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ABSTRACT

This paper proposes a new approach for dealing with imbalanced classes and prior probability shifts
in supervised classification tasks. Coupled with any feature space partitioning method, our criterion
aims to compute an almost-Bayesian randomized equalizer classifier for which the maxima of the
class-conditional risks are minimized. Our approach belongs to the historically well-studied field
of randomized minimax criteria. Our new criterion can be considered as a self-sufficient classifier,
or can be easily coupled with any pretrained Convolutional Neural Networks and Decision Trees to
address the issues of imbalanced classes and prior probability shifts. Numerical experiments compare
our criterion to several state-of-the-art algorithms and show the relevance of our approach when it is
necessary to well classify the minority classes and to equalize the risks per class. Experiments on the
CIFAR-100 database show that our criterion scales well when the number of classes is large.

Keywords Imbalanced classes · Prior probability shifts ·Minimax classifier · Randomized Decision rule

1 Introduction

Supervised classification is becoming increasingly used in several real applications such as precision medicine, condition
monitoring or fraud detection. Given K ≥ 2 the number of classes, the objective is to predict the true class of samples
in the set of labels Y = {1, . . . ,K} from the attributes (also called features) describing each instance.

As historically studied in statistical decision theory (Ferguson, 1967; Berger, 1985; Poor, 1994), both randomized
or non-randomized (also called deterministic) decision rules can be relevant for these classification tasks. While
deterministic classifiers always assign the same class k ∈ Y to a given fixed feature profile, randomized classifiers will
assign the class k ∈ Y at random with some estimated probability from this given fixed feature profile. In the following,
denoting X the feature space of all attribute values, let ∆ := {δ : X → Y} be the set of all possible classifiers and let
D ⊂ ∆ denote the set of deterministic classifiers only.

The issues of imbalanced class proportions and prior probability shifts have been actively studied in statistical decision
theory for the past century (Ferguson, 1967; Berger, 1985; Poor, 1994) and remain important to solve for supervised
machine learning classifiers (He and Garcia, 2009; Buda et al., 2018; Gilet et al., 2020; Cao et al., 2019; Tian et al.,
2020; Quiñonero-Candela et al., 2008).

1.1 Empirical average risk minimization

Given a multiset S =
{
(Yi, Xi) , i ∈ I

}
of m labeled training samples, the usual objective in learning an accurate

classifier (Vapnik, 1999; Hastie et al., 2009) is generally to train a decision rule δ ∈ ∆ which assigns to each sample
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i ∈ I a class δ(Xi) = Yi ∈ Y from its feature vector Xi ∈ X , and such that δ minimizes the empirical average risk of
classification errors

r̂(δ) =
1

m

∑

i∈I
L(Yi, δ(Xi)). (1)

In equation (1), L : Y × Y → [0,+∞) denotes the loss function such that, for all (k, l) ∈ Y × Y , L(k, l) := Lkl

corresponds to the loss, or the cost, of predicting the class l whereas the real class is k.

1.2 Dealing with imbalanced classes

Let π̂ := [π̂1, . . . , π̂K ] denote the class proportions of the training set, such that for all class k ∈ Y , π̂k :=
1
m

∑
i∈I 1{Yi=k}. As explained in (Ferguson, 1967; Berger, 1985; Poor, 1994; Gilet et al., 2020), the average

risk of classification errors (1) associated with any classifier δ ∈ ∆ can be written as

r̂ (δ) =
∑

k∈Y

π̂kR̂k (δ) , (2)

where for k ∈ Y , R̂k (δ) is the empirical class-conditional risk associated with class k, defined by

R̂k (δ) :=
∑

l∈Y

Lkl P̂(δ(Xi) = l | Yi = k). (3)

In equation (3), P̂(δ(Xi) = l | Yi = k) characterizes the empirical probability for the decision rule δ to predict the
class l given that the true class is k.

It is well known in the literature (He and Garcia, 2009; Japkowicz and Stephen, 2002; Chawla et al., 2002; Elkan,
2001; Dong et al., 2019; Gilet et al., 2020; Xu et al., 2020) that when the class proportions π̂ are imbalanced, and
as a consequence of (2), learning a classifier by minimizing (1) generally leads the minority classes to have a large
conditional risk. As underlined in (Cui et al., 2019; Buda et al., 2018; Mazurowski et al., 2008; Tian et al., 2020), this
issue also occurs to Convolutional Neural Networks classifiers, like for instance in precision medicine (Litjens et al.,
2017; Colliot and Burgos, 2020).

A common approach to deal with imbalanced datasets is to balance the data by resampling the training set when the
number of samples is large enough (Japkowicz and Stephen, 2002; He and Garcia, 2009). However, this approach
introduces a bias since the actual state of nature can remain imbalanced. Another common approach is cost-sensitive
learning, studied in (Ávila Pires et al., 2013; Drummond and C. Holte, 2003; Japkowicz and Stephen, 2002; He and
Garcia, 2009; Kukar and Kononenko, 1998), which aims to optimize the cost of class classification errors in order
to counterbalance the number of occurrences of each class. However, these costs are generally difficult to optimize
when dealing with a large number of classes (Gilet et al., 2020). Buda et al. (2018) provide an interesting overview of
approaches to address the issue of imbalanced datasets in deep learning. For instance, thresholding (Lawrence et al.,
1998), one-class classification (Lee and Cho, 2006), hybrid of methods (Chawla et al., 2003), also attempt to address
this issue of imbalanced classes. More recently, Cao et al. (2019) suggest to replace the standard cross-entropy objective
during the training procedure. Tian et al. (2020) propose a post-training prior rebalancing method.

While many approaches have been studied to address this issue of imbalanced classes, statistical decision theory
in (Ferguson, 1967; Berger, 1985; Poor, 1994) showed that the optimal criterion to minimize the maximum of the
class-conditional risks is the Minimax Classifier (see Subsection 1.4). This is indeed the Bayesian classifier for which
the risks per class are all minimized and balanced. However, learning a minimax classifier is difficult in Machine
Learning, especially when dealing with several classes and any kind of loss function L. Nowadays only a few minimax
algorithms have been proposed to deal with these general contexts (Guerrero-Curieses et al., 2004; Gilet et al., 2020),
which is the scope of our present paper.

1.3 Dealing with prior probability shifts

Prior probability shift (Moreno-Torres et al., 2012; Quiñonero-Candela et al., 2008) characterizes an evolution in the
distribution of the priors between the training set and test samples. A concrete example of prior shifts can occur when
diagnosing the flu: the proportion of sick patients is not the same in October, January or July. More generally, prior
shifts can occur in several real application fields and are usually caused by unknown attributes. It is therefore not
possible to predict when this issue can occur. Nowadays, the issue of prior probability shifts is more and more discussed
in the Machine Learning field (Gilet et al., 2020; Tian et al., 2020; Quiñonero-Candela et al., 2008; Moreno-Torres
et al., 2012) and remains essential to solve in many real application domains.
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Indeed, the damage caused by prior shifts are the following: Denoting,

S :=
{
π ∈ [0, 1]K :

∑
k∈Y πk = 1

}
(4)

the K-dimensional simplex, Poor (1994); Berger (1985); Gilet et al. (2020); Ferguson (1967) explain that the average
risk of classification error associated with any fitted classifier δ ∈ ∆ and as a function of any prior shift π ∈ S is equal
to

r̂ (π, δ) =
∑

k∈Y

πkR̂k (δ) . (5)

Since the R̂k (δ)’s do not depend on π, the risk (5) is a linear function with respect to π and can dramatically increase
until maxk∈Y R̂k (δ) when predicting test samples. An illustration of this phenomenon is provided in Appendix A.

As discussed in (Gilet et al., 2020; Tian et al., 2020; González et al., 2017), the sensitivity of a classifier to prior
probability shifts is therefore greater when the class-conditional risks (3) are imbalanced. Hence, one relevant approach
to address this issue is to minimize maxk∈Y R̂k (δ) during the training step, and thus to balance all the risks per class (3),
which is the scope of the Minimax Criterion (see Subsection 1.4). The average risk (5) would thus remain constant
and stable whatever the shift in the priors. An illustration of this desire robustness is illustrated in Fig. 2, Right. This
objective is also the scope in our present paper.

1.4 Minimax criterion

Prior probability shifts and training with imbalanced datasets share therefore a common trait, namely the sensitivity to
unequal class-conditional risks. Equalizing the class-conditional risks (3) is thus essential to obtain a robust classifier
face to these prior issues. As emphasized in (Ferguson, 1967; Yablon and Chu, 1982; Berger, 1985; Poor, 1994; Duda
et al., 2000; Guerrero-Curieses et al., 2004; Gilet et al., 2020), a famous and relevant approach to address these issues is
to fit a minimax classifier. A minimax classifier seeks to minimize the maximum of the class-conditional risks during
the training step. Hence, this approach tends to equalize these risks per class and makes the average risk of error (5)
robust to any prior probability shift.

In statistical decision theory (Ferguson, 1967; Berger, 1985; Poor, 1994), a minimax classifier is usually fitted by
maximizing the Bayes risk with respect to the prior probabilities over the simplex S. However, learning a minimax
classifier is difficult in Machine Learning, especially when dealing with several classes and any kind of loss function L
(Gilet et al., 2020; Guerrero-Curieses et al., 2004). Indeed in most real application fields the calculation of the empirical
Bayes risk over the simplex is generally intractable because of the curse of dimensionality. Furthermore, in many
real application fields we often have to deal with both numeric and categorical features, many of them presenting
dependencies. Hence, computing a good estimate of the feature joint distribution in each class in order to achieve a
good estimate of the empirical Bayes risk over the simplex S remains highly complicated.

For all these reasons, we proposed in our previous research (Gilet et al., 2020; Gilet et al., 2019) to beforehand partition
the feature space and then to learn the minimax classifier by using a closed-form expression of the Bayes risk over the
simplex S. We showed that the discrete empirical Bayes risk is a concave non-differentiable multivariate piecewise
affine function with respect to the priors. This Discrete Minimax Classifier is deterministic and corresponds to the
discrete Bayes classifier associated with the priors that maximize this multivariate piecewise affine function. This
approach can outperform several other state of the art methods for minimizing the maximum of the class-conditional
risks (3). However, depending on the feature space partitioning, this criterion does not always guarantee an optimal
equalization of these risks per class due to the non-differentiability of the discrete Bayes risk.

1.5 Contributions and organization of the paper

The objective of this paper is to design a new criterion which aims to minimize and equalize all the class-conditional
risks (3) in the context of beforehand partitioned feature space, as in (Gilet et al., 2020; Gilet et al., 2019, 2020). Our
new criterion can be considered as a self-sufficient classifier or can be easily coupled with any pretrained Convolutional
Neural Networks or Decision Trees for dealing with the previously emphasized prior issues. Our contributions are the
following:

• Section 2 argues the interests of considering our novel criterion. We show that if the risks per class of the
deterministic discrete minimax criterion (Gilet et al., 2020) are not all equalized, there exists an almost-
Bayesian randomized classifier which can achieve a lower maximum class-conditional risk and which can
equalize all the risks per class. To this aim, we consider randomized decision rules which are relevant to
achieve this scope, as emphasized in (Ferguson, 1967; Berger, 1985; Poor, 1994). Moreover, another major
benefit of our new classifier is to provide estimated probability scores of prediction for each class.

3



SOFTMIN DISCRETE MINIMAX CLASSIFIER FOR IMBALANCED CLASSES AND PRIOR PROBABILITY SHIFTS

• Section 3 explains how to compute our new criterion called Softmin Discrete Minimax Classifier. We first
analytically approximate the discrete empirical Bayes risk over the simplex S using a softmin randomized
decision rule which converges to the discrete Bayes classifier depending on a temperature parameter λ > 0.
Secondly, we compute the priors π⋆ ∈ S which allow to equalize all the class-conditional risks (3). To this
aim, we show that these priors π⋆ are a root of a specific non-convex application over the simplex S. Finally,
our resulting classifier is a softmin randomized decision rule with respect to the priors π⋆.

• Section 4 compares our approach to several state-of-the-art algorithms on six real databases and show the
relevance of our criterion when it is necessary to well classify the minority classes and to equalize all the
class-conditional risks. Experiments on the CIFAR-100 database show that our criterion is scalable when the
number of classes is large.

• Section 5 concludes the paper. We discuss the asset of our new criterion to provide probability scores of
prediction in each class, which could open an interesting path to minimax learning for multi-labels decision-
making.

2 Interest of our new criterion

This section reminds the principle of the deterministic discrete minimax criterion established in (Gilet et al., 2020) and
presents our new objectives in order to improve classification performances.

2.1 Partitioning then classifying

In order to well approximate the Bayes risk when processing numeric or mixed features in a high dimensional feature
space, a relevant approach is to partition the feature space which allows to analytically calculate the discrete Bayes
risk (Devroye et al., 1996; Braga-Neto and Dougherty, 2005; Dalton and Dougherty, 2011; Gilet et al., 2020). In other
words, the feature space X is partitioned into T disjoint regions {Ω1, . . . ,ΩT } such that ∪Tt=1Ωt = X . This defines a
mapping ϕ : X 7→ T := {1, . . . , T} such that ϕ(Xi) = t if and only if Xi ∈ Ωt. The reduced dimension T is chosen
to get a good trade-off between accuracy and scalability of the generalization error.

For instance, the discrete profiles t ∈ T can correspond to the leaves of a tree partitioning (as illustrated in Figure 1, left)
when considering a partitioning using supervised decision trees (Breiman et al., 1984; Scott and Nowak, 2006; Gilet
et al., 2020). They can also correspond to the centroids of each Voronoi cell after a Kmeans partitioning (MacQueen,
1967). The Kmeans partitioning considers that the instances belonging to the same Voronoi cell Ωt have similar behavior
and may belong to the same class. This philosophy is closely related to clustering of bandits based approaches for
which the objective is to identify clusters of users so that the users belonging to the same cluster are supposed to have
similar behavior, which allows to improve the contents recommendation based on the payoffs computed in each cluster
(Gentile et al., 2014; Li et al., 2016).

2.2 Reminds on the deterministic discrete minimax criterion

Let Ik = {i ∈ I : Yi = k} denote the set of learning instances from class k ∈ Y and mk = |Ik| the number of
instances in Ik. Dealing with discrete profiles T = ϕ(X ), we can estimate from the training set the probabilities p̂kt of
observing the discrete profile t given that the class label is k, for all t ∈ T and for all k ∈ Y , such that

p̂kt :=
1

mk

∑

i∈Ik

1{ϕ(Xi)=t}. (6)

From equation (6), we calculated analytically in (Gilet et al., 2020) the deterministic discrete Bayes classifier δBπ :=
argminδ∈D r̂(π, δ) associated with any prior π ∈ S. This deterministic discrete Bayes classifier is given by

δBπ : Xi 7→ argmin
l∈Y

fl(π,Xi), (7)

with for each class l ∈ Y ,
fl(π,Xi) :=

∑

t∈T

∑

k∈Y

Lkl πk p̂kt 1{ϕ(Xi)=t}. (8)

The classifier (7) is deterministic in the sense that a unique class k ∈ Y is assigned to each discrete profile t =
ϕ(Xi) ∈ T . This firmness also occurs when argminl∈Y fl(π,Xi) is not unique. In this special case, the deterministic
classifier (7) arbitrarily and constantly selects the same class label l ∈ argminl∈Y fl(π,Xi).

4
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Figure 1: Experiments on a synthetic dataset with K = 2 classes and d = 2 numeric features (X ⊂ R2) generated using
Scikit-Learn (Pedregosa et al., 2011). Left. Decision boundaries of the discrete minimax classifier (Gilet et al., 2020)
applied on the tree partitioning ϕ : X → T which designed T = 8 discrete profiles (the number of leaves). Right.
The surface VB corresponds to the empirical Bayes risk (9) on the tree partitioning as the function of the priors π ∈ S.
Moreover, r̂

(
π, δBπ̄

)
characterizes the risk of the discrete minimax classifier face to prior probability shifts (5). Since we

have K = 2 classes, this risk can be written as a linear function of π1: r̂
(
π, δBπ̄

)
= π1[R̂1

(
δBπ̄

)
− R̂2

(
δBπ̄

)
]+ R̂2

(
δBπ̄

)
.

Furthermore, in (Gilet et al., 2020), we calculated analytically the average risk (1) of the discrete Bayes classifier δBπ as
a function of the priors π ∈ S. This discrete empirical Bayes risk is given by

VB : π 7→ min
δ∈D

r̂(π, δ) = r̂
(
δBπ

)
=

∑

k∈Y

πkR̂k

(
δBπ

)
, (9)

where for all k ∈ Y ,

R̂k

(
δBπ

)
=

∑

t∈T

∑

l∈Y

Lkl p̂kt 1{ξlt=minq∈Y ξqt}, (10)

with, for all l ∈ Y and all t ∈ T , ξlt =
∑

k∈Y Lkl πk p̂kt. We showed that VB is a non-differentiable concave
multivariate piecewise affine function over the simplex S (as illustrated in Figure 1, right). The non-differentiability of
VB occurs in the finite set of priors Πc = S\Π, where Π ⊂ S denotes the set of priors for which argminl∈Y fl(π,Xi)
is unique.

Finally, the discrete minimax classifier (Gilet et al., 2020), denoted by δBπ̄ , is the discrete Bayes classifier (7) associated
with the priors π̄ = argmaxπ∈S VB(π). It corresponds to the non-randomized Bayesian classifier for which the
class-conditional risks are the most balanced on the partitioned feature space.

2.3 Can we perform better?

In (Gilet et al., 2020), we showed that the deterministic discrete minimax criterion δBπ̄ can outperform several other
state of the art Machine Learning methods for minimizing the maximum of the class-conditional risks (3). However,
since the empirical Bayes risk VB defined in equation (9) is generally not differentiable at the least favorable priors
π̄ = argmaxπ∈S VB(π), δ

B
π̄ is not necessarily an equalizer classifier. Sometimes, this criterion may appear unable to

balance the class-conditional risks (3), even though it reaches the lowest maximum risk per class in the non-randomized
Bayesian sense. Figure 1, right, illustrates this phenomenon for K = 2 classes.

A decision rule δ ∈ ∆ is called an equalizer classifier if its class-conditional risks (3) are all equal, that is R̂1(δ) =

· · · = R̂K(δ). Statistical decision theory in (Ferguson, 1967; Berger, 1985; Poor, 1994; Borovkov, 1998) showed
that an equalizer Bayesian classifier is necessarily a minimax classifier, but if a non-randomized minimax classifier
is not equalizer, randomizing it is therefore a relevant solution. For instance in Figure 1, right, we can observe that
any randomized equalizer classifier δ⋆ ∈ ∆, for which the average risk (5) shifts only on the pink area, becomes more
robust since such a classifier would achieve maxk∈Y R̂k(δ

⋆) ≤ maxk∈Y R̂k(δ
B
π̄ ).
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2.4 Scope of the present paper

The scope of this paper is therefore to compute such a randomized equalizer classifier δ⋆ ∈ ∆ when the deterministic
discrete minimax classifier δBπ̄ ∈ D ⊂ ∆ is not equalizer. In this paper, we consider the same following assumptions as
for the discrete minimax criterion (Gilet et al., 2020). These assumptions are not restrictive in practice but necessary to
the theoretical development of our approach.
Assumption 1. Since we can only exploit the instances from the training set, the probabilities p̂kt defined in (6) are
assumed to be estimated once and for all. This is a usual assumption in the literature (González et al., 2017; Gilet et al.,
2020). By estimating these probabilities using the full training set as in (6), we get the best unbiased estimate with the
smallest variance (Rao, 1973). We then consider these probabilities p̂kt fixed.
Assumption 2. The dataset is sensitive to imbalanced priors in the common sense that, for all class k ∈ Y there
exists εk > 0 such that for all π ∈ Qk := {π ∈ S : πk < εk}, R̂k(δπ) ≥ r̂(δπ), where δπ ∈ ∆ is a classifier
fitted when considering the priors π ∈ S. Moreover, for each class k ∈ Y , there exists ηk > 0 such that for all
π ∈ Uk := {π ∈ S : πk > 1− ηk}, R̂k(δπ) ≤ r̂(δπ).

3 Softmin Discrete Minimax Criterion

In this section we design our novel randomized criterion for Machine Learning tasks which aims to perform better than
the deterministic discrete minimax classifier for minimizing the maximum of the class-conditional risks on the same
partitioned feature space.

3.1 Softmin randomized decision rule

We wish to approximate the deterministic discrete Bayes classifier (7) by an almost-Bayesian randomized decision
rule δ⋆ ∈ ∆ which assigns a label k ∈ Y with probability P

(
δ⋆(Xi) = k

)
. In order to well approximate the Bayes

classifier (7) with respect to any priors π ∈ S, we therefore wish to assign the label k to an instance Xi with high
probability if k = argminl∈Y fl(π,Xi). This goal naturally leads us to consider the softmin criterion, especially
since the softmax (similar to softmin) decision rule is actively used as output layer of Convolutional Neural Networks
(Goodfellow et al., 2016). The following definition presents the almost-Bayesian randomized softmin classifier.
Definition 1. Given a temperature parameter λ > 0 and when considering the quantities f1(π,Xi), . . . , fK(π,Xi),
defined in equation (8), the softmin randomized discrete classifier δλπ associated with the priors π ∈ S assigns the class
label k ∈ Y at random with probability

P̂
(
δλπ(Xi) = k

)
=

e−λ fk(π,Xi)

∑K
l=1 e

−λ fl(π,Xi)
. (11)

This randomized classifier δλπ depends on the temperature parameter λ > 0 and on the priors π ∈ S. The following
proposition estimates analytically the risk of this randomized softmin classifier over S.
Proposition 1. For any fixed temperature parameter λ > 0, the average risk (2) of the softmin discrete classifier δλπ
associated with any priors π ∈ S is given by Vλ : S→ [0,+∞) such that

Vλ(π) := r̂
(
δλπ

)
=

∑

k∈Y

πk R̂k

(
δλπ

)
, (12)

where for all k ∈ Y , the class-conditional risks R̂k

(
δλπ

)
are analytically given by

R̂k

(
δλπ

)
=

∑

t∈T

∑

l∈Y

Lkl p̂kt
e−λ

∑
j∈Y Ljl πj p̂jt

∑K
q=1 e

−λ
∑

j∈Y Ljq πj p̂jt
. (13)

The proof of Proposition 1 is detailed in Appendix B.1. Similarly to the softmin discrete classifier δλπ , its average risk
Vλ(π) also depends on the temperature parameter λ > 0. Since we wish our classifier to be equalizer and to achieve
average risks lower than maxk∈Y R̂k

(
δBπ̄

)
(for instance to be within the pink area in Figure 1, right), the temperature

parameter λ will play an important role. The following proposition studies the behavior of δλπ and its average risk Vλ(π)
with respect to this parameter λ.
Proposition 2. The randomized softmin classifier δλπ associated with the priors π ∈ Π (where Π ⊂ S is the set of priors
for which argminl∈Y fl(π,Xi) is unique), converges in probability to the deterministic Bayes classifier δBπ (7) as λ
goes to infinity. Furthermore, for any fixed priors π ∈ S, the average risk Vλ(π) converges pointwise to the Bayes risk
VB(π) defined in (9) as λ goes to infinity.

6
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Figure 2: Experiments on the synthetic dataset introduced in Figure 1. The pink area corresponds to the set of average
risks bounded by VB(π̄) and maxk∈Y R̂k

(
δBπ̄

)
. Left. Illustration of Proposition 2 and Corollary 1. As λ increases,

Vλ(π) converges pointwise to the Bayes risk VB(π). Right. For λ = 60 ∈ Λ(π̄), the priors π⋆ ∈ Bλ(π̄) allow
the randomized classifier δλπ⋆ to be equalizer and to achieve lower average risks than maxk∈Y R̂k

(
δBπ̄

)
. Since we

have K = 2 classes, the average risk of δλπ⋆ can be written as a linear function of π1: r̂
(
π, δλπ⋆

)
= π1[R̂1

(
δλπ⋆

)
−

R̂2

(
δλπ⋆

)
] + R̂2

(
δλπ⋆

)
.

The proof of Proposition 2 is detailed in Appendix B.2. While the deterministic discrete Bayesian classifier (7) assigns
a unique class k ∈ Y to each discrete profile t ∈ T , the softmin randomized decision rule δλπ relaxes this firmness based
on the probabilistic decision rule (11). According to Proposition 2, the more λ increases, the firmer δλπ becomes.

Given π̄ = argmaxπ∈S VB(π), if the deterministic discrete minimax criterion δBπ̄ is not equalizer, let us remind that we
aim to reach average risks between VB(π̄) and maxk∈Y R̂k

(
δBπ̄

)
, e.g., within the pink area in Figure 1, right. Let us

define the set of temperature parameters satisfying this goal as

Λ(π̄) =

{
λ > 0 : VB(π̄) ≤ max

π∈S
Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)}
(14)

and then, for each acceptable temperature λ ∈ Λ(π̄), we moreover define the set of acceptable priors

Bλ(π̄) =
{
π ∈ S : VB(π̄) ≤ Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)}
. (15)

Corollary 1. Given π̄ = argmaxπ∈S VB(π), if the deterministic discrete minimax criterion δBπ̄ is not equalizer, then
the sets Λ(π̄) and Bλ(π̄), λ ∈ Λ(π̄), are not empty.

The proof of Corollary 1 is detailed in Appendix B.3. Figure 2, left, illustrates Proposition 2 and Corollary 1 as λ
increases when considering the toy example introduced in Figure 1. We can observe that for all acceptable temperature
parameter λ ∈ Λ(π̄) and for all associated priors π ∈ Bλ(π̄), Vλ(π) belongs to the pink area, which is one of our
objectives regarding the average risk of our classifier. The scope of the following subsection is now to demonstrate that
given an acceptable temperature parameter λ ∈ Λ(π̄) we can find some priors π⋆ ∈ Bλ(π̄) such that the randomized
decision rule δλπ⋆ is equalizer, like for instance in Figure 2, right.

3.2 Computation of the Softmin-DMC

We now assume that the deterministic discrete minimax decision rule δBπ̄ is not equalizer. We moreover consider an
acceptable fixed temperature parameter λ ∈ Λ(π̄) and we wish to find π⋆ ∈ Bλ(π̄) such that the randomized decision
rule δλπ⋆ is equalizer, like for instance in Figure 2, right.

For the following, let us consider the application G : S→ RK defined by

G(π) :=



g1(π)

...
gK(π)


 , (16)

7
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where for each class k ∈ Y
gk(π) := R̂k

(
δλπ

)
− Vλ(π). (17)

The application G(π) measures the gap between the average risk Vλ(π) and each class-conditional risk R̂k

(
δλπ

)
, and

can be analytically calculated for all priors π ∈ S from equations (12) and (13). The following lemma provides a
necessary and sufficient condition ensuring that a softmin decision rule δλπ⋆ is equalizer.

Lemma 1. For any fixed temperature parameter λ ∈ Λ(π̄), the softmin randomized decision rule δλπ⋆ associated with
the priors π⋆ ∈ Bλ(π̄) is equalizer if and only if G(π⋆) = 0. Moreover, for any fixed parameter λ ∈ Λ(π̄), such a root
π⋆ ∈ Bλ(π̄) exists.

Theorem 1. If the deterministic discrete minimax classifier δBπ̄ ∈ D is not equalizer on a partitioned feature space T =
ϕ(X ), then for all λ ∈ Λ(π̄), the almost-Bayesian randomized equalizer decision rule δλπ⋆ associated with the priors
π⋆ ∈ Bλ(π̄) satisfying G(π⋆) = 0, allows to achieve, on this same partitioned feature space T : maxk∈Y R̂k(δ

λ
π⋆) ≤

maxk∈Y R̂k(δ
B
π̄ ).

The proof of Lemma 1 is detailed in Appendix B.4 and the proof of Theorem 1 is a direct consequence of Lemma 1 and
Corollary 1. While the deterministic discrete minimax criterion aims to minimize the maximum of the class-conditional
risks on a partitioned feature space, the main asset of Theorem 1 is that it provides on the same partitioned feature space
a non-deterministic but more efficient criterion for this difficult task.

3.2.1 Computation of the root π⋆

From Lemma 1, given a fixed temperature parameter λ ∈ Λ(π̄), it is sufficient to compute π⋆ ∈ Bλ(π̄) achieving
G(π⋆) = 0 so that δλπ⋆ is an equalizer classifier. To compute this root π⋆, we propose to solve the following optimization
problem

π⋆ = argmin
π∈S

∥G(π)∥22. (18)

As illustrated in Appendix C, this minimization problem is not necessary convex. Non-convex optimization has been
actively studied in the last decades and several approaches such that gradient based algorithms as in (Ghadimi and
Lan, 2013; Jain and Kar, 2017; Zhou et al., 2018; Fang et al., 2018; Li et al., 2021) or Monte-Carlo based algorithms
like simulated annealing methods (Van Laarhoven and Aarts, 1987; Bertsimas and Tsitsiklis, 1993; Locatelli, 2000;
Lecchini-Visintini et al., 2007) can be relevant for solving (18).

In practice, Monte-Carlo based algorithms using the Dirichlet distribution are able to converge efficiently to the global
solution when the number of classes K is small enough. However, the complexity of this kind of method becomes
too high when the number of classes becomes too large. In such a complex context, we propose in Appendix D an
appropriate projected descent based algorithm for computing the priors π⋆ solution of (18).

3.2.2 Resulting classifier

Finally, from equations (8) and (11), our softmin discrete minimax classifier δλπ⋆ associated with the priors π⋆ solution
of (18) assigns the class label l ∈ Y with probability

P̂
(
δλπ⋆(Xi) = l

)
=

exp
[
−λ ∑

t∈T
∑

k∈Y Lkl π
⋆
k p̂kt 1{ϕ(Xi)=t}

]

∑K
q=1 exp

[
−λ ∑

t∈T
∑

k∈Y Lkq π⋆
k p̂kt 1{ϕ(Xi)=t}

] . (19)

4 Experiments

As we emphasized in Introduction, our new criterion can be easily considered as a self-sufficient classifier or can be
coupled with any pretrained decision trees or any pretrained Convolutional Neural Networks (CNNs) for addressing the
previously studied prior issues. The experiments in Figure 1 and in Figure 2 illustrated the adjustment of a pretrained
decision tree using our criterion. We first retrieve the leaves of the initial tree and we perform our softmin discrete
minimax decision rule on this tree partitioning. In Subsection 4.1 we perform our new criterion as a self-sufficient
classifier on two real databases and we compare our method to famous state of the art approaches. Then in Subsection 4.2
we explain how our new criterion can easily adjust pretrained CNNs for image classification tasks. Our code in Python
is available at § cypgilet.

8
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4.1 Self-sufficient classifier for mixed features

Our new criterion can be considered as a self-sufficient classifier, in other words it can be easily applied directly to
numeric or discrete or mixed attributes. For illustrating this fact, we consider two well known databases (Diabete (Jo-
hannes, 1988) and Scania Trucks (Scania, 2016)) coming from different real application domains. These two databases
present different levels of difficulties depending on the class proportions, the loss function, the number of features and
the number of instances. An overview of the main characteristics of each database is provided in Table 1 and a detailed
description of these databases is available in Appendix E.2.

Table 1: Overview on each database. The number of instances is denoted bym and the number of attributes by d. Among
the d features, dn corresponds to the number of numeric attributes. Moreover, Stl denotes the loss function provided by
the experts of the application domain in (Scania, 2016), such that L12 = 10, L21 = 500, and L11 = L22 = 0. Finally,
π̂ denotes the class proportions in each database.

DATABASE m d dn K π̂ L

DIABETES (JOHANNES, 1988) 768 8 8 2 [0.65, 0.35] L0-1
SCANIA (SCANIA, 2016) 69,309 130 130 2 [0.99, 0.01] Stl

For each database we perform a cross-validation procedure and we compare our new classifier with three common
approaches adapted to deal with imbalanced datasets: the Weighted Logistic Regression (WLR), the Weighted Decision
Tree (WDT), and the Discrete Minimax classifier (Gilet et al., 2020) (DMC). The WLR and the WDT are fitted using the
algorithms provided by Scikit-Learn (Pedregosa et al., 2011) and their class-weights parameters are defined inversely
proportional to class frequencies. At each iteration of the cross-validation procedure, we performed the DMC and our
Softmin Discrete Minimax Classifier (SoftminDMC) on the same partitioned feature space (using a Tree partitioning
for the Diabete database and the Kmeans algorithm for the Scania Trucks dataset). Regarding the calibration of the
optimal number T of discrete profiles, we used the procedure provided in (Gilet et al., 2020).

The results are presented in Table 2. We observe that our SoftminDMC performs better than the other approaches (and
than the DMC as we scoped in this paper) for minimizing the maximum of the class-conditional risks and for equalizing
these risks per class. These results are highlighted on the difficult Scania-Trucks databases for which the SoftminDMC
and the DMC allow to divide the risk of missing a failure (the class of interest) by more than three compared to the
WDT and the WLR.

Table 2: Average results on each database. The notation δ R means that the classifier δ was applied on the real
features. The notation δ D means that the classifier δ was performed on the partitionned version of each database. The
results are presented as [mean± std]. For each criterion, the green font represents the best performances while the red
font corresponds to the worst results. The criterion ψ(δ) = maxk∈Y R̂k(δ)−mink∈Y R̂k(δ) measures how well the
classifier δ is equalizer.

CRITERIA CLASSIFIERS
δ ∈ ∆

DIABETE SCANIA-TRUCK
Train Test Train Test

WLR R 0.31± 0.02 0.32± 0.03 0.70± 0.02 0.84± 0.13
r̂(δ) WDT R 0.27± 0.02 0.30± 0.04 0.69± 0.01 0.86± 0.05

DMC D 0.23± 0.02 0.26± 0.01 8.95± 0.79 9.00± 0.76
SoftminDMC D 0.26± 0.02 0.29± 0.01 4.81± 0.42 4.83± 0.43

WLR R 0.33± 0.02 0.35± 0.02 37.7± 2.68 51.2± 16.9

maxk∈Y R̂k(δ) WDT R 0.37± 0.04 0.37± 0.04 17.7± 5.70 31.9± 8.79
DMC D 0.45± 0.09 0.50± 0.04 9.05± 0.80 9.16± 0.74

SoftminDMC D 0.26± 0.02 0.32± 0.01 5.06± 0.49 6.91± 1.61
WLR R 0.08± 0.03 0.10± 0.05 37.4± 2.68 50.9± 16.9

ψ(δ) WDT R 0.27± 0.06 0.18± 0.05 17.2± 5.77 31.5± 8.86
DMC D 0.34± 0.10 0.37± 0.06 9.05± 0.80 5.03± 3.66

SoftminDMC D 0.01± 0.01 0.05± 0.01 0.41± 0.35 2.83± 1.35

4.2 Adjusting pretrained CNNs for prior issues

This subsection is now devoted to explain how our new criterion can adjust pretrained CNNs for image classification
tasks. Let Φ : X → Y denote a CNN (Goodfellow et al., 2016) which assigns a class label to each image X ∈ X .
Basically, the architecture of a CNN Φ composed of s hidden layers h1, . . . , hs can be modeled as

Φ(X) = δ ◦ hs ◦ · · · ◦ h1(X) = δ ◦ φ(X), (20)

9
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where δ(·) denotes the output layer classifier and φ(X) = hs ◦ · · · ◦ h1(X) is the output of the last hidden layer
(commonly called deep features). Usually in a CNN, the output decision rule δ aims to approximate the Bayes classifier
and the softmax decision rule is often used to carry out this approximation (Goodfellow et al., 2016).

In this paper, we consider that the CNN Φ is already trained on a training set. From equation (1), its average empirical
risk is given by

r̂ (Φ) =
1

m

∑

i∈I
L(Yi,Φ(Xi)) =

1

m

∑

i∈I
L(Yi, δ ◦ φ(Xi)) (21)

=
1

m

∑

i∈I
L(Yi, δ(Zi))

︸ ︷︷ ︸
:= r̂φ(δ)

. (22)

where Zi = φ(Xi) are the deep features of the image Xi. In other words, the average risk r̂ (Φ) of a CNN Φ is equal to
the empirical risk r̂φ (δ) of the decision rule δ applied on the deep features.

From equations (2) and (5), this average risk can be decomposed regarding the priors as follows

r̂ (π,Φ) =
∑

k∈Y

πkR̂k (Φ) = r̂φ (π, δ) =
∑

k∈Y

πkR̂k (δ) . (23)

In other words, the sensitivity of a trained CNN Φ to imbalanced classes and prior probability shifts comes from the
sensitivity of the output decision rule δ to these prior issues.

We therefore propose here to replace the output decision rule δ of the trained CNN (which is common in the literature
as in (Gilet et al., 2020; Tian et al., 2020)) with our Softmin Discrete Minimax Classifier (SoftminDMC). The steps to
easily couple any pretrained CNN with our output SoftminDMC are summarized as follows and the architecture of the
resulting adjusted CNN is illustrated in Figure 3.

Hidden
layer
h1

Hidden
layers
· · ·

Hidden
layer
hs

Input
layer

Deep
Features

Deep Features
Partitioning

�

��⇡?

Score of
prediction
for each

class k 2 Y

Figure 3: Scheme of our coupling method to adjust pretrained CNNs using our output Softmin Discrete Minimax
Classifier. The probability score of prediction for each class k ∈ Y is calculating using (19).

Step 1. We first retrieve the hidden layers of the pretrained CNN which were fitted on training samples. These hidden
layers allow to compute the deep features associated with each input image.

Step 2. We then add a new layer ϕ which aims to partition the deep feature space. In practice, an easy way is to
consider the Kmeans partitioning and to set the number T of centroids (each centroid corresponding to a
discrete profile) such that the discrete Bayes classifier δBπ̂ [given by (7) when considering the priors π̂] and the
softmax output decision rule achieve both similar average risks (1) (if possible on new learning samples in
order to avoid overfitting).

Step 3. We then compute the priors π⋆ solution of (18) using Algorithm 1 or Algorithm 2 provided in Appendix D.
Step 4. Our output Softmin Discrete Minimax decision rule δλπ⋆ is finally given by (19). It allows to adjust the

initial CNN face to imbalanced class-conditional risks and prior probability shifts. It moreover provides the
probability score of prediction for each class k ∈ Y .
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4.2.1 Experiments on real medical databases

We consider here three real medical databases (OCTMNIST, DermaMNIST, BreastMNIST) (Yang et al., 2021, 2020)
which differ in the number of images, the number of classes and the class proportions. Each database contains a training
set, a validation set and a test set with 28× 28 images. Table 3 summarizes the main characteristics of each database
and a detailed overview of each databases is provided in Appendix E.2.

Table 3: Overview of the real medical databases: mtrain, mval, mtest correspond respectively to the number of images
in the training, the validation and the test sets, and Min, resp. Max, denotes the minimum, resp. maximum, of the class
proportions.

Database K mtrain mval mtest πtrain = πval πtest

DermaMNIST 7 7,007 1,003 2,005 Min = 0.01
Max = 0.67

Min = 0.01
Max = 0.67

BreastMNIST 2 4,709 524 624 Min = 0.27
Max = 0.73

Min = 0.27
Max = 0.73

OCTMNIST 4 97,477 10,832 1,000 Min = 0.08
Max = 0.47

Min = 0.25
Max = 0.25

In order to illustrate that our approach can be coupled with any kind of CNN architecture, we considered the CNN
ResNet-18 (He et al., 2016) for the DermaMNIST and BreastMNIST databases and the CNN EfficientNet-B7 (Tan
and Le, 2019) for the OCTMNIST database. We trained each CNN on the training set with 100 epochs using the
cross-entropy loss and a SGD optimizer as in (Yang et al., 2020).

For each pretrained CNN we compared four output layer classifiers: the initial softmax decision rule (CNN-Softmax),
the interesting imbalance calibration approach (Tian et al., 2020) (CNN-IC) which is designed to be applied on pretrained
CNNs too, the Discrete Minimax Classifier (Gilet et al., 2020) (CNN-DMC) and our Softmin discrete minimax classifier
(CNN-SoftminDMC). Each output classifier was fitted on the deep features associated with the validation set in order to
avoid overfitting possibly due to the deep features coming from the training set. Finally, the generalization performances
were evaluated on each test set.

For each output layer classifier δ, we compare the average risk (1), the maximum of the class-conditional risks (3) and
the gap between the maximum and the minimum of these risks per class. The results are presented in Table 4. Since our
approach is not fitted by minimizing the average risk (1), it is not expected to outperform the other methods regarding
this criterion, but it remains closed to the CNN-DMC ones, which illustrates Theorem 1. As it was the objective of this
paper, our method outperforms all the other output decision rules for minimizing the maximum of the class-conditional
risks and for equalizing these risks per class.

Table 4: Results of each output classifier on the real medical databases. For each criterion, the green font represents
the best performances while the red font corresponds to the worst results. The criterion ψ(δ) = maxk∈Y R̂k(δ) −
mink∈Y R̂k(δ) measures how well the classifier δ is equalizer.

CRITERIA CLASSIFIERS
δ ∈ ∆

DermaMNIST OctMNIST BreastMNIST
Val Test Val Test Val Test

CNN-Softmax 0.29 0.30 0.07 0.28 0.16 0.16
r̂(δ) CNN-IC 0.37 0.39 0.08 0.26 0.15 0.15

CNN-DMC 0.56 0.58 0.09 0.27 0.15 0.15
CNN-SoftminDMC 0.57 0.59 0.21 0.31 0.19 0.17

CNN-Softmax 1.00 1.00 0.41 0.72 0.43 0.50

maxk∈Y R̂k(δ) CNN-IC 0.99 1.00 0.37 0.65 0.24 0.29
CNN-DMC 0.65 0.91 0.28 0.54 0.19 0.24

CNN-SoftminDMC 0.64 0.87 0.24 0.50 0.19 0.19
CNN-Softmax 0.83 0.84 0.38 0.69 0.36 0.46

ψ(δ) CNN-IC 0.70 0.66 0.32 0.62 0.12 0.18
CNN-DMC 0.23 0.43 0.22 0.50 0.05 0.11

CNN-SoftminDMC 0.15 0.32 0.11 0.32 0.00 0.02

4.2.2 Experiments on the CIFAR-100 database

In order to illustrate that our criterion can easily deal with a large number of classes, we consider a new experiment
on the famous CIFAR-100 database (Krizhevsky, 2009) which contains K = 100 classes. While this well known

11
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visual recognition database presents perfectly equal class proportions, the major difficulty appearing is that the class-
conditional risks result imbalanced for most classifiers. The scope of this experiment is to illustrate Theorem 1 in such
a large scale database.

For this experiment we considered the deep features extracted from the last hidden layer of the CNN EfficientNet-B0
(Tan and Le, 2019) and we considered the L0-1 loss function. The other settings for this experiment are provided
in Appendix E.1. We partitioned the deep features using the Kmeans procedure with T = 1200 centroids (each
centroid corresponding to a discrete profile) and we compared on the same partitioned deep feature space the Discrete
Bayes Classifier (CNN-DBC) δBπ̂ [given by (7) when considering the priors π̂], the Discrete Minimax Classifier δBπ̄
[given by (7) when considering the priors π̄ = argmaxπ∈S VB(π)] and our Softmin Discrete Minimax Classifier δλπ⋆ .
We chose to compare these three algorithms in order to illustrate the impact of both the priors π̂, π̄, π⋆ ∈ S and the
randomization on the same deep feature space partitioning. Regarding our Softmin Discrete Minimax Classifier δλπ⋆ , we
computed the priors π⋆ solution of (18) using Algorithm 2 in Appendix D.

The results are displayed in Figure 4. Let us note that the Discrete Bayes Classifier leaded to similar results than
the initial CNN-Softmax. We can observe that its class-conditional risks are highly imbalanced. The DMC ouptput
classifier balances better these risks per class. Our new Sotmin-DMC criterion got the best results in this difficult task
and achieved maxk∈Y R̂k(δ

λ
π⋆) ≤ maxk∈Y R̂k(δ

B
π̄ ), which especially illustrates Theorem 1. Additional experiments

are provided in Appendix E.1 when considering T = 800 discrete profiles and highlight these results.

Figure 4: CIFAR-100 database: Class-conditional risks associated with the CNN-DBC, CNN-DMC and CNN-Softmin-
DMC classifiers on both the training and test datasets.

5 Conclusion

This paper proposes a softmin discrete minimax classifier which belongs to the field of randomized minimax decision
rules for supervised classification tasks. Our new approach aims to address the issues of imbalanced class-conditional
risks and prior probability shifts. Our new classifier converges to the deterministic discrete minimax decision rule
and seeks to perform better for minimizing the maximum of the class-conditional risks. It can be considered as a
self-sufficient classifier or can be coupled with any pretrained CNNs or decision trees.

An important asset of our new minimax classifier is to provide probability scores of prediction for each class, which
are for instance important in visual recognition applications. In our opinion, this asset can open an interesting path
to develop a minimax classifier for multi-labels decision-making (Zhang and Zhou, 2013; Xu et al., 2019) when
dealing with imbalanced datasets and prior probability shifts. Moreover, this new criterion could be easily adapted to
a Box-constrained minimax classifier and a minimax regret decision rule, which were both studied in the context of
partitioned feature spaces in (Gilet et al., 2020; Gilet, 2021). Ongoing research are devoted to study the generalization
error of our new minimax classifier based on the feature space partitioning. It would be moreover interesting to connect
and extend our research to the recently studied minimax fairness area (Martinez et al., 2020; Diana et al., 2021) which
aims to achieve balanced/fair predictions by sensitive attribute groups.
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Supplementary Material
Softmin Discrete Minimax Classifier for Imbalanced Datasets and Prior Probability Shifts

A Example of prior probability shifts

We consider an experiment for which we generated a training dataset containing m = 5, 000 instances described by
d = 2 features, coming from K = 2 classes and such that the class proportions satisfy π̂ = [0.90, 0.10]. To this aim,
we used the make_blobs function provided by Scikit-Learn. Figure 5, Left, displays the scatter plot of the learning
instances. Let us note that this is the same dataset as the one presented in Figure 1 in the main paper.

For this experiment, we first fitted a Logistic Regression decision rule δLR ∈ D on this training set. Figure 5, Left,
displays the decision boundary associated with the fitted Logistic Regression. As reported in Figure 5, Right, the
Logistic Regression δLR achieved an average risk r̂

(
δLR

)
= 0.075 which seems highly satisfying. But if we focus on

the class-conditional risks, we observe that 50% of the instances from class C2 were misclassified. As reminded in
the introduction, this issue comes from the imbalanced class-proportions on the training set and from the fact that the
classes are not easily separable on the feature space.

Figure 5: Results associated with the Logistic Regression δLR on the training set.

In order to illustrate the issues of prior probability shifts, we then applied the fitted Logistic Regression δLR on
5 different test datasets containing m′ = 1, 000 instances. Each test dataset was generated from the same feature
distributions in each class, but these test sets differ according to the class proportions π′ = [π′

1, π
′
2] ranging over the

simplex S. Figure 6 displays the scatter plots of each test dataset and their associated class-proportions π′. The last
subfigure of Figure 6 describes the average risks associated with each test dataset. Since we have K = 2 classes, theses
average risks (5) can be written as

r̂
(
π′, δLR

)
= π′

1[R̂1

(
δLR

)
− R̂2

(
δLR

)
] + R̂2

(
δLR

)
. (24)

As reminded in Introduction, this is a linear function with respect to π′
1 between the class-conditional risks{

R̂1

(
δLR

)
, R̂2

(
δLR

)}
. Since these risks per class were highly imbalanced on the training set (see Figure 5),

it follows that the average risk (24) of this fitted Logistic Regression δLR is highly sensitive to prior probability shifts.

To conclude this part, minimizing the maximum of the class-conditional risks (which generally leads to balance these
risks per class) would make the classifier robust to prior probability shifts since the average risk (24) would remain
almost constant. This is the scope and the asset of the minimax criterion as presented in (Ferguson, 1967; Berger, 1985;
Poor, 1994; Gilet et al., 2020). This is moreover the objective of our present paper, as illustrated in Figure 2 in the main
paper.
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Figure 6: Illustration of prior probability shifts for K = 2 classes.
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B Proves of the paper

B.1 Detailed proof of Proposition 1

The following lemma estimates analytically the risk of our softmin discrete classifier δλπ̂ on the learning set S with
respect to the training class proportions π̂ ∈ S.
Lemma 2. For any fixed parameter λ > 0, the average risk of our softmin discrete classifier δλπ̂ associated with the
class proportions of the training set π̂ ∈ S is given by

r̂
(
δλπ̂

)
=

∑

k∈Y

∑

t∈T

∑

l∈Y

π̂k Lkl p̂kt
e−λ

∑
j∈Y Ljl π̂j p̂jt

∑K
q=1 e

−λ
∑

j∈Y Ljq π̂j p̂jt
. (25)

Proof. Since δλπ̂ ∈ ∆, we have from equations (2) and (3)

r̂
(
δλπ̂

)
=

∑

k∈Y

π̂k
∑

l∈Y

Lkl P̂
(
δλπ̂(Xi) = l | Yi = k

)

=
∑

k∈Y

∑

l∈Y

π̂k Lkl P̂
(
δλπ̂(Xi) = l | Yi = k

)
.

(26)

Let us define ξ : T → Y such that for all l ∈ Y

P̂
(
ξ(t) = l

)
=

e−λ
∑

j∈Y Ljl π̂j p̂jt

∑K
q=1 e

−λ
∑

j∈Y Ljq π̂j p̂jt
. (27)

Then, from equation (11), from the quantities F =
{
f1(Xi), . . . , fK(Xi)

}
defined in equation (7), and from the Law

of total probability, it follows that for all l ∈ Y and all k ∈ Y

P̂
(
δλπ̂(Xi) = l | Yi = k

)
=

∑

t∈T
P̂
(
ϕ(Xi) = t, ξ(t) = l | Yi = k

)

=
∑

t∈T
P̂
(
ϕ(Xi) = t | Yi = k

)
P̂
(
ξ(t) = l | Yi = k

)

=
∑

t∈T
p̂kt P̂

(
ξ(t) = l | Yi = k

)

=
∑

t∈T
p̂kt P̂

(
ξ(t) = l

)
.

(28)

Hence, from equations (26), (27) and (28), we finally obtain the result (25).

Proof of Proposition 1. Under Assumption 1, the probabilities p̂kt defined in (6) are considered fixed. Hence, the
average risk (25) considered as a function of the priors π ∈ S is

Vλ : S→ [0,+∞)

π 7→
∑

k∈Y

∑

t∈T

∑

l∈Y

πk Lkl p̂kt
e−λ

∑
j∈Y Ljl πj p̂jt

∑K
q=1 e

−λ
∑

j∈Y Ljq πj p̂jt
.

(29)

Then, from equation (2), this average risk can be rewritten as

Vλ(π) =
∑

k∈Y

πk R̂k

(
δλπ

)
, (30)

where for all k ∈ Y , the class-conditional risks R̂k

(
δλπ

)
are analytically given by

R̂k

(
δλπ

)
=

∑

t∈T

∑

l∈Y

Lkl p̂kt
e−λ

∑
j∈Y Ljl πj p̂jt

∑K
q=1 e

−λ
∑

j∈Y Ljq πj p̂jt
, (31)

which proves Proposition 1. □
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B.2 Detailed proof of Proposition 2

For the following, let us remind that

Π :=



π ∈ S : ∀t ∈ T ,∃! l ∈ Y, l = argmin

q∈Y

∑

j∈Y
Ljq πj p̂jt



 .

We first prove that for all π ∈ Π the randomized softmin classifier δλπ converges in probability to the discrete Bayes
classifier δBπ as λ goes to infinity. Then, we prove that for all π ∈ S its average risk Vλ(π) converges pointwise to the
Bayes risk VB(π) as λ goes to infinity. For these two proves we will use the following lemma.

Lemma 3. Let a := [a1, . . . , aK ] ∈ RK
+ and let j = argminl∈Y al such that j is unique. Moreover, given λ > 0, let us

define for all k ∈ Y
σλ
k (a) :=

e−λ ak

∑K
l=1 e

−λ al

. (32)

Thence, for all k ∈ Y ,
σλ
k (a) −−−−−→

λ→+∞
1{k=argminl∈Y al}. (33)

Proof. Let a ∈ RK
+ and let j ∈ Y such that j = argminl∈Y al, which is unique. For all k ∈ Y , we have

σλ
k (a) =

e−λ ak

∑K
l=1 e

−λ al

=
e−λ ak

∑K
l=1 e

−λ al

· e
λ aj

eλ aj
=

e−λ (ak−aj)

1 +
∑

l ̸=j e
−λ (al−aj)

(34)

Since aj = minl∈Y al, it follows that for all l ̸= j, (al − aj) > 0, and thus e−λ (al−aj) → 0 as λ → +∞. By
considering this in (34), we get

σλ
j (a) −−−−−→

λ→+∞
1 (35)

and for all l ∈ Y, l ̸= j,
σλ
l (a) −−−−−→

λ→+∞
0. (36)

Hence, we obtain, for all k ∈ Y ,
σλ
k (a) −−−−−→

λ→+∞
1{k=argminl∈Y al}. (37)

Proof of the convergence in probability of δλπ to δBπ for all π ∈ Π. Let π ∈ Π fixed and let us consider Xi ∈ X an
aleatory real feature profile. Let us remind that for all q ∈ Y ,

fq(Xi) =
∑

t∈T

∑

k∈Y

Lkq πk p̂kt 1{ϕ(Xi)=t}.

Since π ∈ Π, it follows that l = argminq∈Yfq(Xi) is unique. In order to prove the convergence in probability of
δλπ(Xi) to δBπ (Xi) as λ goes to infinity, it is sufficient to prove that

lim
λ→+∞

P
(
δλπ(Xi) = δBπ (Xi)

)
= 1.

From the Law of total probability, we have

lim
λ→+∞

P
(
δλπ(Xi) = δBπ (Xi)

)
= lim

λ→+∞

∑

l∈Y

P
(
δλπ(Xi) = l, δBπ (Xi) = l

)

= lim
λ→+∞

∑

l∈Y

P
(
δλπ(Xi) = l

)
P
(
δBπ (Xi) = l

)
.

(38)

Let us note that the deterministic discrete Bayes classifier defined in equation (7) can also be viewed as a randomized
decision rule such that for all l ∈ Y ,

P
(
δBπ (Xi) = l

)
= 1{l=argminq∈Y }. (39)
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Moreover, from Definition 1, let us remind that for all l ∈ Y ,

P̂
(
δλπ(Xi) = l

)
=

e−λ fl(Xi)

∑
q∈Y e

−λ fq(Xi)
. (40)

Hence, replacing (39) and (40) in (38), it follows that

lim
λ→+∞

P
(
δλπ(Xi) = δBπ (Xi)

)
= lim

λ→+∞

∑

l∈Y

e−λ fl(Xi)

∑
q∈Y e

−λ fq(Xi)
1{l=argminq∈Y fq(Xi)}.

Thence, from Lemma 3, we finally get

lim
λ→+∞

P
(
δλπ(Xi) = δBπ (Xi)

)
= lim

λ→+∞

∑

l∈Y

e−λ fl(Xi)

∑
q∈Y e

−λ fq(Xi)
1{l=argminq∈Y fq(Xi)} = 1,

which proves the convergence in probability of δλπ(Xi) to δBπ (Xi) as λ goes to infinity for all π ∈ Π.

□

Proof of the pointwise convergence of Vλ to VB over the entire simplex. Let π ∈ S fixed.

• If π ∈ Π ⊂ S, then from the definition of Π, for all t ∈ T , there exists a unique l ∈ Y such that
l = argminq∈Y

∑
j∈Y Ljq πj p̂jt. Hence, from Lemma 3, it follows that for all t ∈ T ,

e−λ
∑

j∈Y Ljl p̂jt πj

∑K
q=1 e

−λ
∑

j∈Y Ljq p̂jt πj
−−−−−→
λ→+∞

1{∑j∈Y Ljl πj p̂jt=minq∈Y
∑

j∈Y Ljq πj p̂jt}. (41)

Applying this in equations (12) and (13), we finally get

Vλ(π) −−−−−→
λ→+∞

∑

k∈Y

∑

t∈T

∑

l∈Y

πk Lkl p̂kt 1{∑
j∈Y Ljl πj p̂jt=minq∈Ŷ

∑
j∈Y Ljq πj p̂jt

} (42)

which corresponds to the discrete Bayes risk VB(π) introduced in equation (9).

• If π ∈ S\Π, there exists a sequence
(
π(n)

)
n∈N
∈ Π such that limn→∞ π(n) = π. Since the function Vλ is

continuous over the simplex S, it follows that limn→∞ Vλ

(
π(n)

)
= Vλ(π), and thus

lim
n→∞

lim
λ→∞

Vλ

(
π(n)

)
= lim

λ→∞
lim
n→∞

Vλ

(
π(n)

)
= lim

λ→∞
Vλ(π). (43)

Moreover, since π(n) ∈ Π for all n ∈ N, then from the previous item we have

∀n ∈ N, lim
λ→∞

Vλ

(
π(n)

)
= VB

(
π(n)

)
.

Furthermore, since the function VB is continuous over the simplex S, it follows that

lim
n→∞

lim
λ→∞

Vλ

(
π(n)

)
= lim

n→∞
VB

(
π(n)

)
= VB

(
lim
n→∞

π(n)

)
= VB(π). (44)

Hence, from equations (43) and (44), we obtain that limλ→∞ Vλ(π) = VB(π). This property holds for all
π ∈ S\Π.

Finally, from the two previous items, for all π ∈ S, Vλ(π) converges pointwise to the Bayes risk VB(π) as the
temperature parameter λ goes to infinity. □
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B.3 Detailed proof of Corollary 1

Let π̄ = argmaxπ∈S VB(π) and let us consider that the discrete minimax criterion δBπ̄ (Gilet et al., 2020) is not an
equalizer classifier. Moreover, let us remind that

Λ(π̄) =

{
λ > 0 : VB(π̄) ≤ max

π∈S
Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)}
, (45)

and that for all π ∈ S, VB(π) = infλ>0 Vλ(π). As a consequence of Proposition 2, we have

∀ε > 0, ∀π ∈ S, ∃ ηε,π > 0, ∀λ > ηε,π : Vλ(π)− VB(π) < ε. (46)

In particular, let us consider ε = maxk∈Y R̂k

(
δBπ̄

)
− VB(π̄). It follows that

∀π ∈ S, ∃ ηε,π > 0, ∀λ > ηε,π : Vλ(π) ≤ max
k∈Y

R̂k

(
δBπ̄

)
.

Given η > 0, let us consider Uη =
{
π ∈ S : ∀λ > η, Vλ(π) ≤ maxk∈Y R̂k

(
δBπ̄

)}
and its complementary Uc

η =
{
π ∈ S \ Uη

}
. Now, if exists π′ ∈ Uc

η , then it follows from equation (46) that

∃ η′ > η, ∀λ > η′ :

{
Vλ(π

′) ≤ maxk∈Y R̂k

(
δBπ̄

)

Vλ(π) ≤ maxk∈Y R̂k

(
δBπ̄

)
, ∀π ∈ Uη.

Hence, Uη′ = Uη ∪
{
π ∈ Uc

η : ∀λ > η′, Vλ(π) ≤ maxk∈Y R̂k

(
δBπ̄

)}
. From equation (46), we can apply this reasoning

until that there exists η⋆ > 0 such that Uη⋆ = S, which implies that

∀π ∈ S, ∀λ > η⋆ : Vλ(π) ≤ max
k∈Y

R̂k

(
δBπ̄

)
.

Hence, it follows that
∀λ > η⋆ : max

π∈S
Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)
. (47)

Moreover, let us remind that for all λ > 0, VB(π̄) ≤ maxπ∈S Vλ(π) since VB corresponds to the Bayes risk. When
considering this in equation (47), it follows that

∀λ > η⋆ : VB(π̄) ≤ max
π∈S

Vλ(π) ≤ max
k∈Y

R̂k

(
δBπ̄

)
. (48)

Hence, the set Λ(π̄) defined in equation (14) is equal to Λ(π̄) = {λ > η⋆}. This proves that Λ(π̄) is not empty.

Now, let λ ∈ Λ(π̄), and let us remind that

Bλ(π̄) =

{
π ∈ S : VB(π̄) ≤ Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)}
, (49)

and let us define π⋆ = argmaxπ∈S Vλ(π). From equation (48), π⋆ ∈ Bλ(π̄), which proves that Bλ(π̄) is not empty.
Another candidate belonging to Bλ(π̄) is π̄. Indeed, since VB(π̄) = infλ>0 Vλ(π̄), and since Vλ(π̄) ≤ maxπ∈S Vλ(π),
it follows from equation (48) that π̄ ∈ Bλ(π̄). □
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B.4 Detailed proof of Lemma 1

Let λ ∈ Λ(π̄) fixed. We first prove that the softmin randomized decision rule δλπ⋆ associated with the priors π⋆ ∈ S is
an equalizer classifier if and only if G(π⋆) = 0. Then, we prove the existence of such a root π⋆ in Bλ(π̄).

Equivalence between G-root and equalizer classifier. Let π⋆ ∈ S. Let us remind that δλπ⋆ is an equalizer classifier
if and only if

R̂1

(
δλπ⋆

)
= · · · = R̂K

(
δλπ⋆

)
. (50)

According to equations (12) and (50), this is equivalent to say that

∀k ∈ Y, R̂k

(
δλπ⋆

)
= Vλ(π

⋆) ⇔ ∀k ∈ Y, R̂k

(
δλπ⋆

)
− Vλ(π⋆) = 0 ⇔ G(π⋆) = 0.

In other words, δλπ⋆ is an equalizer classifier if and only if G(π⋆) = 0. □

Existence of a G-root π⋆ in Bλ(π̄). We first prove that there exists a G-root π⋆ in the simplex S and then that this
root π⋆ necessarily belongs to Bλ(π̄) ⊂ S.

■ Let us remind that for all k ∈ Y , the functions gk : S → R defined in equation (16) are given by gk(π) =
R̂k

(
δλπ

)
− Vλ(π). Under Assumption 2,

• ∀k ∈ Y,∃ εk > 0,∀π ∈ Qk = {π ∈ S : πk < εk} : R̂k

(
δλπ

)
≥ Vλ(π)⇒ gk(π) ≥ 0.

• ∀k ∈ Y,∃ ηk > 0,∀π ∈ Uk = {π ∈ S : πk > ηk} : R̂k

(
δλπ

)
≤ Vλ(π)⇒ gk(π) ≤ 0.

Moreover, since the functions gk : S → R are all continuous over the simplex S and similarly to the
Poincaré–Miranda Theorem (Kulpa, 1997; Frankowska, 2018; Fonda and Gidoni, 2016; Mawhin, 2007), there
exists a root π⋆ ∈ S such that for all k ∈ Y , gk(π⋆) = 0, and thus G(π⋆) = 0.

■ We now need to ensure that this root π⋆ necessarily belongs to Bλ(π̄) ⊂ S. Let us remind the definition (15)
of Bλ(π̄):

Bλ(π̄) =

{
π ∈ S : VB(π̄) ≤ Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)}
.

Since λ ∈ Λ(π̄), it follows from equation (14) that

Vλ(π
⋆) ≤ max

π∈S
Vλ(π) ≤ max

k∈Y
R̂k

(
δBπ̄

)
. (51)

Moreover, since G(π⋆) = 0, the softmin randomized decision rule δλπ⋆ associated with the priors π⋆ is an
equalizer classifier. Hence, from equations (5) and (50), it follows that the average risk associated with the
prior probability shift π̄ is

r̂
(
π̄, δλπ⋆

)
= Vλ(π

⋆).

Moreover, since VB(π̄) = min
δ∈∆

r̂ (π̄, δ), it follows that

VB(π̄) ≤ Vλ(π
⋆). (52)

Finally, from the bounds (51) and (52), the root π⋆ necessarily belongs to Bλ(π̄).

This concludes the proof. □
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C Non-convexity of the optimization problem (18)

This section illustrates the non-convexity of the function ∥G(π)∥22 over the simplex S on the synthetic dataset presented
in Figure 2. We can observe in Figure 7 that the non-convexity of ∥G(π)∥22 is accentuated when the temperature
parameter λ is high. This is indeed a consequence of Proposition 2: the more λ increases, the more Vλ converges to
VB (which is piecewise affine over the simplex), and thus the more the class-conditional risks of the softmin discrete
minimax classifier converge to the risks per class of the discrete minimax classifier (which are a subgradient of VB as
shown in (Gilet et al., 2020)). To conclude this part, let us note that several experiments conduct us to presume the
following conjecture.
Conjecture 1. The function G : π 7→ ∥G(π)∥22 is strictly quasi-convex over the simplex S.

The mathematical proof of Conjecture 1 is not straightforward for a general context K > 2 classes and is still under
investigation. This property is not necessary for solving (18) as discussed in the main paper but it could be convenient
for optimizing the convergence of gradient based algorithms toward the priors π⋆ solution of (18).

Figure 7: Non-convexity of the function ∥G(π)∥22 over the simplex S with respect to the parameter λ.
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D Softmin Discrete Minimax Algorithm

As illustrated in Supplementary Material C, the minimization problem (18) is not necessary convex. Keeping aside
the presumed quasi-convexity of this problem, we first consider well studied methods which are designed to solve
non-convex optimization problems in a general context. To this aim, we mentioned previously that several approaches
such that gradient based algorithms or Monte-Carlo based algorithms can be relevant for solving (18). When the
number of classes K is small enough, Monte-Carlo based algorithms using the Dirichlet distribution (as summarized in
Subsection D.1) are able to converge efficiently to the global solution. However, the complexity of this kind of method
becomes too high when the number of classes becomes too large. In such a complex context, stochastic projected
gradient based algorithm appear more convenient.

While the previously mentioned approaches allow to address the optimization problem (18) and thus to theoretically
reach the objectives of the present paper, we present in Subsection D.2 a more convenient algorithm which is conjectured
to converge to the priors π⋆ solution of (18) and which showed efficiency on several experiments, especially on the
famous CIFAR-100 database.

For the following, let us denote G : π → S such that

G(π) = ∥G(π)∥22. (53)

Finally, let us note that for all these previously mentioned algorithms, our approach does not need to resample the
training set at each iteration n. Indeed, the priors π(n) and π⋆ are used only analytically, which enables us to consider
all the information provided in the training set for computing our softmin discrete minimax classifier δλπ⋆ .

Remark 1. Let us note that the temperature parameter λ ∈ Λ(π̄) is beforehand set. In practice, an efficient way to set
it is to consider the priors π̄ and to increase λ until that Vλ(π̄) < maxk∈Y R̂k(δ

B
π̄ ).

D.1 Monte-Carlo based algorithm

The procedure for computing our softmin discrete minimax classifier δλπ⋆ using a Monte-Carlo based approach is
summarized in the step by step Algorithm 1. In Algorithm 1, N denotes the maximum number of iterations. Moreover,
Lemma 1 implies that minπ∈S G(π) = 0 and we therefore consider a threshold ε > 0 such that we accept a sample
point π(n) ∈ S as a solution if G(π(n)) < ε. In practice, this algorithm is especially convenient, efficient and fast when
dealing with a small number of classes (for instance when K ≤ 5). Indeed, our constraint set is the simplex S, which is
compact and for which it is easy to uniformly sample points using the famous Dirichlet distribution. However, this
algorithm is not relevant when the number of classes K is large since the computation time would become too huge.

Algorithm 1 Softmin Discrete Minimax Classifier (using a Monte-Carlo based approach)

1: Input: Training set S =
{
(Yi, Xi) , i ∈ I

}
, K, L, N , λ, ε > 0.

2: Compute the p̂kt values as in equation (6)
3: Initialize π(1) = [1/K, . . . , 1/K]
4: Initialize π⋆ = π(1)

5: Initialize G⋆ = G
(
π(1)

)

6: for n = 1 to N do
7: Sample uniformly a point π(n+1) ∈ S using the Dirichlet distribution
8: if G

(
π(n+1)

)
< G⋆ then

9: G⋆ ← G
(
π(n+1)

)

10: π⋆ ← π(n+1)

11: if G⋆ ≤ ε then
12: Break
13: end if
14: end if
15: end for
16: Output: Priors π⋆ solution of (18) and δλπ⋆ provided by (19).
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D.2 Projected descent based algorithm

Another relevant approach for computing the priors π⋆ solution of the minimization problem (18) would be to consider
a projected gradient algorithm following the scheme

π(n+1) = PS

(
π(n) − γn

ηn
∇G

(
π(n)

))
, (54)

where at each iteration n ≥ 1, ∇G
(
π(n)

)
is the gradient of G at the point π(n), γn denotes the gradient step,

ηn = max{1, ∥∇G
(
π(n)

)
∥2}, and where PS denotes the exact projection onto the simplex S. However, the gradient

of G is complex to compute at each iteration, especially in a high dimensional simplex S. In other words, although this
approach is theoretically proved to achieve satisfying results, it requires a huge computation time when dealing with a
large number of classes. In this context, stochastic gradient based methods can appear relevant and can be implemented
by the users. In this section, we propose to discuss a faster and more convenient descent algorithm which is conjectured
to converge toward the priors π⋆ solution of (18) based on the following conjecture.

Conjecture 2. Given π ∈ S and when considering G(π) =
[
g1(π), . . . , gK(π)

]
as defined in equation (16), the vector

−G(π) is a descent direction of the function G(π).

Figure 8 illustrates this conjecture. We can observe that if gk(π(n)) = R̂k

(
δλ
π(n)

)
−Vλ(π(n)) > 0, then π(n+1)

k = π
(n)
k +

γn

ηn
gk

(
π(n)

)
is a descent direction with respect to G. Moreover, if gk(π(n)) < 0, then π(n+1)

k = π
(n)
k + γn

ηn
gk

(
π(n)

)

is a descent direction too.

⇡
(n)
1 +

�n

⌘n
g1

⇣
⇡(n)

⌘
⇡

(n)
1 +

�n

⌘n
g1

⇣
⇡(n)

⌘

⇡
(n)
1 +

�n

⌘n
g1

⇣
⇡(n)

⌘
⇡

(n)
1 +

�n

⌘n
g1

⇣
⇡(n)

⌘

Figure 8: Illustration of the descent iteration algorithm (55) for K = 2 classes.
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We therefore propose to consider the following projected descent algorithm

π(n+1) = PS

(
π(n) +

γn
ηn

G
(
π(n)

))
, (55)

where, at each iteration n ≥ 1, γn denotes the descent step, ηn = max{1, ∥G
(
π(n)

)
∥2}, and PS denotes the exact

projection onto the simplex S. The following conjecture studies the convergence of the iterates (55) toward the priors
π⋆ solution of (18).
Conjecture 3. Under Conjecture 1 and Conjecture 2 and when considering any sequence of steps (γn)n≥1 satisfying

inf
n≥1

γn > 0,

+∞∑

n=1

γ2n < +∞,
+∞∑

n=1

γn = +∞, (56)

the sequence of iterates (55) converges to a solution π⋆ of (18), whatever the initialization π(1) ∈ S.

The procedure for computing the softmin discrete minimax classifier δλπ⋆ using our new projected descent based
scheme is summarized in the step by step Algorithm 2. In Algorithm 2, N denotes the maximum number of iterations.
Moreover, since minπ∈S G(π) = 0, we consider the threshold ε > 0 such that we accept a point π(n) ∈ S as a solution
if G(π(n)) < ε. This algorithm showed efficiency on several experiments, especially on the famous CIFAR-100
database (see Section 4).

Algorithm 2 Softmin Discrete Minimax Classifier (using projected descent based iterations)

1: Input: Training set S =
{
(Yi, Xi) , i ∈ I

}
, K, L, N , λ ∈ Λ(π̄), ε > 0.

2: Compute the p̂kt values as in equation (6)
3: Initialize π(1) = π̄
4: Initialize π⋆ = π(1)

5: Initialize G⋆ = G
(
π(1)

)

6: for n = 1 to N do
7: Compute G

(
π(n)

)
using equation (16)

8: Compute G
(
π(n)

)
= ∥G

(
π(n)

)
∥22

9: if G
(
π(n)

)
< G⋆ then

10: G⋆ ← G
(
π(n)

)

11: π⋆ ← π(n)

12: if G⋆ ≤ ε then
13: Break
14: end if
15: end if
16: γn ← ξ(n), where the sequence (ξ(n))n∈N satisfies condition (56)

17: ηn ← max

{
1, ∥G

(
π(n)

)
∥2
}

18: π(n+1) = PS

(
π(n) + γn

ηn
G
(
π(n)

))

19: end for
20: Output: Priors π⋆ solution of (18) and δλπ⋆ provided by (19).
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E Additional experiment information, results and settings

E.1 Settings for the experiments on the CIFAR-100 database

Database settings. We consider the famous CIFAR-100 database (Krizhevsky, 2009) which contains 60,000 images
with K = 100 classes and for which the class proportions are perfectly balanced. The scope of this experiment is not to
compare our method with other state of the arts classifiers in minimizing the average risk (1) but to illustrate Theorem 1
when the number of classes K is large. While the initial database was splitted into a training set and a test set containing
respectively 50,000 and 10,000 images, we decided to shuffle the 60,000 images in order to compose a new pair of
training and test sets, each one containing 30,000 instances. Both the training and test sets satisfied the balanced class
proportions π̂ = [1/100, . . . , 1/100] as in the initial datasets. These settings were considered in order to have a larger
number of test images in each class and to avoid possible covariate shifts between the initial training and test sets (and
thus to satisfy Assumption 1).

CNN and hyper-parameters settings. For this experiment we considered the deep features extracted from the last
hidden layer of the convolutional neural networks EfficientNet-B0 (Tan and Le, 2019). We then discretized the deep
features using the Kmeans procedure with T = 1200 centroids (each centroid corresponding to a discrete profile). We
compared on the same discretized deep feature space the Discrete Bayes Classifier δBπ̂ [given by (7) when considering
the priors π̂], the Discrete Minimax Classifier δBπ̄ [given by (7) when considering the priors π̄ = argmaxπ∈S VB(π)]
and our Softmin Discrete Minimax Classifier δλπ⋆ . We chose to compare these three algorithms in order to illustrate the
impact of both the priors π̂, π̄, π⋆ ∈ S and the randomization on the same deep feature space partitioning. Regarding
our Softmin Discrete Minimax Classifier δλπ⋆ , we computed the priors π⋆ solution of (18) using Algorithm 2.

Additional results. Another interesting experiment is to decrease the number of centroids T when partitioning the
deep feature space. This number of discrete profiles T has indeed an impact on the results, especially since the smaller
T is, the more sharpened the Bayes risk VB becomes. We therefore propose here a new experiment when considering
T = 800 discrete profiles. Figure 9 displays these additional results. Although the CNN-DMC algorithm converged
when computing the least favorable priors π̄ = argmaxπ∈S VB(π), its class-conditional risks appear more imbalanced
for T = 800 than for T = 1200 since the Bayes risk VB is more sharpened with this smaller number of discrete profiles.
Here again, we can observe that our new Sotmin-DMC criterion gets the best results in the difficult task of balancing
the class-conditional risks and achieved maxk∈Y R̂k(δ

λ
π⋆) ≤ maxk∈Y R̂k(δ

B
π̄ ), which especially illustrates Theorem 1.

Figure 9: CIFAR-100 database: Class-conditional risks associated with the CNN-DBC, CNN-DMC and CNN-Softmin-
DMC classifiers on both the training and test datasets when considering T = 800 discrete profiles.

E.2 Databases descriptions

Diabete Database (Johannes, 1988). The objective of this database is to predict the onset of diabetes based on
diagnostic measurements and was originally studied by the National Institute of Diabetes and Digestive and Kidney
Diseases. This database contains the measurements of 8 clinical and biological features (Number of times pregnant,
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Plasma glucose concentration, Diastolic blood pressure, Triceps skin fold thickness, 2-Hour serum insulin, BMI,
Diabetes pedigree function, Age) for 768 patients. We have K = 2 classes, where class 2 corresponds to the patients
who tested positive for diabetes. The class proportions of this dataset are π̂ = [0.65, 0.35]. For this database, we
considered the L0-1 loss function.

APS Failure Trucks database (Scania, 2016). This real condition monitoring database focuses on the Air Pressure
System (APS) used for various functions in Scania trucks such as braking and gear changes. Measurements of a specific
APS component were collected from heavy Scania trucks in everyday use. The goal is to predict a potential failure of
this component. We therefore have K = 2 classes where the class 1 corresponds to the APS without failures and class 2
to the defect APS components. For this database, the costs of classification errors were provided by the experts of the
application domain:

L =

[
0 10

500 0

]
, (57)

so that the cost of predicting a nonexistent failure is $10, while the cost of missing a failure is $500. After removing
missing values, the database contains the measurements of 69,309 samples, of which 68,494 do not present any failure
and 815 do present a failure. Hence, the class proportions π̂ = [0.9882, 0.0118] are highly imbalanced, which highly
complicates the task of predicting a failure. Finally, each instance is described by d = 130 numeric features.

MedMNIST databases (Yang et al., 2020; Yang et al., 2020). We consider here three real medical databases
(OCTMNIST, DermaMNIST, BreastMNIST) which differ in the number of images, the number of classes and the class
proportions. DermaMNIST corresponds to dermatoscopic images of common pigmented skin lesions, OCTMNIST to
optical coherence tomography images for retinal diseases and BreastMNIST to breast ultrasound images for which
the objective is to classify benign and malignant tumors (Yang et al., 2020) Each database contains a training set, a
validation set and a test set with 28×28 images. Table 3 provides an overview of each database and Figure 10 highlights
their associated class proportions. Let us note that the OCTMNIST database presents prior probability shifts between
the validation and the test sets. Finally, we considered the famous L0-1 loss function for all these databases.
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Figure 10: Class proportions of the Validation and Test sets for each MedMNIST database.
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