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Abstract

Traditional non-life reserving models largely neglect the vast amount of information
collected over the lifetime of a claim. This information includes covariates describing the
policy (e.g. the value of the insured risk), claim cause (e.g. hail) as well as the detailed
claim’s history (e.g. settlement, payment, involvement lawyer). We present the hierarchical
reserving model as a modular framework for integrating a claim’s history and claim-specific
covariates into the development process. Hierarchical reserving models decompose the joint
likelihood of the development process over time. Moreover, they are tailored to the portfolio
at hand by adding a layer to the model for each of the registered events (e.g. settlement,
payment). Layers are modelled with classical techniques (e.g. generalized linear models)
or machine learning methods (e.g. gradient boosting machines) and using claim-specific
covariates. As a result of its flexibility, this framework incorporates many existing reserving
models, ranging from aggregate models designed for runoff triangles to individual models
using claim-specific covariates. This connection allows us to develop a data-driven strategy
for choosing between aggregate and individual reserving; an important decision for reserving
practitioners that is largely left unexplored in scientific literature. We illustrate our method
with a case study on a real life insurance data set. This case study provides new insights
in the covariates driving the development of claims and demonstrates the flexibility and
robustness of the hierarchical reserving model over time.

JEL classification: G22

Keywords: individual claims reserving, gradient boosting models, covariate shift, model and
variable selection, moving window evaluation
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1 Introduction

Insurers set aside funds, the so-called reserve, for covering claims from past exposure years.
This reserve is often split into a reserve for Incurred, But Not yet Reported (IBNR) claims
and a reserve for Reported, But Not yet Settled (RBNS) claims. These separate reserves differ
in the range of statistical tools that are available for modelling them. Since the claims that
compose the IBNR reserve are not yet reported, claim-specific and policy(holder) covariates are
unavailable for differentiating the cost per claim. Therefore, IBNR reserving mostly focuses on
accurately estimating the number of unreported claims, followed by allocating a fixed cost per
unreported claim. In RBNS reserving, the insurer is aware of the number of open claims as well
as their characteristics and development so-far. This opens the possibility for reserving models
that predict the future cost on a per claim basis. This paper focuses on predicting the RBNS
reserve by modelling the development of reported claims.

Traditionally, the non-life insurance literature has been dominated by analytic models designed
for aggregated data, such as the chain ladder method (Mack, 1993, 1999). These models com-
press the historical data on the development of claims over time in a two dimensional table,
the so-called runoff triangle, by aggregating payments by occurrence and development year.
Low data requirements, implementation simplicity and a straightforward interpretation of the
predicted reserve justify the popularity of these models. However, by compressing the data
valuable insights into the risk characteristics of individual claims are lost. This makes the re-
serve less robust against changes in the portfolio composition and extreme one-time events. In
response to this, individual reserving methods designed for granular data available at the level
of individual claims, have first been proposed in the nineties. Individual reserving remained
largely unexplored for about two decades, with revived interest in recent years thanks to an
increased focus on big data analytics.

We identify three streams in the current literature on individual reserving. Following Norberg
(1993, 1999), a first stream analyzes the events registered during a claim’s development in con-
tinuous time. Lopez et al. (2016, 2019) adapt regression trees to the right-censoring present in
continuous time reserving data. Covariates in these trees capture the heterogeneity in the claim
size as well as in the time to settlement of reported claims. In Antonio and Plat (2014) hazard
rates drive the time to events in the development of claims (e.g. a payment, or settlement)
and a lognormal regression model is proposed for the payment size. Reserving in continuous
time requires a time to event model that allows for multiple payments and multiple types of
(recurrent) events. Since such models are complicated, many individual reserving models are
defined in a more convenient discrete time framework, where the events in a claim’s lifetime are
registered in discrete time periods. A second stream of reserving methods models the reserve
in discrete time by adapting models from insurance pricing, as such taking advantage of the
detailed covariate information available within insurance companies. Since these covariates only
become available at reporting, such models focus on the reserve for reported, but not settled
(RBNS) claims, while using techniques from aggregated reserving to estimate the reserve for
unreported claims. Larsen (2007) focuses on Generalized Linear Models (GLMs), Wiithrich
(2018) considers regression trees and Wiithrich (2018) looks at neural networks for reserving.
A third stream of papers aggregates the data into multiple runoff triangles. Martinez Miranda
et al. (2012), Wahl et al. (2019) and Denuit and Trufin (2017, 2018) consider two, three and
four triangles respectively. While the aggregation of the data makes these models easy to im-
plement, covariate information of individual claims can not be used. The recent expansion in
(individual) reserving methodology has resulted in a fragmented literature with few compar-
ative studies and no unified approach with proven robustness and general applicability. The
lack of a solid modelling framework hinders the implementation of individual reserving in in-
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surance practice. Moreover, providing data driven guidance on the choice between aggregate
and individual reserving is a very important question that is largely unexplored in the reserving
literature.

We aim to fill this gap in the literature by presenting the hierarchical reserving model as
an intuitive framework for RBNS reserving with a focus on applicability in practice. This
framework decomposes the joint likelihood of the development process of individual claims after
reporting in discrete time. Hierarchical reserving models are tailored to the portfolio at hand
by adding layers, which represent the events (e.g. settlement, positive or negative payments,
changes in the incurred, ...) registered over the lifetime of a claim. This modular approach
enables us to restate many existing reserving models, including models based on data aggregated
into a runoff triangle, as special cases of the hierarchical reserving model. This intuitive model
building process allows us to concentrate on the decisions made during the modelling process,
such as model calibration and evaluation. These aspects of the modelling process have received
little attention in individual reserving literature up to now with many papers following the model
building steps applied in pricing or aggregate reserving. This results in a loss of performance
as such methods do not consider the individual and censored structure of the data.

This paper is organized as follows. Section 2 introduces the hierarchical reserving model,
presents best practices for calibrating this model to insurance data and explains how this model
can be used to predict the future reserve. Section 3 investigates the connection between hi-
erarchical reserving models proposed at individual claim level and certain aggregate reserving
models. This results in a data driven strategy for choosing between aggregate and individual
reserving. Section 4 demonstrates this methodology in a case study on a home insurance data
set. This is a novel data set, which has not been used before in the literature on reserving. An
R package accompanies the paper enabling researchers and practitioners to directly apply the
hierarchical reserving model to their portfolios.

2 A hierarchical reserving model

It is common in insurance pricing to decompose the joint likelihood into a frequency and severity
contribution (Henckaerts et al., 2018). Frees and Valdez (2008) extend this idea by splitting the
severity contribution per claim type. In this spirit, we propose a hierarchical reserving model,
which decomposes the joint likelihood of the claim development process over time and registered
events (e.g. settlement, payment).

2.1 Notation and statistical model

We record the development of reported claims in discrete time over a period of T years. For each
reported claim k, r; denotes the reporting year and the vector x; denotes the claim information
available at the end of the reporting year. This information vector is static and consists of the
circumstances of the claim, policy(holder) covariates and the claim development (e.g. initial
reserve, payments) in the reporting year. In the years after reporting, so-called update vectors,
denoted Ui, describe the change in the claim development information in year ri + j — 1.
The length and components of Ui depend on the events (e.g. claim settlement, change in the
incurred, involvement of a lawyer) registered in the portfolio at hand. This paper defines a
modular model building approach that can be tailored to the chosen structure in Ui. These
models, called hierarchical reserving models, are based on two fundamental assumptions
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Hierarchical model assumptions

(A1) All claims settle within d years after reporting;

(A2) The development of a claim is independent of the development of the other claims in the
portfolio.

Although upper limit d on the the settlement delay is not necessarily limited to the length of
the observation window, we implicitly assume d = 7 for notational convenience. Given these
assumptions, the set of observed claim updates after reporting, say RS, for a portfolio of n
claims is

RUbS:{Ui‘k:17"‘7n’j:2"“’7—k}’

with 7, = min(d, 7 — r + 1) the number of observed development years since reporting for claim
k. The associated likelihood is

n

Robs H ,Uzk ‘ZB]C),

where we use assumption (A2) to write the likelihood as a product of claim-specific likelihood
contributions. Inspired by Frees and Valdez (2008), we introduce a hierarchical structure in this
likelihood by applying the law of conditional probability twice. First, we include the temporal
dimension by splitting the likelihood in chronological order

L (R%) ﬁHf(U{C U} UL )

k=1j=2

By conditioning on past events, we acknowledge that the future development of a claim depends
on its development in previous years. Second, we split the likelihood by the events registered
in the vector U{C

c(®R™) =1] HHf (U,g, v, Uil .,Ugl_l,a:k) , (1)

k=17=21=1

where s is the length of the update vector Ui. In the remainder of this paper, we refer to these
events registered over the lifetime of a claim as the layers of the hierarchical model. The order
of the layers is an important model choice, since the outcome of a layer becomes a covariate
when modelling higher indexed layers. Since the assumptions (A1-A2) are common in reserving
literature, most discrete time reserving models can be seen as a special case of our hierarchical
reserving framework. Notice that in contrast with the chain ladder method, the hierarchical
framework includes the full history of the claim and thus allows for non-Markovian models.

When applying the hierarchical claim development model to a specific portfolio, we extend
assumptions (A1-A2) with an additional assumption, which tailors the structure of the update
vector U i to the portfolio at hand. For example, in the case study covered in Section 4, we

model Ui with a three-layer hierarchical model.

Hierarchical layers

(A3) The update vector U fg for claim k in development year j has three layers
Uy, = (UvakaUli,:%) = (C]{:,P]-g,ylg);
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. C,Z is the settlement indicator which is one when claim k settles in development year
j and zero otherwise. Conditional on past events, the settlement indicator follows a
Bernoulli distribution with

j : 2 j—1
CIJC |Uiv--~an;1,mkN Bernoulli (p (Uk, ey U?C ,$k>) .

. P,g is the payment indicator which is one when there is a payment for claim k in
development year j and zero otherwise. Conditional on past events, the payment
indicator follows a Bernoulli distribution with

1 . 2 .71 .
P} |U§7~--,Ui71,CZ,EkN Bernoulli <q (Uk, LUy O ZBk>) )

. ij is the payment size, given that there was a payment in development year j.
Conditional on past events, the payment size is gamma distributed with mean

EY] |U3,...,U" ¢l Pl ay, 5) = p(UR, ..., UL CL Pl xy)
and variance

A |UZ,..., U ¢l PlLay)=60-wU2,... .U CL P xy).

As such, we structure the development of claims with a simple three-layer hierarchical model.
Conditioning on the settlement status in past years, allows us to train the model on the devel-
opment of open claims only, whereas without settlement indicator, the model would predict new
payments for already settled claims. Moreover, by choosing settlement as the first layer of the
hierarchical model, settlement becomes a covariate when modelling later layers. The gamma
distribution for the sizes is frequently used in insurance pricing literature when modelling at-
tritional losses (Henckaerts et al., 2020). Choosing a strictly positive distribution assumes that
there are no recoveries in the portfolio. In portfolios in which recoveries are common, additional
layers should be added to the hierarchical model to allow for negative payments.

2.2 Hierarchical model calibration

The hierarchical claim development framework makes no assumption with respect to the statis-
tical modelling technique that is used to model the individual layers. The case-study in Section 4
illustrates the proposed hierarchical reserving model by calibrating both a Generalized Linear
Model (GLM) as well as a Gradient Boosting Model (GBM) to the layers outlined in (A3).
Although standard procedures are available for calibrating these models, special attention is
required for the variable selection process or (hyper) parameter turning steps. In reserving the
historical, observed data contains mainly records from early development years, whereas the
future predictions are more oriented towards later years. This imbalance between the training
and prediction data set poses a model risk when covariates exhibit a different effect on the
first development years versus the later development years. In machine learning literature this
phenomenon is known as a covariate shift (Sugiyama et al., 2007b). Following Sugiyama et al.
(2007a), we correct for a potential covariate shift by maximizing a weighted likelihood in which
weights depend on the development year, i.e.

n Tk

gresres (R2) — [T [y [T/ (v, 102, U 0L Ul ) (2)
k=1j=2 I=1
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where w; is the weight assigned to an observation from development year j. Following Sugiyama
et al. (2007a), we define these weights as the ratio of the number of records from development
year j in the prediction data set to the number of records from development year j in the
training data set. For typical reserving data sets this ratio is observed and can be computed as

d
Dimd—ji2 M
d—j+1_
Zi:lj g

where n; is the number of reported claims in reporting year i¢. These weights increase in j
assigning more weight to observations from later development years. When selecting covariates
or tuning (hyper) parameters, we maximize (2) in a 5-fold cross validation scheme. For this, we
calibrate predictive models per layer [ and allocate observations at the level of a claim k and a
development year j (see (2)) to different folds.

w; =

2.3 Predicting the future development of claims

Algorithm 1 simulates the development of reported claims beyond the observation window 7.
In line with the hierarchical structure of the model, development years are simulated in chrono-
logical order and within a development year, this simulation algorithm respects the order of the
layers. The simulation order is important, since simulated values from previous development
years and lower indexed layers become inputs for later development years and higher indexed
layers.

Algorithm 1: Simulating the future development of reported claims

Input: the observed development of reported claims
Output: simulation of the future development of reported claims
foreach claim k do
for development year j in 7+ 1 —17...d do
for hierarchical layer 1 in 1...s do

Simulate U7 | U ,... .UV UL, ... UL, @
end

end
end

Following this algorithm, the simulated data has the same hierarchical layered structure as the
input data set, which enables us to derive aggregated quantities for the events registered in the
update vector Ui. For example, given the specific hierarchical structure in assumption (A3), we
obtain estimates for the number of open claims, the number of payments and the total payment
size. Prediction intervals for these reserving quantities are obtained by running Algorithm 1
many times.

2.4 Implementation in R

We have developed a package called hirem (Crevecoeur, 2020) for defining and calibrating
hierarchical reserving models as well as simulating the future development of claims. In this
package, layers can be estimated with generalized linear models (GLMs) or gradient boosting
models (GBMs). The case-study of Section 4 uses the implementation from Southworth (2015)
of the gbm package, which adds the gamma loss function to the original package developed by
Greenwell et al. (2018).



8 Bridging aggregate and individual reserving 7

3 Bridging aggregate and individual reserving

Most claim reserving models used in insurance companies are based on data aggregated into
runoff triangles. We start from data registered at the level of individual claims and illustrate
how aggregate reserving models can be retrieved as special cases of the hierarchical reserving
model. Section 3.1 investigates the simplified case of a hierarchical model with independent
layers. Section 3.2 extends these results and allows a simple, but common dependency structure
between the layers. The results of these sections offer valuable insights and statistical tools for
choosing between aggregate and individual reserving. Section 3.3 demonstrates the universality
of our framework by constructing hierarchical reserving models inspired by recent literature
contributions on aggregate reserving with multiple runoff triangles. The hierarchical reserving
model as a unified framework for RBNS reserving facilitates model comparison and offers new
insights as to how these models could be extended to data registered at the level of individual
claims.

3.1 From individual hierarchical reserving models with independent layers
to aggregate reserving models

In contrast with traditional reserving models, the hierarchical reserving model proposed in
Section 2.1 analyses the development of claims from development year two since reporting
onwards. For this, our approach collects all information registered during the reporting year of
a claim k in a vector xy. This vector not only includes claim covariates (e.g. the cause of the
accident), but also covariates structuring the development of the claim in the reporting year
(e.g. the amount paid during the reporting year). In this section, we denote by U} the claim
development information that becomes available during the reporting year. Next to this, xj
refers in this section to the remaining static claim covariates that become available at reporting.
Introducing U ,1€ brings our notation more in line with traditional reserving practice and enables
us to model the development of claims from development year one onwards.

We construct for each of the layers [ in the update vector Uf; a runoff triangle (X lij )J1<i j<d With

cells N '
X/ = Z Ui,
k:T’kZi

In line with our focus on modelling RBNS claims, we aggregate by reporting year and de-
velopment year since reporting instead of the traditional set-up where aggregation goes per
occurrence year and development year since occurrence. As such, we model the development of
claims since reporting. Although, we denote the reporting year of claim k by rg, we keep the
traditional index i for the rows, i.e. the reporting years, in the runoff triangle.

Let us now assume that the individual updates depend multiplicatively on the reporting year
and the development year, i.e.

d
E(U],;) = an,1-Bji  and Zﬁj,z =1, (3)

j=1
for each layer | and where «, ; is the effect of reporting year r, and f3;; is the effect of develop-

ment year j. When we aggregate these individual updates into a runoff triangle, the cell values
follow a similar multiplicative relation, i.e.

EXP)=E| Y Ul | =ni-ou- By =dir- B (4)

kirp=i
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where n;, the number of reported claims in reporting year i, is observed. As a result, we can
calibrate individual hierarchical reserving models that only depend multiplicatively on reporting
year and development year using data aggregated into runoff triangles.

Matching (3) with the original hierarchical reserving model specification in (1), we rephrase the
expected value for the updates U ?C at the individual level in full generality as

E(U},) = ane B+ 6 (U}C, UL UL U,g'J_l,:ck) ,

where ¢(-) represents the effect of all other covariates. When we add a distributional assumption
for Ui:, choosing between an aggregate or individual reserving model reduces to testing for
¢(-) = 1. Since the models with and without ¢(-) are nested, a likelihood ratio test can be used
for this.

3.2 From individual hierarchical reserving models with dependent layers to
aggregate reserving models

The reserving models constructed in Section 3.2 treat each layer independent of the others. This
results in simple aggregated models, where each layer is estimated from a single runoff triangle,
independent from the other layers. However, in most multi-layer hierarchical structures some
dependence between the layers is inevitable and offering a simple framework to include these
dependencies is one of the main motivations for the hierarchical reserving model. This section
investigates the special, but common setting of a two-layer hierarchical model in which layer
one is a binary random variable and layer two is zero whenever layer one equals zero. As an
example, think of layer one as a payment indicator and layer two as the payment size. When
there is no payment, the payment size is zero.

Again focusing on the multiplicative structure of reporting and development year, we structure
the expected values of the layers as

E(Ulg,l) = Q1 Bjﬂ ’ ¢ (Ullca SRR Ui_l7a3k>

Oér,wQ . ﬁj’z . ﬂ) (Ullc, - .,Uiil,mk> Ulz,l =1

E(U],) = . :
2 {0 Ul =0

where Z;l:l Big = 1 for I € {1,2}. When ¢(-) and 1(-) are both equal to one, the claim
development depends only on reporting year and development year in a multiplicative way. We
then retrieve

EXY)=E| > Ul | =ni-ai1-Bj1=ai1- B

kirp=t
B | X)) =E( > Uly| =X aip- B (5)
kirp=t

When calibrating the model for the second layer, the observed upper triangle of the first layer
acts as an exposure term. When estimating the future reserve, this exposure term, X;’, should
be estimated using the model proposed for the first layer. If we interpret the first layer as
a payment indicator and the second layer as the payment size then the number of payments
becomes the exposure for the total payment size. Similar to Section 3.1, statistical tests for
o(-) = ¥(-) = 1 offer data driven tools for choosing between individual and aggregate reserving.
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3.3 Hierarchical reserving models inspired by aggregate reserving models
proposed for multiple runoff triangles

As a result of the weak assumptions underlying the hierarchical reserving model, many existing
reserving models can be restated as special cases of our framework. As a unifying framework, the
hierarchical reserving model facilitates model comparison and allows extending the calibration
and simulation strategy developed in this paper to other models. In the case of models designed
for aggregate data, the hierarchical reserving framework in addition offers insights as to how
these models could be extended to data registered at the level of individual claims.

As an illustration of the generality of our framework, we construct hierarchical reserving mod-
els inspired by recent contributions on aggregate reserving using data structured in multiple
triangles. We discuss two examples of such models, namely the double chain ladder (Martinez
Miranda et al., 2012) and the collective reserving model (Wahl et al., 2019). As motivated in
Section 1, we limit our analysis to the RBNS part of these aggregate models.

Double chain ladder The double chain ladder (DCL) (Martinez Miranda et al., 2012) ex-
tends the chain ladder method to two runoff triangles to obtain separate estimates for the IBNR
and RBNS reserve. Since we only consider the development of claims after reporting, we focus
on the triangle of claim sizes and construct a one-layer hierarchical model. DCL structures the
expected payment size for a claim k in development year j since reporting, denoted U ZJ, as

EU}. 1) =75 - i - Vi

where 7, denotes the occurrence year of the claim and 7; and fi; are the payment probability
in development year j and average payment size in development year j respectively. The
coefficient ;, adjusts the size of the payments from occurrence year i, for inflation. Letting
inflation depend on the occurrence year is natural in DCL, which aggregates runoff triangles
by occurrence year and development year since occurrence. Since runoff triangles based on the
hierarchical reserving model aggregate by reporting year and development year since reporting,
it is in our framework more natural to model inflation per reporting year. If we change the
occurrence year effect 7;, by a reporting year effect +,,, the individual updates become

EU;. 1) =7 fij - Y-

Aggregating these individual updates, we retrieve

E(Xi]):E Z U]il :ni'ﬁ'j'/]j"%‘-

kirp=i

This is the same model as (3), when we rewrite a; = n; - y; and 5; = 7; - fi;.

The collective reserving model Extending the earlier work of Verrall et al. (2010) and
Martinez Miranda et al. (2012), the collective reserving model (Wahl et al., 2019) structures
the claim development after reporting in two layers. These layers represent the number of
payments and the size per payment. Inspired by Wahl et al. (2019)’s aggregate model, we
structure the individual updates as

E(U},) ~ Poisson();), (number of payments)
E(Ué,g | Uiz;) = w(ig, k> J) - U;z,p (payment size)
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where a claim can have multiple payments in the same year, each with an average size p(ix, 7%, j),
which depends on the occurrence year, reporting year and development year since reporting.
When p(ix, rg, j) = oy, - B, the model aggregates to

B(XY) =ni - \j,
E(XY | X)) =XV - a;- Bj,

where n; denotes the number of claims reported in reporting year ¢. This representation is
almost identical to (5), with the estimated effect of reporting year ¢ for the number of payments
replaced by the observed count n;.

4 Case study: European home insurance portfolio

This case study models the RBNS reserve for a European home insurance portfolio. This
insurance reimburses damages to the insured property and its contents resulting from a wide
range of causes including fire damage, water damage and theft. For reasons of confidentiality we
can not disclose the size of the portfolio and the associated reserve. Therefore, we express the
performance of the investigated reserving methods via a percentage error measure, comparing
the actual and predicted reserve.

4.1 Data characteristics

We observe the development of individual claims over a seven year period from January, 2011
until December, 2017. Figure 1 structures individual payments by the reporting date of the
claim (vertical axis) and the number of days elapsed since reporting (horizontal axis). Every
dot represents a single payment and one claim can have multiple payments. A triangular struc-
ture appears, since the claim development after December, 2017 is censored. Home insurance
is a short tailed business line, with many payments in the first years after reporting. The black
grid in Figure 1 visualizes how individual payments would be aggregated when constructing a
yearly runoff triangle. As shown in this triangle, extreme weather events cause sudden spikes
in the number of reported claims. This has a large impact on the stability of the runoff triangle
in classical, aggregate reserving. Therefore, insurers most often reserve these claims separately
based on expert opinion. In this paper we analyze the robustness of various hierarchical re-
serving methods by predicting the future reserve with and without extreme weather events.
Table 1 provides a detailed description of the available covariates. We group these covariates
into four categories. Policy covariates identify the policy or policyholder entering the claim.
These covariates are available when pricing the contract. Claim covariates describe the static
characteristics of the claim. These covariates become available in the reporting year of the
claim. Development covariates describe the yearly evolution of the claim and layer covariates
constitute the layers of the hierarchical reserving model.

In Figure 2 a treemap visualizes the available claims grouped into the 12 risk categories as
coded in the covariate catnat. Each claim is represented by a rectangle, where the size of this
rectangle visualizes the amount paid for that claim by the end of December, 2017. Water and
fire damage are the most important insurance covers in this portfolio. Together these risks
generate more than half of the total claim cost. Fire claims are typically larger than non-fire
claims. Although less than 5% of all claims are related to fire, these claims represent more than
25% of the total cost. The large difference between the average size of fire claims versus the
average size of non-fire claims, motivates us to build separate reserving models for fire claims on
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2012;

2014

Extreme weather claims

\

Other claims

Reporting date

2016

2018

0 1000 2000
Payment delay (in days)

Figure 1: Payments structured by reporting date and payment delay in days. Every dot represents a
single payment and one claim can have multiple payments. A grid indicates how individual
payments would be aggregated when constructing a yearly runoff triangle. Claims resulting
from extreme weather (e.g. a storm) are colored red.

Policy covariates

valuables Objects were declared with a value exceeding the standard cover: yes or no
age.insured The age of the policyholder

profession Profession of the policyholder, 16 categories

sex Gender of the policyholder: male or female

construction.year The year in which the building was constructed

property.value The value of the property in Euro

Claim covariates

acc.date Date on which the accident occurred

rep.date Date on which the claim was reported to the insurer

rep.delay Delay in days between the occurrence and reporting of the claim
rep.month Calendar month in which the claim was reported (Jan - Dec)

coverage The main coverage applicable to the claim: theft, building or contents
catnat The cause of the claim, grouped in 12 categories

extreme.weather Claim is the result of extreme weather (e.g. storm): yes or no
initial.reserve Expert estimate of the initial reserve at the end of the reporting year
Development covariates

dev.year The number of years elapsed since the reporting of the claim
calendar.year Number of years elapsed between the start of the portfolio and dev.year
size.last.year Total amount paid in the previous development year

total.amount.paid Total amount paid in all previous development years
Layer covariates

close The claim closes in the current development year: yes or no
payment A payment occurs in the current development year: yes or no
size Total amount paid in the current development year

Table 1: List of covariates available in the home insurance data set. A level NA (not available) identifies
the records with no registered value for a covariate.

the one hand and non-fire claims on the other hand. Estimating separate reserves for risks with
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a different development pattern is a common approach in traditional reserving. Alternatively,
we can distinguish fire and non-fire claims by including a covariate in the hierarchical reserving
model. However, this latter approach would result in an unfair comparison between individual
models, which can use this covariate, and traditional reserving methods for aggregate data,
which can not use this covariate.

Water Storm Theft
Contact Vandalism Other
Fire
Hail
Glass Electricity
Lightning

Figure 2: Treemap of individual claims observed on 31 December, 2017 grouped into the 12 risk cat-
egories present in the portfolio as coded in the covariate catnat. Each claim is represented
by a rectangle, where the size of this rectangle visualizes the amount paid for that claim by
the end of December, 2017.

4.2 Hierarchical reserving models for fire and non-fire claims

We analyse the performance of hierarchical reserving models based on GLMs, GBMs and the
chain ladder method on 365 evaluation dates between January 1, 2015 and December 31, 2015.
Instead of a single out-of-time evaluation (as e.g. in Antonio and Plat (2014); Wiithrich (2018))
the moving window evaluation enables a more thorough assessment of the sensitivity and general
applicability of the model. On each evaluation date 7 we train the models on the observed data
(January, 2011 until 7) and compare the out-of-sample reserve estimate with the actual claim
development over the next two development years.

4.2.1 Hierarchical reserving models

Hierarchical GLM The hierarchical GLM follows the three layer structure close, payment
and size defined in assumption (A3) and models each of these layers with a Generalized Linear
Model (GLM). Actuaries are familiar with GLMs, given the long tradition of using GLMs in
insurance pricing and reserving. Therefore, GLMs are the most likely candidate for supporting
the transition from aggregate to individual reserving in practice. As is common in insurance
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pricing, we bin the continuous variables age.insured, construction.year, property.value
and rep.delay. Table 2 shows the chosen bins for each covariate. We do not include the
continuous development covariates size.last.year and total.amount.paid in the hierarchical
GLM, since these covariates are highly correlated with the development year. On the first
evaluation date, January 1, 2015, we select the optimal set of covariates for each of the three
GLMs (close, payment and size) using forward selection with 5-fold cross validation, i.e. we
iteratively add the covariate that results in the largest increase in the weighted likelihood (2)
over all hold-out folds. In the moving window evaluation, we do not reselect the covariates on
the other 364 evaluation dates, but recalibrate the parameters on each evaluation date using
the most recent data.

Variable Bins

age.insured [0, 39], [40,49] , [50,64], 65+, NA

construction.year 1950—, [1950,1969], [1970,1984], 1985+, NA

property.value 150,000—, (150,000, 200,000, (200,000, 250,000], 250,000+, NA
rep.delay 5—, [5,21], 21+

Table 2: List of chosen bins for the continuous covariates in the hierarchical GLM.

Figure 3a shows the selected covariates in each GLM as well as a measure of the importance
of each selected covariate. We compute covariate importance as the increase in the weighted
likelihood (2) over all hold-out folds when sequentially adding covariates using forward selection.
These increases are rescaled per GLM and sum to 100. For non-fire claims the set of selected
covariates changes only slightly when we omit extreme weather events. This is in line with the
low importance assigned to the covariate extreme.weather when these claims are included.
The interaction dev.year * rep.month allows a more accurate determination of a claim’s age,
while still reserving in a yearly framework. This is by far the most important determinant for
the settlement and payment process of non-fire claims. The importance of development year as
a covariate for individual reserving is a strong validation for aggregate reserving models, which
cannot use other covariates. Surprisingly, dev.year and dev.year * rep.month have little
effect on the size of non-fire claims. The most important determinants for the payment size
are the claim type as coded in catnat and the initial.reserve set by the expert. The data
set contains less fire claims and as a result fewer covariates are selected in the corresponding
GLMs. Although these GLMs might be less predictive, the few selected covariates obtain high
importance scores, since scores are always scaled to 100. In particular, valuables has an
importance of 100, since it is the only covariate selected in the GLM for the settlement of fire
claims. As with non-fire claims the initial.reserve is an important predictor for the payment
size.

Hierarchical GBM The hierarchical GBM follows the same three layer structure as the
hierarchical GLM, but models each layer with a tree based Gradient Boosting Model (GBM).
GBMs, as introduced by Friedman (2001), model the data with a sequence of shallow decision
trees, in which each tree improves the fit of the previous trees. The GBM has three major
advantages. First, through a sequence of trees a non-linear effect can be estimated for continuous
covariates, thus removing the need to bin continuous variables. Second, automatic feature
selection is integrated in the calibration process. Third, simple interaction effects between
the covariates are automatically modelled. As a result of these advantages, the covariates
age.insured, construction.year, property.value, rep.delay and initial.reserve can
be included as continuous covariates. Furthermore, we do not include the interaction dev.year
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(a) variable importance GLM (b) variable importance GBM

non-fre S rome weather fire non-fre S Tome weather fre
valuables 100 valuables 0 0 O 1,00 4 1 1
age.insured 37 agedinsured 6 6 6 5|55 9 11 14
profession 1 3 profession | 9 10 6 9 9 8 9 7|6
sex 1 sex 0 1|0 0 1|0 1 1 O
construction | 1 1 5 constructon = 8 | 8 6 8 7 4 9 9|6
property.value 519 5|2 property.value = 10 13 11 11 11 6 12 12 11
rep.delay 9 6 34 repdelay 5 5 8 5 4 4 4 5|5
repmonth | — — — - - = - - = rep.month | 18 22 10 17 23 10 22 24 15
coverage 1 coverage 0 0 2 0 0 O 0 0 O
catnat 4 58 4 175 X XX camat 6 6 11 6 7 7 X X X
global 5 XXX XXX goba 0 0 0 X X X X X X
initial.reserve 1 17 10 9 82 initial.reserve = 7 9 25 8 9 |88 8 8 28
dev.year 10 6 24 18 devyear [ 13 8 1 11 10 1 3|63
dev.year * rep.month 194 88 95 79 dev.year *rep.month  — — — - - = - - =
close >< 1 >< 12 >< close >< 1 1 >< 13 >< 1 4
sizelastyear | — @— @ — - - = - - = sizelastyear | 6 5 6 5|8 7 4
total.amount.paid  — — — - -] - T total.amount.paid 12 6 7 12 8 | 6 12 8 8

S % S % S % S % S % S %

3 3 2 2 2 2

>< covariate unavailable — covariate not included

Figure 3: Relative importance of the selected covariates in (a) the hierarchical GLM and (b) the
hierarchical GBM. Relative importance is computed as the increase in likelihood attributed
to a single covariate relative to the total increase in likelihood caused by all covariates.

* rep.month as the model will automatically construct the relevant interactions. In return, a
number of tuning parameters such as the number of trees and the depth of each tree have to
be tuned. We tune these parameters on January 1, 2015 using the cross validation strategy of
Section 2.2. Once tuned, these parameters remain fixed throughout the 364 remaining evaluation
dates.

Figure 3b shows the relative importance of the covariates in the various GBMs. The importance
of a specific covariate is expressed as the total improvement of the loss function over all splits
including that covariate averaged over the 365 evaluation dates and scaled to 100. Since there
is no explicit variable selection, importance is distributed over all covariates, which complicates
the interpretation. For recent claims, rep.month allows for a more granular expression of the
time elapsed since reporting the claim, which is important when modelling the target variables
close, payment and size. initial.reserve is the most important covariate when predicting the
size of payments. This shows that claim experts base their reserve estimate on information of
the claim beyond the covariates available in model building. Similarly, the importance of other
covariates shows that the practice of determining an initial reserve can be further improved
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by using a statistical model. The claim type catnat, which was important in the hierarchical
GLM, is less important in the GBM.

Chain ladder method We compare the previous individual hierarchical reserving models
with the classical chain ladder method based on yearly aggregated data. As indicated in Sec-
tion 3.1, the chain ladder method can be rephrased as a hiearchical reserving model with a
single layer, i.e. the payment size. On each evaluation date, we compute the RBNS reserve by
applying the classical chain ladder method to a runoff triangle of payment sizes aggregated by
reporting and development year. The choice for aggregating by reporting year results in an
estimate for the RBNS reserve, as motivated in Section 3. Confidence bounds for the reserve

estimate will be derived from a normal assumption combined with the standard errors under
the Mack model (Mack, 1999).

4.2.2 FEvaluation of the RBINS reserve

On each evaluation date we predict the expected RBNS reserve for the open claims over the next
two years. We measure model performance via the percentage error of the predicted reserve
compared to the actual reserve, that is

predicted — actual

percentage error = -100%.
actual

Figure 4 shows the evolution of the percentage error between January 2015 and December 2015
as obtained with the three hierarchical reserving models. The percentage error is capped at
100% for improved readability of the figures. Table 3 summarizes the daily errors by calculating
the average percentage error and the average absolute percentage error over the 365 evaluation
dates.

The reserve for non-fire claims (Figure 4a) combines the outstanding amounts on many small
claims, which provides a sufficiently rich data set for accurately training the individual hierar-
chical reserving models. This results in a similar performance for the hierarchical GLM and
GBM. Extreme weather events in past years, produce outliers in the cells in the runoff triangle.
This has a large impact on the chain ladder method, which fails to provide reasonable reserve es-
timates. This is a well known weakness of the chain ladder method and it is interesting that the
individual models do not have this weakness, since they scale the reserve estimate automatically
with the number of claims. Furthermore, Figure 3 shows that the covariate extreme.weather
is rarely selected in the hierarchical models, which indicates that the development of these ex-
treme weather claims does not fundamentally differ from regular claims. Not having to separate
these extreme weather events from the other claims is a major advantage of individual reserv-
ing. When we remove extreme weather events (Figure 4b), performance across all three models
becomes relatively competitive. Both the chain ladder method and the individual hierarchical
models benefit from a data set with a large number of claims. Table 3 shows that performance is
slightly better for the individual models, which surprisingly perform even better when we would
not exclude extreme weather events from the data set. We observe higher prediction errors for
all three models when predicting the reserve for fire claims (Figure 4c). The combination of
a low claim frequency and potentially high costs makes the reserve for fire claims difficult to
predict.
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(a) non—fire claims
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(b) non—fire claims, exclude extreme weather events
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Figure 4: Percentage error in the prediction of the RBNS reserve on evaluation dates between January
1, 2015 and December 31, 2015 under the hierarchical GLM, hierarchical GBM and the chain
ladder method. Errors are limited to 100%. (a) shows the reserve for non-fire claims, (b)
the reserve for non-fire claims, when extreme weather events are excluded and (c) the reserve
for fire claims.

5 Conclusion

We propose the hierarchical reserving model as a general framework for RBNS reserving in
discrete time. By adding layers and choosing predictive models this framework can be tailored
to any insurance portfolio. At the same time, our approach enables the development of best
practices for calibration (see Section 2.2) and offers statistical tools for comparing hierarchical
models. Model comparison extends to many existing reserving models, which can be restated
as hierarchical reserving models. Moreover, Section 3 presents a connection with aggregate
reserving models, allowing a data driven choice between aggregate and individual reserving. We
illustrate our framework on a detailed case study with a home insurance data set. The flexibility
of the framework is demonstrated by calibrating the same three layer structure with generalized
linear models and gradient boosting models. As a best practice, we minimize the effect of day-
to-day volatility when comparing our reserving models, by evaluating the performance over 365
evaluation days. The individual hierarchical models consistently outperform the classical chain
ladder method on aggregated data and have the additional benefit that extreme weather events
do not have to be removed prior to reserving.
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hierarchical GLM hierarchical GBM chain ladder
w(PE)  w(|PE|) w(PE) p(|PE|) p(PE) w(|PE|)

non-fire claims 0.92 7.32 -1.80 10.23 33.89 51.31

non-fire claims,
exclude extreme weather

fire-claims -20.82 26.44 -16.42  26.50 -28.41  29.76

Portfolio

-9.76 14.90 -14.28  20.18 -18.10  19.07

Table 3: Evaluation of the average performance of the hierarchical GLM, hierarchical GBM and chain
ladder method over 365 evaluation dates between January 1, 2015 and December 31, 2015. Av-
erage performance is expressed as the mean percentage error and the mean absolute percentage
error.
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