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Consider L groups of point sources or spike trains, with the l th group represented by x l (t). For a function g : R → R, let g l (t) = g(t/µ l ) denote a point spread function with scale µ l > 0, and with

, our goal is to recover the source parameters given samples of y, or given the Fourier samples of y. This problem is a generalization of the usual super-resolution setup wherein L = 1; we call this the multi-kernel unmixing superresolution problem. Assuming access to Fourier samples of y, we derive an algorithm for this problem for estimating the source parameters of each group, along with precise non-asymptotic guarantees. Our approach involves estimating the group parameters sequentially in the order of increasing scale parameters, i.e., from group 1 to L. In particular, the estimation process at stage 1 ≤ l ≤ L involves (i) carefully sampling the tail of the Fourier transform of y, (ii) a deflation step wherein we subtract the contribution of the groups processed thus far from the obtained Fourier samples, and (iii) applying Moitra's modified Matrix Pencil method on a deconvolved version of the samples in (ii).

Introduction 1.Background on super-resolution

Super-resolution consists of estimating a signal x, given blurred observations obtained after convolution with a point spread function g which is assumed to represent the impulse response of the measurement system, such as for e.g., a microscope in high density single molecule imaging. Mathematically, x is typically modeled as a superposition of K Dirac's, i.e., a sparse atomic measure of the form

x(t) = K i=1 u i δ(t -t i ); u i ∈ C, t i ∈ [0, 1),
while g is a low pass filter. Denoting

y(t) = K i=1 u i g(t -t i ) (1.1)
to be the convolution of x and g, one is usually given information about x either as samples of y, or the Fourier samples of y. This problem has a number of important applications arising for instance in geophysics [START_REF] Khaidukov | Diffraction imaging by focusing-defocusing: An outlook on seismic superresolution[END_REF], astronomy [START_REF] Puschmann | On super-resolution in astronomical imaging[END_REF], medical imaging [START_REF] Greenspan | Super-resolution in medical imaging[END_REF] etc. The reader is referred to [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF] for a more comprehensive list of applications. Super-resolution can be seen as a highly non-trivial "off the grid" extension of the finite dimensional sparse estimation problem in compressed sensing [START_REF] Foucart | A Mathematical Introduction to Compressive Sensing[END_REF], [START_REF] Eldar | Compressed sensing: theory and applications[END_REF] and statistics [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF]. In the new setting, instead of estimating a sparse vector in a finite dimensional space, the goal is to estimate a sparse measure over the real line R endowed with its Borel σ-algebra.

Recently, the problem of super-resolution has received a great deal of interest in the signal processing community, triggered by the seminal work of Candès and Fernandez-Granda [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF][START_REF] Candès | Super-resolution from noisy data[END_REF]. They considered the setup where one is given the first few Fourier coefficients of x, i.e., for a cut-off frequency m ∈ Z + , we observe f (s) ∈ C where

f (s) = 1 0 e ι2πst x(dt) = K i=1
u i e ι2πst i ; s ∈ {-m, -m + 1, . . . , m} .

(1.2)

Note that this corresponds to taking g(t) = 2m sinc(2mt) in (1.1), and sampling the Fourier transform of y on the regular grid {-m, -m + 1, . . . , m}.

Total variation and atomic norm-based approaches

In [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF], the authors consider the noiseless setting and propose solving an optimization problem over the space of measures which involves minimizing the total variation (TV) norm amongst all measures which are consistent with the observations. The resulting minimization problem is an infinite dimensional convex program over Borel measures on R. It was shown that the dual of this problem can be formulated as a semi-definite program (SDP) in finitely many variables, and thus can be solved in polynomial computational time. Since then, there have been numerous follow-up works such as by Schiebinger et al. [START_REF] Schiebinger | Superresolution without separation[END_REF], Duval and Peyre [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF], Denoyelle et al. [START_REF] Denoyelle | Asymptotic of sparse support recovery for positive measures[END_REF], Bendory et al. [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF], Azaïs et al. [START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF] and many others. For instance, [START_REF] Schiebinger | Superresolution without separation[END_REF] considers the noiseless setting by taking real-valued samples of y with a more general choice of g (such as a Gaussian) and also assumes x to be non-negative. Their proposed approach again involves TV norm minimization with linear constraints. Bendory et al. [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF] consider g to be Gaussian or Cauchy, do not place sign assumptions on x, and also analyze TV norm minimization with linear fidelity constraints for estimating x from noiseless samples of y. The approach adopted in [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF][START_REF] Denoyelle | Asymptotic of sparse support recovery for positive measures[END_REF] is to solve a least-squares-type minimization procedure with a TV norm based penalty term (also referred to as the Beurling LASSO (see for e.g., [START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF])) for recovering x from samples of y. The approach in [START_REF] Duval | Sparse regularization on thin grids I: the LASSO[END_REF] considers a natural finite approximation on the grid to the continuous problem, and studies the limiting behaviour as the grid becomes finer; see also [START_REF] Duval | Sparse spikes super-resolution on thin grids II: the continuous basis pursuit[END_REF].

From a statistical view point, Candès and Fernandèz-Granda [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF] showed that their approach exactly recovers x in the noiseless case provided m ≥ 2/ , where denotes the minimum separation between the spike locations. Similar results for other choices of g were shown by Schiebinger et al. [START_REF] Schiebinger | Superresolution without separation[END_REF] (for positive measures and without any minimum separation condition), and by Bendory et al. [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF] (for signed measures and with a separation condition). In the noisy setting, the state of affairs is radically different since it is known (see for e.g., [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF]Section 3.2], [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF]Corollary 1.4]) that some separation between the spike locations is indeed necessary for stable recovery. When sufficient separation is assumed and provided the noise level is small enough, then stable recovery of x is possible (see for e.g., [START_REF] Fernandez-Granda | Support detection in super-resolution[END_REF][START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF][START_REF] Denoyelle | Asymptotic of sparse support recovery for positive measures[END_REF][START_REF] Azaïs | Spike detection from inaccurate samplings[END_REF]).

Recently also, Tang et al. [START_REF] Tang | Compressed sensing off the grid[END_REF][START_REF] Tang | Near minimax line spectral estimation[END_REF] studied approaches based on atomic norm minimization, which can be formulated as a SDP. In [START_REF] Tang | Compressed sensing off the grid[END_REF]Theorem 1.1], the authors considered the signs of the amplitudes of u j to be generated randomly, with noiseless samples. It was shown that if m ≥ 2/ , and if the Fourier samples are obtained at n = Ω(K log K log m) indices selected uniformly at random from {-m, . . . , m}, then x is recovered exactly with high probability. In [57, Thorem 1], the authors considered Gaussian noise in the samples and showed that if m ≥ 2/ , then the solution returned by the SDP estimates the vector of original Fourier samples (i.e., (f (-m), . . . , f (m)) T ) at a mean square rate O(σ 2 K log m m ), with σ 2 denoting variance of noise. Moreover, they also show [START_REF] Tang | Near minimax line spectral estimation[END_REF]Theorem 2] that the spike locations and amplitude terms corresponding to the SDP solution are localized around the true values.

From a computational perspective, the aforementioned approaches all admit a finite dimensional dual problem with an infinite number of linear constraints; this is a semi infinite program (SIP) for which there is an extensive literature [START_REF] Hettich | Semi-infinite programming: Theory, methods, and applications[END_REF]. For the particular case of non-negative x, Boyd et al. [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF] proposed an improved Frank-Wolfe algorithm in the primal. In certain instances, for e.g., with Fourier samples (such as in [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF][START_REF] Candès | Super-resolution from noisy data[END_REF]), this SIP can also be reformulated as a SDP. From a practical point of view, SDP is notoriously slow for moderately large number of variables. The algorithm of [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF] is a first order scheme with potential local correction steps, and is practically more viable.

Prony, ESPRIT, MUSIC and extensions

When one is given the first few Fourier samples of the spike train x (i.e., (1.2)), then there exist other approaches that can be employed. Prony's method [START_REF] De Prony | Essay experimental et analytique: sur les lois de la dilatabilite de fluides elastique et sur celles de la force expansive de la vapeur de lalcool, a differentes temperatures[END_REF] is a classical method that involves finding the roots of a polynomial, whose coefficients form a null vector of a certain Hankel matrix. Prony's method and its variants have also been recently studied by Potts and Tasche (for e.g., [START_REF] Potts | Parameter estimation for exponential sums by approximate prony method[END_REF][START_REF] Potts | Parameter estimation for nonincreasing exponential sums by pronylike methods[END_REF]), Plonka and Tasche [START_REF] Plonka | Prony methods for recovery of structured functions[END_REF], and others. The matrix pencil (MP) method [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] is another classical approach that involves computing the generalized eigenvalues of a suitable matrix pencil. Both these methods recover x exactly in the absence of noise provided m ≥ K (so 2K + 1 samples), and are also computationally feasible. Recently, Moitra [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF]Theorem 2.8] showed that the MP method is stable in the presence of noise provided the noise level is not too large, and m >1 + 1. Moitra also showed [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF]Corollary 1.4] that such a dependence is necessary, in the sense that if m < (1 -)/ , then the noise level would have to be O(2 -K ) to be able to stably recover x. Very similar in spirit to the MP method for sum of exponential estimation are the Prony-like methods ESPRIT and MUSIC which can also be used for spike train estimation using the same Fourier domain measurement trick as in [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF]. These methods can be interpreted as model reduction methods based on low-rank approximation of Hankel matrices [START_REF] Markovsky | Structured low-rank approximation and its applications[END_REF]. The ESPRIT method was studied in [START_REF] Potts | Error estimates for the ESPRIT algorithm[END_REF] based on previous results 1 from [START_REF] Bazán | Error analysis of signal zeros: a projected companion matrix approach[END_REF]. Another line of research is about relationships with AAK theory of Adamjan, Arov, and Krein as developed in [START_REF] Plonka | Prony methods for recovery of structured functions[END_REF] (see also [START_REF] Plonka | Application of the AAK theory for sparse approximation of exponential sums[END_REF]). The MUSIC method was also studied in great detail in [START_REF] Liao | MUSIC for single-snapshot spectral estimation: Stability and super-resolution[END_REF]Theorem 4]. The modified Matrix Pencil method, on the one hand, is often considered as less computationally expensive than MUSIC and, on the other hand, is amenable to an error analysis quite similar to the one in [START_REF] Potts | Error estimates for the ESPRIT algorithm[END_REF]. 

Super-resolution with multiple kernels

In this paper, we consider a generalization of the standard super-resolution problem by assuming that the measurement process now involves a superposition of convolutions of several spike trains with different point spread functions. This problem, which we call the "multi-kernel unmixing super-resolution problem" appears naturally in many practical applications such as single molecule spectroscopy [START_REF] Huang | 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction[END_REF], spike sorting in neuron activity analysis [START_REF] Lewicki | A review of methods for spike sorting: the detection and classification of neural action potentials[END_REF][START_REF] Brown | Multiple neural spike train data analysis: state-ofthe-art and future challenges[END_REF], DNA sequencing [START_REF] Li | DNA sequencing and parametric deconvolution[END_REF][START_REF] Li | Deconvolution of sparse positive spikes[END_REF], spike hunting in galaxy spectra [START_REF] Brutti | Spike hunting in galaxy spectra[END_REF][START_REF] Liu | Estimating galaxy spectral functions using sparse composite models[END_REF] etc.

A problem of particular interest at the National Physical Laboratory, the UK's national metrology institute, is isotope identification [START_REF] Lu | Photopeak detection and quantification using wavelet analysis[END_REF][START_REF] Stinnett | Automated isotope identification algorithms for low-resolution gamma spectrometers[END_REF] which is of paramount importance in nuclear security. Hand-held radio-isotope identifiers are known to suffer from poor performance [START_REF] Stinnett | Automated isotope identification algorithms for low-resolution gamma spectrometers[END_REF] and new and precise algorithms have to be devised for this problem. While it is legitimately expected for Radio Isotope Identifier Devices to be accurate across all radioactive isotopes, the US Department of Homeland Security requires all future identification systems to be able to meet a minimum identification standard set forth in ANSI N42.34. Effective identification from low resolution information is known to be reliably achievable by trained spectroscopists whereas automated identification using standard algorithms sometimes fails up to three fourth of the time [START_REF] Stinnett | Bayesian algorithms for automated isotope identification[END_REF]. For instance, the spectrum of 232 T h is plotted in Figure 1, which is extracted from [54, p.9]. Isotope identification involves the estimation of a set of peak locations in the gamma spectrum where the signal is blurred by convolution with kernels of different window sizes. Mixtures of different spectra can be particularly difficult to analyse using traditional methods and a need for precise unmixing algorithms in such generalised super-resolution problems may play an important role in future applications such as reliable isotope identification.

Another application of interest is DNA sequencing in the vein of [START_REF] Li | DNA sequencing and parametric deconvolution[END_REF]. Sequencing is usually performed using some of the variants of the enzymatic method invented by Frederick Sanger [START_REF] Adams | Automated DNA sequencing and analysis[END_REF]. Sequencing is based on enzymatic reactions, electrophoresis, and some detection technique. Electrophoresis is a technique used to separate the DNA sub-fragments produced as the output of four specific chemical reactions, as described in more detail in [START_REF] Li | DNA sequencing and parametric deconvolution[END_REF]. DNA fragments are negatively charged in solution. An efficient color-coding strategy has been developed to permit sizing of all four kinds of DNA sub-fragments by electrophoresis in a single lane of a slab gel or in a capillary. In each of the four chemical reactions, the primers are labeled by one of four different fluorescent dyes. The dyes are then excited by a laser based con-focal fluorescent detection system, in a region within the slab gel or capillary. In that process, fluorescence intensities are emitted in four wavelength bands as shown with different color codes in Figure 2 below. However, quoting [START_REF] Berno | A graph theoretic approach to the analysis of DNA sequencing data[END_REF], "because the electrophoretic process often fails to separate peaks adequately, some form of deconvolution filter must be applied to the data to resolve overlapping events. This process is complicated by the variability of peak shapes, meaning that conventional deconvolution often fails." The methods developed in the present paper aim at achieving accurate deconvolution with different peak shapes and might therefore be useful for practical deconvolution problems in DNA sequencing.

We will now provide the mathematical formulation of the problem and describe the main idea of our approach along with our contributions, and discuss related work for this problem.

Problem formulation

Say we have L groups of point sources where {t l,i } K i=1 ⊂ [0, 1) and (u l,i ) K i=1 (with u l,i ∈ C) denote the locations and (complex-valued) amplitudes respectively of the sources in the l th group. Our signal of interest is defined as

x(t) = L l=1 x l (t) = L l=1   K j=1 u l,j δ(t -t l,j )   . Let g ∈ L 1 (R) be a positive definite function 2 with its Fourier transform ḡ(s) = R g(t) exp (ι2πst) dt for s ∈ R. Consider L distinct kernels g l (t) = g(t/µ l ), l = 1, . . . , L where 0 < µ 1 < • • • < µ L . Let y(t) = L l=1 (g l x l )(t) = L l=1 K j=1 u l,j g l (t -t l,j
) where denotes the convolution operator. Let f denote the Fourier transform of y, i.e., f (s) = R y(t) exp (ι2πst) dt. Denoting the Fourier transform of g l by ḡl , we get

f (s) = L l=1 ḡl (s)   K j=1 u l,j exp (ι2πst l,j )   f l (s)
.

(1.3)

Assuming black box access to the complex valued function f , our aim is to recover estimates of {t l,i } K i=1 and (u l,i ) K i=1 for each l = 1, . . . , L from few possibly noisy samples f (s) = f (s) + w(s) of f .

Here, w(s) ∈ C denotes measurement noise at location s. We remark that the choice of having K summands for each group is only for ease of exposition, one can more generally consider K l ≤ K summands for each l = 1, . . . , L.

Gaussian kernels. For ease of exposition, we will from now on consider g to be a Gaussian, i.e., g(t) = exp(-t 2 /2) so that g l (t) = exp(-t 2 /(2µ 2 l ), l = 1, . . . , L. It is well known that g is positive definite [60, Theorem 6.10], moreover, ḡl (s) = √ 2πµ l exp(-2π 2 s 2 µ 2 l ). We emphasize that our restriction to Gaussian kernels is only to minimize the amount of tedious computations in the proof. However, our proof technique can likely be extended to handle more general positive definite g possessing a strictly positive Fourier transform. Examples of such functions are: (a) (Laplace kernel) g(t) = exp(-|t|), and (b) (Cauchy kernel) g(t) = 1 1+t 2 .

Main idea of our work: Fourier tail sampling

To explain the main idea, let us consider the noiseless setting w(s) = 0. Our main algorithmic idea stems from observing (1.3), wherein we notice that for s sufficiently large, f (s) is equal to f 1 (s) plus a perturbation term arising from the tails of f 2 (s), . . . , f L (s). Thus, f (s)/ḡ 1 (s) is equal to K j=1 u 1,j exp (ι2πst 1,j ) (which is a weighted sum of complex exponentials) plus a perturbation term. We control this perturbation by choosing s to be sufficiently large, and recover estimates t 1,j , u 1,j (up to a permutation φ 1 ) via the Modified Matrix Pencil (MMP) method of Moitra [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF] (outlined as Algorithm 1). Given these, we form the estimate f 1 (s) to f 1 (s) where

f 1 (s) = ḡ1 (s) K j=1 u 1,φ 1 (j) exp(ι2πs t 1,φ 1 (j) ).
Provided the estimates are good enough, we will have f (s) -f 1 (s) ≈ L l=2 f l (s). Therefore, by applying the above procedure to f (s) -f 1 (s), we can hope to recover estimates of t 2,j 's and u 2,j 's as well. By proceeding recursively, it is clear that we can perform the above procedure to recover estimates to each {t l,i } K i=1 ⊂ [0, 1) and (u l,i ) K i=1 for all l = 1, . . . , L. A delicate issue that needs to be addressed for each intermediate group 1 < l < L is the following. While estimating the parameters for group 1 < l < L, the samples

f (s)-l-1 i=1 f i (s) ḡl (s)
that we obtain will have perturbation arising due to (a) the tails of f l+1 (s), . . . , f L (s) and, (b) the estimates f 1 (s), . . . , f l-1 (s) computed thus far. In particular, going "too deep" in to the tail of f l (s) would blow up the perturbation term in (b), while not going sufficiently deep would blow up the perturbation term in (a). Therefore, in order to obtain stable estimates to the parameters t l,j , u l,j , we will need to control these perturbation terms by carefully choosing the locations, as well as the number of sampling points in the tail.

Further remarks. Our choice of using the MMP method for estimating the spike locations and amplitudes at each stage is primarily dictated by two reasons. Firstly, it is extremely simple to implement in practice. Moreover, it comes with precise quantitative error bounds (see Theorem 3) for estimating the source parameters -especially for the setting of adversarial bounded noisewhich fit seamlessly in the theoretical analysis of our method. Of course, in practice, other methods such as ESPRIT, MUSIC could also be used, and as discussed in Section 1.1.2, there also exist some error bounds in the literature for these methods. To our knowledge, error bounds of the form in Theorem 3 do not currently exist for these other methods. In any case, a full discussion in this regard is outside the scope of the paper, and analyzing the performance of our algorithm with methods other than the MMP method is a direction for future work.

Main results

Our algorithm based on the aforementioned idea is outlined as Algorithm 2 which we name KrUMMP (Kernel Unmixing via Modified Matrix Pencil). At each stage l = 1, . . . , L, we choose a "sampling offset" s l and obtain the (potentially noisy) Fourier samples at 2m l locations s l + i for i = -m l . . . , m l -1. Our main result for the noiseless setting (w ≡ 0) is stated as Theorem 5 in its full generality. We state its following informal version assuming the spike amplitudes in each group to be 3 1. Note that d w : [0, 1] 2 → [0, 1/2] is the usual wrap around distance on [0, 1] (see (2.1)).

Theorem 1 (Noiseless case). Denote l := min i,j d w (t l,i , t l,j ) > 0 for each

1 ≤ l ≤ L. Let 0 < ε 1 ≤ ε 2 ≤ • • • ≤ ε L satisfy ε l l /2
for each l. Moreover, let ε L-1 αε 2 L and ε l β l (ε l+1 ) 2(1+γ l ) hold for 1 ≤ l ≤ L -1 with α, β l , γ l > 0 depending on the problem parameters (see (3.25), (3.27)). Finally, in Algorithm 2, let m L 1/ L , s L = 0, and

m l 1/ l , s l m l + 1 (µ 2 l+1 -µ 2 l ) 1/2 log 1/2 K 3/2 (L -l)µ L ε l µ l ; 1 ≤ l ≤ L -1.
Then, for each l = 1, . . . , L, there exists a permutation φ l :

[K] → [K] such that d w ( t l,φ l (j) , t l,j ) ≤ ε l , | u l,φ l (j) -u l,j | E l (ε l )ε l ; j = 1, . . . , K.
Here,

E L (ε L ) K L , E l (ε l ) K l + 1 (µ 2 l+1 -µ 2 l ) 1/2 log 1/2 K 3/2 (L-l)µ L ε l µ l for 1 ≤ l ≤ L -1.
The conditions on ε l ∈ (0, 1) imply that the estimation errors corresponding to group l should be sufficiently smaller than that of group l +1. This is because the estimation errors arising in stage l percolate to stage l + 1, and hence need to be controlled for stable recovery of source parameters for the (l + 1) th group. Note that the conditions on s l (sampling offset at stage l) involve upper and lower bounds for reasons stated in the previous section. If µ l is close to µ l+1 then s l will have to be suitably large in order to distinguish between ḡl and ḡl+1 , as one would expect intuitively. An interesting feature of the result is that it only depends on separation within a group (specified by l ), and so spikes belonging to different groups are allowed to overlap.

Our second result is for the noisy setting. Say at stage 1 ≤ p ≤ L of Algorithm 2, we observe f (s) = f (s) + w p (s) where w p (s) ∈ C denotes noise at location s. Our main result for this setting is Theorem 6. Denoting w p = (w p (s p -m p ), w p (s p -m p + 1), . . . , w p (s p + m p -1)) T ∈ C 2mp to be the noise vector at stage p, we state its informal version below assuming the spike amplitudes in each group to be 1.

Theorem 2 (Noisy case). Say at stage 1 ≤ p ≤ L of Algorithm 2, we observe f (s) = f (s) + w p (s) where w p (s) ∈ C denotes noise at location s. For each 1 ≤ l ≤ L, let ε l , m l , s l be chosen as specified in Theorem 1. Say

w L ∞ µ L e -µ 2 L / 2 L ε L √
K , and also

w l ∞ (ε l µ l ) 1+C(µ l ,µ l+1 , l ) √ K(K 3/2 Lµ L ) C(µ l ,µ l+1 , l ) ; 2 ≤ l ≤ L -1
where C(µ l , µ l+1 , l ) > 0 depends only on µ l , µ l+1 , l . Then, for each l = 1, . . . , L, there exists a permutation φ

l : [K] → [K] such that d w ( t l,φ l (j) , t l,j ) ≤ ε l , | u l,φ l (j) -u l,j | E l (ε l )ε l ; j = 1, . . . , K,
where E l (•) is as in Theorem 1.

As remarked earlier in Section 1.3, one can more generally consider K l ≤ K summands for the l th group -our algorithm and results remain unchanged.

Notation and Preliminaries

Notation. Vectors and matrices are denoted by lower and upper case letters respectively. For n ∈ N, we denote [n] = {1, . . . , n}. The imaginary unit is denoted by ι

= √ -1. The notation log 1/2 (•) is used to denote |log(|•|)| 1/2 . The p (1 ≤ p ≤ ∞) norm of a vector x ∈ R n is denoted by x p (defined as ( i |x i | p ) 1/p ). In particular, x ∞ := max i |x i |.
For a matrix A ∈ R m×n , we will denote its spectral norm (i.e., largest singular value) by A and its Frobenius norm by A F (defined as ( i,j A 2 i,j ) 1/2 ). For positive numbers a, b, we denote a b to mean that there exists an absolute constant C > 0 such that a ≤ Cb. If a b and b a then we denote a b. The wrap around distance on [0, 1] is denoted by d w : [0, 1] 2 → [0, 1/2] where we recall that

d w (t 1 , t 2 ) = min {|t 1 -t 2 |, 1 -|t 1 -t 2 |} .
(2.1)

Matrix Pencil (MP) method

We now review the classical Matrix Pencil (MP) method for estimating positions of point sources from Fourier samples. Consider the signal x(t) := K j=1 u j δ(t -t j ) where u j ∈ C, t j ∈ [0, 1) are unknown. Let f : R → C be the Fourier transform of x so that f (s) = K j=1 u j exp (ι2πst j ). For any given offset s 0 ∈ Z + , let s = s 0 + i where i ∈ Z; clearly

f (s 0 + i) = K j=1 u j exp (ι2π(s 0 + i)t j ) = K j=1 u j exp (ι2πit j ) where u j = u j exp (ι2πs 0 t j ) , j = 1, . . . , K. Choose i ∈ {-m, -m + 1, . . . , m -1} to form the m × m matrices H 0 =      f (s 0 ) f (s 0 + 1) • • • f (s 0 + m -1) f (s 0 -1) f (s 0 ) • • • f (s 0 + m -2) . . . . . . . . . f (s 0 -m + 1) f (s 0 -m + 2) • • • f (s 0 )      (2.2)
and

H 1 =      f (s 0 -1) f (s 0 ) • • • f (s 0 + m -2) f (s 0 -2) f (s 0 -1) • • • f (s 0 + m -3) . . . . . . . . . f (s 0 -m) f (s 0 -m + 1) • • • f (s 0 -1)      . ( 2.3) 
Denoting α j = exp (-ι2πt j ) for j = 1, . . . , K, and the Vandermonde matrix

V =      1 1 • • • 1 α 1 α 2 • • • α K . . . . . . . . . α m-1 1 α m-1 2 • • • α m-1 K      , (2.4) 
clearly

H 0 = V D u V H and H 1 = V D u D α V H .
Here, D u = diag(u 1 , . . . , u K ) and D α = diag(α 1 , . . . , α K ) are diagonal matrices. One can readily verify 4 that the K non zero generalized eigenvalues of (H 1 , H 0 ) are equal to the α j 's. Hence by forming the matrices H 0 , H 1 , we can recover the unknown t j 's exactly from 2K samples of f . Once the t j 's are recovered, we can recover the u j 's exactly, as the solution of the linear system

     f (0) f (1) 
. . .

f (m -1)      =      1 1 • • • 1 α 1 α 2 • • • α K . . . . . . . . . α m-1 1 α m-1 2 • • • α m-1 K         u 1 . . . u K    .
Thereafter, the u j 's are found as u j = u j / exp(ι2πs 0 t j ).

In [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF], the authors elaborate further on this approach and in the noiseless case, propose an equivalent formulation of the Matrix Pencil approach as a standard eigenvalue problem. Using continuity of the eigenvalues with respect to perturbation, they also suggest that this eigenvalue problem provides a good estimator in the noisy case. In the next section, we discuss an alternative approach proposed by Moitra, which involves solving a generalised eigenproblem, and for which Moitra provided a precise quantitative perturbation result.

The Modified Matrix Pencil (MMP) method

We now consider the noisy version of the setup defined in the previous section. For a collection of K point sources with parameters u j ∈ C, t j ∈ [0, 1], we are given noisy samples

f (s) = f (s) + η s , (2.5) 
for s ∈ Z and where η s ∈ C denotes noise. Let us choose s = s 0 + i for a given offset s 0 ∈ Z + , and i ∈ {-m, -m + 1, . . . , m -1} for a positive integer m. Using ( f (s 0 +i)) m-1 i=-m , let us form the matrices H 0 , H 1 ∈ C m×m as in (2.2),(2.3). We now have H 0 = H 0 + E, H 1 = H 1 + F where H 0 , H 1 are as defined in (2.2), (2.3), and

E =      η 0 η 1 . . . η m-1 η -1 η 0 . . . η m-2 . . . . . . . . . η -(m-1) η -(m-2) . . . η 0      , F =      η -1 η 0 . . . η m-2 η -2 η -1 . . . η m-3 . . . . . . . . . η -m η -(m-1) . . . η -1      .
represent the perturbation matrices. Algorithm 1 namely the Modifed Matrix Pencil (MMP) method [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF] outlines how we can recover t j , u j for j = 1, . . . , K.

Before proceeding we need to make some definitions. Let u max = max j |u j | and u min = min j |u j |. We denote the largest and smallest non zero singular values of V by σ max , σ min respectively, and the condition number of V by κ where κ = σ max /σ min . Let η max := max i |η i |. We will define as the minimum separation between the locations of the point sources where := min j =j d w (t j , t j ).

The following theorem is a more precise version of [41, Theorem 2.8], with the constants computed explicitly. Moreover, the result in [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF]Theorem 2.8] was specifically for the case s 0 = 0, and also has inaccuracies in the proof. We outline the corrected version of Moitra's proof in Appendix A.1 and fill in additional details (using auxiliary results from Appendix B) to arrive at the statement of Theorem 3.

Theorem 3 ([41]). For 0 ≤ ε < /2, say m > 1 -2ε + 1. Moreover, for C = 10 + 1 2 √ 2 , say η max ≤ ε u min σ 2 min 2mC √ K 1 + 16 κ 2 u max u min -1
.

(2.6)

Algorithm 1 Modifed Matrix Pencil (MMP) method [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF] 1: Input: K, m, s 0 , H 0 , H 1 .

2: Output: u j , t j ; j = 1, . . . , K.

3: Let U ∈ C m×K be the top K singular vector matrix of H 0 .

4: Let A = U H H 0 U and B = U H H 1 U . 5: Find generalized eigenvalues ( λ j ) n j=1 of ( B, A). 6: Let α j = exp(-ι2π t j ) = λ j /| λ j | where t j ∈ [0, 1). 7: Form Vandermonde matrix V ∈ C m×K using α j 's. 8: Find u = V † v where v = [f (s 0 ) f (s 0 + 1) • • • f (s 0 + m -1)] T . 9: Find u j = u j exp(-ι2πs 0 t j ); j = 1, . . . , K.
Then, there exists a permutation φ : [K] → [K] such that the output of the MMP method satisfies for each i = 1, . . . , K

d w ( t φ(i) , t i ) ≤ ε, u φ -u ∞ ≤    2πm 3/2 Ku max + u min σ 2 min 2C √ mK 1 + 16 κ 2 umax u min -1 (m -1 -2ε -1) 1/2 + 2πu max s 0    ε (2.7)
where u φ is formed by permuting the indices of u w.r.t φ.

The following Corollary of Theorem 3 simplifies the expression for the bound on u φ -u ∞ in (2.7), and will be useful for our main results later on. The proof is deferred to Appendix A.2.

Corollary 1. For 0 ≤ ε < c /2 where c ∈ [0, 1) is a constant, say 2 -2ε + 1 < m ≤ 2 (1-c) + 1. Denoting u rel = umax u min , C = 10 + 1 2 √ 2 , and B(u rel , K) = 1 5C √ K (1 + 48u rel ) -1 , say η max ≤ εu min B(u rel , K).
(2.8)

Then, there exists a permutation φ : [K] → [K] such that the output of the MMP method satisfies for each i = 1, . . . , K

d w ( t φ(i) , t i ) ≤ ε, u φ -u ∞ < ( C( , c, K, u rel ) + 2πs 0 )u max ε (2.9)
where C( , c, K, u rel ) = 4πK

2 (1-c) + 1 + 2 C √ K u rel + 16u 2 rel -1
, and u φ is formed by permuting the indices of u w.r.t φ.

Unmixing Gaussians in Fourier domain: Noiseless case

We now turn our attention to the main focus of this paper, namely that of unmixing Gaussians in the Fourier domain. We will in general assume the Fourier samples to be noisy as in (2.5), with f defined in (1.3). In this section, we will focus on the noiseless setting wherein f (s) = f (s) for each s. The noisy setting is analyzed in the next section.

Let us begin by noting that when L = 1, i.e., in the case of a single kernel, the problem is solved easily. Indeed, we have from (1.3) that f (s) = ḡ1 (s) K j=1 u 1,j exp (ι2πst 1,j ). Clearly, one can exactly recover (t 1,j ) K j=1 ∈ [0, 1) and (u 1,j ) K j=1 ∈ C via the MP method by first obtaining the samples f (-m), f (-m + 1), . . . , f (m -1), and then working with f (s)/ḡ 1 (s).

The situation for the case L ≥ 2 is however more delicate. Before proceeding, we need to make some definitions and assumptions.

• We will denote u max = max l,j |u l,j |, u min = min l,j |u l,j |, and u rel = umax u min .

• The sources in the l th group are assumed to have a minimum separation of l := min i =j d w (t l,i , t l,j ) > 0.

• Denoting α l,j = exp (-i2πt l,j ), V l ∈ C m l ×K will denote the Vandermonde matrix

     1 1 • • • 1 α l,1 α l,2 • • • α l,K . . . . . . . . . α m l -1 l,1 α m l -1 l,2 • • • α m l -1 l,K     
for each l = 1, . . . , L analogous to (2.4). σ max,l , σ min,l will denote its largest and smallest non-zero singular values, and κ l = σ max,l /σ min,l its condition number. Recall from Theorem 8

that if m l > 1 l +1, then σ 2 max,l ≤ m l + 1 l -1 and σ 2 min,l ≥ m l -1 l -1 and thus κ 2 l ≤ m l + 1 l -1 m l -1 l -1 .
Algorithm 2 Kernel Unmixing via Modified Matrix Pencil (KrUMMP)

1: Input: K, m l , s l , µ l ; l = 1, . . . , L.

2: Initialize: u l,j , t l,j = 0; l = 1, . . . , L; j = 1, . . . , K. Also, f 1 ≡ 0.

3: Output: u l,j , t l,j ; l = 1, . . . , L; j = 1, . . . , K. Obtain samples

f (s l +i)-l-1 j=1 f j (s l +i) ḡl (s l +i)
for i = -m l , . . . , m l -1.

6:

Form

H (l) 0 , H (l)
1 ∈ C m l ×m l using the above samples as in (2.2), (2.3).

7:

Input H (l) 0 , H (l) 1 to MMP algorithm and obtain estimates ( u l,j ) K j=1 , ( t l,j ) K j=1 .

8:

Define f l : R → C as f l (s) := ḡl (s) K j=1 u l,j exp(ι2πs t l,j ). 9: end for

The case of two kernels

We first consider the case of two Gaussian kernels as the analysis here is relatively easier to digest compared to the general case. Note that f is now of the form

f (s) = ḡ1 (s)   K j=1 u 1,j exp(ι2πst 1,j )   + ḡ2 (s)   K j=1 u 2,j exp(ι2πst 2,j )   where we recall ḡl (s) = √ 2π µ l exp -2π 2 s 2 µ 2 l ; l = 1, 2.
The following theorem provides sufficient conditions on the choice of the sampling parameters for approximate recovery of t 1,j , t 2,j , u 1,j , u 2,j for each j = 1, . . . , K.

Theorem 4. Let 0 < ε 2 < c 2 /2 for a constant c ∈ [0, 1), s 2 = 0, and m 2 ∈ Z + satisfy 2 2 -2ε 2 +1 ≤ m 2 < 2 2 (1-c) + 1 ( = M 2,up ). For B(u rel , K) as in Corollary 1, let 0 < ε 1 < c 1 /2 also satisfy e (2π 2 M 2 2,up (µ 2 2 -µ 2 1 )) 2πM 2,up + C1 + C2 log 1/2 C3 ε 1 u rel ε 1 ≤ ε 2 µ 2 B(u rel , K) Kµ 1 , (3.1) 
where C1 , C2 , C3 > 0 are constants depending (see (3.11), (3.12)) on c, u rel , µ 1 , µ 2 , 1 , K and a constant c > 1. Say m 1 , s 1 ∈ Z + are chosen to satisfy

2 1 -2ε 1 + 1 ≤ m 1 < 2 1 (1 -c) + 1 ( = M 1,up ), S 1 ≤ s 1 ≤ cS 1 ,
where

S 1 = m 1 + 1 (2π 2 (µ 2 2 -µ 2 1 )) 1/2 log 1/2 Ku rel µ 2 µ 1 B(u rel ,K)ε 1 . Then, there exist permutations φ 1 , φ 2 : [K] → [K] such that for j = 1, . . . , K, d w ( t 1,φ 1 (j) , t 1,j ) ≤ ε 1 , | u 1,φ 1 (j) -u 1,j | < C1 + C2 log 1/2 C3 ε 1 u max ε 1 , d w ( t 2,φ 2 (j) , t 2,j ) ≤ ε 2 , | u 2,φ 2 (j) -u 2,j | < C 2 u max ε 2 ,
where

C l = C( l , c, K, u rel ) = 4πKM l,up + 2 C √ K u rel + 16u 2 rel -1 ; l = 1, 2, (3.2) 
and C(•), C are as defined in Corollary 1.

Interpreting Theorem 4. Before proceeding to the proof, we make some useful observations.

(a) We first choose the sampling parameters ε (accuracy), m (number of samples), s (offset) for the inner kernel ḡ2 and then the outer kernel, i.e., ḡ1 . For group i (= 1, 2), we first choose ε i , then m i (depending on ε i ), and finally the offset s i (depending on m i , ε i ).

(b) The choice of ε 2 is free, but the choice of ε 1 is constrained by ε 2 as seen from (3.1). In particular, ε 1 needs to be sufficiently small with respect to ε 2 so that the perturbation arising due to the estimation errors for group 1 are controlled when we estimate the parameters for group 2.

(c) The lower bound on s 1 ensures that we are sufficiently deep in the tail of ḡ2 , so that its effect is negligible. The upper bound on s 1 is to control the estimation errors of the source amplitudes for group 1 (see (2.9)). Observe that s 2 = 0 since ḡ2 is the innermost kernel, and so there is no perturbation arising due to the tail of any other inner kernel.

(d) In theory, ε 1 can be chosen to be arbitrarily close to zero; however, this would result in the offset s 1 becoming large. Consequently, this will lead to numerical errors when we divide by ḡ1 (s 1 + i); i = -m 1 , . . . , m 1 -1 while estimating the source parameters for group 1.

Order wise dependencies. The Theorem is heavy in notation, so it would help to understand the order wise dependencies of the terms involved. Assume u max , u min 1. We have

C 1 K/ 1 and C 2 K/ 2 which leads to C1 K 1 , C2 1 (µ 2 2 -µ 2 1 ) 1/2 , C3 K 3/2 µ 2 µ 1 .
(a) For group 2, we have ε 2 2 , m 2 1/ 2 , s 2 = 0, and

d w ( t 2,φ 2 (j) , t 2,j ) ≤ ε 2 , | u 2,φ 2 (j) -u 2,j | K 2 ε 2 .
(b) For group 1, ε 1 1 and (3.1) translates to

1 2 + K 1 + 1 (µ 2 2 -µ 2 1 ) 1/2 log 1/2 K 3/2 µ 2 µ 1 ε 1 ε 1 ε 2 µ 2 µ 1 K 3/2 exp - 2π 2 (µ 2 2 -µ 2 1 ) 2 2 
.

(3.3)
Moreover, m 1 1/ 1 and s 1 1

1 + (µ 2 2 -µ 2 1 ) -1/2 log 1/2 ( K 3/2 µ 2 µ 1 ε 1 ). Finally, d w ( t 1,φ 1 (j) , t 1,j ) ≤ ε 1 , | u 1,φ 1 (j) -u 1,j | K 1 + 1 (µ 2 2 -µ 2 1 ) 1/2 log 1/2 K 3/2 µ 2 µ 1 ε 1 ε 1 . (3.4)
Condition on ε 1 , ε 2 . It is not difficult to verify that a sufficient condition for (3.3) to hold is that for any given θ ∈ (0, 1/2), it holds that

ε 1 ε 1 1-θ 2 C(µ 1 , µ 2 , 1 , 2 , K, θ), (3.5) 
where C(µ 1 , µ 2 , 1 , 2 , K, θ) > 0 depends only on the indicated parameters. This is outlined in Appendix C for Theorem 5 for the case of L kernels. In other words, ε 1 would have to be sufficiently small with respect to ε 2 , so that the estimation errors carrying forward from the first group to the estimation of the parameters for the second group, are controlled.

Effect of separation between µ 1 , µ 2 . Note that as µ 1 → µ 2 , then (3.3) becomes more and more difficult to satisfy; in particular, C(µ 1 , µ 2 , 1 , 2 , K, θ) → 0 in (3.5). Hence, we would have to sample sufficiently deep in the tail of ḡ1 in order to distinguish ḡ1 , ḡ2 as one would intuitively expect.

Next, for fixed µ 2 as µ 1 → 0, we see that (3.3) becomes easier to satisfy. This is because ḡ1 (s) is now small for all s, and hence the perturbation error arising from stage 1 reduces accordingly. However, notice that s 1 now has to increase correspondingly in order to distinguish between ḡ1 , ḡ2 (since ḡ1 (s) ≈ 0 for all s). Therefore, in order to control the estimation error of the amplitudes (see (3.4)), ε 1 now has to reduce accordingly. For instance, ε 1 = o(µ

1/ 3 
1 ) suffices. On the other hand, for fixed µ 1 , as µ 2 → ∞, satisfying (3.3) becomes more and more difficult. This is because the tail of ḡ2 becomes thinner, and so, the deconvolution step at stage 2 blows up the error arising from stage 1.

Proof of Theorem 4. The proof is divided into two steps below.

• Recovering source parameters for first group. For offset parameter s 1 ∈ Z + (the choice of which will be made clear later), we obtain the samples (f (s

1 + i)) m 1 -1 i=-m 1 . Now, for any i = -m 1 , . . . , m 1 -1, we have that f (s 1 + i) ḡ1 (s 1 + i) = K j=1 u 1,j exp (ι2π(s 1 + i)t 1,j ) + ḡ2 (s 1 + i) ḡ1 (s 1 + i) K j=1 u 2,j exp (ι2π(s 1 + i)t 2,j ) = K j=1 u 1,j exp (ι2πs 1 t 1,j ) u 1,j exp (ι2πit 1,j ) + µ 2 µ 1 exp -2π 2 (s 1 + i) 2 (µ 2 2 -µ 2 1 ) K j=1 u 2,j exp(ι2π(s 1 + i)t 2,j ) η 1,i = K j=1 u 1,j exp (ι2πit 1,j ) + η 1,i . (3.6) 
Here, η 1,i ∈ C corresponds to "perturbation" arising from the tail of f 2 (s). Since the stated choice of s 1 implies s 1 > m 1 , this means min i (s 1 + i) 2 = (s 1 -m 1 ) 2 , and hence clearly

|η 1,i | ≤ µ 2 µ 1 exp -2π 2 (s 1 -m 1 ) 2 (µ 2 2 -µ 2 1 ) Ku max , i = -m 1 , . . . , m 1 -1.
From (3.6), we can see that H

(1) 0 1) and H 1) . Here, D u 1 = diag(u 1,1 , . . . , u 1,K ) and D α 1 = diag(α 1,1 , . . . , α 1,K ), while E (1) , F (1) denote the perturbation matrices consisting of (η 1,i ) m 1 -1 i=-m 1 terms, as in (2.2), (2.3). We obtain estimates t 1,j , u 1,j , j = 1, . . . , K via the MMP method. Invoking Corollary 1, we have for ε 1 < c 1 /2, and

= V 1 D u 1 V H 1 + E (
= V 1 D u 1 D α 1 V H 1 + F ( (1) 1 
2 1 -2ε 1 + 1 ≤ m 1 < 2 1 (1-c) + 1(= M 1,up ) that if s 1 satisfies µ 2 µ 1 exp -2π 2 (s 1 -m 1 ) 2 (µ 2 2 -µ 2 1 ) Ku max ≤ ε 1 u min B(u rel , K), (3.7) 
then there exists a permutation φ 1 : [K] → [K] such that for each j = 1, . . . , K,

d w ( t 1,φ 1 (j) , t 1,j ) ≤ ε 1 , | u 1,φ 1 (j) -u 1,j | < C 1 + 2πs 1 u max ε 1 , (3.8) 
where

C 1 = C( 1 , c, K, u rel ) = 4πKM 1,up + 2 C √ K u rel + 16u 2 rel -1 .
Clearly, the condition

s 1 ≥ m 1 + 1 (2π 2 (µ 2 2 -µ 2 1 )) 1/2 log 1/2
Ku rel µ 2 µ 1 ε 1 B(u rel , K) implies (3.7). Moreover, since s 1 ≤ cS 1 and m 1 < M 1,up , we obtain

s 1 < c M 1,up + 1 (2π 2 (µ 2 2 -µ 2 1 )) 1/2 log 1/2 Ku rel µ 2 µ 1 ε 1 B(u rel , K) . (3.9) 
Plugging (3.9) into (3.8) leads to the bound

| u 1,φ 1 (j) -u 1,j | < C1 + C2 log 1/2 C3 ε 1 u max ε 1 ; j = 1, . . . , K, (3.10) 
where C1 , C2 , C3 > 0 are constants defined as follows.

C1 = C 1 + 2π cM 1,up , (3.11 
) C2 = 2π c (2π 2 (µ 2 2 -µ 2 1 )) 1/2 , C3 = Ku rel µ 2 µ 1 B(u rel , K) .
(3.12)

• Recovering source parameters for second group. Let f 1 denote the estimate of f 1 obtained using the estimates ( u 1,j ) K j=1 , ( t 1,j ) K j=1 , defined as

f 1 (s) = ḡ1 (s) K j=1 u 1,j exp ι2π t 1,j s .
For suitable s 2 , m 2 ∈ Z + (choice to be made clear later), we now obtain samples

f (s 2 + i) -f 1 (s 2 + i) ḡ2 (s 2 + i) ; i = -m 2 , . . . , m 2 -1.
Let us note that

f (s 2 + i) -f 1 (s 2 + i) ḡ2 (s 2 + i) = ḡ1 (s 2 + i) ḡ2 (s 2 + i) K j=1 u 1,j exp (ι2π(s 2 + i)t 1,j ) -u 1,φ 1 (j) exp ι2π(s 2 + i) t 1,φ 1 (j) + K j=1 u 2,j exp (ι2π(s 2 + i)t 2,j ) = µ 1 µ 2 exp(2π 2 (s 2 + i) 2 (µ 2 2 -µ 2 1 )) K j=1 u 1,j exp(ι2π(s 2 + i)t 1,j ) -u 1,φ 1 (j) exp ι2π(s 2 + i) t 1,φ 1 (j) η 2,i + K j=1 u 2,j exp(ι2πs 2 t 2,j ) u 2,j exp(ι2πit 2,j ) = K j=1 u 2,j exp(ι2πit 2,j ) + η 2,i . (3.13) 
Here, η 2,i ∈ C corresponds to noise arising from the estimation errors for the parameters in the first group of sources. As a direct consequence of Proposition 3, we have for each j = 1, . . . , K that

|u 1,j exp(ι2π(s 2 + i)t 1,j ) -u 1,φ 1 (j) exp(ι2π(s 2 + i) t 1,φ 1 (j)) | ≤ 2πu max |s 2 + i|d w (t 1,j , t 1,φ 1 (j) ) + |u 1,j -u 1,φ 1 (j) | < 2πu max |s 2 + i|ε 1 + C1 + C2 log 1/2 C3 ε 1 u max ε 1 , (3.14) 
where the last inequality above follows from the bounds on |u 1,j -u 1,φ 1 (j) |, d w (t 1,j , t 1,φ 1 (j) ), derived earlier. Now for s 2 = 0, and using the fact |i| ≤ m 2 < obtain from (3.14) the following uniform bound on |η 2,i |.

|η 2,i | < µ 1 µ 2 Ke (2π 2 m 2 2 (µ 2 2 -µ 2 1 )) 2πm 2 + C1 + C2 log 1/2 C3 ε 1 u max ε 1 < µ 1 µ 2 Ke (2π 2 M 2 2,up (µ 2 2 -µ 2 1 )) 2πM 2,up + C1 + C2 log 1/2 C3 ε 1 u max ε 1 . (3.15) 
From (3.13), we see that H

(2) 2) . Here, D u 2 = diag(u 2,1 , . . . , u 2,K ) and D α 2 = diag(α 2,1 , . . . , α 2,K ), while E (2) , F (2) denote the perturbation matrices consisting of (η 2,i ) m 2 -1 i=-m 2 terms, as in (2.2), (2.3). We obtain the estimates ( t 2,j ) K j=1 and ( u 2,j ) K j=1 using the MMP method. Invoking Corollary 1 and assuming

0 = V 2 D u 2 V H 2 + E (2) , H (2) 
1 = V 2 D u 2 D α 2 V H 2 + F (
ε 2 < c 2 /2, 2 2 -2ε 2 + 1 ≤ m 2 < M 2,up hold, it is sufficient that ε 1 satisfies the condition µ 1 µ 2 Ke (2π 2 M 2 2,up (µ 2 2 -µ 2 1 )) 2πM 2,up + C1 + C2 log 1/2 C3 ε 1 u max ε 1 ≤ ε 2 u min B(u rel , K).
Indeed, there then exists a permutation φ 2 : [K] → [K] such that for each j = 1, . . . , K,

d w ( t 2,φ 2 (j) , t 2,j ) ≤ ε 2 , | u 2,φ 2 (j) -u 2,j | < C 2 ε 2 ,
where

C 2 = C( 2 , c, K, u rel ) = 4πKM 2,up + 2 C √ K u rel + 16u 2 rel -1
. This completes the proof.

The general case

We now move to the general case where L ≥ 1. The function f is now of the form

f (s) = L l=1 ḡl (s)   K j=1 u l,j exp(ι2πst l,j )  
where we recall that ḡl (s) = √ 2π µ l exp(-2π 2 s 2 µ 2 l ). Before stating our result, it will be helpful to define certain terms for ease of notation, later on.

(1) For l = 1, . . . , L, M l,up := 2

l (1 -c) + 1, C l := 4πKM l,up + 2 C √ K u rel + 16u 2 rel -1 . (3.16)
with constants c ∈ (0, 1) and C = 10 + 1 2 √ 2 (from Corollary 1).

(2) For l = 1, . . . , L -1, and a constant c > 1,

Cl,1 := C l + 2π cM l,up , Cl,2 := 2π c (2π 2 (µ 2 l+1 -µ 2 l )) 1/2 , (3.17) 
D l := Ku rel (L -l)µ L µ l B(u rel , K) , Cl,3 := D l ; l = 1 2D l ; l > 1. (3.18)
where B(u rel , K) is as defined in Corollary 1.

(3) For l = 1, . . . , L, define

E l (ε) := Cl,1 + Cl,2 log 1/2 Cl,3 ε ; l < L C L ; l = L. (3.19)
where ε ∈ (0, 1).

(4) For l = 2, . . . , L -1, define

F l (ε) := C l,1 + C l,2 log 1/2 2D l ε ; (3.20)
where C l,1 := 2π( c + 1)M l,up , C l,2 = Cl,2 .

(3.21)

Here, c > 1 is the same constant as in [START_REF] Andersson | Esprit for multidimensional general grids[END_REF].

We are now ready to state our main theorem for approximate recovery of the source parameters for each group.

Theorem 5. For a constant c ∈ (0, 1),

let 0 < ε L < c L /2, 2 L -2ε L ≤ m L < M L,
up and s L = 0. Moreover, for l = L -1, . . . , 1, say we choose ε l , m l , s l as follows.

1. 0 < ε l < c l /2 additionally satisfies the following conditions.

(a) (2πM L,up + E L-1 (ε L-1 ))ε L-1 u rel ≤ ε L e -2π 2 (µ 2 L -µ 2 1 )M 2 L,up µ L B(u rel ,K) K(L-1)µ L-1 . (b) If l < L -1, then ε l ≤ ε l+1 , E l (ε l )ε l ≤ E l+1 (ε l+1 )ε l+1 and (F l+1 (ε l ) + E l (ε l ))ε l u rel ≤ ε l+1 e -(µ 2 l+1 -µ 2 1 ) F 2 l+1 (ε l+1 ) 2 µ l+1 B(u rel , K) 2Klµ l . (3.22) 2. 
2 l -2ε l ≤ m l < M l,up , and S l ≤ s l ≤ cS l (for constant c > 1) where

S l = m l + 1 (2π 2 (µ 2 l+1 -µ 2 l )) 1/2 log 1/2 b l Ku rel (L -l)µ L ε l B(u rel , K)µ l , with b l = 1 if l = 1, and b l = 2 otherwise.
Then, for each l = 1, . . . , L, there exists a permutation φ l :

[K] → [K] such that d w ( t l,φ l (j) , t l,j ) ≤ ε l , | u l,φ l (j) -u l,j | < E l (ε l )ε l u max ; j = 1, . . . , K.
Interpreting Theorem 5. Before proceeding to the proof, we make some useful observations.

(a) We first choose the sampling parameters (ε, m, s) for the outermost kernel ḡL , then for ḡL-1 , and so on. For the l th group (1 ≤ l ≤ L), we first choose ε L (accuracy), then m l (number of samples), and finally s l (sampling offset).

(b) The choice of ε L ∈ (0, c L /2), while free, dictates the choice of ε 1 , . . . , ε L-1 . To begin with, condition 1a essentially requires ε L-1 to be sufficiently small with respect to ε L . Similarly, for l = 1, . . . , L -2, the conditions in 1b require ε l to be sufficiently small with respect to ε l+1 . It ensures that during the estimation of the parameters for the (l + 1) th group, the estimation errors carrying forward from the previous groups (1 to l) are sufficiently small.

(c) For each l (< L), the lower bound on s l is to ensure that we are sufficiently deep in the tails of ḡl+1 , ḡl+2 , . . . , ḡL . The upper bound on s l is to control the estimation errors of the source amplitudes for group l (see (2.9)).

Order wise dependencies. We now discuss the scaling of the terms involved, assuming u max , u min 1.

(i) For l = 1, . . . , L, we have M l,up

1 l , C l K l . (ii) For p = 1, . . . , L -1 we have Cp,1 K p , Cp,2 1 (µ 2 p+1 -µ 2 p ) 1/2 , D p K 3/2 (L -p)µ L µ p , Cp,3 D p .
(iii) For l = 1, . . . , L, we have

E l (ε l )      K l + 1 (µ 2 l+1 -µ 2 l ) 1/2 log 1/2 K 3/2 (L-l)µ L ε l µ l ; l < L K L ; l = L. (3.23) 
(iv) For q = 2, . . . , L -1, we have

F q (ε q ) 1 q + 1 (µ 2 q+1 -µ 2 q ) 1/2 log 1/2 K 3/2 (L -q)µ L ε q µ q . ( 3 

.24)

Conditions on ε l . Theorem 5 has several conditions on ε l , which might be difficult to digest at first glance. On a top level, the conditions dictate that the accuracies satisfy

ε 1 ≤ ε 2 ≤ • • • ≤ ε L .
In fact, they require a stronger condition in the sense that for each 1 ≤ l ≤ L -1, ε l is required to be sufficiently smaller than ε l+1 (the choice of ε L L /2 is free). This places the strongest assumption on ε 1 meaning that the source parameters corresponding to the "outermost kernel" in the Fourier domain should be estimated with the highest accuracy. Below, we state the conditions appearing on ε l in the Theorem up to positive constants; the details are deferred to Appendix C.

Condition 1a in Theorem 5 holds if ε

L-1 , ε L satisfy ε L-1 α(ε L ) 1 1-θ (3.25)
for any given θ ∈ (0, 1/2). Here, α > 0 depends on θ, K, L, L-1 , L , µ L , µ L-1 , µ 1 .

For l < L -1, let us look at condition 1b in Theorem 5. The requirement E

l (ε l )ε l ≤ E l+1 (ε l+1 )ε l+1 holds if ε l , ε l+1 satisfy ε l λ l log 1 2(1-θ) K 3/2 µ L (L -l) ε l+1 µ l+1 ε 1 1-θ l+1 (3.26)
for any given θ ∈ (0, 1/2). Here, λ l > 0 depends on l , l+1 , µ l , µ l+1 , µ l+2 , L, K, θ.

Furthermore, the condition in (3.22) is satisfied if ε l , ε l+1 satisfy

ε l β l (ε l+1 ) 1+γ l 1-θ (3.27)
for any given θ ∈ (0, 1/2). Here, β l > 0 depends on L, K, l , l+1 , L-1 , L , µ l , µ l+1 , µ l+2 , µ L , µ L-1 , µ 1 , θ, while γ l > 0 depends on µ 1 , µ l+1 , µ l+2 , l+1 . Note that the dependence on ε l+1 is stricter in (3.27) as compared to (3.26).

Effect of separation between µ l , µ l+1 for l = 1, . . . , L -1. The interaction between µ L-1 , µ L occurs in the same manner as explained for the case of two kernels, the reader is invited to verify this. We analyze the interaction between µ l , µ l+1 below for l < L -1.

1. Consider the scenario where µ l → µ l+1 (with other terms fixed). We see that s l has to be suitably large now in order to be able to distinguish between ḡl and ḡl+1 . Moreover, conditions (3.26), (3.27) become stricter in the sense that λ l , β l → 0.

2. Now say µ l+1 is fixed, and µ l → 0 (and hence µ 1 , . . . , µ l-1 → 0). In this case, the conditions

E 1 (ε 1 )ε l ≤ • • • ≤ E l+1 (ε l+1
)ε l+1 become vacuous as the estimation error arising from stages 1, . . . , l -1 themselves approach 0. However, s 1 , . . . , s l now increase accordingly in order to distinguish within ḡ1 , . . . , ḡl . Hence, to control the estimation error of the amplitudes, i.e, E i (ε i ); 1 ≤ i ≤ l, ε 1 , . . . , ε l have to be suitably small.

Proof of Theorem 5. The proof is divided in to three main steps.

• Recovering source parameters for first group. For i = -m 1 , . . . , m 1 -1, we have

f (s 1 + i) ḡ1 (s 1 + i) = K j=1 u 1,j exp (ι2π(s 1 + i)t 1,j ) + L l=2 ḡl (s 1 + i) ḡ1 (s 1 + i) K j=1 u l,j exp (ι2π(s 1 + i)t l,j ) = K j=1 u 1,j exp (ι2πs 1 t 1,j ) u 1,j exp (ι2πit 1,j ) + L l=2 µ l µ 1 exp -2π 2 (s 1 + i) 2 (µ 2 l -µ 2 1 ) K j=1 u l,j exp(ι2π(s 1 + i)t l,j ) η 1,i = K j=1 u 1,j exp (ι2πit 1,j ) + η 1,i . (3.28)
Here, η 1,i is the perturbation due to the tail of ḡ2 , ḡ3 , . . . , ḡL . Since the stated choice of s 1 implies s 1 > m 1 , this means min i (s 1 + i) 2 = (s 1 -m 1 ) 2 , and hence clearly

|η 1,i | ≤ Ku max L l=2 µ l µ 1 exp -2π 2 (s 1 -m 1 ) 2 (µ 2 l -µ 2 1 ) ≤ Ku max (L -1) µ L µ 1 exp -2π 2 (s 1 -m 1 ) 2 (µ 2 2 -µ 2 1 )
.

We obtain estimates t 1,j , u 1,j , j = 1, . . . , K via the MMP method. Invoking Corollary 1, we have for ε 1 < c 1 /2, and

2 1 -2ε 1 + 1 ≤ m 1 < 2 1 (1-c) + 1(= M 1,up ) that if s 1 satisfies Ku max (L -1) µ L µ 1 exp -2π 2 (s 1 -m 1 ) 2 (µ 2 2 -µ 2 1 ) ≤ ε 1 u min B(u rel , K) (3.29)
then there exists a permutation φ 1 : [K] → [K] such that for each j = 1, . . . , K,

d w ( t 1,φ 1 (j) , t 1,j ) ≤ ε 1 , | u 1,φ 1 (j) -u 1,j | < C 1 + 2πs 1 u max ε 1 . (3.30)
Clearly, the condition

s 1 ≥ m 1 + 1 (2π 2 (µ 2 2 -µ 2 1 )) 1/2 log 1/2 Ku rel (L -1)µ L µ 1 ε 1 B(u rel , K) (3.31)
implies (3.29). Moreover, since s 1 ≤ cS 1 and m 1 < M 1,up , we obtain

s 1 < c M 1,up + 1 (2π 2 (µ 2 2 -µ 2 1 )) 1/2 log 1/2 K(L -1)u rel µ L µ 1 ε 1 B(u rel , K) . (3.32)
Plugging (3.32) in (3.30), we obtain

| u 1,φ 1 (j) -u 1,j | < C1,1 + C1,2 log 1/2 C1,3 ε 1 ε 1 u max = E 1 (ε 1 )ε 1 u max ; j = 1, . . . , K, (3.33) 
where C1,1 , C1,2 , C1,3 > 0 are constants defined in (3.17), (3.18), and E p (•) is defined in (3.19).

• Recovering source parameters for l th (1 < l < L) group. Say we are at the l th iteration for 1 < l < L, having estimated the source parameters up to the (l -1) th group. Say that for each p = 1, . . . , l -1 and j = 1, . . . , K the following holds.

d w ( t p,φp(j) , t p,j ) ≤ ε p , | u p,φp(j) -u p,j | < E p (ε p )u max ε p , (3.34) 
for some permutations

φ p : [K] → [K], with 1. ε 1 ≤ • • • ≤ ε l-1 ; E 1 (ε 1 )ε 1 ≤ • • • ≤ E l-1 (ε l-1 )ε l-1 ; 2. ε p < c p /2 ; 3. (F q+1 (ε q ) + E q (ε q ))u rel ε q ≤ ε q+1 e -(µ 2 q+1 -µ 2 1 ) F 2 q+1 (ε q+1 ) 2 µ q+1 B(u rel ,K) 2Kqµq , 1 ≤ q ≤ l -2.
For i = -m l , . . . , m l -1, we have

f (s l + i) -l-1 p=1 f p (s l + i) ḡl (s l + i) = l-1 p=1 ḡp (s l + i) ḡl (s l + i) K j=1 [u p,j exp(ι2π(s l + i)t p,j ) -u p,φp(j) exp(ι2π(s l + i) t p,φp(j) )] η l,i,past + L q=l+1 ḡq (s l + i) ḡl (s l + i) K j=1 u q,j exp(ι2π(s l + i)t q,j ) η l,i,f ut + K j=1 u l,j exp(ι2πs l t l,j ) u l,j exp(ι2πit l,j ) = K j=1 u l,j exp(ι2πit l,j ) + η l,i,past + η l,i,f ut .
Here, η l,i,past denotes perturbation due to the estimation errors of the source parameters in the past. Moreover, η l,i,f ut denotes perturbation due to the tails of the kernels that are yet to be processed.

(i) Bounding η l,i,past . To begin with, note

η l,i,past = l-1 p=1 µ p µ l exp(2π 2 (µ 2 l -µ 2 p )(s l + i) 2 ) K j=1
[u p,j exp(ι2π(s l + i)t p,j )

-u p,φp(j) exp(ι2π(s l + i) t p,φp(j) ].

Using Proposition 3, we have for each p = 1, . . . , l -1 and j = 1, . . . , K that |u p,j exp(ι2π(s l + i)t p,j ) -u p,φp(j) exp(ι2π(s l + i) t p,φp(j) )|

≤ 2πu max |s l + i|d w (t p,j , t p,φp(j) ) + |u p,j -u p,φp(j) | < 2πu max |s l + i|ε p + E p (ε p )ε p u max , (3.35) 
where the last inequality is due to (3.34). Since s l > m l , hence (s l + i) 2 < (s l + m l ) 2 for all i = -m l , . . . , m l -1. With the help of (3.35), we then readily obtain

|η l,i,past | < l-1 p=1 µ p µ l exp(2π 2 (µ 2 l -µ 2 p )(s l + m l ) 2 ) (2πu max (s l + m l )ε p + E p (ε p )ε p u max )K ≤ K µ l-1 µ l e 2π 2 (µ 2 l -µ 2 1 )(s l +m l ) 2   l-1 p=1 2πu max (s l + m l )ε p + E p (ε p )ε p u max   ≤ K(l -1) µ l-1 µ l e 2π 2 (µ 2 l -µ 2 1 )(s l +m l ) 2 (2πu max (s l + m l )ε l-1 + E l-1 (ε l-1 )ε l-1 u max ) , (3.36) 
where in the last inequality, we used 1.

(ii) Bounding η l,i,f ut . We have

η l,i,f ut = L q=l+1 µ q µ l exp(-2π 2 (s l + i) 2 (µ 2 q -µ 2 l ))   K j=1 u q,j exp(ι2π(s l + i)t q,j )   .
Since s l > m l , we have (s l + i) 2 ≥ (s l -m l ) 2 for all i = -m l , . . . , m l -1. This, along with the fact

µq µ l ≤ µ L µ l gives us |η l,i,f ut | ≤ µ L µ l Ku max (L -l) exp(-2π 2 (s l -m l ) 2 (µ 2 l+1 -µ 2 l )).
It follows that if s l ≥ S l where

S l = m l + 1 (2π 2 (µ 2 l+1 -µ 2 l )) 1/2 log 1/2 2Ku rel (L -l)µ L ε l µ l B(u rel , K)
then for i = -m l , . . . , m l -1, we have

|η l,i,f ut | < ε l u min B(u rel , K) 2 .
(3.37) (iii) Back to η l,i,past . We will now find conditions which ensure that the same bound as (3.37) holds on |η l,i,past |, uniformly for all i. To this end, since s l ≤ cS l and m l < M l,up , we obtain .38) This then gives us the bound

s l < c M l,up + 1 (2π 2 (µ 2 l+1 -µ 2 l )) 1/2 log 1/2 2Ku rel (L -l)µ L ε l µ l B(u rel , K) . ( 3 
2π(s l + m l ) < 2π( c + 1)M l,up + 2π c (2π 2 (µ 2 l+1 -µ 2 l )) 1/2 log 1/2 2Ku rel (L -l)µ L ε l µ l B(u rel , K) = C l,1 + C l,2 log 1/2 2D l ε l = F l (ε l ),
where we recall the definition of F l , and constants C l,1 , C l,2 , D l > 0 from (3.20), (3.21).

Since

ε l < 1 < D l and ε l ≥ ε l-1 , hence 2π(s l + m l ) < F l (ε l ) ≤ F l (ε l-1
). Using this in (3.36), we obtain

|η l,i,past | < K(l -1) µ l-1 µ l e (µ 2 l -µ 2 1 ) F 2 l (ε l ) 2 (F l (ε l-1 ) + E l-1 (ε l-1 )) u max ε l-1 (3.39) Therefore if ε l-1 satisfies the condition (F l (ε l-1 ) + E l-1 (ε l-1 ))u max ε l-1 ≤ ε l e -(µ 2 l -µ 2 1 ) F 2 l (ε l ) 2 u min µ l B(u rel , K) 2K(l -1)µ l-1 then it implies |η l,i,past | < ε l u min B(u rel ,K) 2
. Together with (3.37), this gives

|η l,i | ≤ |η l,i,f ut | + |η l,i,past | < ε l u min B(u rel , K).
We obtain estimates t l,j , u l,j , j = 1, . . . , K via the MMP method. Invoking Corollary 1, if ε l < c l /2, then for the stated choice of m l , there exists a permutation φ l :

[K] → [K] such that for each j = 1, . . . , K, d w ( t l,φ l (j) , t l,j ) ≤ ε l ; | u l,φ l (j) -u l,j | < C l + 2πs l ε l u max < E l (ε l )ε l u max . (3.40) 
The last inequality follows readily using (3.38).

• Recovering source parameters for last group. Say that for each p = 1, . . . , L -1 and j = 1, . . . , K the following holds.

d w ( t p,φp(j) , t p,j ) ≤ ε p , | u p,φp(j) -u p,j | < E p (ε p )ε p u max , (3.41) 
for some permutations φ

p : [K] → [K], with 1. ε 1 ≤ • • • ≤ ε L-1 ; E 1 (ε 1 )ε 1 ≤ • • • ≤ E L-1 (ε L-1 )ε L-1 ; 2. ε p < c p /2; 3. (F q+1 (ε q ) + E q (ε q ))ε q u rel ≤ ε q+1 e -(µ 2 q+1 -µ 2 1 ) F 2 q+1 (ε q+1 ) 2 µ q+1 B(u rel ,K) 2Kqµq , 1 ≤ q ≤ L -2.
We proceed by noting that for each i = -m L , . . . , m L -1

f (s L + i) -L-1 p=1 f p (s L + i) ḡL (s L + i) = L-1 p=1 ḡp (s L + i) ḡL (s L + i) K j=1 [u p,j exp(ι2π(s L + i)t p,j ) -u p,φp(j) exp(ι2π(s L + i) t p,φp(j) ] η L,i + K j=1 u L,j exp(ι2πs L t L,j ) u L,j exp(ι2πit L,j ) = K j=1 u L,j exp(ι2πit L,j ) + η L,i .
Using Proposition 3, we have for each p = 1, . . . , L -1 and j = 1, . . . , K that

|u p,j exp(ι2π(s L + i)t p,j ) -u p,φp(j) exp(ι2π(s L + i) t p,φp(j) | ≤ 2πu max |s L + i|d w (t p,j , t p,φp(j) ) + |u p,j -u p,φp(j) | < 2πu max |s L + i|ε p + E p (ε p )ε p u max , (3.42) 
where the last inequality follows from (3.41). Since s L = 0, hence (s

L + i) 2 < m 2 L < M 2 L,up
for all i = -m L , . . . , m L -1. Using (3.42), we then readily obtain

|η L,i | < L-1 p=1 µ p µ L e 2π 2 (µ 2 L -µ 2 p )M 2 L,up (2πu max M L,up ε p + E p (ε p )ε p u max )K ≤ K µ L-1 µ L e 2π 2 (µ 2 L -µ 2 1 )M 2 L,up L-1 p=1 (2πu max M L,up ε p + E p (ε p )ε p u max ) ≤ K(L -1) µ L-1 µ L e 2π 2 (µ 2 L -µ 2 1 )M 2 L,up (2πu max M L,up ε L-1 + E L-1 (ε L-1 )ε L-1 u max ) (3.43) 
where in the last inequality, we used (1).

We obtain estimates t L,j , u L,j , j = 1, . . . , K via the MMP method. Invoking Corollary 1 and assuming ε L < c L /2, it follows for the stated conditions on m L , that it suffices if ε L-1 satisfies

(2πM L,up + E L-1 (ε L-1 ))ε L-1 u max ≤ ε L e -2π 2 (µ 2 L -µ 2 1 )M 2 L,up u min µ L B(u rel , K) K(L -1)µ L-1 .
Indeed, there then exists a permutation φ

L : [K] → [K] such that for each j = 1, . . . , K, d w ( t L,φ L (j) , t L,j ) ≤ ε L ; | u L,φ L (j) -u L,j | < C L ε L u max = E L (ε L )ε L u max . (3.44) 
This completes the proof.

Unmixing Gaussians in Fourier domain: Noisy case

We now analyze the noisy setting where we acquire noisy values of the of the Fourier transform of f at the sampling location (frequency) s. In particular, at stage p (1 ≤ p ≤ L) in Algorithm 2, and frequency s, let w p (s) denote the additive observation noise on the clean Fourier sample f (s). Denoting the noisy measurement by f (s), this means that at stage p,

f (s) = f (s) + w p (s) = L l=1 ḡl (s)   K j=1 u l,j exp(ι2πst l,j )   + w p (s).
In addition to the terms defined at the beginning of Section 3.2, we will need an additional term (defined below) which will be used in the statement of our theorem.

F l (ε) := C l,1 + C l,2 log 1/2 3D l ε ; l = 2, . . . , L -1, (4.1) 
where C l,1 , C l,2 are as defined in (3.21).

Theorem 6. For a constant c ∈ (0, 1),

let 0 < ε L < c L /2, 2 L -2ε L ≤ m L < M L,
up and s L = 0. Moreover, for l = L -1, . . . , 1, say we choose ε l , m l , s l as follows.

1. 0 < ε l < c l /2 additionally satisfies the following conditions.

(a) (2πM L,up + E L-1 (ε L-1 ))ε L-1 u rel ≤ ε L e -2π 2 (µ 2 L -µ 2 1 )M 2 L,up µ L B(u rel ,K) 2K(L-1)µ L-1 . (b) If l < L -1, then ε l ≤ ε l+1 , E l (ε l )ε l ≤ E l+1 (ε l+1 )ε l+1 and (F l+1 (ε l ) + E l (ε l ))ε l u rel ≤ ε l+1 e -(µ 2 l+1 -µ 2 1 ) F 2 l+1 (ε l+1 ) 2 µ l+1 B(u rel , K) 3Klµ l .
2.

2 l -2ε l ≤ m l < M l,up , and S l ≤ s l ≤ cS l (for constant c > 1) where

S l = m l + 1 (2π 2 (µ 2 l+1 -µ 2 l )) 1/2 log 1/2 b l K(L -l)µ L u rel ε l µ l B(u rel , K) , with b l = 2 if l = 1
, and b l = 3 otherwise.

Assume that the noise satisfies the conditions

w 1 (•) ḡ1 (s 1 + •) ∞ ≤ ε 1 u min B(u rel , K) 2 , (4.2) 
w l (•) ḡl (s l + •) ∞ ≤ ε l u min B(u rel , K) 3 , l = 2, . . . , L -1, and (4.3) 
w L (•) ḡL (s L + •) ∞ ≤ ε L u min B(u rel , K) 2 . (4.4) 
Then, for each l = 1, . . . , L, there exists a permutation φ l :

[K] → [K] such that d w ( t l,φ l (j) , t l,j ) ≤ ε l , | u l,φ l (j) -u l,j | < E l (ε l )ε l u max ; j = 1, . . . , K.
Since the organisation and the arguments of the proof of Theorem 6 are almost identical to that of Theorem 5, we defer this proof to Appendix D where we pinpoint the main differences between the noiseless and the noisy settings.

Interpreting Theorem 6 Theorem 6 is almost the same as Theorem 5 barring the conditions on the magnitude of external noise (and minor differences in some constants). Specifically, conditions (4.2) -(4.4) state that at stage l, the magnitude of the noise should be small relative to the desired accuracy parameter ε l . This is examined in more detail below. For convenience, we will now assume u min , u max 1.

(Condition on w

l (•) ∞ for 1 ≤ l ≤ L -1.) Let us start with the case 2 ≤ l ≤ L -1.
Condition (4.3) states that

w l (i) ḡl (s l + i) ε l √ K ; i = -m l , . . . , m l -1. (4.5) Now, | w l (i) ḡl (s l +i) | = |w l (i)| √ 2πµ l e 2π 2 (s l +i) 2 µ 2 l . Since s l > m l , therefore s l + i > 0 for the given range of i. Hence, (s l + i) 2 < (s l + m l ) 2 < F 2 l (ε l ) for each i. Since F l (ε) F l (ε)
, therefore using the order wise dependency from (3.24), we obtain for each i that

|w l (i)| √ 2πµ l e 2π 2 (s l +i) 2 µ 2 l |w l (i)| µ l K 3/2 Lµ L ε l µ l C(µ l ,µ l+1 , l ) , (4.6) 
where C(µ l , µ l+1 , l ) > 0 depends only on µ l , µ l+1 , l . Hence from (4.5), (

is satisfied if

w l ∞ (ε l µ l ) 1+C(µ l ,µ l+1 , l ) √ K(K 3/2 Lµ L ) C(µ l ,µ l+1 , l ) ; 2 ≤ l ≤ L -1. (4.7) 
In a similar manner, one can easily show that (4.2) is satisfied if

w 1 ∞ (ε 1 µ 1 ) 1+C(µ 1 ,µ 2 , 1 ) √ K(K 3/2 Lµ L ) C(µ 1 ,µ 2 , 1 ) . ( 4.8) 2. 
(Condition on w L ∞ .) In this case, s L = 0 and so (s

L + i) 2 ≤ m 2 L . Therefore for each i = -m L , . . . , m L -1, we obtain w L (i) ḡL (s L + i) = |w L (i)| √ 2πµ L e 2π 2 (i) 2 µ 2 L |w L (i)| µ L e 2π 2 µ 2 L / 2 L . (4.9) 
Hence from (4.9), we see that (4.4) is satisfied if

w L ∞ µ L e -µ 2 L / 2 L ε L √ K . (4.10) 
(4.8), (4.7), (4.10) show the conditions that the noise level is required to satisfy at the different levels. From the discussion following Theorem 5, we know that the ε i 's gradually become smaller and smaller as we move from i = L to i = 1 (with ε 1 being the smallest). Therefore the condition on w 1 ∞ is the strictest, while the condition on w L ∞ is the mildest.

Figures 3,4 show scatter plots for the above notions of error and the minimum separation l for each group, in the absence of external noise. Figures 5,6 show the same, but with external Gaussian noise (standard deviation 5 × 10 -5 ). Both these plots are for C = 0.6 in (5.1), we found this choice to give the best result. We observe that for l = 1, 2, the spike locations are recovered near exactly in all the trials and for all choices of K -both in the noiseless and noisy settings. For l = 3, 4, the performance is reasonably good for K = 2, 3. In particular, for both the noiseless and noisy settings, d w,l,max is less than 0.05 in at least 82% of the trials while d w,l,avg is less than 0.05 in at least 93% of trials. While the performance is seen to drop as K increases -especially in terms of d w,l,max -the performance in terms of d w,l,avg is still significantly better than d w,l,max . In particular, for K = 4, d w,l,avg is less than 0.05 in at least 86% of the trials (in both noiseless and noisy settings), while for K = 5, the same is true in at least 73% of the trials.

As mentioned earlier, we found the choice C = 0.6 to give the best performance, in general. In the noiseless scenario however, the choice C = 1 results in near exact recovery for all groups as shown in Appendix E (see Figures 7,8). However in the presence of external Gaussian noise of standard deviation 5 × 10 -5 , the recovery performance breaks down for groups l = 2, 3, 4 (see Figures 9,10). Since we are sampling relatively deeper in the Fourier tail (compared to that when C = 0.6), the deconvolution step blows up the noise significantly, leading to the worse recovery performance. Finally, in the noiseless case, we observed that the recovery performance breaks down for larger values of C (i.e., for C > 4) due to numerical errors creeping in the deconvolution step.

Discussion and Concluding remarks

We now compare with closely related work and conclude with directions for future research.

Related work on the multi-kernel unmixing super-resolution problem

Despite is natural role in many practical problems, the study of super-resolution under the presence of multiple kernels has not attracted much theoretical activity until recently. In [START_REF] Li | Stable separation and super-resolution of mixture models[END_REF], the authors introduce an interesting variant of the atomic norm approach to sparse measure reconstruction. They prove that the resulting convex optimization problem recovers the original measure in the noiseless case and they provide an interesting error bound in the noisy setting. The assumptions underlying this latter result is a standard separation assumption on the spike localization and a uniform random prior on the Fourier coefficients (when considered to lie in R/Z) of the point spread functions. In comparison, our assumptions are quite different. In particular, we do not make any assumption about the randomness of the Fourier coefficients of the point spread function. Moreover, we use Moitra's Modified MP method instead of the atomic norm penalization considered in [START_REF] Li | Stable separation and super-resolution of mixture models[END_REF]. As a main benefit of our approach, we do not need any hyper-parameter tuning when the signal is sufficiently larger than the noise level 6 .

Another interesting work on multi-kernel super-resolution is the technique developed in [START_REF] Slawski | Sparse recovery for protein mass spectrometry data[END_REF], where the setting is very close to the one of the present paper. A set of relevant modifications of the LASSO estimator and Matching Pursuit method, combined with post-processing techniques, are proposed in [START_REF] Slawski | Sparse recovery for protein mass spectrometry data[END_REF] and shown to perform well on real datasets. However, to the best of our knowledge, the practical value of these methods is not rigorously supported by theoretical results. 

Future directions

In this paper, we provide a simple and intuitive algorithm for multi-kernel super-resolution, and also provide strong theoretical results for our approach. There are several directions for extending the results in this paper, we list two of them below. Firstly, our analysis assumes that the kernel variance parameters (i.e., µ l ) are known exactly. In general, the analysis can be extended to the case where upper and lower estimates are available for each µ l . Hence one could consider estimating the variance terms, and using these estimates with our algorithm. The choice of the method for estimating (µ l ) l should be investigated with great care. One possible avenue is to use Lepski's method [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] and its many recent variants and improvements (see for e.g., [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF]). Next, it is natural to extend the techniques developed here to the multi-dimensional setting as multivariate signals are of high importance in many applications such as DNA sequencing and Mass Spectrometry. This could be investigated using for instance multivariate Prony-like methods such as in [START_REF] Peter | Prony's method for multivariate signals[END_REF][START_REF] Kunis | A multivariate generalization of Prony's method[END_REF][START_REF] Hua | Estimating two-dimensional frequencies by matrix enhancement and matrix pencil[END_REF][START_REF] Andersson | Esprit for multidimensional general grids[END_REF][START_REF] Ehler | A randomized multivariate matrix pencil method for superresolution microscopy[END_REF][START_REF] Potts | Parameter estimation for multivariate exponential sums[END_REF][START_REF] Cuyt | Multivariate exponential analysis from the minimal number of samples[END_REF]. Another interesting avenue is the one discovered in [START_REF] Batenkov | Conditioning of partial nonuniform Fourier matrices with clustered nodes[END_REF] where refined bounds on the condition number of the Vandermonde matrices are devised. It would be of particular interest to understand how such bounds could be employed in our framework in order to accomodate separation conditions below the threshold discovered by Moitra in [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF].

(a) l = 1, K = 2 (b) l = 2, K = 2 (c) l = 3, K = 2 (d) l = 4, K = 2 (e) l = 1, K = 3 (f) l = 2, K = 3 (g) l = 3, K = 3 (h) l = 4, K = 3 (i) l = 1, K = 4 (j) l = 2, K = 4 (k) l = 3, K = 4 (l) l = 4, K = 4 (m) l = 1, K = 5 (n) l = 2, K = 5 (o) l = 3, K = 5 (p) l = 4, K = 5

A Modified matrix pencil method

A.1 Proof of Moitra's theorem

We now outline the steps of Moitra's proof [41, Theorem 2.8] for completeness. In particular, we note that the result in [41, Theorem 2.8] does not detail the constants appearing in the bounds, while we will do so here.

To begin with, recall the notion of chordal metric for measuring distance between complex numbers. Definition 1. The chordal metric for u, v ∈ C is defined as

χ(u, v) := |u -v| 1 + |u| 2 1 + |v| 2 .
Denoting s(u), s(v) ∈ S 2 to be points with u, v as their respective stereographic projections on the plane, we also have

χ(u, v) = 1 2 s(u) -s(v) . It is useful to note that if (u, v) ∈ R 2 is the stereographic projection of a point (a, b, c) ∈ S 2 , then (a, b, c) = 2u 1 + u 2 + v 2 , 2v 1 + u 2 + v 2 , -1 + u 2 + v 2 1 + u 2 + v 2 . Definition 2. Let (λ i ) n
i=1 denote generalized eigenvalues of (A, B), and also let ( λ i ) n i=1 denote generalized eigenvalues of ( A, B). Then the matching distance with respect to χ is defined as

md χ [(A, B), ( A, B)] := min φ max i χ(λ i , λ φ(i) ), where φ : [n] → [n] denotes a permutation.
The key to the analysis in [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF]Theorem 2.8] are the following two technical results.

Theorem 7. ([53, Corollary VI.2.5]) Let (A, B) and ( A, B) be regular7 pairs and further suppose that for some nonsingular X, Y we have (XAY H , XBY H ) = (I, D) where D is diagonal. Also let e i be the i th row of X(A -A)Y H , f i be the i th row of X(B -B)Y H and set ρ = max i { e i 1 + f i 1 }.

If the following regions

G i = {µ | χ(D ii , µ) ≤ ρ}
are disjoint then the matching distance of the generalized eigenvalues of ( B, A) to {D ii } i is at most ρ with respect to the chordal metric.

Recall that for any pair (A, B), and non-singular X, Y , the pair (XAY H , XBY H ) is equivalent to (A, B). In particular, they both have the same generalized eigenvalues [START_REF] Stewart | Matrix Perturbation Theory[END_REF]Theorem VI.1.8].

Theorem 8. ([41, Theorem 1.1]) Provided that m > 1 + 1, we have σ 2 max ≤ m + 1 -1 and σ 2 min ≥ m -1 -1. Consequently, the condition number of V satisfies κ 2 ≤ m + 1 -1 m -1 -1 .
Step 1: Recovering each t j . Let U denote the top K left singular vectors of H 0 . The following lemma shows that there exists an orthonormal basis for the column span of V that is well aligned to U .

Lemma 1. ([41, Lemma 2.7]) If E 2 < σ K (V D u V H ), then there exists a matrix U such that U -U 2 ≤ 2 E 2 σ K (V D u V H ) -E 2
and the columns of U form an orthonormal basis for V and those of U form an orthogonal basis of the K "largest" singular vectors of H 0 . Remark 1. In the original statement in [41, Lemma 2.7] the denominator term is σ K (V D u V H ). But from Wedin's bound [START_REF] Wedin | Perturbation bounds in connection with singular value decomposition[END_REF], we observe that the denominator should be σ [START_REF] Weyl | Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung)[END_REF]), the statement in Lemma 1 follows.

K (V D u V H +E) instead. Since σ K (V D u V H + E) ≥ σ K (V D u V H ) -E 2 (Weyl's inequality
By projecting H 0 , H 1 to U we obtain

A = U H H 0 U = U H V D u V H U and B = U H H 1 U = U H V D u D α V H U.
Step 3: Recovering each u j . Given u ∈ C K , we obtain our final estimate u j = exp(-ι2πs 0 t j ) u j for j = 1, . . . , K. Denoting

D = diag(exp(-ι2πs 0 t 1 ), • • • , exp(-ι2πs 0 t k )), D φ = diag(exp(-ι2πs 0 t φ(1) ), • • • , exp(-ι2πs 0 t φ(k) )),
note that u = D u and u φ = D φu φ. From this, we obtain

u -u φ = D u -D φu φ = D u -Du φ + Du φ -D φu φ = D( u -u φ) + ( D -D φ)u φ ⇒ u -u φ ∞ ≤ u -u φ ∞ + D -D φ ∞ u φ ∞ (A.7)
where in the last line, we used D ∞ = 1. Using Proposition 2 in Appendix B.3 , we readily obtain the bound

D -D φ ∞ ≤ 2πs 0 max i d w ( t i , t φ(i) ) ≤ 2πs 0 ε. Using u φ ∞ = u max and (A.6) in (A.7), we finally obtain u -u φ ∞ ≤ 2πm 3/2 Ku max ε + ε u min σ 2 min 2C √ mK 1 + 16 κ 2 umax u min -1 (m -1 -2ε -1) 1/2 + 2πu max s 0 ε. (A.8)

A.2 Proof of Corollary 1

We need only make the following simple observations. Firstly, σ 2 min ≤ σ 2 max ≤ m + 1 + 1 < 2m, since m > 1/ + 1. Also, since κ 2 ≥ 1, we get

u min σ 2 min ε 2C √ mK 1 + 16 κ 2 u max u min -1 < u min C √ K 1 + 16 u max u min -1 √ mε.
Next, one can easily verify that for m ≥ 2 -2ε + 1, we have 

√ m m-1 -2ε -1 ≤ 2 
(i) m σ 2 min ≤ m m -1 -1 ≤ 1 1 -1/ +1 2/ +1 ≤ 5/2.
(ii)

κ 2 = m + 1 -1 m -1 -1 ≤ 3.
Plugging these in (2.6), we have that it suffices for η max to satisfy

η max ≤ ε u min 5C √ K 1 + 48 u max u min -1 ≤ ε u min σ 2 min 2mC √ K 1 + 16 κ 2 u max u min -1
.

B Auxiliary results

B.1 Useful relation involving wrap around metric and chordal metric for points on the unit disk

For t 1 , t 2 ∈ [0, 1) let α 1 = exp(ι2πt 1 ), α 2 = exp(ι2πt 2 ) denote their representations on the unit disk. We have Proof. We begin by representing α 1 , α 2 in Cartesian coordinates in R 2 where α 1 = (a, b), α 2 = (x, y).

|α 1 -α 2 | = |1 -exp(ι2π(t 2 -t 1 ))| = (1 -cos(2π(t 2 -t 1 ))) 2 + sin 2 (2π(t 2 -t 1 )) = 2 -2 cos(2π(t 2 -t 1 )) = 2|sin(π(t 2 -t 1 ))| = 2 sin(π|t 2 -t 1 |) (Since t 2 -t 1 ∈ (-1, 1)) = 2 sin(π -π|t 2 -t 1 |) = 2
Let s(α 1 ), s(α 2 ) ∈ S 2 be such that α 1 , α 2 are their respective stereographic projections. Then, s(α 2 ) = 2x 1 + x 2 + y 2 , 2y 1 + x 2 + y 2 , -1 + x 2 + y 2 1 + x 2 + y 2 s(α 1 ) = (a, b, 0). Since χ(α 1 , α 2 ) = s(α 1 )-s(α 

√ 1 + 2 (1 -2 ) 3/2 -a = a √ 1 + 2 (1 -2 ) 3/2 -a + 2 √ 1 + 2 (1 -2 ) 3/2 ≤ √ 1 + 2 (1 -2 ) 3/2 -1 + 2 √ 1 + 2 (1 -2 ) 3/2 (B.7)
where we used |a| ≤ 1. Note that √ 1 + 2 ≤ 1 + . Moreover, we have the following Claim 1. For 0 ≤ ≤ 1/4, we have (1 -2 ) -3/2 ≤ (1 + 12 √ 2 ).

Proof. Consider the function g( ) = (1+12 √ 2 )-(1-2 ) -3/2 . We have g ( ) = 12 √ 2-3(1-2 ) -5/2 and so g ( ) ≥ 0 when 0 ≤ ≤ 1/4. Thus g is increasing for this range of , and so g( ) ≥ g(0) = 0, which completes the proof. where in the last inequality, we used Proposition 2.

C Conditions on ε l in Theorem 5

We treat conditions 1a, 1b separately below. In this section, for a given i ∈ N, we will denote C i (u i , v i , w i , . . . ) to be a positive term depending only on the parameters u i , v i , w i , . . . .

Condition 1a is equivalent to

K L-1 ε L-1 + 1 (µ 2 L -µ 2 L-1 ) 1/2 log 1/2 K 3/2 µ L ε L-1 µ L-1 ε L-1 ε L µ L e -2π 2 (µ 2 L -µ 2 1 )/ 2 L K 3/2 Lµ L-1 (C.1) ⇔ C 1 (K, L-1 , µ L , µ L-1 ) log 1/2 K 3/2 µ L ε L-1 µ L-1 ε L-1 C 2 (µ L , µ L-1 , µ 1 , K, L, L )ε L . (C.2)
Since for any 0 < θ < 1, we have10 

log K 3/2 µ L ε L-1 µ L-1 ≤ 1 θ K 3/2 µ L ε L-1 µ L-1 θ , (C.3) therefore (C.
2) is satisfied if for any given θ ∈ (0, 1/2), it holds that

ε 1-θ L-1 √ θ C 2 (µ L , µ L-1 , µ 1 , K, L, L ) C 1 (K, L-1 , µ L , µ L-1 ) µ L-1 µ L K 3/2 θ ε L . (C.4)
From this, (3.25) follows easily.

2. We now look at condition 1b starting with the condition E l (ε l )ε l ≤ E l+1 (ε l+1 )ε l+1 . Using the order dependency of E l (•) from (3.23), this is the same as C 3 (K, l , µ l , µ l+1 ) log 1/2 K 3/2 µ L (L -l) ε l µ l ε l (C.5)

C 4 (K, l+1 , µ l+1 , µ l+2 ) log 1/2 K 3/2 µ L (L -l) ε l+1 µ l+1 ε l+1 . (C.6)
Using (C.3), it follows that E l (ε l )ε l ≤ E l+1 (ε l+1 )ε l+1 is ensured if

ε 1-θ l √ θ C 4 (K, l+1 , µ l+1 , µ l+2 ) C 3 (K, l , µ l , µ l+1 ) µ l µ L (L -l)K 3/2 θ log 1/2 K 3/2 µ L (L -l) ε l+1 µ l+1 ε l+1 (C.7)
holds for any given θ ∈ (0, 1/2). Now consider the other condition, namely (3.22). Using the order dependency of F l+1 (ε l ) and E l (ε l ) from (3.24), (3.23) respectively, this can be equivalently written as

1 l+1 + 1 (µ 2 l+2 -µ 2 l+1 ) 1/2 log 1/2 K 3/2 (L -l)µ L ε l µ l+1 ε l (C.8) + K l + 1 (µ 2
l+1 -µ 2 l ) 1/2 log 1/2 K 3/2 (L -l)µ L ε l µ l ε l ε l+1 e -(µ 2 l+1 -µ 2 1 )

F 2 l+1 (ε l+1 ) 2 µ l+1 µ l lK 3/2 . Since µ l+1 > µ l , therefore the L.H.S of (C.8) is C 5 ( l , l+1 , µ l , µ l+1 , µ l+2 , K) log 1/2 K 3/2 (L -l)µ L ε l µ l ε l . (C.9)

Moreover, since (µ 2 l+1 -µ 2 1 )

F 2 l+1 (ε l+1 ) 2 C 6 (µ 1 , µ l+1 , µ l+2 , l+1 ) log K 3/2 (L -l)µ L ε l+1 µ l+1 ,
therefore the R.H.S of (C.8) is ε l+1 µ l+1 µ l lK 3/2 ε l+1 µ l+1 K 3/2 (L -l)µ L C 6 (µ 1 ,µ l+1 ,µ l+2 , l+1 ) (ε l+1 ) 1+C 6 (µ 1 ,µ l+1 ,µ l+2 , l+1 ) C 7 (µ l , µ l+1 , µ L , K, L).

(C.10)

Therefore from (C.9),(C.10), it follows that a sufficient condition for (C.8) to hold is log 1/2 K 3/2 (L -l)µ L ε l µ l ε l (ε l+1 ) 1+C 6 (µ 1 ,µ l+1 ,µ l+2 , l+1 ) C 7 (µ l , µ l+1 , µ L , K, L) C 5 ( l , l+1 , µ l , µ l+1 , µ l+2 , K) .

(C.11)
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 1 Figure 1: 232 T h spectrum showing escape peaks and annihilation peaks [54, p.9]
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 2 Figure 2: Capture of the result of a sequencing using SnapGene Viewer [52].
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 4 for l = 1, . . . , L do 5:
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Figure 3 :

 3 Figure 3: Scatter plots for maximum wrap around error (d w,l,max ) v/s minimum separation ( l ) for 400 Monte Carlo trials, with no external noise. This is shown for K ∈ {2, 3, 4, 5} with L = 4 and C = 0.6. For each sub-plot, we mention the percentage of trials with d w,l,max ≤ 0.05 in parenthesis.
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 4 Figure 4: Scatter plots for the mean wrap around error (d w,l,avg ) v/s minimum separation ( l ) for 400 Monte Carlo trials, with no external noise. This is shown for K ∈ {2, 3, 4, 5} with L = 4 and C = 0.6. For each sub-plot, we mention the percentage of trials with d w,l,avg ≤ 0.05 in parenthesis.
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 5 Figure 5: Scatter plots for maximum wrap around error (d w,l,max ) v/s minimum separation ( l ) for 400 Monte Carlo trials, with external Gaussian noise (standard deviation 5 × 10 -5 ). This is shown for K ∈ {2, 3, 4, 5} with L = 4 and C = 0.6. For each sub-plot, we mention the percentage of trials with d w,l,max ≤ 0.05 in parenthesis.
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 6 Figure 6: Scatter plots for mean wrap around error (d w,l,avg ) v/s minimum separation ( l ) for 400 Monte Carlo trials, with external Gaussian noise (standard deviation 5 × 10 -5 ). This is shown for K ∈ {2, 3, 4, 5} with L = 4 and C = 0.6. For each sub-plot, we mention the percentage of trials with d w,l,avg ≤ 0.05 in parenthesis.

2 ( 1

 21 . Using these observations in (2.7), along with m < -c) + 1, we obtain the stated bound on ûφ -u ∞ .Next, let us note that the condition m ≥ 2 -2ε + 1 ≥ 2 + 1 leads to the following simple observations.

  sin(πd w (t 1 , t 2 )).Since sin x ≤ x for x ≥ 0, therefore we obtain|α 1 -α 2 | ≤ 2πd w (t 1 , t 2 ). Also, since d w (t 1 , t 2 ) ∈ [0, 1/2] and sin x ≥ 2x π for x ∈ [0, π/2], we obtain d w (t 1 , t 2 ) ≤ |α 1 -α 2 |/4. To summarize, |α 1 -α 2 | 2π ≤ d w (t 1 , t 2 ) ≤ |α 1 -α 2 | 4 . (B.1)Finally, from the definition of chordal metric (see Definition 1) we know thatχ(α 1 , α 2 ) = |α 1 -α 2 |/2.Thus from (B.1), we obtainχ(α 1 , α 2 ) π ≤ d w (t 1 , t 2 ) ≤ χ(α 1 , α 2 ) 2 . (B.2)B.2 Useful relation involving wrap around metric and chordal metric when one point lies on the unit disk, and the other does notWe will prove the following useful Proposition. Proposition 1. For α 1 , α 2 ∈ C where |α 1 | = 1, let t 1 , t 2 ∈ [0, 1) be such that α 1 = exp(ι2πt 1 ), α 2 /|α 2 | = exp(ι2πt 2 ). If χ(α 1 , α 2 ) ≤ for some 0 ≤ ≤ 1/4, then d w (t 1 , t 2 ) ≤ (20 + 1

√

2 ) .

  2 ) 2 2 ≤ , this implies | -1 + x 2 + y 2 | 1 + x 2 + y 2 ≤ 2 , 2x 1 + x 2 + y 2 -a ≤ 2 , 2y 1 + x 2 + y 2 -b ≤ 2 .

	• The first inequality in (B.3) implies				
		1 -2 1 + 2	≤ x 2 + y 2 ≤	1 + 2 1 -2	.	(B.4)
	• The second inequality in (B.3) implies			
	(a -2 )	1 + x 2 + y 2 2	≤ x ≤ (a + 2 )	1 + x 2 + y 2 2	.	(B.5)
	• The third inequality in (B.3) implies			
	(b -2 )	1 + x 2 + y 2 2	≤ y ≤ (b + 2 )	1 + x 2 + y 2 2	.	(B.6)
	Now from (B.4),(B.5) we get					
	x x 2 + y 2	-a ≤	(a + 2 )	

(B.3) 

Let us assume < 1/2 from now.

  In an identical fashion, one obtains the same bound on | y √x 2 +y 2 -b|. From these observations, we then obtainχ(α 1 , α 2 /|α 2 |) = .3 More useful resultsProposition 2. For any t 1 , t 2 ∈ [0, 1), and integer n, we have|exp(ι2πnt 1 ) -exp(ι2πnt 2 )| ≤ 2|n|πd w (t 1 , t 2 ).Proof. On one hand,|exp(ι2πnt 1 ) -exp(ι2πnt 2 )| = |1 -exp(ι2πn(t 2 -t 1 ))| = 2|sin(πn(t 2 -t 1 ))| ≤ 2π|n||t 2 -t 1 | (Since |sin x| ≤ |x|, ∀x ∈ R).(B.9)On the other hand, note that 2|sin(πn(t2 -t 1 ))| = 2|sin(π|n||t 2 -t 1 |)| = 2|sin(π|n|(1 -|t 2 -t 1 |))| ≤ 2π|n|(1 -|t 2 -t 1 |). (B.10)The bound follows from (B.9), (B.10) and by noting the definition of d w .Proposition 3. For any t 1 , t 2 ∈ [0, 1), integer n, and u 1 , u 2 ∈ C, we have|u 1 exp(ι2πnt 1 ) -u 2 exp(ι2πnt 2 )| ≤ 2π|u 1 ||n|d w (t 1 , t 2 ) + |u 1 -u 2 |.Proof. Indeed,|u 1 exp(ι2πnt 1 ) -u 2 exp(ι2πnt 2 )| = |u 1 exp(ι2πnt 1 ) -u 1 exp(ι2πnt 2 ) + u 1 exp(ι2πnt 2 ) -u 2 exp(ι2πnt 2 )| ≤ |u 1 ||exp(ι2πnt1 ) -exp(ι2πnt 2 )| + |u 1 -u 2 | ≤ 2π|u 1 ||n|d w (t 1 , t 2 ) + |u 1 -u 2 |

	Applying these observations to (B.7), we get	
	x x 2 + y 2	-a ≤ [(1 + )(1 + 12 = [(12 √ 2 + 1) + 12 √ 2 ) -1] + 2 (1 + )2 3/2 √ 2 2 ] + 4 √ 2( + 2 ) ≤ [(12 √ 2 + 1) + 3 √ 2 ] + 5 √ 2 (Using ≤ 1/4) ≤ (20 √ 2 + 1) .	(B.8)
	The reader is invited to verify that a-x √ x 2 +y 2 ≤ (20 √ | x √ x 2 +y 2 -a| ≤ (20 √ 2 + 1) . 1 2 x x 2 + y 2 -a 2 +	2+1) , which together with (B.8) implies that y x 2 + y 2 -b 2 ≤ 20 + 1 √ 2 .

Using (B.2), this in turn implies that d w (t 1 , t 2 ) ≤ (10 + 1 2 √ 2 ) .

B

The estimation error on the ti's, i = 1, . . . , K, can be deduced from [48, Theorem 5.1], while the error in the coefficients ui, i = 1, . . . , K comes as a result of a perturbation analysis based on the condition number of the Vandermonde matrix associated with the frequencies.

Recall from[START_REF] Wendland | Scattered Data Approximation[END_REF] Theorem 6.11] that a continuous function g ∈ L1(R) is positive definite if and only if g is bounded and its Fourier transform is nonnegative and non vanishing.

The symbols and are used to hide positive constants, see Section 2.

Recall (see[START_REF] Sun | Orthogonal projections and the perturbation of the eigenvalues of singular pencils[END_REF] Definition 2.1]) that λ = β/γ (where (β, γ) = (0, 0)) is a generalized eigenvalue of (H1, H0) if it satisfies rank (γH1 -βH0) < max (ζ 1 ,ζ 0 )∈C 2 \{0,0} rank(ζ1H1 -ζ0H0). Clearly, this is only satisfied if λ = αj (see also[START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] Theorem 2.1]).

(1-c) + 1 ( = M 2,up ), we

Code available here: https://hemant-tyagi.github.io

what sufficiently larger means is elaborated on in Theorem 6

A pair (A, B) is regular if there exist scalars α, β with (α, β) = (0, 0) such that det(βA -αB) = 0 [53, Definition VI.1.2]. For (A, B) to be regular, it suffices that A and/or B is full rank.

Note that D u and Du have the same singular values as |u i | = |ui| for each i.

Here, we use the fact log x ≤ nx 1/n for n, x > 0.

This author's work was supported by EPSRC grant EP/N510129/1.

Corollary for the case L = 1. As noted earlier, the case L = 1 is not interesting in the absence of external noise as we can exactly recover the source parameters. The situation is more interesting in the presence of noise as shown in the following Corollary of Theorem 6 for the case L = 1.

Corollary 2. For a constant c ∈ (0, 1), let 0 < ε 1 < c 1 /2, 

Then, there exists a permutation φ 1 : [K] → [K] such that for j = 1, . . . , K, we have

Assuming u min , u max 1, we see from (4.10) that (4.11) is satisfied if

Experiments

In this section, we present some numerical experiments for our method 5 pertaining to the error in the recovery of the locations of the spikes. Our setup is as follows. We fix L = 4 groups, and consider K ∈ {2, 3, 4, 5}. We fix the variance parameters of the Gaussian kernel to be µ L = 0.01 and µ l = µ l+1 /2 for l = 1, . . . , L -1. The minimum separation parameter is set to 0.05 and m l is fixed to 1/ + 5 for each l = 1, . . . , L. Furthermore, we fix the sampling parameters as s L = 0, ε L = 0.01, and for each l = 1, . . . , L -1 choose

for a suitably chosen constant C > 0. This is in line with our theory since ε l is smaller than ε l+1 and s l too is of the form specified in Theorem 5.

In each Monte Carlo run, we choose K ∈ {2, 3, 4, 5}, and then randomly generate K spikes for each l = 1, . . . , L. In particular, the amplitudes of the spikes are generated by first uniformly sampling values in [u min , u max ] with u min = 3 and u max = 10, and then randomly assigning each one of them a negative sign with probability 1/2. Moreover, the spike locations are sampled uniformly at random in (0, 1) with the minimum separation l for each group ensured to be greater than or equal to . Thereafter, each Fourier sample (for every group) is corrupted with zero-mean i.i.d Gaussian noise. For each group l, upon obtaining the estimated spike locations t l,j and amplitudes u l,j for j = 1, . . . , K (via Algorithm 2), we "match" (for each group) the estimated set of spikes with the input spikes based on a simple heuristic. We first find the estimated spike location that has the smallest wrap around distance from an input spike location -this gives us a match. This pair is then removed, and we repeat the process on the remaining sets of spikes. This finally gives us a permutation φ : [K] → [K] where t l,j would ideally be close to t l,φ(j) . Finally, we evaluate the performance of our algorithm by examining (a) the maximum wrap around distance d w,l,max := max j d w (t l,j , t l,φ(j) ), and (b) the average wrap around distance d w,l,avg := (1/K) K j=1 d w (t l,j , t l,φ(j) ). This is repeated over 400 Monte Carlo trials.

As easily checked, the generalized eigenvalues of (B, A) are α 1 , . . . , α K . Similarly,

The generalized eigenvalues of ( B, A) are perturbed versions of that of (B, A). Since 8 σ K (V D u V H ) ≥ σ 2 min u min , therefore if E 2 < σ 2 min u min holds, then Lemma 1 gives us the bound

Let us define the matrices

Clearly, both X and Y are non-singular. Moreover, one can easily verify that XAY H = I and XBY H = D α . We now bound the 2 -norm of each row of X(A -A)Y H and X(B -B)Y H using what we have seen so far. To begin with, following the steps in [START_REF] Moitra | Super-resolution, extremal functions and the condition number of vandermonde matrices[END_REF], we obtain

The same bound holds on

for some δ ∈ (0, 1). Then,

Applying these bounds to (A.2) leads to the bound

On the other hand, one can easily verify that

Our immediate goal now is to use Theorem 7. (A, B) are clearly regular since A, B are full rank matrices. We will show that if δ is small enough, then A is full rank, which in turn implies that ( A, B) is regular. To this end, recall that if

min u min for δ ∈ (0, 1) then we have seen that this implies τ (2 + τ ) ≤ 8δ; this in turn implies that A -A 2 ≤ 8δσ 2 max u max + δ 2 u min σ 2 min . Finally, using Weyl's inequality, we have that

Now let us note that χ(α i , α j ) ≥ 2d w (t i , t j ) ≥ 2 (see Appendix B.1) for i = j. So if u is such that χ(α i , u) ≤ , then this would imply χ(α j , u) ≥ 2 -, and hence if additionally < holds, then the regions {u | χ(α i , u) ≤ } will be disjoint. Denote ( λ j ) n j=1 to be the generalized eigenvalues of ( B, A). Therefore, if δ ∈ (0, 1) satisfies

(note that the bound is already less than 1 and also subsumes (A.3)), then from Theorem 7 we know that there exists a permutation φ :

2 and 0 ≤ ε < min {1, C }. This means χ( λ φ(i) , α i ) ≤ ε/C holds, and so, from 9 Proposition 1 in Appendix B.2, this implies d w ( t φ(i) , t i ) ≤ ε. Putting it together with the earlier condition on δ, we get that if

Step 2: Recovering each u j . Note that d w ( t i , t j ) ≥ -2ε for all i = j, so we assume ε < /2 from now. Also recall that we form the Vandermonde matrix V ∈ C m×K using α j = exp(-ι2π t j ).

Then, the estimate

Denote φ = φ -1 and let u φ ∈ C K denote the permuted version of u w.r.t φ. Also, let V φ be formed by permuting the columns of V w.r.t φ. Then, Theorem 8). Next, the magnitude of each entry in V φ -V can be verified to be upper bounded by 2πm max

√ Ku max and using (A.4), we obtain

.

Plugging these bounds in (A.5), we obtain

. (A.6) 9 The Proposition requires 0 ≤ ε/C ≤ 1/4, which is the case here.

Using (C.3), we have that (C.11) holds if for any given θ ∈ (0, 1/2),

(C.12) Comparing (C.12) and (C.7), we see that the dependence on ε l+1 in (C.12) is in general stricter than that in (C.7).

D Proof of Theorem 6

As for the proof of Theorem 5, the proof of Theorem 6 is divided into three main steps. We will only point out the relevant modifications in the proof of Theorem 5 that we need to make in order to account for the noise term.

• Recovering source parameters for first group. For i = -m 1 , . . . , m 1 -1, equation (3.28) becomes

Since the noise term satisfies (4.2), invoking Corollary 1 brings that for ε 1 < c 1 /2, and

), we only need to impose that s 1 satisfies

to recover the same error bound (3.30) as in the noiseless case. The lower and upper bounds on s 1 are then obtained in a similar way as (3.31) and (3.32) in the proof of Theorem 5, and one finally gets the same error bound (3.33) as in the noiseless case.

• Recovering source parameters for l th (1 < l < L) group. Say we are at the l th iteration for 1 < l < L, having estimated the source parameters up to the (l -1) th group. Say that for each p = 1, . . . , l -1 and j = 1, . . . , K the following holds.

for some permutations

For i = -m l , . . . , m l -1, we have

As in the proof of Theorem 5, η l,i,past denotes perturbation due to the estimation errors of the source parameters in the past, and η l,i,f ut denotes perturbation due to the tails of the kernels that are yet to be processed. Imposing that s l ≥ S l where

we get that, for i = -m l , . . . , m l -1,

where we used the same steps as in the proof of Theorem 5. Now, since s l ≤ cS l and m l < M l,up , we obtain the bound

where we recall the definition of F l , and constants C l,1 , C l,2 , D l > 0 from (4.1), (3.21). Since

). Using this in (3.36), we obtain

Therefore if ε l-1 satisfies the condition

. Together with (D.2), (4.3) this gives for each i that

Thereafter, we obtain the same bound (3.40) as in the noiseless case.

• Recovering source parameters for last group. Say that for each p = 1, . . . , L -1 and j = 1, . . . , K the following holds.

for some permutations φ

2. ε p < c p /2;

We proceed by noting that for each i = -m L , . . . , m L -1

Using Proposition 3, we have for each p = 1, . . . , L -1 and j = 1, . . . , K that |u p,j exp(ι2π(s L + i)t p,j ) -u p,φp(j) exp(ι2π(s

where we used (D.3). Since s L = 0, hence (s L +i) 2 < m 2 L < M 2 L,up for all i = -m L , . . . , m L -1. Using (D.4), we then easily obtain as in the proof of Theorem 5

where in the last inequality, we used (1).

Invoking Corollary 1 and assuming ε L < c L /2, it follows for the stated conditions on m L , that it suffices if ε L-1 satisfies

Indeed, combining this last bound with (4.4), we obtain for each i that |η L,i + w L (i) ḡl (s L +i) | < ε L u min B(u rel , K). Thereafter, we obtain the same bound (3.44) as in the noiseless case. 

E More experiments