was previously chosen to be August 31,
2004, to any date in between August 31, 2003, and August 31, 2004. For each such τ?, we refit
the model based on the observed data by that date, N r = {Ntd | 1 ≤ t ≤ τ?, d ≥ 0, t+ d ≤ τ?},
and produce an estimate of the total unreported count Nnr =

∑τ?

t=1N
nr
t corresponding to claims

that occurred before or at τ?.
Figures 4a and (zoom in) 4b show the predictions obtained with the occurrence specification

in (13) and the reporting model in (14) and (15), as well as the actual total IBNR claim counts
based on the full data set. Overall, the estimates follow the seasonal pattern quite well. The
deviations from the observed trend in the first months of 2014 might be explained by variations
from year to year in the effect of the month on the occurrence and reporting of claims. In our
model, we assume the seasonal monthly pattern to be the same over the different years. As
a result, the parameter estimates are averaged values. The model could potentially be refined

18



(a)

1200

1600

2000

2400

okt 2003 jan 2004 apr 2004 jul 2004

Evaluation date

IB
N

R
 c

la
im

 c
ou

nt

data

model

(b)

1400

1600

1800

2000

2200

2400

dec jan feb

Evaluation date

IB
N

R
 c

la
im

 c
ou

nt

data

model

Figure 4: Predictions and 95% simultanteous prediction intervals of the total IBNR claim counts
for varying evaluation dates τ?: (a) in between August 31, 2003, and August 31, 2004 and (b)
zoom in on the estimates from November 15 to February 15. Red triangles: data, blue circles:
model.

(by including extra covariates) if expert-knowledge is available on how changes in e.g. product
design and conditions, the claims handling process, the business environment or legislation,
may impact the claim arrival process or the reporting delay. We notice a seven day pattern
in the number of unreported claims in Figure 4b, which results from the delayed reporting
during the weekend. This aspect is incorporated in our model through the intra-week reporting
probabilities in (15). Moreover, we observe an increase in the number of IBNR claim counts
around the end of the year. This is due to the fact that the insurance company is closed
around the holidays, preventing any claims from being reported at that time. This effect is only
partially captured by the dummy variables for the occurrence dates jan1 and dec31 in (13) and
(14).

We compare these predictions to two other model specifications that benefit from an EM
algorithm for calibration. Figure 5 zooms in on evaluation dates between November 15 and
February 15, 2004. The corresponding plots with evaluation dates between August 31, 2003 and
August 31, 2004 are available in the online supplement, Figure 15. Figure 5a shows predictions
obtained with the occurrence specification in (13) and the reporting model in (14) and (17).
In the specification of the intra-week probabilities this model designates dummy indicators
for reporting on national and unofficial holidays in (17), which leads to clear improvements
around the end-of-year holidays as compared to Figure 4. The yearly chain ladder method is
used in Figure 5b. While this method overall performs well, detailed insights on the number
of reportings in e.g. the next days, weeks or months can not be deduced from this model
calibrated on data aggregated into yearly grids. Moreover, each year ends on a different day
of the week. Since the chain ladder averages the reporting probability over past years, the
estimated 7-day week pattern in the predictions is slightly misaligned with the actual pattern
in the data. Crevecoeur et al. (2019) show that when more years of data are available the 7-day
pattern completely disappears from the yearly chain ladder predictions, which then results in a
systematic underestimation of the IBNR claim count on Saturdays and Sundays. Experiments
to capture the week pattern with a more granular chain ladder method resulted in a sharp loss
in the overall performance (not shown).

The nowcasting models illustrated in Figure 5c and 5d directly specify a structure for the
reporting intensity. In (18) (shown in panel 5c) the information on the occurrence date t is
structured via a set of covariates, whereas panel 5d calibrates a parameter for each occurrence
date t (as in (19)). With this type of models it is more difficult to capture insights from the
calibrated parameters, as there is no explicit distinction between the dynamics in the occurrence
and the reporting process. On the one hand, with a structured representation of the influence of
the occurrence dates t does not sufficiently capture the actual pattern in the data. The model
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Figure 5: Predictions and 95% simultaneous prediction intervals of the total IBNR claim counts
for varying evaluation dates from November 15 to February 15, 2004. (a) uses (13), (14) and
(17), (b) yearly chain ladder method specified in (20), (c) direct specification of reporting
intensity in (18), (d) direct specification of reporting intensity in (19). Red triangles: data, blue
circles: model.

specification with a parameter for each occurrence date t on the other hand leads to volatile
nowcasts, e.g., one prediction was removed (96 995 predicted IBNR claims on Sunday, January
11 2004). Since reporting on a Sunday is extremely rare in our data set the occurrence and
immediate reporting of a claim on this date resulted in an unreasonably high λt estimate.

5 Conclusions and outlook

We review and structure the literature on nowcasting the occurrence of events subject to a
reporting or observation delay. Our literature overview bridges multiple disciplines and in-
corporates papers from the actuarial, statistical and epidemiological literature. We propose a
general modelling and estimation framework capable of dealing with any parametric structure
for both the occurrence as well as the reporting process. The framework uses regression mod-
els for count data and treats the right truncation of the reporting delays as a type of missing
data. Applying an EM algorithm strongly simplifies maximum likelihood estimation as it al-
lows for the use of standard statistical software to fit the regression models. As an example,
we demonstrate how the parameter estimators of a classical method for nowcasting with aggre-
gated data, also known as the chain ladder method, can be obtained using an EM approach.
We investigate the performance of our proposed framework on an insurance case study where
the focus is on predicting the number of incurred but not (yet) reported claims in a European
portfolio of general liability insurance policies for private individuals. We benchmark the pre-
dictions obtained with our proposed strategy against the results from other nowcasting models
that directly structure the reporting intensity and can be calibrated with standard statistical
routines. The presented model provides a better understanding of the claim occurrence as well
as reporting delay process and leads to a refined view on the future reporting times (at daily
level or aggregated e.g. by future reporting weeks or months).

We indicate some possible directions for future research. First of all, we would like to
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stress that the provided estimation framework involving an EM algorithm is applicable in a
wide context (e.g. epidemiology and reliability engineering) whenever cases are only reported
after a delay. This provides a more desirable alternative over the ad hoc methods or two-
step approaches used earlier in the literature. The estimation procedure described in Section
3 is readily applicable to other contexts after specifying a suitable parametric model for the
reporting delay probabilities.

It would then be interesting to explore different distributional assumptions for the daily
total event counts and the reporting delay structure. The reporting delay can be easily altered
within the given framework to, for instance, a zero-inflated or hurdle distribution or a more
heavy-tailed distribution. Relaxing the Poisson assumption for the daily total event counts is
also feasible but might complicate the E-step in which we now relied on the thinning property
of Poisson distributions. The EM framework is however compatible with latent underlying
processes affecting the occurrence of events such as hidden Markov models or shot noise process
(see e.g. Badescu et al., 2019; Avanzi et al., 2016). Another promising approach would be to
investigate how time series models for counts (see Jung and Tremayne, 2011, for an overview)
could be introduced in this setting.
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This Appendix collects additional figures and tables regarding the case study on insurance
nowcasting, discussed in Section 4 of our paper entitled Modeling the occurrence of events subject
to a reporting delay via an EM algorithm.

A Case study

We analyze a data set with the occurrence and reporting dates of claims in a portfolio of
general liability insurance policies for private individuals from a European insurance company.
The data set used in this case study has also been studied in e.g. Antonio and Plat (2014) with
a stochastic model for the development of claims after reporting and Crevecoeur et al. (2019)
who also nowcast the IBNR claims, but exclusively put focus on the dynamics in the reporting
process.

A.1 Description of the insurance data set

Exposure is available in this dataset by month from January 2000 onwards, expressed as earned
exposure, i.e. the fraction of policies actually exposed to risk during the period. This means that
a policy providing insurance coverage only during 10 days in January will contribute 10/365th
to the exposure of that month. Earned exposure is not available on a daily level so instead we
transform the monthly exposure to daily exposure by dividing by the number of days in each
month. This accounts for the varying month lengths.

To enable out-of-time prediction, we restrict our analysis to claims that have occurred be-
tween January 1, 2000 and August 31, 2004. We then study the nowcasting problem using
evaluation date, say τ?, at the end of this time window, on August 31, 2004 and want to esti-
mate the total incurred but not reported (IBNR) claim count, as well as the reporting dates of
these IBNR claims. Based on the full data set until August 2009, 176 671 claims have occurred
during the time window between January 1, 2000 and August 31, 2004. Due to a reporting
delay, only 174 624 of these have been reported by the evaluation date, as depicted in blue in
the daily run-off triangle in Figure 6. The remaining 2047 are IBNR claims, i.e. claims which
have occurred between January 2000 and August 2004 but have only been reported after the
evaluation date and before the end of the observation period. These are graphically illustrated
in red in Figure 6.
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Figure 6: Daily run-off triangle of claims with occurrence dates between January 1, 2000 and
August 31, 2004. The black line indicates the evaluation date, August 31, 2004. Only the claims
in the upper triangle depicted as blue dots are observed at the evaluation date. The remaining
claims in the lower triangle depicted as red triangles are the IBNR claims based on the full data
set until August 2009 and have to be predicted.

A.2 Parametric models for the occurrence and reporting processes

Assisted by the data we specify a structure for the reporting probabilities ptd(θ,xtd) introduced
in assumption (A2’). The barplot in Figure 7a shows the empirical reporting probabilities in
the first 28 days after occurrence for claims that occurred on a Monday. Reporting probabilities
decrease over time and are low on Saturdays and Sundays. The claims pictured in Figure 7a all
occurred on a Monday. Therefore the first weekend corresponds to delays of 5 (Saturday) and 6
(Sunday) days. Following this intra-week pattern, we structure reporting delay as the product
of week probabilities and day (or intra-week) probabilities:

ptd(θ,xtd) = pWtw(θ,xt) · pintratd .

Here pWtw denotes the probability of reporting an event from occurrence day t in the w-th week
after occurrence. The intra-week reporting probabilities are denoted with pintratd . The latter take
values between 0 and 1 and sum to 1 over the days within the reporting week. Figure 7b indicates
that the negative binomial distribution is a good fit for the empirical week probabilities.

A.3 Parameter estimates

Complementary to the results shown in the paper, we give a detailed overview and discussion
of the parameter estimates obtained for various model specifications.

A.3.1 Occurrence and reporting processes: reporting week and intra-week prob-
abilities

We focus on the occurrence model (13) in combination with a reporting specified by the reporting
week probabilities in (14) and the intra-week reporting probabilities in (15). We report the
estimated day probabilities from matrix P in Table 2. Only a small fraction of claims is being
reported on Saturdays and nearly none on Sundays. In fact, in the entire observed part of the
data, only 3 claims have been reported on Sunday.

27



0.0

0.1

0.2

0 7 14
reporting delay (in days)

re
po

rt
in

g 
pr

ob
ab

ili
ty

(a)

0.0

0.2

0.4

0.6

0 4 8 12 16 20 24 28 32 36 40 44 48 52
reporting delay (in weeks)

re
po

rt
in

g 
pr

ob
ab

ili
ty

(b)

PMF

Empirical

Neg.Bin.

Figure 7: (a) Bar plot of the empirical reporting delay distribution in the first 28 days for claims
that occurred on a Monday. (b) Bar plot of the empirical reporting delay distribution in weeks
and its negative binomial fit for the first year based on claims that occurred between January
2000 and August 2004 and have been reported before August 2009.

The maximum likelihood estimates of the parameter vector α from the claim occurrence
model are shown in Figure 2 in the paper. Next to these, the maximum likelihood estimates of
the parameter vector θ used in the negative binomial regression model of the reporting delay in
weeks are displayed in Figure 8. All estimates are shown along with 95% confidence intervals
based on the inverse of the expected information matrix. Simultaneous confidence intervals are
constructed in these graphs using the Bonferroni correction to adjust for multiple comparisons.
For completeness, we also report that in the negative binomial model the intercept is estimated
as 1.867 (with 95% confidence interval [1.717, 2.018]) and the dispersion parameter φ as 0.177.

A.4 Prediction of unreported claim counts

We illustrate how the occurrence model (13) in combination with the reporting structure defined
in (14) and (15) is used to forecast the number number of unreported claims for past occurrence
dates. In Figure 9a we plot point estimates and 95% simultaneous prediction intervals for Nnr

t

with t corresponding to occurrences dates in between July 1, 2004, and August 31, 2004, i.e. the

Table 2: Maximum likelihood estimates of the day probabilities P within the reporting week.
Separate reporting day probabilities are estimated for each day of the week (dow) of the occur-
rence date, as shown in the rows.

wday
dow wday1 wday2 wday3 wday4 wday5 Saturday Sunday

Monday 0.271 0.331 0.171 0.119 0.100 0.008 0.000
Tuesday 0.282 0.342 0.158 0.118 0.090 0.011 0.000
Wednesday 0.286 0.316 0.180 0.112 0.095 0.011 0.000
Thursday 0.278 0.337 0.156 0.114 0.097 0.019 0.000
Friday 0.303 0.264 0.160 0.120 0.096 0.057 0.000
Saturday 0.389 0.211 0.148 0.109 0.097 0.046 0.000
Sunday 0.407 0.222 0.157 0.109 0.096 0.009 0.000
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Figure 8: Maximum likelihood estimates and 95% simultaneous confidence intervals for θ corre-
sponding to the categorical effects of the month, the day of the week and the day of the month
of the occurrence date in the negative binomial reporting delay model.

last two months from our training period. The predictions follow the same trend as the actual
IBNR claim counts derived from the full data set until August 2009. We notice how IBNR
claims are elevated on the first day and middle of each month, in line with our earlier findings.
In Figure 9b (resp. Figure 9c) we group the occurrence dates by weeks (resp. months) prior
to the evaluation date and show the IBNR claim count predictions corresponding to the past
26 weeks (resp. 12 months). We notice how, also over longer time spans, the predictions by
occurrence week or month follow the pattern observed in the actual unreported counts.

A.5 Modelling the intra week probabilities using a reverse time strategy

We consider the occurrence model specified in (13) in combination with a reporting delay
distribution with reporting week probabilities in (14) and intra-week probabilities obtained via
the reverse time strategy in the presence of covariates, as specified in (16). Figure 10 shows the
estimates for the occurrence model in (13), the estimates for the reporting week probabilities
are shown in Figure 11 and the intra-week reporting probabilities obtained via the reverse time
strategy are in Figure 12.

A.6 Directly modelling the reporting intensity

We now consider two nowcasting models that directly structure the reporting intensity. These
models are discussed in Section 2.2.2 of the paper, where the Ntd are independent Poisson
distributed random variables with mean λtd. Figure 13 shows the parameter estimates for
the specification from (18) and Figure 14 displays the parameter estimates for the regression
structure in (19).

A.7 Comparing nowcasting models with a moving window evaluation

In addition to the results shown in Figure 5 in the paper (with evaluation dates between Novem-
ber 15 to February 15, 2004), we show the estimates of the total IBNR claim count with moving
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Figure 9: Predictions of the IBNR claim counts and simultaneous 95% prediction intervals by
occurrence date. (a) Daily, for occurrence dates in between July 1 and August 31, 2004; (b)
weekly (7 days) for the past 26 weeks; (c) monthly (30 days) for the past 12 months.

evaluation dates between August 31, 2003, and August 31, 2004. Figure 15a shows predictions
obtained with the occurrence specification in (13) and the reporting model in (14) and (17).
Results obtained with the yearly chain ladder method are displayed in Figure 15b. Panel 15c
shows the estimates for the IBNR claim counts obtained with a nowcasting model that directly
specifies the reporting intensity along (18), whereas the model leading to panel 15d uses (19).
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Figure 10: Maximum likelihood estimates for the parameters used in the occurrence model (13)
jointly estimated with (14) and (17). 95% simultaneous confidence intervals are constructed
using the Bonferroni correction and the inverse of the expected information matrix.
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Figure 11: Maximum likelihood estimates for the parameters used in the reporting week model
(14) jointly estimated with (13) and (17). 95% simultaneous confidence intervals are constructed
using the Bonferroni correction and the inverse of the expected information matrix.
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Figure 12: Maximum likelihood estimates for the parameters used in the intra-week reporting
model (17) jointly estimated with (13) and (14). 95% simultaneous confidence intervals are
constructed using the Bonferroni correction and the inverse of the expected information matrix.
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Figure 13: Maximum likelihood estimates for the parameters used in (18). 95% simultaneous
confidence intervals are constructed using the Bonferroni correction and the inverse of the
expected information matrix.
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Figure 14: Maximum likelihood estimates for the parameters used in (19). 95% simultaneous
confidence intervals are constructed using the Bonferroni correction and the inverse of the
expected information matrix.
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Figure 15: Predictions and 95% simultaneous prediction intervals of the total IBNR claim counts
for varying evaluation dates from August 31, 2003 to August 31, 2004. (a) uses (13), (14) and
(17), (b) yearly chain ladder method (20), (c) direct specification of reporting intensity in (18),
(d) direct specification of reporting intensity in (19). Red triangles: data, blue circles: model.
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