
HAL Id: hal-04015719
https://hal.science/hal-04015719

Submitted on 6 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assessing the impact of the COVID-19 shock on a
stochastic multi-population mortality model

Jens Robben, Katrien Antonio, Sander Devriendt

To cite this version:
Jens Robben, Katrien Antonio, Sander Devriendt. Assessing the impact of the COVID-19 shock on
a stochastic multi-population mortality model. Risks, 2022, 10 (2), �10.3390/risks10020026�. �hal-
04015719�

https://hal.science/hal-04015719
https://hal.archives-ouvertes.fr


Assessing the impact of the COVID-19 shock on a

stochastic multi-population mortality model

Jens Robben∗1, Katrien Antonio†1,2, and Sander Devriendt‡1

1Faculty of Economics and Business, KU Leuven, Belgium.
2Faculty of Economics and Business, University of Amsterdam, The Netherlands.

November 22, 2021

Abstract

We aim to assess the impact of a pandemic data point on the calibration of a stochastic
multi-population mortality projection model and its resulting projections for future mortality
rates. Throughout the paper we put focus on the Li & Lee mortality model, which has
become a standard for projecting mortality in Belgium and the Netherlands. We calibrate
this mortality model on annual deaths and exposures at the level of individual ages. This
type of mortality data is typically collected, produced and reported with a significant delay
of - for some countries - several years on a platform such as the Human Mortality Database.
To enable a timely evaluation of the impact of a pandemic data point we have to rely on
other data sources (e.g. the Short-Term Mortality Fluctuations Data series) that swiftly
publish weekly mortality data collected in age buckets. To be compliant with the design and
calibration strategy of the Li & Lee model, we have to transform the weekly mortality data
collected in age buckets to yearly, age-specific observations. Therefore, our paper constructs
a protocol to ungroup the deaths and exposures registered in age buckets to individual ages.
To evaluate the impact of a pandemic shock, like COVID-19 in the year 2020, we weigh
this data point in either the calibration or projection step. Obviously, the more weight
we place on this data point, the more impact we observe on future estimated mortality
rates and life expectancies. Our paper allows to quantify this impact and provides actuaries
and actuarial associations with a framework to generate scenarios of future mortality under
various assessments of the pandemic data point.

Keywords: COVID-19; pandemic shock; multi-population mortality model; stochastic mor-
tality modelling; calibration; forecasting; Li & Lee model; Lee & Miller model

1 Introduction

In December 2019, the coronavirus disease (COVID-19) originated in the Chinese city Wuhan.
In the months that followed, the virus spread across the world. At the time of writing, about
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75 million positive cases and 1 403 245 deaths have been identified in Europe.1 The United
Kingdom has the highest absolute number of reported COVID-19 deaths in Europe (141 609),
followed by Italy (132 224) and France (118 758). Belgium has reported 26 083 deaths.2 The
announcements and roll-out of the four COVID-19 vaccines approved by the European Medicine
Agency (i.e. from BioNTech and Pfizer, Moderna, AstraZeneca and Johnson & Johnson3) have
led to a sharp decline in the number of COVID-19 deaths in Europe. We aim to outline the
impact of the COVID-19 pandemic on a stochastic multi-population mortality projection model,
such as IA|BE 2020 published by the Institute of Actuaries in Belgium (Antonio et al., 2020)
and AG2020 by the Royal Dutch Actuarial Association (Genootschap, 2020). Further, we assess
the impact of the pandemic on scenarios generated for future mortality rates with such multi-
population mortality models.

The COVID-19 pandemic has impacted mortality in multiple ways. The disease itself has led
to an increase in the number of deaths, especially at the higher ages. However, measures taken
by the governments worldwide also impacted mortality in a positive way, leading to less traffic
or work-related accidents in 2020 and an increased awareness of sanitary precautions leading
to a mild flu season in the winter of 2020-2021. While this paper puts focus on the mortality
projection standard for the Belgian population, as documented in IA|BE 2020, we acknowledge
some other, recent contributions that aim at assessing the impact of COVID-19 on mortality
forecasts. Genootschap (2020) performs a sensitivity analysis that shows the impact of the
pandemic on the Dutch cohort life expectancies in 2021 by feeding virtual deaths and exposures
in 2019-2020 to the AG2020 model. van Delft and Huijzer (2020) use Genootschap (2018) as
a starting point and investigate the impact of four different COVID-19 scenarios on the Dutch
best estimate mortality table published in 2018. They create these COVID-19 scenarios by
multiplying the mortality rates in 2020 (and later) with a shock factor. These shocks are defined
for a particular age bucket as (a fraction of) the ratio of the observed death rate in the first 23
weeks of 2020 to the average of the observed death rates in the first 23 weeks in earlier years.
Next, the Continuous Mortality Investigations (CMI) in the UK provide regular updates on the
excess of deaths and mortality in the United Kingdom due to COVID-19.4 In their updates (CMI
working papers 137, 143, 147) they adjust the calibration process of the CMI 2020 mortality
model to enable the weighting of observations. In the core version of CMI 2020, a weight of zero
is attached to to the 2020 data point and a weight of 100% to all other years.

As outlined in Antonio et al. (2020), IA|BE 2020 calibrates a mortality model of type Li &
Lee (Li and Lee, 2005) on the data set with the annual observed number of deaths, dx,t, and
the corresponding exposures to risk, Ex,t, registered at individual ages. More specifically, IA|BE
2020 puts focus on a set of countries over the calibration period 1988-2018 (European trend) and
1988-2019 (Belgian trend) with age range 0-90. While data collected in age buckets are swiftly
available from the Short-Term Mortality Fluctuations ([STMF]) Data series or Eurostat, the
publication of individual age statistics takes more time. Therefore we propose a protocol to move

1Numbers are retrieved from https://www.statista.com/statistics/1102209/coronavirus-cases-deve

lopment-europe/ and https://www.statista.com/statistics/1102288/coronavirus-deaths-development-e

urope/ and represent the situation at October 31, 2021.
2These numbers of COVID-19 deaths come from the COVID-19 Dashboard by the Center for Systems Science

and Engineering (CSSE) at Johns Hopkins University (JHU) on November 2, 2021, see https://www.arcgis.c

om/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.
3See https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vac

cines-europeans en for an overview of the approved, European COVID-19 vaccines and those currently under
development, as well as corresponding references.

4See https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-wo

rking-papers/mortality-projections.
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from weekly mortality data registered in age buckets to annual mortality data at individual ages.
This is a first contribution of our paper to the existing literature on mortality modelling. Rizzi
et al. (2015) use the composite link model to ungroup coarsely grouped data, but their underlying
smoothness assumption would lead to a smooth exposure and death curve. However, our protocol
attempts to capture the age-specific pattern within these curves, based on historically observed
data. We use our protocol to create (virtual) exposures and deaths at individual ages for the year
2020 (or earlier if necessary), leading to an extended multi-population mortality data set for the
years 1988-2020 on an individual age basis. In this paper, we then assess the impact of COVID-
19 on the calibration of and projections with a stochastic multi-population mortality model using
this extended data set. Related work is in Schnürch et al. (2021), who investigate the impact of
COVID-19 on the parameters, forecasts and implied present values of life contingent liabilities
with the simple Lee-Carter mortality model (Lee and Carter, 1992) using mortality data collected
in age buckets. Our work extends the current literature by focusing on a multi-population
instead of a single population mortality model, calibrated on data collected at individual ages.
Moreover, we investigate the COVID-19 impact on future mortality rates and life expectancies
by proposing ways to weigh the impact of this pandemic data point in either the calibration or
projection set-up.

This paper is organised as follows. First, Section 2 introduces some basic concepts and dis-
cusses notation. Moreover, we list the data sources that provide us with weekly and annual
death counts and exposures at the level of individual ages or age buckets. In Section 3 we
then introduce the model specifications, the assumed time dynamics and the calibration and
projection methodology of the stochastic multi-population mortality projection model used in
Antonio et al. (2020) and Genootschap (2020). In addition, we specify the multi-population
data set and the calibration period in the mortality model by Li & Lee to model the Belgian
mortality rates. In Section 4 we create the COVID-19 impacted data set of deaths and expo-
sures until the year 2020 by ungrouping the data collected in age buckets to data at the level
of individual ages. Next, we recalibrate the multi-population mortality model underlying the
IA|BE 2020 framework and present different methods to deal with the 2020 pandemic data point
in Section 5. We also assess the impact of COVID-19 on the cohort life expectancy in 2020. We
conclude in Section 6. Technical details are deferred to the Appendix. We list the data sources
in Appendix A. Appendix B describes the construction of the virtual exposure points Ex,t for
ages 0-90 and years 2019-2020. In Appendix C, we construct the death counts dx,t for the same
set of ages and years.

2 Data and notation

Basic concepts. Let qx,t denote the mortality rate at exact age x in year t. This mortality
rate qx,t refers to the probability that an x year old person who was born on January 1 of year
t−x and is still alive at January 1 of year t, dies within the next year. In addition, let µx,t denote
the force of mortality, i.e. the instantaneous rate of mortality at exact age x in year t. We assume
that the force of mortality is constant in between exact ages and years, i.e. µx+s,t+s = µx,t for
s ∈ [0, 1). Under this piecewise constant force of mortality assumption we obtain

qx,t = 1− exp (−µx,t) .

Stochastic mortality models, as mentioned in Section 1, often model a transformation of the
force of mortality µx,t or the mortality rate qx,t.
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Data sources: annually, at individual ages. Li & Lee’s stochastic multi-population mor-
tality projection model (Li and Lee, 2005), as considered in this paper, models the logarithm
of µx,t using mortality data on a collection of European countries. Hereto, mortality data are
collected over a certain calibration period T and a range of ages X . We use annual mortality
data consisting of the observed number of deaths dx,t and the observed exposures to risk Ex,t,
as available from sources like the Human Mortality Database ([HMD])5, Eurostat6 or an official
national statistics institute like Statbel in Belgium.7 The latter data source is typically used to
extract the most recent mortality information from the country of interest, in our case Belgium.

Data sources: weekly, in age buckets. The data sources discussed above typically report
annual mortality statistics at the individual age level with a significant delay (for some countries
with a delay of several years). To evaluate the impact of a pandemic shock on a mortality
projection model, we therefore need other data sources that report mortality statistics in a
more timely manner. Hereto, we consult the Short-Term Mortality Fluctuations ([STMF]) Data
series 8 and Eurostat.9 With only a minor delay of a few weeks, they provide weekly mortality
data registered in age buckets [xi, xj ] rather than at the individual age level. To be compliant
with the design of a stochastic multi-population mortality model, Section 4 outlines a protocol
to transform these weekly mortality statistics in age buckets into annual death counts and
exposures at individual ages. We use the following notations (for now, we leave out gender g in
our notation):

d[xi,xj ],t,w, E[xi,xj ],t,w and m[xi,xj ],t,w,

for the death counts, exposures and (central) death rates in age bucket [xi, xj ] in week w in year
t respectively. Here, the week w ∈ {1, 2, 3, . . . , 52, (53)}.10 We now further explain the weekly
mortality information retrieved from the STMF data series and Eurostat:

STMF. The STMF data series reports death counts d[xi,xj ],t,w and death rates m[xi,xj ],t,w

in age buckets. The weekly death rates m[xi,xj ],t,w are derived from the weekly death
counts d[xi,xj ],t,w and exposures E[xi,xj ],t,w using the following relationship:

m[xi,xj ],t,w =
d[xi,xj ],t,w

E[xi,xj ],t,w
. (1)

The STMF data series reports the weekly mortality statistics in large age buckets:

[0, 14], [15, 64], [65, 74], [75, 84], 85 + .

The exposures E[xi,xj ],t,w, used to calculate the death rates m[xi,xj ],t,w in Equation (1),
are based on the observed annual exposures Ex,t registered at individual ages, as reported
by the HMD. However, for the most recent years, the exposures are not available yet
and estimates have to be made. The STMF data series documentation11 explains the

5This database is our primary database and can be consulted at https://www.mortality.org/.
6Eurostat is the statistical office of the European Union, see https://ec.europa.eu/eurostat.
7Statbel is the Belgian statistical office, see https://statbel.fgov.be/en.
8This information can be explored using the visualization toolkit on https://mpidr.shinyapps.io/stmorta

lity/.
9Eurostat provides weekly death statistics at https://ec.europa.eu/eurostat/web/COVID-19/data.

10The years 1992, 1998, 2004, 2009, 2015 and 2020 contain 53 weeks instead of the usual 52 weeks (ISO 8601
standard).
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construction of these unknown exposures at the level of individual ages. In addition,
the STMF data series assumes a constant weekly exposure per year, per age bucket and
per gender. The weekly exposure E[xi,xj ],t,w, as reported in the STMF data series in
age buckets, is the yearly (estimated) exposure divided by 52 and aggregated over the
individual ages in the age bucket [xi, xj ].

Eurostat. Next to the HMD and its STMF data series project, Eurostat lists valuable
data sets related to death counts, useful to assess the impact of COVID-19 on mortality
rates. Eurostat does not report any information about weekly exposures. From Eurostat
we obtain the death counts d[xi,xj ],t,w by week, gender and 5-year age bucket.12 The 19
respective age buckets are

[0, 4], [5, 9], [10, 14], [15, 19], . . . , [85, 89], 90 + .

For many countries, the STMF reported death counts correspond to the aggregated death
counts reported by Eurostat. If this correspondence holds true, the data from Euro-
stat is more preferable due to the smaller age buckets, which eventually leads to a more
accurate transition towards death counts at individual ages, necessary in the stochastic
multi-population mortality projection model. For data quality reasons we only use the
Eurostat reported weekly death counts in the small age buckets whenever their aggregated
death counts correspond to the ones reported in the STMF data series. This is the case
for all countries, except Germany13, France and the United Kingdom.

Figure 1 illustrates the number of deaths per week for the years 2016-2021 for Belgium, United
Kingdom and Germany. We clearly observe (multiple) peaks corresponding to various COVID-
19 waves.

3 A stochastic multi-population mortality standard of type
Li & Lee

Antonio et al. (2017) provide an in-depth discussion motivating the use of the Li & Lee model
as a mortality projection standard for the Dutch and Belgian population. This motivation is
threefold. First, a stochastic projection model is preferred to be able to quantify the uncertainty
in mortality and life expectancy forecasts and to generate scenarios of future mortality. Second,
by combining country-specific data with data from other, similar European countries, the multi-
population approach is more robust compared to the single population strategy. Third, the
choice for the Li & Lee model is based on an extensive, comparative analysis of the various
mortality models discussed in Cairns et al. (2009), Haberman and Renshaw (2011), Börger
et al. (2014), Van Berkum et al. (2016) and Haberman et al. (2014). Models in this comparative
analysis have been compared in terms of statistical criteria (in- and out-of-sample) and biological
reasonableness. The goal of this paper is to evaluate the impact of a pandemic shock on mortality
forecasts from this model of type Li & Lee. The tools and methods to achieve this, as we develop
in Section 5, can be generalized to other types of mortality models.

12See https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo r mwk 05&lang=en.
13Eurostat only provides weekly death counts for Germany for age buckets of length 10.
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Figure 1: Total weekly deaths in Belgium (left), United Kingdom (middle) and Germany (right) in the
years 2016-2020 and 2021 (first 27 weeks) for males (top) and females (bottom). Eurostat (Belgium) and
STMF (United Kingdom and Germany) data.

3.1 The Li & Lee mortality model

Specification. The Li & Lee mortality model (Li and Lee, 2005) structures the logarithm of
the force of mortality for a country of interest c as:

lnµcx,t = lnµTx,t + ln µ̃cx,t

lnµTx,t = Ax +BxKt

ln µ̃cx,t = αx + βxκt.

(2)

We recognize two Lee & Carter specifications (Lee and Carter, 1992), one to model a com-
mon mortality trend (driven by µTx,t) and one to model the country-specific deviation from this
common trend (driven by µ̃cx,t). This common trend reflects the global mortality trend over a
collection of countries.

Calibration. We calibrate this mortality model on annual data with the observed number
of deaths, dx,t, and the corresponding exposures to risk, Ex,t, over a specified age range X =
{0, 1, . . . , 90} and over a specified calibration period T = {tmin, . . . , tmax}. We hereby impose a
Poisson distribution on the number of deaths random variable Dx,t (Brouhns et al., 2002) and
apply a conditional maximum likelihood approach (Li, 2013).

1. In a first step, we calibrate the parameters Ax, Bx and Kt in the common mortality
trend by assuming that the total number of deaths random variable DT

x,t follows a Poisson

distribution with mean µTx,t ·ETx,t. Hereto, we maximize the following Poisson log-likelihood,

6



conditional on the estimates obtained in step 1.:

max
Ax,Bx,Kt

∑
x∈X

∑
t∈T

(
dTx,t log

(
µTx,t
)
− ET

x,tµ
T
x,t

)
,

where dTx,t and ETx,t are the observed number of deaths and exposures respectively, aggre-

gated over the collection of countries. Further, µTx,t = exp(Ax + BxKt). We impose some
constraints on the Lee-Carter parameters to avoid identification problems:∑

x∈X
B2
x = 1,

∑
t∈T

Kt = 0.

2. In a second step, we calibrate the country-specific parameters αx, βx and κt by assuming
that the number of deaths random variable Dc

x,t, in the country of interest c, follows a
Poisson distribution with mean µcx,t ·Ecx,t. Hereto, we maximize the Poisson log-likelihood:

max
αx,βx,κt

∑
x∈X

∑
t∈T

(
dcx,t log

(
µcx,t
)
− Ec

x,tµ
c
x,t

)
,

where dcx,t and Ecx,t are the observed number of deaths and exposures in country c respec-

tively. Further, we have µcx,t = µTx,t · exp(αx + βxκt). In line with step 1, we again impose
some identifiability constraints on the country-specific Lee-Carter parameters:∑

x∈X
β2x = 1,

∑
t∈T

κt = 0.

3.2 The time dynamics

Specification. The time dynamics of the common period effect, Kt, are modelled with a
Random Walk with Drift ([RWD]). The country-specific period effect, κt, follows an AR(1)
process with intercept. These choices are based on the work of Antonio et al. (2020) and
Genootschap (2020). Hence, we use the following bivariate time series models:

Kt = Kt−1 + θ + εt

κt = c+ φκt−1 + δt,
(3)

for males (M) and females (F ) separately, with t ∈ {tmin + 1, . . . , tmax}. We assume that the
four-dimensional vectors of noise terms (εMt , δ

M
t , ε

F
t , δ

F
t ) are independent over time and follow

a four-dimensional Gaussian distribution with mean (0, 0, 0, 0) and covariance matrix C. We
denote:

Y t =


KM
t −KM

t−1
κMt

KF
t −KF

t−1
κFt

 ∈ R4×1, Xt =


1 0 0 0 0 0
0 1 κMt−1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 κFt−1

 ∈ R4×6, Ψ =



θM

cM

φM

θF

cF

φF

 ∈ R6×1,

where t ∈ {tmin + 1, . . . , tmax}. Using this notation, Y t −XtΨ represents the four-dimensional
vector of noise terms (εMt , δ

M
t , ε

F
t , δ

F
t )t at time t.
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Calibration. Inspired by Genootschap (2020), we estimate the time series parameters Ψ and
the covariance matrix C on the calibrated K̂t and κ̂t parameters, jointly for males and females,
by maximizing the four-dimensional Gaussian log-likelihood:14

l(Ψ,C) = log

(
tmax∏

t=tmin+1

1√
(2π)4|C|

e−
1
2
(Y t−XtΨ)tC−1(Y t−XtΨ)

)

= − (|T | − 1) (2 log 2π + 0.5 log |C|)− 1

2

tmax∑
t=tmin+1

(Y t −XtΨ)tC−1(Y t −XtΨ)

= − (|T | − 1) (2 log 2π + 0.5 log |C|)− 1

2

tmax∑
t=tmin+1

tr
[
C−1(Y t −XtΨ)(Y t −XtΨ)t

]
,

(4)
where |T | is the number of years in the calibration period T and where tr(·) is the trace function
applied to a matrix. We denote the calibrated time series parameters as Ψ̂ and the calibrated
covariance matrix as Ĉ.

3.3 Generating future paths of mortality rates and life expectancies

Mortality rates. We now use these calibrated time dynamics to generate future paths for
the country-specific mortality rates µ̂cx,t. We consider a projection period t ∈ {tmax + 1, ..., T}.
Hereto, we start from the calibrated period effects in the last year of the calibration period T ,
i.e. (K̂M

tmax
, κ̂Mtmax

, K̂F
tmax

, κ̂Ftmax
). We then take random draws (εMt,i , δ

M
t,i , ε

F
t,i, δ

F
t,i) for i ∈ {1, ..., n}

and t ∈ {tmax+1, ..., T} from the fitted Gaussian distribution with mean (0, 0, 0, 0) and covariance
matrix Ĉ. In Algorithm 1, we obtain future paths of the calibrated period effects for males and
females using Equation (3). Note that K̂g

tmax,i
= K̂g

tmax
and κ̂gtmax,i

= κ̂gtmax
for all i and each

gender g.

Algorithm 1: Generating future paths for the calibrated period effects (K̂M
t , κ̂

M
t , K̂

F
t , κ̂

F
t ).

Input:
(
K̂M
tmax

, κ̂Mtmax
, K̂F

tmax
, κ̂Ftmax

)
, Ψ̂, Ĉ

Output: n future paths for the period effects
for i in 1, . . . , n do

for t in tmax + 1, . . . , T do(
εMt,i , δ

M
t,i , ε

F
t,i, δ

F
t,i

)
:= mvrnorm

(
n = 4, mu = (0,0,0,0), Sigma = Ĉ

)
for g in M,F do

K̂g
t,i = K̂g

t−1,i + θ̂g + εgt,i
κgt,i = ĉg + φ̂gκ̂gt−1,i + δgt,i.

end

end

end

Using Equation (2) and the calibrated Li & Lee parameters Âx, B̂x, K̂t, α̂x, β̂x and κ̂t, we can
generate future paths for the country-specific mortality rates. Let us denote q̂cx,t,i and µ̂cx,t,i for
the i-th generated value of the country-specific mortality rate q̂cx,t and the country-specific force

14We use the nlminb-function in the stats-package of R.
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of mortality µ̂cx,t respectively. Then, we obtain:

q̂cx,t,i = 1− exp
(
−µ̂cx,t,i

)
, (5)

with x ∈ X , t ∈ {tmax + 1, ..., T} and i ∈ {1, ..., n}. Having obtained a scenario for the mortality
rates for ages 0-90 in a future year, we close the generated mortality rates until age 120 using
the method of Kannisto (1994). We refer to Antonio et al. (2020) for a detailed explanation of
this method.

Life expectancy. We obtain future paths of the period and cohort life expectancies of an x
year old in year t (Pitacco et al., 2009) as:

êperx,t,i =
1− exp (−µ̂x,t,i)

µ̂x,t,i
+
∑
k>1

k−1∏
j=0

exp (−µ̂x+j,t,i)

 1− exp (−µ̂x+k,t,i)
µ̂x+k,t,i

,

êcohx,t,i =
1− exp (−µ̂x,t,i)

µ̂x,t,i
+
∑
k>1

k−1∏
j=0

exp (−µ̂x+j,t+j,i)

 1− exp (−µ̂x+k,t+k,i)
µ̂x+k,t+k,i

.

(6)

3.4 The Li & Lee mortality model for the Belgian population

IA|BE 2020 is based on a mortality model of type Li & Lee and puts focus on Belgium as the
country of interest (c = BEL). The common trend in Equation (2) is a European mortality
trend calibrated on a set of countries with a Gross Domestic Product per capita above the Eu-
ropean average in 2018.15 As such, the multi-population data set combines mortality data from
Belgium, The Netherlands, Luxembourg, Norway, Switzerland, Austria, Ireland, Sweden, Den-
mark, Germany, Finland, Iceland, United Kingdom and France. Further, IA|BE 2020 calibrates
the mortality model on annual data registered at the level of individual ages, from the HMD,
Eurostat and the Belgian statistical institute Statbel. IA|BE 2020 calibrates the parameters
in the European mortality trend µTx,t on a range of years 1988-2018 and the Belgium-specific

mortality trend µBEL
x,t on the range of years 1988-2019.

The aim of this paper is to recalibrate the Li & Lee mortality model on a multi-population data
set consisting of the same set of countries, but on a calibration period from 1988 to 2020. Hereto,
we use the STMF data series and Eurostat, providing weekly mortality statistics collected in
age buckets. Neither the STMF data series nor Eurostat report granular mortality information
on Ireland. While Ireland is part of the set of countries defined in IA|BE 2020 to calibrate the
common European mortality trend, we exclude this country in the COVID-19 impact assessment
covered in this paper. However, given the exposure size of the Irish population, we do not expect
that this has a major impact on the results obtained with the multi-population mortality model.

4 Transforming weekly mortality data in age buckets to annual
mortality data at individual ages

Our strategy to evaluate the impact of COVID-19 on a stochastic multi-population mortality
projection model of type Li & Lee, adheres to the design principles of the model. As explained

15See https://data.worldbank.org/indicator/NY.GDP.PCAP.CD.
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in Section 3.4, we have to supplement our multi-population data set with mortality data for
the most recent years 2019-2020. Hereto, we use the weekly mortality statistics in age buckets,
retrieved from the STMF data series and Eurostat. We propose a protocol to make the transition
from the weekly deaths d[xi,xj ],t,w and exposures E[xi,xj ],t,w collected in age buckets to the required
format. Section 4.1 discusses the transition from weekly to annual deaths and exposures collected
in age buckets. In section 4.2, we convert the annual deaths d[xi,xj ],t and exposures E[xi,xj ],t

registered in age buckets to data at the level of individual ages.

4.1 From weekly to annual mortality data registered in age buckets

STMF. The Short-Term Mortality Fluctuations Data series, as discussed in Section 2, assume
a constant weekly exposure per year, per age bucket and per gender. When going from the
weekly exposures available from the STMF data series to annual exposures, we simply multiply
the weekly exposures with a factor 52, i.e. the number of weeks in a year:

E[xi,xj ],t = 52E[xi,xj ],t,w,

where E[xi,xj ],t now denotes the total annual exposure in year t for age bucket [xi, xj ].

STMF and Eurostat. The weekly mortality data sources, i.e. the STMF data series and
Eurostat, follow the definition of ‘week’ given by the ISO week date system, which is part of
the ISO-8601 date and time standard.16 In this system, a year consists of 52 or 53 full weeks.
When a year t consists of 53 weeks instead of the usual 52 weeks,17 we adjust the calculation of
the yearly death counts to be compliant with the HMD and Eurostat death counts registered at
individual ages:

d[xi,xj ],t =
52

53

53∑
w=1

d[xi,xj ],t,w.

In addition, the STMF data series lists death counts and death rates for Northern Ireland,
England and Wales and Scotland separately. A simple aggregation of their death counts leads
to the death counts of the United Kingdom as a whole.

4.2 Ungrouping data from age buckets to individual ages

We start from the annual deaths d[xi,xj ],t and exposures E[xi,xj ],t collected in age buckets, as
obtained from Section 4.1. We then define a protocol to ungroup the data in age buckets to
data at the level of individual ages. Rizzi et al. (2015) introduce a method that ungroups
histograms (or coarsely grouped data), using a composite linked model with a penalty to ensure
the smoothness of the underlying distribution. Their strategy is not able to capture typical
patterns in the evolution of the exposures or death counts over time. As an example, Figures 3
and 5 in this paper clearly show the evolution of certain spikes in the exposure and death curve
over time, i.e. the spikes are moving to the right by one age each subsequent year. These observed
spikes or patterns within an age bucket cannot be captured by the method of Rizzi et al. (2015).
Therefore, we propose an alternative strategy that is capable to pick up these spikes. At the
same time we ensure that the sum of the individual, ungrouped number of deaths and exposures

16See https://www.iso.org/iso-8601-date-and-time-format.html.
17The years 1992, 1998, 2004, 2009, 2015 and 2020 contain 53 weeks.
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in an age bucket [xi, xj ] corresponds to the exposures and deaths in that age bucket, reported in
the STMF data series or by Eurostat. We call the newly created annual deaths and exposures
at the level of individual ages, virtual deaths and exposures.

Protocol to ungroup E[xi,xj ],t. To obtain annual exposures at individual ages Ex,t in an
unknown year t, we take the STMF or Eurostat exposure data E[xi,xj ],t for the corresponding
age buckets. We then allocate these exposures E[xi,xj ],t to exposures at individual ages Ex,t by
applying a piecewise scaling of the known exposure curve from a previous year. Appendix B
explains our approach in full detail. Figure 2 visualizes the stacked exposures at ages 0-90 in the
year 2020 for all 13 European countries under consideration for males (left) and females (right).
Figure 3 shows the evolution of the (virtual) annual exposures for Belgium, the United Kingdom
and Germany. The exposures in the year 2020 (and 2019 for the United Kingdom) are created
using our approach.

Total male exposures 2020 Total female exposures 2020
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Figure 2: Stacked male (left) and female (right) exposure for the combined thirteen European countries
in 2020 as a function of age. Exposures for the year 2020 are directly available from the HMD for Denmark.
However, for Germany, United Kingdom, France, Netherlands, Belgium, Sweden, Austria, Switzerland,
Finland, Norway, Luxembourg and Iceland we transform the weekly exposures in age buckets from the
STMF data series to exposures at individual ages for the year 2020.

Protocol to ungroup d[xi,xj ],t. We create the annual death counts at individual ages dx,t
in year t for which the statistics at individual ages have not yet been published. To do this,
we take the raw death counts d[xi,xj ],t by age buckets reported in the STMF data series or
by Eurostat and allocate these to individual ages. Hereto, we extrapolate a multi-population
mortality model (e.g. the IA|BE 2020 model) to obtain mortality rate estimates in year t. Then
we combine these estimates with the (virtual) exposures from year t to obtain virtual death
counts in year t. Appendix C again provides the technical details. Figure 4 shows the stacked
European number of deaths in 2020 for males (left panel) and females (right panel). Figure 5
shows the evolution of deaths over time for Belgium, the United Kingdom and Germany. The
excess of deaths in 2020 due to COVID-19 is clearly visible at old ages.
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Figure 3: (Virtual) annual exposures Ex,t for males (top) and females (bottom) in Belgium (left), the
United Kingdom (middle) and Germany (right) as a function of age, years 2015-2020. Exposures for the
years 2015-2019 (Belgium), 2015-2018 (United Kingdom) and 2015-2019 (Germany) are directly available
from the HMD or Eurostat. However, for the year 2020 (Belgium and Germany) and the years 2019-2020
(United Kingdom), we transform the weekly exposures collected in age buckets from the STMF data
series to exposures at individual ages.
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Figure 4: Stacked male (left) and female (right) death counts for the combined thirteen European
countries in 2020 as a function of age. Death counts for the year 2020 are directly available from the HMD
and Statbel for Denmark and Belgium respectively. However, for Germany, United Kingdom, France,
Netherlands, Sweden, Austria, Switzerland, Finland, Norway, Luxembourg and Iceland we transform the
weekly deaths in age buckets from the STMF data series or Eurostat to deaths at individual ages for the
year 2020.
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Figure 5: (Virtual) annual death counts dx,t for males (top) and females (bottom) in Belgium (left),
the United Kingdom (middle) and Germany (right) as a function of age, years 2015-2020. Death counts
for the years 2015-2020 (Belgium), 2015-2018 (United Kingdom) and 2015-2019 (Germany) are directly
available from the HMD, Eurostat or Statbel. However, for the year 2020 (Germany) and the years
2019-2020 (United Kingdom), we transform the weekly deaths collected in age buckets from the STMF
data series or Eurostat to deaths at individual ages.

4.3 Applying the protocol to the multi-population data set to recalibrate the
Li & Lee mortality model for the Belgian population

Table 5 in Appendix A indicates for which countries and for which years the data set must be
supplemented with information from the weekly deaths and exposures registered in age buckets
from the STMF data series or Eurostat. For those years and those countries, we apply the
protocol from Sections 4.1 and 4.2 to move from the weekly deaths and exposures in age buckets
to annual data at individual age level. We then recalibrate the Li & Lee model for the Belgian
population on an extended data set up to and including the year 2020. The United Kingdom is
the only country for which we have to create virtual exposures and death counts at individual
ages for both the years 2019 and 2020. Next, we only have to create virtual exposures for
the year 2020 for Belgium since we retrieve the death counts in 2020 at individual ages from
Statbel.18 Moreover, at the time of writing, the HMD already provides deaths and exposures
for Denmark in 2020 at the level of individual ages. For all other considered European countries
we have to create virtual deaths and exposures for the year 2020.

18See https://statbel.fgov.be/sites/default/files/files/documents/bevolking/5.4%20Sterfte%2C%2

0levensverwachting%20en%20doodsoorzaken/5.4.1%20Sterfte/Verdeling%20overlijdens%20per%20leeftijd

%20en%20geslacht%20sinds%201992 NL.xlsx
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5 Assessing the impact of a pandemic shock on the multi-
population mortality model

The IA|BE 2020 mortality model (Antonio et al., 2020) is calibrated on data from 1988-2018
(European trend) and 1988-2019 (Belgium-specific trend). Using the protocol from Section 4,
we are able to collect data from 1988-2020 for all 13 countries under consideration in this multi-
population mortality model. As a starting point we recalibrate the mortality model on the data
set up to and including the pandemic year 2020. However, since the mortality shock takes place
in the last year of our calibration period T , it has a major impact on the estimated drift term in
the assumed random walk with drift process for the European period effect (see Equation (3)).
This, in turn, severely impacts the mortality and life expectancy forecasts, as the year 2020 is
the starting year to generate future scenarios of mortality (Section 3.3).

With the roll-out of the four COVID-19 vaccines, approved by the European Medicine Agency, a
more optimistic scenario is that post-pandemic mortality rates will continue their improvement
at a rate that is similar to pre-pandemic levels. Section 5.1 introduces a method to put this
scenario into practice. We limit the weight of the pandemic data point (the year 2020) in the four-
dimensional Gaussian log-likelihood (see Equation (4)) to estimate the time series parameters
in Equation (3). However, this strategy uses the pandemic 2020 observations as starting point
to generate future mortality projections. Therefore, we still observe a fairly large difference
between the short-term future mortality rates and life expectancies when comparing the results
obtained with the original IA|BE 2020 model and the recalibrated mortality model.

The impact of the pandemic year 2020 concentrates on old age mortality rates, as Figure 5
illustrates. The stochastic multi-population mortality projection model by Li & Lee (Li and
Lee, 2005), as specified in Equation (2), cannot capture this age-specific effect of the pandemic
on the mortality rates. Indeed, while the upward jump in the estimated common European
period effect K̂t is driven by the deterioration in mortality rates for the older ages, it actually
has the largest effect on the fitted mortality rates for the younger ages (see Figure 6 later on).
Therefore, the Li & Lee model overestimates the observed mortality rates at the younger ages
and underestimates the deterioration of the mortality rates at the older ages in the pandemic
year 2020.

In light of the above discussion, Section 5.2 introduces a method that slightly changes the model
specifications in Equation (2). We here impose that the fitted death rates in the pandemic
year 2020 are equal to a weighted average of the observed death rates in the year 2020 and the
pre-pandemic rates in 2019. By giving a zero weight to the observed death rates in 2020, we can
investigate the situation where we completely ignore the COVID-19 pandemic and are of the
belief that the post-pandemic death rates in 2021 immediately recover to pre-pandemic levels.

5.1 Limiting the time series likelihood contribution of the pandemic data
point

We first perform a simple recalibration of the mortality model on the data set including the
(virtually created) death counts and exposure points up to the year 2020. This recalibration is
completely in line with the model choices and design principles underneath IA|BE 2020. Figure 6
shows the recalibrated Li & Lee parameters for males (top panels) and females (bottom panels).
We visualize these together with the parameter estimates from the original IA|BE 2020 model.
We do not observe any substantial differences in the calibrated age-dependent parameters Âx, B̂x
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(European trend), α̂x and β̂x (Belgian deviation). The recalibrated common period effect K̂t

reveals a clear upward jump in the year 2020 for both males and females to account for the
increase in observed mortality rates (see Figures 1 and 5). The sharp decline in the male Belgium-
specific period effect κ̂t in the year 2020 implies that the male Belgian mortality rates do not
diverge further from the European mortality rates. In addition, we observe larger differences
between the original and the recalibrated Belgium-specific period effect for females, i.e. κ̂Ft .
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Figure 6: The European and Belgium-specific Li & Lee parameters Âx, B̂x, α̂x, β̂x, K̂t and κ̂t for
males and females. The blue line corresponds to the Li & Lee model calibrated on data from the years
1988-2020 and contains virtually created deaths and exposures for the years 2019-2020. The dark red,
dashed line shows the calibrated Li & Lee parameters in the original IA|BE 2020 model (calibration
period 1988-2018(9)).

We use the same specification of the time dynamics as in Section 3.2. However, we now limit
the contribution of the pandemic data point in the four-dimensional Gaussian log-likelihood to
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estimate the four-dimensional time series for (K̂M
t , κ̂

M
t , K̂

F
t , κ̂

F
t ) (see Equation (4) in Section 3.2).

Hereto, we introduce weights in the Gaussian log-likelihood:

l(Ψ,C) = −1

2

2020∑
t=1989

wt ·
(
4 log 2π + log |C|+ tr

[
C−1(Y t −XtΨ)(Y t −XtΨ)t

])
. (7)

We specify wt = 1 for t < 2020 and consider 5 possible scenarios for w2020. That is
w2020 ∈ {0, 0.25, 0.50, 0.75, 1}. We follow the same approach for the projection set-up as in
Section 3.3. The use of a weighted log-likelihood function allows to assess the impact of limiting
the contribution of the pandemic data point on the projections of the time-specific parameters,
the mortality forecasts and the life expectancy predictions.

Figure 7a shows the projection of the calibrated European and Belgium-specific period effects
K̂t and κ̂t for males and females. First, a lower weight for the likelihood contribution of the 2020
data point leads to less variability in the simulations. Second, lowering the 2020 weight leads to
a larger (absolute) value of the drift parameter in the RWD process for the common period effect
K̂t. In addition, it leads to a faster long term mean reversion for the Belgium-specific period
effect κ̂t. This is confirmed by Table 1 in which we show the time series parameter estimates
across the five different weighting scenarios of the 2020 data point. In the table, we also report
the time series parameter estimates obtained in the original IA|BE 2020 model. The latter
estimates should be broadly in line with the estimates of the zero weight scenario. However,
some deviations may occur because the original IA|BE 2020 model uses a calibration period from
1988 to 2018 to model the European mortality trend, while our recalibration uses a calibration
period from 1988 to 2020. The AR(1) parameter estimates reveal that the Belgian deviation
for females becomes less stable when the 2020 data point fully contributes to the Gaussian
likelihood, i.e. the estimate φ̂F is very close to one. A potential drawback of this method to
deal with the pandemic data point is that the projections jump off from the impacted (shocked)
estimates K̂2020 and κ̂2020 in the year 2020.

Weight 2020 θM θF cM cF φM φF

0 -0.2319 -0.1942 0.0073 -0.0060 0.9032 0.8873
0.25 -0.2240 -0.1877 0.0021 -0.0138 0.9303 0.9648
0.50 -0.2163 -0.1812 -0.0039 -0.0196 0.9413 0.9817
0.75 -0.2087 -0.1749 -0.0100 -0.0250 0.9471 0.9893
1 -0.2011 -0.1687 -0.0162 -0.0302 0.9506 0.9937

IA|BE 2020 -0.2285 -0.1882 0.0140 -0.0240 0.9682 0.9226

Table 1: Time series parameter estimates, male and female data, ages 0-90, years 1988-2020, Method 5.1.

Figure 7b shows the observed, calibrated and simulated Belgian mortality rates for ages 25, 45,
65 and 85 from the recalibrated mortality model and the original (pre COVID-19) IA|BE 2020
model. We observe a rather poor in-sample fit of the male mortality rate for age 25 in 2020
since the Li & Lee mortality model is not able to capture the observed differences in excess of
mortality between the younger and older ages. Because of the estimated, in sample increase in
mortality rates at all ages, the projected mortality is clearly at a higher level in the recalibrated
model compared to the projected mortality in the original IA|BE 2020 model. In addition,
limiting the time series likelihood contribution of the 2020 data point, leads to lower projected
mortality rates on average. The results from Figure 7a confirm this.

16



−
15

−
10−

50

20
00

20
25

20
50

Ye
ar

Kt
M

M
al

e:
 C

om
m

on
 F

ac
to

r K
t −

 R
W

D

−
15

−
10−

50

20
00

20
25

20
50

Ye
ar

Kt
F

F
em

al
e:

 C
om

m
on

 F
ac

to
r K

t −
 R

W
D

−
2

−
101

20
00

20
25

20
50

Ye
ar

κt
M

M
al

e:
 κ

t(B
E

L)
 −

 A
R

(1
) 

w
ith

 in
te

rc
ep

t

−
4

−
20

20
00

20
25

20
50

Ye
ar

κt
F

F
em

al
e:

 κ
t(B

E
L)

 −
 A

R
(1

) 
w

ith
 in

te
rc

ep
t

W
ei

gh
t 2

02
0 

da
ta

 p
oi

nt
0

0.
25

0.
5

0.
75

1

(a
)

P
ro

je
ct

io
n

o
f

th
e

ca
li
b
ra

te
d

ti
m

e
d
ep

en
d
en

t
p
a
ra

m
et

er
s

in
th

e
L

i
&

L
ee

m
o
d
el

:
K̂

t
(t

o
p
)

a
n
d
κ̂
t

(b
o
tt

o
m

).
M

a
le

(l
ef

t)
a
n
d

fe
m

a
le

(r
ig

h
t)

d
a
ta

,
ca

li
-

b
ra

ti
o
n

p
er

io
d

1
9
8
8
-2

0
2
0
,

p
ro

je
ct

io
n

p
er

io
d

2
0
2
1
-2

0
7
0
,

m
et

h
o
d

o
f

S
ec

ti
o
n

5
.1

.
W

e
sh

ow
th

e
0
.5

%
,

m
ed

ia
n

(w
h
it

e
li
n
es

)
a
n
d

9
9
.5

%
q
u
a
n
ti

le
,

b
a
se

d
o
n

1
0

0
0
0

si
m

u
la

ti
o
n
s

a
cr

o
ss

ea
ch

w
ei

g
h
ti

n
g

sc
en

a
ri

o
.

T
h
e

b
la

ck
li
n
es

v
is

u
a
li
ze

th
e

ca
l-

ib
ra

te
d

p
er

io
d

eff
ec

ts
:
K̂

t
a
n
d
κ̂
t
.w

h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

w
h
it

e
sp

a
ce

.

0.
00

04

0.
00

08

0.
00

12

20
00

20
25

20
50

Ye
ar

q25,t
M

M
al

e:
 B

E
L 

M
or

ta
lit

y 
ra

te
s

0.
00

1

0.
00

2

0.
00

3

0.
00

4

20
00

20
25

20
50

Ye
ar

q45,t
M

M
al

e:
 B

E
L 

M
or

ta
lit

y 
ra

te
s

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

20
00

20
25

20
50

Ye
ar

q65,t
M

M
al

e:
 B

E
L 

M
or

ta
lit

y 
ra

te
s

0.
04

0.
08

0.
12

0.
16

20
00

20
25

20
50

Ye
ar

q85,t
M

M
al

e:
 B

E
L 

M
or

ta
lit

y 
ra

te
s

W
ei

gh
t 2

02
0 

da
ta

 p
oi

nt
0

0.
25

0.
5

0.
75

1

(b
)

E
st

im
a
te

d
a
n
d

p
ro

je
ct

ed
B

el
g
ia

n
m

o
rt

a
li
ty

ra
te

s
q̂ x

,t
.

M
a
le

d
a
ta

,
a
g
es

2
5
,

4
5

(t
o
p
)

a
n
d

6
5
,

8
5

(b
o
tt

o
m

),
ca

li
b
ra

ti
o
n

p
er

io
d

1
9
8
8
-2

0
2
0
,

p
ro

je
ct

io
n

p
er

io
d

2
0
2
1
-2

0
7
0
,

m
et

h
o
d

o
f

S
ec

ti
o
n

5
.1

.
W

e
sh

ow
th

e
0
.5

%
,

m
ed

ia
n

(w
h
it

e
li
n
es

)
a
n
d

9
9
.5

%
q
u
a
n
ti

le
,

b
a
se

d
o
n

1
0

0
0
0

si
m

u
la

ti
o
n
s

a
cr

o
ss

ea
ch

w
ei

g
h
ti

n
g

sc
en

a
ri

o
.

T
h
e

b
lu

e
d
o
ts

a
n
d

th
e

b
la

ck
li
n
es

re
p
re

se
n
t

th
e

o
b
se

rv
ed

a
n
d

fi
tt

ed
m

o
rt

a
li
ty

ra
te

s
re

sp
ec

ti
v
el

y.
T

h
e

d
a
rk

re
d
,

d
a
sh

ed
li
n
e

sh
ow

s
th

e
ca

li
b
ra

te
d

m
o
rt

a
li
ty

ra
te

s
a
n
d

th
e

m
ed

ia
n

q
u
a
n
ti

le
o
f

th
e

si
m

u
la

ti
o
n
s

in
th

e
o
ri

g
in

a
l

IA
|B

E
2
0
2
0

m
o
d
el

.

F
ig

u
re

7
:

E
st

im
at

ed
an

d
p

ro
je

ct
ed

ti
m

e
d

ep
en

d
en

t
p

a
ra

m
et

er
s

(l
ef

t)
a
n

d
B

el
g
ia

n
m

o
rt

a
li

ty
ra

te
s

(r
ig

h
t)

.

17



We are now ready to assess the impact of COVID-19 on the estimated and projected period and
cohort life expectancies. Figure 8 depicts the projected period life expectancies of a male and
female Belgian newborn (left) and a 65 year old (right) resulting from the recalibrated mortality
model (fan charts) and from the original IA|BE 2020 model in Antonio et al. (2020) (dark red,
dashed line). Table 2 then shows the best-estimates and the 0.5%, median and 99.5% quantiles of
the 10 000 simulations for the cohort life expectancy of a 0 and 65 year old in 2020. Both period
and cohort life expectancies are negatively impacted by COVID-19. Moreover, the long-term
impact of COVID-19 reduces for the recalibrated mortality model that assigns a smaller weight
to the 2020 data point in the calibration step of the time dynamics. However, we still observe a
clear and pronounced short-term impact of COVID-19 on the period and cohort life expectancies
across all the different weighting scenarios. In addition, we also observe less uncertainty in the
life expectancy simulations when a smaller weight is allocated to the 2020 data point, as the
more narrow fan charts in Figure 8 indicate.
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Figure 8: Estimated and projected period life expectancies êx,t for Belgium. Male (top) and female
(bottom) data, ages 0 (left) and 65 (right), calibration period 1988-2020, projection period 2021-2070,
method of Section 5.1. We show the 0.5%, median (white lines) and 99.5% quantile (fan charts), based
on 10 000 simulations, across each weighting scenario. The dark red, dashed line shows the 50% quantile
originating from the original IA|BE 2020 model. The blue dots and black line represent the observed and
fitted period life expectancies respectively.

A closer look at Figure 8 reveals an over-estimation of the period life expectancy in 2020 for
a 65-year old. This is primarily due to the fact that the Li & Lee model tries to achieve a
good in-sample fit for both the young and the old ages. As a result the model produces higher
mortality rates than observed for the young ages and lower mortality results than observed for
the older ages, as confirmed by Figure 7b and the paragraph about mortality rates.
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Cohort life
expectancy in 2020

Males Females

0 65 0 65

Recalibration
2020 weight = 0

Best. Est. 89.28 19.69 91.42 22.77
[q0.5; q50; q99.5] [87.45; 89.28; 90.82] [18.96; 19.69; 20.42] [89.30; 91.41; 93.16] [21.81; 22.78; 23.71]

Recalibration
2020 weight = 0.25

Best. Est. 89.00 19.63 91.05 22.57
[q0.5; q50; q99.5] [86.86; 89.00; 90.77] [18.76; 19.62; 20.48] [88.63; 91.05; 93.01] [21.47; 22.57; 23.68]

Recalibration
2020 weight = 0.50

Best. Est. 88.69 19.56 90.58 22.44
[q0.5; q50; q99.5] [86.26; 88.68; 90.69] [18.56; 19.56; 20.51] [87.61; 90.57; 92.9] [21.16; 22.43; 23.65]

Recalibration
2020 weight = 0.75

Best. Est. 88.37 19.50 90.06 22.32
[q0.5; q50; q99.5] [85.56; 88.35; 90.57] [18.44; 19.49; 20.54] [86.45; 90.03; 92.81] [20.99; 22.32; 23.66]

Recalibration
2020 weight = 1

Best. Est. 88.05 19.43 89.52 22.22
[q0.5; q50; q99.5] [84.91; 88.05; 90.50] [18.25; 19.43; 20.59] [85.57; 89.51; 92.61] [20.79; 22.22; 23.66]

IA|BE 2020
Best. Est. 89.91 20.38 91.54 23.14

[q0.5; q50; q99.5] [88.11; 89.89; 91.46] [19.57; 20.37; 21.17] [89.46; 91.53; 93.25] [22.15; 23.14; 24.07]

Table 2: The cohort life expectancy for a 0 and 65 year old in 2020. The best estimate and the 0.5%,
median and 99.5% quantile obtained from 10 000 simulations are shown, for males and females.

5.2 Mitigating the impact of the pandemic data point with a Lee & Miller
inspired mortality model

The method discussed in Section 5.1 to deal with the pandemic data point has two potential
drawbacks. First, we get a poor in-sample fit of the observed mortality rates and life expectancies
in the pandemic year 2020. Second, even with a low to zero weight assigned to the 2020 period
effects in the time series likelihood, we obtain a clear short-term impact of COVID-19 on the
predicted mortality rates and life expectancies. This scenario may be considered unrealistic in
light of the effectiveness of the approved vaccines. In view of the aforementioned shortcomings,
we therefore propose two modifications to the Li & Lee mortality model.

Modification 1. A first modification consists in slightly changing the model specifications of
the Li & Lee model (see Equation (2)). Hereto, note that the (central) death rate mx,t equals:

mx,t =
dx,t
Ex,t

.

Under the piecewise constant force of mortality assumption, introduced in Section 2, the max-
imum likelihood estimate of the force of mortality, µ̂MLE

x,t , equals the observed death rate mx,t.
Lee and Miller (2001) adjust the Lee & Carter model specification in such a way that the fitted
forces of mortality in the last year of the calibration period T are equal to the observed death
rates in that year. This provides a solution for the poor in-sample fit at young ages in the
pandemic year 2020. We extend this idea to the Li & Lee mortality model. We hereby reduce
the degrees of freedom in the mortality model of Equation (2) by fixing the parameter values for
Ax and αx such that the fitted and observed country-specific mortality rates in the year 2020
match.

Modification 2. Second, we mitigate the (short-term) impact of the pandemic data point on
the mortality projections. We do this by relaxing the fact that the observed death rates are
exactly the same as the fitted forces of mortality in the pandemic year 2020. Instead, we opt

19



for a weighted average between the observed death rates in the last two years of the calibration
period.

The adjusted Lee & Miller model specifications. These two discussed modifications
result in the following model specifications:19

lnµcx,t = lnµTx,t + ln µ̃cx,t

lnµTx,t = α2020 · logmT
x,2020 + (1− α2020) · logmT

x,2019 +Bx(Kt −K2020)

ln µ̃cx,t = α2020 · log m̃c
x,2020 + (1− α2020) · log m̃c

x,2019 + βx(κt − κ2020),
(8)

with t ∈ T = {1988, ..., 2020} and x ∈ X = {0, 1, ..., 90}. Further, for t ∈ {2019, 2020}, mT
x,t is

the observed common central death rate and m̃c
x,t the observed country-specific ‘central death

rate’ with adjusted exposure Ec
x,t ·mT

x,t:

mT
x,t =

dTx,t

ET
x,t

, m̃c
x,t =

dcx,t

Ec
x,t ·mT

x,t

. (9)

In addition, α2020 ∈ {0, 0.25, 0.50, 0.75, 1} is the weight we assign to the observed central death
rates in 2020. With the definitions in Equation (9), the case α2020 = 1 corresponds to the
situation in which the observed country-specific death rates are equal to the fitted country-
specific forces of mortality in the year 2020. As a consequence, the fitted and observed country-
specific mortality rates also coincide in the year 2020. For this weighting scenario, we therefore
get a perfect fit of the observed period life expectancy in the year 2020. Taking α2020 = 0
corresponds to the situation where the fitted mortality rates in 2020 equal the observed mortality
rates in 2019. In the latter scenario we completely ignore COVID-19 and assume that the
mortality rates have not been changed over the years 2019-2020. We refer to the model, specified
in Equation (8), as the adjusted Lee & Miller mortality model.

Figure 9 displays the calibrated parameters for males and females in the adjusted Lee & Miller
mortality model. In contrast to Section 5.1, we now obtain different calibrated results for each
weighting scenario. Note that the parameters Ax and αx are not calibrated in this approach,
but they represent the fixed values, given in Equation (8). In addition, the larger the weight
α2020, the more pronounced the upward jump in the calibrated common period effects K̂t and
the larger the downward jump in the Belgium-specific period effects κ̂t in the year 2020.

We use the same time dynamics and follow the same projection and simulation strategy as
outlined in Sections 3.2 and 3.3. We do not include weights in the time series likelihood (see
Equation (7)) to estimate the time series parameters. Figure 10a shows the calibrated and
simulated period effects in the adjusted Lee & Miller mortality model. Table 3 lists the estimated
time series parameters.

Figure 10b displays the calibrated and projected mortality rates for a 25, 45, 65 and 85 year old
Belgian male. A lower weight α2020 implies that the fitted mortality rates in 2020 are closer to
the observed mortality rates in 2019 than those of 2020. This in turn results in an overall, better
in-sample fit of the mortality rates at old ages, see e.g. the bottom right panel in Figure 10b.
Moreover, lowering the weight α2020 leads to results closer to the original IA|BE 2020 model
(dark red, dashed line) on average. Another noteworthy fact is the increase in the projected
mortality rates for a 25 year old male (top, left panel) right after the pandemic year 2020 in the

19The case α2020 = 1 corresponds to the Lee & Miller mortality model as discussed in Lee and Miller (2001).
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Figure 9: The European and Belgian parameters Âx, B̂x, α̂x, β̂x, K̂t and κ̂t in the adjusted Lee &
Miller mortality model for males and females. The coloured lines correspond to the different weighting
scenarios in the calibration set-up. The mortality model is calibrated on data from 1988 to 2020 and
contains virtually created deaths and exposures for the years 2019-2020.

case of a larger weight α2020. This increase is partly due the fast mean reversion of the time
series (see Figure 10a) in combination with larger calibrated B̂x values at the younger ages (see
Figure 9 for the graphs of B̂x). Therefore, the term βx · (κt− κ2020) can become larger than the
term Bx · (Kt −K2020) in Equation (8) at early years in the projection period.

Figure 11 shows the estimated and projected period life expectancies for a 0 and 65 year old
Belgian male (top) and female (bottom). Assigning the value zero to the weight α2020 leads to
comparable results with the original IA|BE 2020 model (dark red, dashed line). This is in line
with our expectations since we actually omit the pandemic data point in the calibration step
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Weight 2020 θM θF cM cF φM φF

0 -0.2179 -0.1883 -0.0472 -0.0300 0.9605 0.9168
0.25 -0.2139 -0.1839 -0.0319 -0.0284 0.9578 0.9680
0.50 -0.2096 -0.1816 -0.0333 -0.0303 0.8990 0.8445
0.75 -0.2068 -0.1800 -0.0408 -0.0318 0.7943 0.6746
1 -0.2048 -0.1785 -0.0562 -0.0285 0.7786 0.4808

Table 3: Time series parameter estimates, male and female data, ages 0-90, years 1988-2020, Method 5.2.

when α2020 = 0. Table 4 depicts the cohort life expectancy in 2020 for a 0 and 65 year old male
and female.
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Figure 11: Estimated and projected period life expectancies êx,t for Belgium. Male (top) and female
(bottom) data, ages 0 (left) and 65 (right), calibration period 1988-2020, projection period 2021-2070.
Calibration and projection is based on the method in Section 5.1. We show the 0.5% quantile, median
(white lines) and 99.5% quantile (fan charts), based on 10 000 simulations, across each weighting scenario.
The dark red, dashed line shows the 50% quantile originating from the original IA|BE 2020 model. The
blue dots represent the observed period life expectancies.

6 Conclusion and outlook

This paper examines different methods to deal with a pandemic data point in the calibration
and projection set-up of a stochastic multi-population mortality projection model, in casu the
Li & Lee model. When this data point corresponds to the last observed year in the calibration
period, it severely affects the drift parameter estimation in the random walk with drift process
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Cohort life
expectancy in 2020

Males Females

0 65 0 65

Recalibration
2020 weight = 0

Best. Est. 89.91 20.30 92.11 23.32
[q0.5; q50; q99.5] [88.27; 89.91; 91.37] [19.57; 20.30; 21.04] [89.53; 92.11; 94.15] [22.16; 23.31; 24.42]

Recalibration
2020 weight = 0.25

Best. Est. 89.01 19.83 91.43 22.94
[q0.5; q50; q99.5] [86.81; 88.98; 90.74] [18.95; 19.82; 20.68] [88.66; 91.41; 93.62] [21.70; 22.94; 24.16]

Recalibration
2020 weight = 0.50

Best. Est. 88.22 19.5 90.94 22.79
[q0.5; q50; q99.5] [85.52; 88.22; 90.20] [18.38; 19.49; 20.52] [88.22; 90.94; 92.96] [21.51; 22.78; 23.97]

Recalibration
2020 weight = 0.75

Best. Est. 87.61 19.31 90.49 22.66
[q0.5; q50; q99.5] [84.77; 87.59; 89.73] [18.09; 19.30; 20.46] [87.97; 90.49; 92.50] [21.39; 22.66; 23.79]

Recalibration
2020 weight = 1

Best. Est. 87.07 19.10 90.06 22.52
[q0.5; q50; q99.5] [83.98; 87.04; 89.22] [17.85; 19.08; 20.27] [87.47; 90.03; 91.94] [21.34; 22.50; 23.6]

IA|BE 2020
Best. Est. 89.91 20.38 91.54 23.14

[q0.5; q50; q99.5] [88.11; 89.89; 91.46] [19.57; 20.37; 21.17] [89.46; 91.53; 93.25] [22.15; 23.14; 24.07]

Table 4: The cohort life expectancy for a 0 and 65 year old in 2020. The best estimate and the 0.5%
quantile, median and 99.5% quantile obtained from 10 000 simulations are shown, for males and females.

to model the common European period effect for males and females. To mitigate this impact
we propose to make changes in either the projection strategy (Section 5.1) or in the model
specifications (Section 5.2) itself. We do this by restricting the impact of the pandemic year
through the inclusion of weights in the calibration or projection step.

There are still many uncertainties about the future evolution of COVID-19. COVID-19 may
have impacted mortality rates during just one year, or future years may be affected as well.
Future relevant work may focus on modifying the Li & Lee model so that it can automatically
absorb pandemic shocks rather than assigning a subjective weight to this pandemic data point.
Schnürch et al. (2021) mention some first ideas to handle extreme mortality events including
outlier analysis, regime switching models, the use of techniques from extreme value theory and
the use of jump processes in the time series model for the period effect.

In addition, several assumptions underneath the stochastic multi-population mortality projection
model of type Li & Lee may require further investigation. Future work may put focus on
including a cohort effect in the model. This can be useful when COVID-19 has a long-lasting
effect on the health of people who have been severely affected by COVID-19, e.g. hospitalized
persons. A second research topic is to select the weight α2020, assigned to the observed death
rates in 2020 in Section 5.2, in a data-driven way. One idea is to include α2020 as a parameter
that can be optimally chosen in the calibration set-up. Finally, future research may focus on
the performance of Kannisto’s method to extrapolate the mortality rates above the age of 90 in
the presence of a pandemic shock.
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A Data sources

Exposures Deaths

Country 2017 2018 2019 2020 2017 2018 2019 2020

AUS HMD HMD HMD STMF HMD HMD HMD EURO.W
BEL HMD HMD EURO STMF HMD HMD EURO STATBEL
DNK HMD HMD HMD HMD HMD HMD HMD HMD
FIN HMD HMD HMD STMF HMD HMD HMD EURO.W
FRA HMD HMD EURO STMF HMD HMD EURO STMF
GER HMD EURO EURO STMF HMD EURO EURO STMF
ICE HMD HMD EURO STMF HMD HMD EURO EURO.W
LUX HMD HMD HMD STMF HMD HMD HMD EURO.W
NED HMD HMD HMD STMF HMD HMD HMD EURO.W
NOR HMD HMD EURO STMF HMD HMD EURO EURO.W
SWE HMD HMD HMD STMF HMD HMD HMD EURO.W
SWI HMD HMD EURO STMF HMD HMD EURO EURO.W
UNK HMD HMD STMF STMF HMD HMD STMF STMF

Table 5: Overview of the data sources used for each country in the stochastic multi-population mortality
projection model of type Li & Lee. The data sources ‘HMD’, ‘EURO’ and ‘STATBEL’ refer to the
Human Mortality Database, Eurostat and the Belgian statistical institute Statbel respectively. They
provide mortality data on an annual basis and at the level of individual ages. ‘HMD’ is our primary data
source. We use the other two data sources to supplement the annual deaths and exposures at individual
age level for the more recent years 2018-2020 where possible. Because these data sources are subject
to a significant reporting delay of sometimes several years (e.g. for the United Kingdom), we consult
the Short-Term Mortality Fluctuations (STMF) Data series and the weekly death statistics available at
Eurostat (EURO.W) to supplement our dataset until the year 2020. The latter two data sources provide
weekly mortality statistics registered in age buckets. We convert these to annual mortality statistics at
the individual age level using the protocol in Section 4.
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B Constructing virtual exposure points

We create virtual annual exposures Ex,t for individual ages 0-90, years 2019-2020 and for each
country that is included in the calibration of the common, multi-population trend in the Li
& Lee mortality projection model (Section 3.4).20 We explain our strategy to create virtual
exposures for Belgium in the year 2020, but we follow a similar approach for any other country
that is part of this common mortality trend.

Figure 12 shows the observed exposures in Belgium as a function of age over the years 2015-2019.
These exposures are retrieved from HMD and Eurostat (see Table 5). The exposure function
has a similar pattern shifted to the right with one age in each subsequent year t. This is in line
with our intuition since people aged x in year t become part of the group at risk aged x+ 1 in
year t+ 1, in case of survival.
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Figure 12: The exposures Ex,t of Belgium for ages 0-90 and years 2015-2019. Data from HMD until
the year 2018 and from Eurostat for the year 2019.

We use the above reasoning to create virtual annual exposures for 2020. Figure 13 graphically
explains the strategy for Belgian males. First, we start from the observed annual exposures Ex,t
in the most recent available year (in casu 2019 for Belgium, using Eurostat) and visualize these
as a function of age (red, dashed line). Second, we shift this 2019 exposure curve one age to
the right, resulting in the orange, dashed line. This newly created curve is undefined at the
age of zero because of the shift to the right. Therefore, in a third step, we linearly extrapolate
the orange, dashed line to zero.21 This choice is justified by the linear pattern of the exposure
function at young ages. We obtain the brown exposure point in Figure 13. We denote the
orange, dashed line extended with the brown point at age 0 as Êsx,t. In a last step, we match the

new exposure function of 2020, i.e. Êsx,2020, with the exposures collected in age buckets from the
STMF data series, as shown in Table 6. Hereto, we consider an age bucket [xi, xj ] and define

20For all countries except the United Kingdom, we do have the annual exposures Ex,t at individual age level
in 2019 from either HMD or Eurostat (see Table 5). For Denmark, we already have the annual exposures Ex,t at
individual age level in the year 2020 available from the HMD.

21We use the exposure points (1, E1,t) and (2, E2,t) to linearly extrapolate to age 0:

E0,t = E1,t +
E2,t − E1,t

2− 1
· (0− 1).
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the virtual annual exposures Ex,t as:

Ex,t = Êsx,t · bi,j , where bi,j =
E[xi,xj ],t
xj∑
a=xi

Êsa,t

,
(10)

for t = 2020 (for example) and x ∈ [xi, xj ]. Intuitively, we vertically scale a section of the orange
dashed line, corresponding to a certain age bucket, such that the summed exposure within this
age bucket corresponds to the total exposure in the same age bucket of Table 6. The right panel
of Figure 13 shows this strategy for the age bucket [0, 14], where the purple line shows the final
virtual exposures Ex,t at individual ages for Belgium in the year 2020.

Age bucket Male Exp. Female Exp.

[0, 14] 988 713.02 944 379.40
[15, 64] 3 699 434.72 3 638 808.41
[65, 74] 568 101.96 618 244.99
[75, 84] 305 175.72 399 015.96
85+ 112 577.56 223 565.55

Table 6: The male and female Belgian exposures in 2020 in age buckets, obtained from the STMF data
series.
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Figure 13: The virtual exposure Ex,t for Belgium in the year 2020, for males. At the right, we show a
snapshot for the age range 0-14.

We apply a slightly different strategy for the exposure E85+,2020 reported for ages in the open
age bucket 85+ on the STMF data series. The underlying idea is that we want to distribute
the extra exposure E85+,2020 (from the STMF data series) minus E85+,2019 (from HMD) evenly
across the ages 85+, i.e. ages 85, . . . , 110 (the assumed maximum age). Hereto, we calculate the
shift c85+, as follows

c85+ =
1

110− 85 + 1
(E85+,2020 − E85+,2019) .

We then apply this shift c85+ to go from Ex,2019 to Ex,2020:

Ex,2020 = Ex,2019 + c85+,
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for ages x ∈ {85, 86, . . . , 90}.

We repeat this procedure for all 13 European countries. In case there is no exposure data
available for 2019 on the HMD (see Table 5 in Appendix A), we start from the exposure curve
for 2019 reported on the HMD or Eurostat and repeat the procedure two times to generate Ex,t
data points for the years 2019-2020.

C Constructing virtual death counts

We construct virtual annual death counts dx,t at individual ages 0-90, years 2019-2020 and for
each country that is included in the calibration of the common, multi-population trend in the
Li & Lee mortality projection model (Section 3.4).22 In explaining our strategy, we focus on
constructing virtual 2020 death counts at individual age level for the Netherlands, but a similar
approach can be taken for any other country that is part of this common mortality trend.

Figure 14 shows the observed annual deaths in the Netherlands across ages 0-90 and over the
years 2015-2019 for males (left) and females (right). In line with our discussion about the pattern
of the exposure curve in Figure 12, we observe a time-effect in these death counts, e.g. the bumps
in the deaths pattern move to the right each consecutive year. We keep this in mind to construct
virtual deaths for the year 2020.
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Figure 14: The death counts dx,t of the Netherlands for ages 0-90 and years 2015-2019. Data from
HMD.

We propose the following strategy. Using a Li & Lee mortality model that is calibrated only
on the observed annual deaths and exposures from HMD and/or Eurostat, we project the fitted
force of mortality µ̂cx,t over the next year(s) (see Section 3.3). Similar to the discussion in Antonio
et al. (2020), we choose the starting year of the calibration period in the Li & Lee mortality
model such that we retrieve stable AR(1) processes for both the male and female Dutch period
effect. This motivates the use of starting year 1970 for the case of the Netherlands. Under the
assumption of a piecewise constant force of mortality, the maximum likelihood estimate of the

22For all countries except the United Kingdom, we do have the annual death counts dx,t at individual ages
in 2019 from either HMD or Eurostat (see Table 5). For Belgium and Denmark we even have the annual death
counts dx,t at individual age level in 2020 available from HMD and Statbel respectively. For these two countries,
there is no need to create virtual death counts.
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force of mortality µMLE,c
x,t then equals

µ̂MLE,c
x,t = mc

x,t =
dcx,t
Ec
x,t

, (11)

with c the country of interest, i.e. the Netherlands in the example under consideration.

Note that we create virtual annual exposures Ex,t for the Netherlands in the year 2020 according
to the strategy explained in Appendix B. Using Equation (11), we can then easily make the
transition to virtual death counts d̂cx,t. In a next step we match these expected deaths d̂cx,t with
the information we retrieve from the weekly deaths data on Eurostat or the STMF data series.
For the Netherlands, we work with the weekly death counts in age buckets of length 5 from
Eurostat, see Table 7.

Age bucket Male deaths Female deaths

[0, 4] 410 325
[5, 9] 27 27
[10, 14] 41 38
[15, 19] 115 68
· · · · · · · · ·
[75, 79] 12 730 9 202
[80, 84] 15 125 12 899
[85, 89] 14 737 17 246
90+ 12 231 24 974

Table 7: Male Dutch deaths in 2020. Eurostat weekly mortality data.

Having extracted the weekly deaths on Eurostat, we now return to the construction of the virtual
deaths in 2020 at individual ages 0-90. Figure 15 graphically explains this construction for Dutch
males. The red line shows the observed number of male deaths in the Netherlands for the year
2019 from the HMD. Applying the Li & Lee mortality forecasting strategy of Section 3.3 to the
Netherlands, we first project the force of mortality µ̂cx,t for the year t = 2020 and then calculate

the estimated expected number of deaths d̂cx,t. This corresponds to the orange line in Figure 15.
Similar to the exposure matching principle in Appendix B, we then match the orange death
curve of 2020 with the death counts collected in age buckets in 2020 from Eurostat, as given in
Table 7.

Denote d̂sx,t for the fitted death counts at age x and time t as obtained from the orange line in
Figure 15. We consider an age bucket [xi, xj ] and define the virtual annual death counts dx,t as:

dx,t = d̂sx,t · bi,j , where bi,j =
d[xi,xj ],t
xj∑
a=xi

d̂sa,t

,
(12)

for t = 2020 and x ∈ [xi, xj ]. Intuitively, we again vertically scale a section of the orange line,
corresponding to a certain age bucket, such that the combined number of deaths within this
age bucket corresponds to the total number of observed deaths in the same age bucket from
Eurostat. This matching principle results in the purple line in Figure 15. The right panel of
Figure 15 illustrates the results for the age bucket [70, 74]. This procedure leads to annual death
counts dx,t, now evaluated at individual ages.
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Figure 15: Construction of the virtual deaths in individual ages in the Netherlands for 2020.

The last age bucket 90+ is an open age bucket. This implies that we have to modify our strategy
outlined in Equation (12) to define the virtual death count at age 90 in 2020:

d90,2020 = d90,2018 + c90+, where c90+ = Ag

(
d90+,2020 −

∞∑
a=90

da,2018

)
,

and Ag is a gender-specific rate, which we assume to be country-independent. For example,
Ag = 0.20 means that 20% of the deaths, at ages 90 or higher, occur at age 90. Based on the
observed ratios of Belgium and Denmark in 2020,23 we select Am = 0.2 and Af = 0.145 for
males and females respectively.

We repeat this procedure for every European country in the study with the following country-
specific data adjustments. For the United Kingdom, we do not have the deaths dx,t at time
t = 2019 yet. In this case, we construct a Li & Lee mortality model for the country of interest
with a shorter calibration period, ending with the year 2018. In addition, each country has
its own starting year of the calibration period for stability reasons, e.g. the year 1970 for the
Netherlands. We can then construct death counts for the year 2019 and 2020 (for each scenario)
by projecting the force of mortality for the years 2019-2020 and by performing the matching
principle at both years.

Moreover, for three of the European countries, namely Germany, France and the United King-
dom, we work with the weekly death counts in age buckets from the STMF data series, rather
than from Eurostat.24 For these countries we apply the strategy outlined above, although we
use larger age buckets.

23For Belgium and Denmark, we already have the death counts at individual ages in 2020 from Statbel and
HMD respectively. We take the average of both ratios.

24We only use the weekly death counts collected in age buckets from Eurostat when they match the reported
death counts in the larger age buckets from the STMF data series. We do this for safety reasons because some
deviations between the weekly death counts on Eurostat and the STMF data series may occur due to for example
territorial differences, e.g. France with or without overseas regions.
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