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The dual approach to non-negative super-resolution: perturbation analysis

We study the problem of super-resolution, where we recover the locations and weights of non-negative point sources from a few samples of their convolution with a Gaussian kernel. It has been shown that exact recovery is possible by minimising the total variation norm of the measure, and a practical way of achieve this is by solving the dual problem. In this paper, we study the stability of solutions with respect to the solutions dual problem, both in the case of exact measurements and in the case of measurements with additive noise. In particular, we establish a relationship between perturbations in the dual variable and perturbations in the primal variable around the optimiser and a similar relationship between perturbations in the dual variable around the optimiser and the magnitude of the additive noise in the measurements. Our analysis is based on a quantitative version of the implicit function theorem.

Problem setup

In the study of non-negative super-resolution, the aim is to estimate a signal x which consists of a number of point sources with unknown locations and non-negative magnitudes, from only a few measurements of the convolution of x with a known convolution kernel φ. This is a problem that arises in a number of applications, for example fluorescence microscopy [START_REF] Betzig | Imaging intracellular fluorescent proteins at nanometer resolution[END_REF], astronomy [START_REF] Puschmann | On super-resolution in astronomical imaging[END_REF] or ultrasound imaging [START_REF] Tur | Innovation rate sampling of pulse streams with application to ultrasound imaging[END_REF]. In such applications, the measurement device has a limited resolution and cannot distinguish between distinct point sources that are close to each other in the input signal x. This is often modelled as a deconvolution problem with a Gaussian kernel.

Specifically, let x be a non-negative measure on I " r0, 1s consisting of k unknown non-negative point sources:

x "

k ÿ i"1 a i δ ti ,
with a i ą 0, for all i " 1, . . . , k, and let y j be the possibly noisy measurements obtained by sampling the convolution of x with a known kernel φ at locations s j :

y j " ż I φpt ´sj qxpdtq `wj " k ÿ i"1 a i φpt i ´sj q `wj , (1) 
for all j " 1, . . . , m or, in vector notation: 

y " k ÿ i"1 a i Φpt i q `w, (2) 
Φptq " rφpt ´s1 q, . . . , φpt ´sm qs T ,

w " rw 1 , . . . , w m s T .

(5)

Of particular interest is the case of the Gaussian kernel:

φptq " e ´t2 {σ 2

, ( 6 
)
where σ is assumed to be known to the practitioner.

In the setting where the measurements y are exact, namely when w " 0, the signal x can be recovered by solving the following problem:

min xě0 }x} T V subject to y " ż I Φptqxpdtq, (7) 
where } ¨}T V is the Total Variation (TV) norm for Radon measures defined as }x} TV " sup "ż ψdx; ψ P CpIq, }ψ} 8 ď 1

* . (8) 
When additive measurement noise is present, the signal x can be recovered as the solution to

min xě0 › › › › y ´żI Φptqxpdtq › › › › 1 such that }x} T V ď Π. (9) 
Opting for an 1 -type fidelity term is a reasonable choice in a robust estimation framework, as discussed in e.g. [START_REF] Pierucci | A smoothing approach for composite conditional gradient with nonsmooth loss[END_REF].

In the context of problems [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF] and [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF], in this manuscript we give bounds on the errors in the source locations tt i u k i"1 and weights ta i u k i"1 as a function of the errors in the dual variable when solving the dual problem, which we then extend to the case when the measurements are corrupted by additive noise, where we give an exact dependence of the error in the dual variable on the level of noise.

The problem of super-resolution has been studied extensively in the literature since the seminal paper [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF], which addressed the case of complex amplitudes. Since the original contributions of Candès and Fernandez-Granda, there have been numerous follow-up results such as the ones by Schiebinger et al. [START_REF] Schiebinger | Superresolution without separation. Information and Inference[END_REF], Duval and Peyré [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF], Denoyelle et al. [START_REF] Denoyelle | Support recovery for sparse super-resolution of positive measures[END_REF], Bendory et al. [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF], Azaïs et al. [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] and many others. For instance, the authors of [START_REF] Schiebinger | Superresolution without separation. Information and Inference[END_REF] consider the noiseless setting by taking real-valued samples of y with a more general choice of φ (such as a Gaussian) and also assume x to be non-negative as in the present work. Their proposed approach again involves TV norm minimization with linear constraints. Bendory et al. [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF] consider φ to be Gaussian or Cauchy, do not place sign assumptions on x, and also analyze the TV norm minimization with linear fidelity constraints for estimating x from noiseless samples of y.

Main goals of our study

A standard way to approach problem [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF] is by considering its dual: max λPR m y T λ subject to λ T Φptq ď 1 @t P I, [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] which is a finite-dimensional problem with infinitely many constraints, known as a semi-infinite program (SIP). One of the main motivations for the study of the dual problem stems from the fact that this dual problem is finite (and even sometimes low) dimensional and as such, is amenable to efficient optimisation algorithms such as exchange methods [START_REF] Eftekhari | Sparse inverse problems over measures: Equivalence of the conditional gradient and exchange methods[END_REF] or sequential quadratic programming [START_REF] López | Semi-infinite programming[END_REF]. Moreover, the constraints λ T Φptq ď 1, @t P I can be handled using an exact penalty approach, i.e. can be reformulated as thus making the problem amenable to non-smooth optimisation algorithms such as bundle methods [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF][START_REF] Fan | Bundle methods for dual atomic pursuit[END_REF].

min λPR m ´yT λ `Π ¨max " sup s ´λT Φpsq ´1¯, 0 * , (11) 
To illustrate the use of such methods for solving the dual problem, we present the result of an experiment in which we use the level bundle method [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF] to solve a continuous sparse inverse problem of the kind introduced in this section. Here a signal (consisting of five spikes with locations t0.2, 0.4, 0.6, 0.7, 0.75u each with amplitude 1) is convolved with a Gaussian kernel φptq " e ´t2 {σ 2 with σ " 0.1 and sampled at 15 equispaced points on r0, 1s. The dual problem is solved using the level bundle method, and the spike locations are identified from the global maximisers of the dual certificate obtained. Figure 1(a) displays the recovered solution using the level bundle method along with the corresponding dual certificate, showing that the method is able to recover the signal to high accuracy even though the minimum separation is somewhat small (0.05). Figure 1(b) shows the speed of convergence in terms of the decrease in the optimality gap (the model gap -see Appendix B). We observe linear convergence in practice.

The dual approach has nevertheless a drawback. It is indeed not yet clear how errors in the solution of the dual problem impact primal solution recovery. Providing a quantitative analysis of the recovery error as a function of the error in the dual solution is the main goal of the present work. In addition, we extend the analysis to the noisy setting, where we give the explicit dependence of the error of the dual solution on potential additive noise in the measurements.

Our contributions

In this paper, we restrict our study to the case of Gaussian kernels. Our main results are the following • In the setting of exact measurements, we provide bounds on how far the estimated locations t k and magnitudes a k are from their true values as the dual variable λ is perturbed from its optimal value λ ẘhen

x is recovered by solving the dual problem [START_REF] Azais | Spike detection from inaccurate samplings[END_REF]. These bounds are given in Theorems 2 and 3. These give us an insight into the size of the error in the locations and magnitudes when we apply an optimisation algorithm to the dual of the super-resolution problem.

• In the setting of measurements corrupted by additive noise, we leverage the perturbation bounds obtained for the noiseless case in order to study the impact of additive noise in the observations, when the signal is recovered by solving the alternative problem [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF]. For this purpose, we make precise links between the dual solutions to ( 9) and [START_REF] Azais | Spike detection from inaccurate samplings[END_REF]. Our main result for this noisy setup is Theorem 4, where we give an explicit bound on the impact of noise on the estimation of the dual solution to [START_REF] Azais | Spike detection from inaccurate samplings[END_REF]. This makes again the case for the study of [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] under perturbation.

While the bounds given in these theorems apply only to the case when the convolution kernel is Gaussian, the same techniques can be applied to obtain perturbation bounds for other kernels, with a few differences in the way some sums in the proofs are bounded, which would would be specific to the kernel used.

Comparison with previous work

Alternative formulations for the noiseless setting

For the particular case of non-negative x, Boyd et al. [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF] proposed an improved Frank-Wolfe algorithm in the primal. In certain instances, for e.g., with Fourier samples (such as in [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF][START_REF] Candès | Super-resolution from noisy data[END_REF]), the dual, which is a SIP, can also be reformulated as a semi-definite program (SDP). From a practical point of view, SDP is notoriously slow for even moderately large number of variables. The algorithm of [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF] is a first order scheme with potential local correction steps, and is practically more viable.

As already mentioned, the main reason we advocate for using the dual problem [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] is that exact penalty can be used in order to reformulate the dual problem as a non-smooth minimisation problem for which methods such as bundle methods [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF], [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF] are efficient in practice. To the best of our knowledge, there is no analysis of the impact of obtaining approximate solutions of the dual on the quality of the recovered locations.

The penalised least squares approach

The approach adopted in [START_REF] Duval | Exact support recovery for sparse spikes deconvolution[END_REF][START_REF] Denoyelle | Support recovery for sparse super-resolution of positive measures[END_REF] is to solve a least-squares-type minimization procedure with a TV norm based penalty term (also referred to as the Beurling LASSO (for example [START_REF] De | Exact reconstruction using Beurling minimal extrapolation[END_REF])) for recovering x from samples of y. The approach in [START_REF] Duval | Sparse regularization on thin grids I: the Lasso[END_REF] considers a natural finite approximation on the grid to the continuous problem, and studies the limiting behaviour as the grid becomes finer; see also [START_REF] Duval | Sparse spikes super-resolution on thin grids II: the continuous pursuit[END_REF]. These works develop a perturbation analysis which is different from ours since it applies to specific types of perturbations of a different problem ( 2 vs. 1 type fidelity terms), and do not provide precise quantitative dependencies with respect to all the parameters of the problem.

The Prony/Matrix Pencil approach

Another efficient approach is the one of [START_REF] Moitra | Super-resolution, extremal functions and the condition number of Vandermonde matrices[END_REF] based on the original work of Hua and Sarkar [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] using a Matrix Pencil approach, and recently extended to the multi-kernel setting in [START_REF] Chretien | Multi-kernel unmixing and super-resolution using the Modified Matrix Pencil method[END_REF]. Perturbation analysis of the Matrix Pencil approach is provided in [START_REF] Moitra | Super-resolution, extremal functions and the condition number of Vandermonde matrices[END_REF]; see also [START_REF] Chretien | Multi-kernel unmixing and super-resolution using the Modified Matrix Pencil method[END_REF] for a more detailed exposition of these results with the correct order of dependencies. The reason we develop an analysis of the dual problem [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] here is that it easily extends to the multidimensional setting as well, at least for small dimensions. In contrast, the Matrix Pencil method, although very efficient in one dimension, becomes much more involved in several dimensions [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF].

Plan of the paper

We start by presenting the noise-free perturbation results related to problem (10) in Section 2, followed by the perturbation results in the setting when the measurements are corrupted by noise in Section 3. The proofs of our results are given in Section 4 and we show numerical experiments to verify the validity of our results in practice in Section 5. Lastly, we conclude the paper in Section 6.

2 Bound on the error as λ is perturbed -the noise-free case

In this section we present our first main results, namely two theorems that give bounds on the perturbations around the source locations t i and the magnitudes a i respectively, as the dual variable is perturbed away from the optimiser λ ˚, when the convolution kernel is a Gaussian with known width σ as defined in [START_REF] Schiebinger | Superresolution without separation. Information and Inference[END_REF].

Before we discuss these results, we define the concept of a dual certificate, which plays an important role throughout this paper. Definition 1. (Dual certificate) Consider a solution λ ˚of the dual problem [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] or [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF]. Then a dual certificate is a function of the form qptq " m ÿ j"1 λ j φpt ´sj q " λ ˚T Φptq, [START_REF] López | Semi-infinite programming[END_REF] which satisfies the conditions:

qpt i q " 1, @i " 1, . . . , k, (13) 
qptq ă 1, @t ‰ t i , @i " 1, . . . , k.

The idea of dual certificate is common in the super-resolution literature, and we know that the global maximisers of qptq correspond to the source locations tt i u k i"1 (see, for example [START_REF] Candès | Towards a mathematical theory of super-resolution[END_REF][START_REF] Schiebinger | Superresolution without separation. Information and Inference[END_REF][START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF], Once these are found, amplitudes ta i u k i"1 are obtained by solving a linear system. We are now ready to discuss the perturbation results in the noise-free setting. In the following theorem, we consider the dual (10) of ( 7) and quantify how the source locations given by the global maximisers of the dual certificate formed by the dual solution λ ˚are affected by perturbations of λ ˚. The proof is given in Section 4.1.

Theorem 2. (Dependence of |t ´t˚| on }λ ´λ˚}

2 ) Let λ ˚P R m be a solution of the dual program (10) with φ Gaussian as given in [START_REF] Schiebinger | Superresolution without separation. Information and Inference[END_REF] such that the the dual certificate qpsq defined in [START_REF] López | Semi-infinite programming[END_REF] satisfies conditions (13) and ( 14), λ a perturbation of λ ˚in a ball of radius δ λ and t an arbitrary local maximiser of q λ psq " ř m j"1 λ j φps ´sj q so that for λ " λ ˚, the corresponding local maximiser t ˚is a true source location in x. Let R " }λ ˚}2 σ and c « 3.9036 a universal constant. If the radius δ λ is bounded by

δ λ ď |q 2 pt ˚q| 2 σ 3 ? e 4 ? 2 p2 `cRq m , ( 15 
)
then |t ´t˚| ď C t ˚}λ ´λ˚} 2 , (16) 
where

C t ˚" 1 4 `cR « 1 `2? 2mp2 `cRq |q 2 pt ˚q| ? e ff . (17) (18) 
One of the main conclusions which can be drawn from this result is that the primal spike location error is controlled in l 8 , but degrades as a function of the number of measurements in the order of ? m. Alternatively, we can write [START_REF] Candès | Super-resolution from noisy data[END_REF] in terms of the 2 norm of the error between the vector of true source locations t ˚and the perturbed source locations t: } t ´t˚} 2 ď ? kC t ˚}λ ´λ˚} 2 . Of crucial importance is the curvature of the dual certificate at the true solution: the flatter the certificate, the worse the estimation error. Our theorem also gives important information about the accuracy in the dual variable required to guarantee our upper bound on the error of recovery. This accuracy is of the inverse order of the number of measurements, which is quite a stringent constraint. Both the m and the ? m factors are a consequence of the way we bound sums of shifted copies of the kernel, namely ř m j"1 φpt´s j q ď m max tPR φptq. Given the fast decay of the Gaussian, it is clear that this is not a tight bound. However, any bound would reflect the density of samples close to each source location.

We will now give a result regarding the perturbation of the magnitudes a i when λ ˚is perturbed. Let Φ be the matrix whose entries are defined as

Φ ij " φpt j ´si q, ( 19 
)
and t ˚and a ˚the vectors of source locations and weights:

t ˚" rt 1 , . . . , t k s T , a ˚" ra 1 , . . . , a k s T .
When we solve (10) exactly, we obtain the source locations by finding the global maximisers of qpsq. Then, the vector of weights a ˚is found by solving the system Φa " y.

When the source locations are perturbed, we denote the resulting perturbed data matrix by:

Φ " Φ `E, (20) 
and we calculate the vector of perturbed weights ã as the solution of the least squares problem

min a } Φa ´y} 2 . (21) 
The following theorem, proved in Section 4.2, gives a bound on the error }a ˚´ã} 2 between the vector of true weights a ˚and the vector of weights ã obtained by solving the least squares problem [START_REF] Moitra | Super-resolution, extremal functions and the condition number of Vandermonde matrices[END_REF] with the perturbed matrix Φ, as a function of the error } t ´t˚} 2 between the perturbed source locations t and the true source locations t ˚.

Theorem 3. (Dependence of }ã´a ˚}2 on } t´t ˚}2 ) Let t ˚P r0, 1s k be the vector of true source locations, t P r0, 1s k the perturbed source locations, and σ max pΦq, σ min pΦq the largest and respectively smallest singular values of the matrix Φ defined in [START_REF] Duval | Sparse regularization on thin grids I: the Lasso[END_REF], such that:

} t ´t˚} 2 ă σ 2 σ max pΦq 4e 4{σ 2 ? m ¨d1 `σ2 min pΦq σ 2 max pΦq ´1' . ( 22 
)
Then the error between the true weights a ˚and the perturbed weights ã obtained by solving problem (21) is bounded by: }ã ´a˚}

2 ď C a ˚}t ´t˚} 2 `Op} t ´t˚}2 2 q, ( 23 
)
where

C a ˚" 4e 4 σ 2 ? m}a ˚}2 σ 2 σ min pΦq .
Note that we write the Op} t ´t˚}2 2 q term in the bound above in order to simplify the presentation of the result. We can, however, calculate the constants corresponding to the higher order terms in the bound by using the inequality (115) in the proof of Theorem 3 in Section 4.2. For example, the constant in the second order term is equal to C 2

a ˚{}a ˚}2 " 1 `2σ 2 max pΦq{σ 2 min pΦq ‰ .
3 Bound on }λ ´λ˚} 2 in terms of the noise w

In this section we assume that the measurements are corrupted by additive noise and we give a result where we bound the perturbation in the dual variable λ around the minimiser λ ˚as a function of the noise w in the measurements. Specifically, the noisy measurements are defined as in (1):

y j " ż I φ j ptqxpdtq `wj " k ÿ i"1
a i φ j pt i q `wj , for w j ‰ 0 and j " 1, . . . , m.

The aim is to estimate how the source locations tt i u k i"1 and weights ta i u k i"1 are affected by the additive noise w in the measurements around the solution of the problem. In the previous section we have established how the source locations and weights are perturbed around their true values as the dual variable λ is perturbed around its optimal value λ ˚. In the noisy setting, we want to establish a precise quantitative relationship between the perturbations of λ around λ ˚and the magnitude of the noise.

Before we state the main result, which gives a relationship of this kind, first we need to describe the exact mathematical setting under which the result holds. Then we introduce the function F in (35) to which we apply the implicit function theorem, whose Jacobian is crucial for this result.

In order to account for noise in the measurements, we consider a slightly modified version of the dual problem [START_REF] Azais | Spike detection from inaccurate samplings[END_REF]. To be specific, we use an additional box constraint on the dual variable λ and obtain the dual problem: max λPR m y T λ such that λ T Φptq ď 1, @t P I, and }λ} 8 ď τ,

Looking at the specific formulation of the primal problem that [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] is the dual of, namely (9), we can see that it takes measurement noise into account by doing 1 minimisation of the error instead of requiring the measurements to be satisfied exactly.

To motivate the exact form of the function F in (35) to which we apply the implicit function theorem to obtain the perturbation result from Theorem 4, consider the exact penalty formulation of [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF]:

min λPR m Ψ Π pλq such that }λ} 8 ď τ, (25) 
where

Ψ Π pλq " ´yT λ `Π ¨max $ & % sup s ¨m ÿ j"1 λ j φps ´sj q ´1' , 0 
, .

-

. ( 26 
)
For a large enough value of Π, a solution to [START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF] which satisfies the constraints in ( 24) is also a solution of (24) (see, for example, Section 1.2 in [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]). This is a non-smooth optimisation problem and its solution can be found by using any method that relies on calculating subgradients, for example the level method [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF].

A subgradient of Ψ Π pλq has the form:

BΨ Π " $ ' ' & ' ' % ´y `Π ř k 1 i"1 ν i gps i q, pν 1 `. . . `νk 1 " 1q if sup s ř m j"1 λ j φps ´sj q ą 1, ´y `Π ř k 1 i"1 ν i gps i q, pν 1 `. . . `νk 1 ď 1q if sup s ř m j"1 λ j φps ´sj q " 1, ´y, if sup s ř m j"1 λ j φps ´sj q ă 1, (27) 
where ts i u k 1 i"1 are the global maximisers of the function ř m j"1 λ j φps ´sj q, the vectors gpsq are of the form gpsq " rφps ´s1 q, . . . , φps ´sm qs T and ν i ě 0 for all i " 1, . . . , k 1 . Note that here we apply the formula for the subgradient of the max function and for the sup function (see for example [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]). The coefficients in the convex combination from the formula for the subgradient of the max function with zero account for the case when ν 1 `. . . `νk 1 ă 1 1 .

As in the noise-free setting, we assume here that the dual solution λ ˚forms a dual certificate, namely the function qpsq as defined in [START_REF] López | Semi-infinite programming[END_REF] satisfies conditions ( 13) and [START_REF] Fan | Bundle methods for dual atomic pursuit[END_REF]. Then, the subdifferential at λ ˚has the form:

BΨ Π pλ ˚q " ´y `Π k ÿ i"1 ν i gpt i q, (28) 
where tt i u k i"1 are the source locations, so the optimality condition for (25):

0 P BΨ Π pλ ˚q, (29) 
is equivalent to:

y " Π k ÿ i"1 ν i gpt i q, (30) 
for some ν 1 , . . . , ν k ě 0 with ν 1 `. . . `νk ď 1 and for w " 0. Note that, given the definition of y from (1), the optimality condition (30) is satisfied for

ν i " a i Π , @i " 1, . . . , k, (31) 
w j " 0, @j " 1, . . . , m, (32) 
where in order to satisfy ν 1 `. . . `νk ď 1, we need Π such that:

Π ě a 1 `. . . `ai , (33) 
1 More specifically, both functions in the max attain their maximum, so we have that

BΨπ " ´y `Π " α 1 B sup s ´řm j"1 λ j φps ´sj q ´1¯`α 2 B0
 , with α 1 , α 2 ą 0 and α 1 `α2 " 1, and therefore BΨπ " ´y Π

ř k 1 i"1 α 1 ν 1 i gps i q, with ν 1 1 `. . . `ν1 k 1 " 1 and 0 ď α 1 ď 1.
which is the same as the constraint in [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF]. Motivated by the above reasoning, we now want to apply the quantitative implicit function theorem, as given in [START_REF] Liverani | Implicit function theorem (a quantitative version)[END_REF], to a function F of the form:

F prλ, νs T , wq " k ÿ i"1 a i Φpt i q ´k ÿ i"1 ν i Φptpλqq `w, (34) 
where we know that F prλ ˚, as T , 0q " 0. For the sake of simplicity, we include the parameter Π in the coefficients ν i , so in the second sum in F each ν i actually corresponds to Πν i , and ν 1 `. . . `νk ď Π rather than ν 1 `. . . `νk ď 1.

However, note that F : R m`k ˆRm Ñ R m and in order to apply the implicit function theorem to obtain the dependence of the first argument of F as a function of the second argument, we need the first argument to be in R m .

To solve this issue, we first reduce the system by dropping m ´2k rows above. The 2k rows which are not dropped depend on the conditions that must be met in order for the conditions in the implicit function theorem to be satisfied, and intuitively these correspond to the samples that contain the most information, for example the two samples that are the closest to each source. This leads to the function F : R m`k ˆR2k Ñ R 2k . The next step is to we set m ´k components of λ to the boundary of the box constraint }λ} 8 ď τ . This is justified by the fact that the system F prλ ˚, as T , 0q " 0 of 2k equations and m `k unknowns rλ ˚, as T is underdetermined, and therefore solving it involves setting m ´k of the unknowns to arbitrary values. In practice, this is achieved by tuning the box constraint in such a way that the largest components of λ are set to τ or ´τ . More specifically, we keep k values of λ which correspond to a subset of the 2k samples which have not been dropped. This finally leads to the function which we will denote by F :

F : R 2k ˆR2k Ñ R 2k , F pr λ, νs T , wq " k ÿ i"1 a i Φpt i q ´k ÿ i"1 ν i Φptpλqq `w, (35) 
where λ P R k contains only the entries of λ which are not fixed and w P R 2k , Φptq P R 2k are the vectors with the entries from w and Φptq respectively corresponding to the equations which have not been dropped. Given the definition of F in (35), we can now state the main result of this section, proved in Section 4.3.

Theorem 4. (Dependence of }λ ´λ˚} 2 on the noise w) Let λ ˚be the solution to the dual problem (24) with w " 0. Given the function F defined in (35), let J ˚be its Jacobian with respect to the first variable, evaluated at pr λ˚, as T , 0q and σ min pJ ˚q its smallest singular value. We also assume that the solution λ forms a dual certificate, namely the function qptq defined in (12) satisfies conditions (13) and [START_REF] Fan | Bundle methods for dual atomic pursuit[END_REF]. If J ˚is invertible and } w} 2 ď δ w , then:

› ›λ ´λ ˚› › 2 ď C λ ˚¨} w} 2 , (36) 
where

C λ ˚" 2 σ min pJ ˚q , (37) 
δ w " σ min pJ ˚q2 4P pm, k, σ, Π, τ, C t ˚q , (38) 
and The theorem above makes explicit the dependence of the perturbation in the dual variable λ around the solution λ˚o n the additive noise w in the measurement vector ȳ. This is a linear relation where the constant depends on the specific configuration of the problem we are solving, namely the locations and weights of the sources, and width of the Gaussian and the sampling locations. The theorem also gives an upper bound on the magnitude of the noise where this result holds as a function of the same parameters.

P pm, k, σ, Π, τ, C t ˚q " ? 2k « 1 σ 2 ´2? kC 2 t ˚Π `4kC t ˚∆ 2 τ Π 1 σ ˜?
Moreover, under the assumption that Π, C t ˚, τ ě 1, we can write the order of P as:

P « k ? kΠC t σ2 ´Ct ˚`? k ∆2 τ ¯, (39) 
which gives us a clearer idea of the main parameters that affect the magnitude of the noise for which our perturbation results hold.

One observation we want to make is that, while the above result only applies to a subset of the entries in λ and w, which entries are selected is not arbitrary. The choice of the entries in λ and w reflects which samples s j contain the most information, and therefore which noise entries in w affect the solution to the optimisation problem the most. More specifically, in order for the Jacobian J ˚to be invertible, we are led to select the samples (and therefore λ and w entries) that satisfy this condition the best, namely the ones that are the closest to the source locations. We discuss this aspect in more detail in Section 3.1.

Lastly, note that the results in Section 2 and Section 3 refer to different optimisation problems: the duals ( 10) and ( 24) of problems ( 7) and ( 9) respectively. However, the proofs of our perturbation results rely on the property that the dual solution λ forms a dual certificate, the global maximisers of which give the locations of the point sources in the input signal x, with the additional bound on λ from [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] being used in the proof of Theorem 4. Moreover, since our analysis is independent of the exact formulation of the primal problems, we can conclude that the results from both Section 2 and Section 3 apply to the problem of super-resolution in the noisy setting, namely they give bounds of the perturbations of the source locations and weights as a consequence of noise in the measurements.

Discussion

One of the conditions in Theorem 4 is that the Jacobian J ˚is invertible. While we do not provide a rigorous analysis of the conditions in which this is satisfied, in this section we discuss in more detail what the condition requires and give further motivation for why it is true in a reasonable scenario. Specifically, we assume that the samples that are used for calculating the Jacobian are the closest samples to the sources (for each source location, we select the two samples that are the closest to it), so the rows in the system given by F in (35) correspond to these samples. Consequently, the entries in λ and the entries in the noise vector w also correspond to the same samples.

Recall that J ˚is the Jacobian of the function F from (35) with respect to the first argument. The entries in J ˚are:

B λ l F prλ, νs T , wq ˇˇλ "λ ν"a w"0 " ´k ÿ i"1 a i φ 1 pt i ´sj qB λ l t i pλ ˚q (40) " k ÿ i"1 a i φ 1 pt i ´sj qφ 1 pt i ´sl q q 2 pt i q , ( 41 
)
for l " 1, . . . , k, j " 1, . . . , 2k and

B ν l F prλ, νs T , wq ˇˇλ "λ ν"a w"0 " ´φpt l ´sj q, (42) 
for l " 1, . . . , k, j " 1, . . . , 2k, where in the first equality we used (52) with ( 56) and (57) plugged in, so the result holds under the conditions in Theorem 2, namely for λ with }λ ´λ˚} 2 ď δ λ , where δ λ is given in [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF].

Writing J ˚as J ˚" rJ λ J ν s, (43) 
where the entries in the blocks J λ and J ν are given by ( 41) and ( 42) respectively, we have that:

J λ " k ÿ i"1 a i q 2 pt i q Φ 1 pt i qΦ 1 pt i q T , (44) 
and

J ν " ´rΦpt 1 q . . . Φpt k qs, (45) 
where

Φptq " rφpt ´s1 q, . . . , φpt ´s2k qs T ,

Φ 1 ptq " rφ 1 pt ´s1 q, . . . , φ 1 pt ´s2k qs T .

(47)

Note that rankpJ ν q " k by the T-systems property of the Gaussian (assuming that the t 1 ď . . . ď t k and s 1 ď . . . s 2k ) and in order for the matrix J ˚to be invertible we need rankpJ ˚q " 2k, as it is a square matrix with 2k columns. By rewriting the columns of J λ , we have that:

J ˚" » - k ÿ i"1 a i φ 1 pt i ´s1 q q 2 pt i q Φ 1 pt i q . . . k ÿ i"1 a i φ 1 pt i ´sk q q 2 pt i q Φ 1 pt i q ´Φpt 1 q . . . ´Φpt k q fi fl , (48) 
and by taking its determinant and using the multi-linearity property of the determinant with respect to its columns, we have that:

detpJ ˚q " p´1q k a 1 . . . a k q 2 pt 1 q . . . q 2 pt k q ¨k! ÿ l"1 ¨k ź i"1 φ 1 pP l pt i q ´si q 'ˇˇP l pΦ 1 pt 1 qq . . . P l pΦ 1 pt k qq Φpt 1 q . . . Φpt k q ˇˇ, (49) 
where P l for l " 1, . . . , k! are the permutations of k elements. Note that when we expand the determinant, the terms in the final sum are determinants with all the possible combinations of the vectors in each sum, which results in many determinants having repeated columns, so they are equal to zero. The only non-zero determinants in the resulting sum are the ones where the first k columns are the vectors tΦ 1 pt i qu k i"1 and their permutations, multiplied by the corresponding constants. We now order the columns of the determinant:

detpJ ˚q " p´1q k a 1 . . . a k q 2 pt 1 q . . . q 2 pt k q k! ÿ l"1 signpP i q ¨k ź i"1 φ 1 pP l pt i q ´si q 'ˇˇΦ pt 1 q Φ 1 pt 1 q . . . Φpt k q Φ 1 pt k q ˇˇ, " p´1q k a 1 . . . a k q 2 pt 1 q . . . q 2 pt k q ˇˇΦpt 1 q Φ 1 pt 1 q . . . Φpt k q Φ 1 pt k q ˇǩ! ÿ l"1 signpP l q ¨k ź i"1 φ 1 pP l pt i q ´si q ', (50) 
where by signpP i q we denote the sign of the determinant corresponding to the permutation P i after reordering the columns as above. Because of the extended T-system property of the Gaussian function [START_REF] Karlin | Tchebycheff systems: with applications in analysis and statistics[END_REF], the determinant above is strictly positive. The dominant term in the sum is the one corresponding to the identity permutation, where for each i " 1, . . . , k, the sample s i is the closest sample to the source location t i . As the samples get further, the terms of the sum approach zero. This can be expressed in more quantitatively by imposing explicit conditions on the distances between the closest samples and the sources, the separation of sources and the separation of samples, as done, for example, in [START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF].

Proofs

In this section we present the proofs of the theorems from Sections 2 and 3.

Proof of Theorem 2 (Dependence of |t ´t˚| on }λ ´λ˚} 2 )

Let t ˚be an arbitrary local maximiser of the function qptq in [START_REF] López | Semi-infinite programming[END_REF], so t ˚is also a source location, and λ the solution to [START_REF] Azais | Spike detection from inaccurate samplings[END_REF]. The key step in this proof is applying a quantitative version of the implicit function theorem [START_REF] Liverani | Implicit function theorem (a quantitative version)[END_REF] to the function:

F pt, λq " m ÿ j"1 λ j φ 1 pt ´sj q, (51) 
where F pt ˚, λ ˚q " 0 because t ˚is a maximizer of qpsq in [START_REF] López | Semi-infinite programming[END_REF]. The theorem allows us to express t as a function tpλq of λ with:

B λ tpλq " ´"B t F ptpλq, λq ‰ ´1 B λ F ptpλq, λq, (52) 
for t in a ball of radius δ 0 around t ˚and for λ in a ball of radius δ 1 ď δ 0 around λ ˚, where δ 0 is chosen such that sup

pt,λqPV δ › › ›I ´"B t F pt ˚, λ ˚q‰ ´1 B t F pt, λq › › › ď 1 2 , ( 53 
)
where V δ " pt, λq P R m`1 : |t ´t˚| ď δ 0 , }λ ´λ˚} ď δ 0 ( and δ 1 is given by

δ 1 " p2M t B λ q ´1δ 0 , (54) 
where

B λ " sup pt,λqPV δ }B λ F pt, λq} 2 , M t " › › ›BtF pt ˚, λ ˚q´1 › › › 2 .
The following two lemmas, proved in Sections 4.1.1 and 4.1.2 respectively, give us values of δ 0 and δ 1 that define balls around t ˚and λ ˚respectively which are included in the balls required by the quantitative implicit function theorem with radii defined in (53) and (54).

Lemma 5. (Radius of ball around t ˚) The condition (53) is satisfied if

δ 0 " σ 2 |q 2 pt ˚q| ? m ´4 `2c ¨}λ ˚}2 σ ¯.
(55) Lemma 6. (Radius of ball around λ ˚) For δ 0 from Lemma 5 and δ 1 from condition (54), the following choice of δ λ :

δ λ " σ ? e|q 2 pt ˚q| 2 ? 2m ¨δ0 
satisfies δ λ ă δ 1 .
Given the definition of the function F in (51), we have that

B t F pt, λq " m ÿ j"1 λ j φ 2 pt ´sj q, (56) 
B λ F pt, λq " rφ 1 pt ´s1 q, . . . , φ 1 pt ´sm qs T .

By applying Taylor expansion to tpλq around λ ˚in the region defined by δ 0 and δ λ , we have that tpλq " tpλ ˚q ` λ ´λ˚, B λ tpλ δ q , for some λ δ on the line segment determined by λ ˚and λ, so

ˇˇtpλq ´tpλ ˚qˇď › › λ ´λ˚› › 2 ¨› › B λ tpλ δ q › › 2 ď δ 0 ř m j"1 λ δ j φ 2 ptpλ δ q ´sj q ¨› › › " φ 1 ptpλ δ q ´s1 q, . . . , φ 1 ptpλ δ q ´sm q ‰ › › › 2 , (58) 
where in the last inequality we used that }λ ´λ˚} ď δ 0 and (52). We now need to bound the terms in (58) for the Gaussian kernel φptq " e ´t2 {σ2 . First, we rewrite the last inequality as

|tpλq ´tpλ ˚q| m ÿ j"1 pλ δ j `λj ´λj qφ 2 ptpλ δ q ´sj q ď δ 0 ¨› › › " φ 1 ptpλ δ q ´s1 q, . . . , φ 1 ptpλ δ q ´sm q ‰ › › › 2 , (59) 
we apply the reverse triangle inequality in the sum on the left hand side:

|tpλq ´tpλ ˚q| » - -´ˇˇˇˇˇˇm ÿ j"1
pλ δ j ´λj qφ 2 ptpλ δ q ´sj q ˇˇˇˇˇ`ˇˇˇˇˇm ÿ j"1 λ j φ 2 ptpλ δ q ´sj q ˇˇˇˇˇfi ffi fl

ď δ 0 ¨› › › " φ 1 ptpλ δ q ´sj q ‰ m j"1 › › › 2 (60) 
and then we apply the Cauchy-Schwartz inequality to the first sum on the left hand side above to obtain:

|tpλq ´tpλ ˚q| » - -´› › λ δ ´λ˚› › 2 ¨› › › " φ 2 ptpλ δ q ´sj q ‰ m j"1 › › › 2 `ˇˇˇˇˇm ÿ j"1 λ j φ 2 ptpλ δ q ´sj q ˇˇˇˇˇfi ffi fl ď δ 0 ¨› › › " φ 1 ptpλ δ q ´sj q ‰ m j"1 › › › 2 . ( 61 
)
To simplify the notation, we write δ t " |tpλq ´tpλ ˚q| and

A " › › › " φ 2 ptpλ δ q ´sj q ‰ m j"1 › › › 2 , (62) 
B "

ˇˇˇˇˇm ÿ j"1 λ j φ 2 ptpλ δ q ´sj q ˇˇˇˇˇ, (63) 
C " › › › " φ 1 ptpλ δ q ´sj q ‰ m j"1 › › › 2 , (64) 
and by using 2 }λ δ ´λ˚} 2 ď δ 0 , we have that:

δ t p´δ 0 A `Bq ď δ 0 C, (65) 
which can be further re-written as:

δ t ď C `δt A B ¨δ0 . ( 66 
)
The aim now is to obtain a bound on δ t as a function of δ 0 and the parameters of the problem. Therefore, we need to lower bound B and upper bound C `δt A.

Bounding A,B,C

We start with B, for which we want to calculate a lower bound. First, we Taylor expand each term of the sum around tpλ ˚q ´sj as follows:

B " ˇˇˇˇˇm ÿ j"1 λ j φ 2 ptpλ ˚q ´sj `tpλ δ q ´tpλ ˚qq ˇˇˇˇ" ˇˇˇˇˇm ÿ j"1 λ j φ 2 ptpλ ˚q ´sj q ``tpλ δ q ´tpλ ˚q˘m ÿ j"1

λ j φ 3 pξ j q ˇˇˇˇˇ( 67) ě ˇˇˇˇˇm ÿ j"1 λ j φ 2 ptpλ ˚q ´sj q ˇˇˇˇˇ´ˇˇt pλ δ q ´tpλ ˚qˇˇm ÿ j"1 λ j φ 3 pξ j q ˇˇˇˇˇ, (68) 
where ξ j P " tpλ ˚q ´sj ´|tpλ δ q ´tpλ ˚q|, tpλ ˚q ´sj `|tpλ δ q ´tpλ ˚q| ‰ for j " 1, . . . , m, and on the last line we used the reverse triangle inequality. We calculate an upper bound of the last sum in the previous equation as follows: ˇˇˇˇˇm ÿ j"1

λ j φ 3 pξ j q ˇˇˇˇˇď › › λ ˚› › 2 ¨› › › " φ 3 pξ j q ‰ m j"1 › › › 2 , by Cauchy-Schwartz, (69) 
ď c}λ ˚}2 ? m σ 3 , (70) 
where in the last line we used the maximum value of φ 3 ptq and c is a constant. 3 Finally, by using the δ 0 from Lemma 5 as a bound on |tpλ δ q ´tpλ ˚q| and (70), we obtain:

B ě |q 2 pt ˚q| " 1 ´c}λ ˚}2 4σ `2c}λ ˚}2  . (71) 
Note that the last fraction above is subunitary, so the bound is indeed positive. Lastly, we upper bound C `δt A. We bound both A and C using the upper bounds on φ 1 and φ 2 given in footnote 3 and obtain:

A ď 2 ? m σ 2 , (72) 
C ď ? 2m σ ? e , (73) 
and for δ t we use the bound (55). Putting (55), (71), ( 72) and (73) together, we obtain:

ˇˇtpλq ´tpλ ˚qˇď C t ˚¨› › λ ´λ˚› › 2 , (74) 
where

C t ˚" 2 ? 2m `2σ `c}λ ˚}2 |q 2 pt ˚q|σ ? e `4σ `c}λ ˚}2 ˘`2σ 4σ `F }λ ˚}2 , (75) 
which can also be written in the form in [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF] in Theorem 2. Let us now find the radius δ 0 which satisfies (53). Using (56), the expression inside the sup in ( 53) is E " ˇˇˇˇ1 ´řm j"1 λ j φ 2 pt ´sj q ř m j"1 λ j φ 2 pt ˚´s j q ˇˇˇˇ" ˇˇř m j"1 λ j φ 2 pt ˚´s j q ´λj φ 2 pt ´sj q ˇř m j"1 λ j φ 2 pt ˚´s j q ˇˇ.

(76) By denoting each term in the sum in the numerator in the last equation above by T j and then adding and subtracting λ j and t ˚, we obtain:

T j " λ j φ 2 pt ˚´s j q ´pλ j ´λj qφ 2 pt ´sj q ´λj φ 2 pt ˚´s j `t ´t˚q " ´pλ j ´λj qφ 2 pt ´sj q ´λj pt ´t˚q φ 3 pξ j q, (77) for some ξ j P " t ˚´s j ´|t ´t˚| , t ˚´s j `|t ´t˚| ‰ . Then: E ď ˇˇř m j"1 pλ j ´λj qφ 2 pt ´sj q ˇˇ`ˇˇř m j"1 λ j pt ´t˚q φ 3 pξ j q ˇř m j"1 λ j φ 2 pt ˚´s j q ˇď }λ ´λ˚}

2 › › › " φ 2 pt ´sj q ‰ m j"1 › › › 2 `|t ´t˚| ˇˇř m j"1 λ j φ 3 pξ j q ˇř m j"1 λ j φ 2 pt ˚´s j q ˇˇ" E 1 (78) 
We now have that

sup pt,λqPV δ 0 E ď sup |t´t ˚|ďδ0, }λ´λ ˚}ďδ0 E 1 (79) ď δ 0 ¨› › › " φ 2 pt ´sj q ‰ m j"1 › › › 2 `ˇˇřm j"1 λ j φ 3 pξ j q ˇř m j"1 λ j φ 2 pt ˚´s j q ˇˇ. (80) 
We now further upper bound the fraction on the last line of the previous equation. The terms in the numerator are bounded by taking the maxima of the functions φ 2 and φ 3 from footnote 3 respectively:

› › › " φ 2 pt ´sj q ‰ m j"1 › › › 2 " g f f e m ÿ j"1 φ 2 pt ´sj q 2 ď c m ¨max j |φ 2 pt ´sj q| 2 ď 2 ? m σ 2 (81) 
and λ j φpt ´sj q (86) and using the above bounds, we have that

ˇˇˇˇˇm ÿ j"1 λ j φ 3 pξ j q ˇˇˇˇˇď }λ ˚}2 › › › " φ 3 pξ j q ‰ m j"1 › › › 2 by Cauchy-Schwartz (82) " }λ ˚}2 g f f e m ÿ j"1 φ 3 pξ j q 2 (83) ď }λ ˚}2 max j |φ 3 pξ j q| ? m (84) 
" c ¨}λ ˚}2 ? m σ 3 , (85) 
sup pt,λqPV δ 0 E ď δ 0 ¨2? m σ 2 `c ¨}λ ˚}2 ? m σ 3 ˇˇq 2 pt ˚qˇ( 87)
Finally, in order to satisfy condition (53), we need to impose the condition that the right hand side of (87) is less than or equal to 1 2 . We select δ 0 to be the largest value that satisfies this, so: The radius δ λ of the perturbation of λ ˚is given by:

|t ´t˚| ď δ 0 " ˇˇq 2 pt ˚q4 ? m σ 2 `2c ¨}λ ˚}2 ? m σ 3 " σ 2 |q 2 pt ˚q| ? m ´4 `2c ¨}λ ˚}2 σ ¯. (88 
δ λ " p2M t B λ q ´1δ 0 , (89) 
where

B λ " sup pt,λqPV δ }B λ F pt, λq} 2 , ( 90 
)
M t " › › ›BtF pt ˚, λ ˚q´1 › › › 2 . ( 91 
)
For B λ , we have:

}B λ F pt, λq} 2 " g f f e m ÿ j"1 φ 1 pt ´sj q 2 ď ? 2m σ ? e , (92) 
where we have used the global maximum of the first derivative of the Gaussian from footnote 3, so by taking sup on both sides in the last equation, we obtain:

B λ ď ? 2m σ ? e . (93) 
Note that here we do not use any assumptions on the locations of the sources t i and the samples s j . If we did, we would be able to obtain a tighter bound than by only using the absolute maximum of the function. For M t , note that we have

M t " |q 2 pt ˚q| ´1, ( 94 
)
where qptq is defined in (86), so

p2M t B λ q ´1δ 0 ě σ ? e|q 2 pt ˚q| 2 ? 2m ¨δ0 , (95) 
We then take δ λ to be equal to the lower bound in the equation above:

δ λ " σ ? e|q 2 pt ˚q| 2 ? 2m ¨δ0 , (96) 
and, after substituting our choice of δ 0 from (55), we obtain the radius (15) in Theorem 2.

Proof of Theorem 3 (Dependence of }ã ´a˚}

2 on } t ´t˚} 2 )
We apply equation (4.2) in [START_REF] Stewart | Perturbation theory and least squares with errors in the variables[END_REF], with e " 0 (the noise in the observations), and obtain

ã " a ˚´Φ : Ea ˚´F T Ea ˚, (97) 
where Φ : " pΦ T Φq ´1Φ T is the pseudo-inverse of Φ and F " OpEq is the perturbation of the Φ : due to the perturbation E of Φ, namely Φ: " Φ : `F T .

In order to obtain an explicit expression for F , we write Φ: : Φ: " p ΦT Φq ´1 ΦT " " pΦ `Eq T pΦ `Eq ı ´1 pΦ `Eq T by ( 20)

" pΦ T Φ `∆q ´1pΦ T `ET q, (98) 
where

∆ " E T Φ `ΦT E `ET E P R kˆk . (99) 
In order to compute the first factor in (98), consider the QR decomposition of Φ:

Φ " QR, where Q P R mˆk and R P R kˆk ,

with Q T Q " I k R upper triangular. We have that:

Φ : " R ´1Q T , (101) 
Φ T Φ " R T R. ( 102 
)
We then write the first factor in (98) as

pΦ T Φ `∆q ´1 " pR T R `∆q ´1 " " R T ´I `R´T ∆R ´1¯R  ´1 " R ´1 » -I `8 ÿ l"1 p´1q l ´R´T ∆R ´1¯l fi fl R ´T " pR T Rq ´1 `SΦ " pΦ T Φq ´1 `SΦ , (103) 
where

S Φ " R ´1 » - 8 ÿ l"1 p´1q l ´R´T ∆R ´1¯l fi fl R ´T P R kˆk , (104) 
and in the second inequality in (103) we applied the Neumann series expansion to the matrix I ´R´T ∆R ´1, which converges if

} ´R´T ∆R ´1} 2 ă 1. (105) 
We will return to condition (105) at the end of this section. We now substitute (103) in (98), giving

Φ: " " pΦ T Φq ´1 `SΦ ı pΦ T `ET q " Φ : `pΦ T Φq ´1E T `SΦ Φ T `SΦ E T , so we have that F T " pΦ T Φq ´1E T `SΦ Φ T `SΦ E T , (106) 
which is indeed OpEq, since S Φ " Op∆q and ∆ " OpEq. We next upper bound }S Φ } 2 . Firstly, note that, because Φ : " `QR

´1˘T

, we have that:

4 }Φ : } 2 " }QR ´1} 2 " }R ´1} 2 .
(108) 4 To see the second equality in (108), for a matrix Q P R mˆk with Q T Q " I and any matrix A P R kˆk we have that

}QA} 2 " sup }v} 2 "1 }QAv} 2 " sup }v} 2 "1 }Av} 2 " }A} 2 , since }QAv} 2 2 " v T A T Q T QAv " v T A T Av " }Av} 2 2 . ( 107 
)
Then, by using (108), norm submultiplicativity and triangle inequality, from (104) we have

}S Φ } 2 ď }Φ : } 2 2 8 ÿ l"1 }Φ : } 2l 2 }∆} l 2 . (109) 
Now let D be an upper bound on }∆} 2 , obtained by applying the triangle inequality in (99), so that

}∆} 2 ď D " 2}E} 2 }Φ} 2 `}E} 2 2 . (110) 
Then, from (109) we have

}S Φ } 2 ď }Φ : } 2 2 8 ÿ l"1 }Φ : } 2l 2 D l " }Φ : } 2 2 ˜1 1 ´D}Φ : } 2 2 ´1¸" D}Φ : } 4 2 1 ´D}Φ : } 2 2 , (111) 
where the series converges if D}Φ : } 2 2 ă 1, in which case the denominator in the last fraction above is positive. We return to this condition at the end of the section. We also know that5 

}Φ : } 2 " 1 σ min pΦq . ( 112 
)
By applying triangle inequality in (106) and then using (111) and the fact that }pΦ T Φq ´1} 2 " 1{σ 2 min pΦq " }Φ : } 2 2 (from (112)), we obtain

}F } 2 ď }E} 2 }Φ : } 2 2 `D}Φ : } 4 2 1 ´D}Φ : } 2 2 `}Φ} 2 `}E} 2 ˘, (113) 
where D is given in (110). It remains to establish an upper bound on }E} F , and consequently on }E} 2 . The following lemma gives us such a bound.

Lemma 7. (Upper bound on }E} F q Let E " Φ ´Φ for Φ and Φ as defined in [START_REF] Duval | Sparse regularization on thin grids I: the Lasso[END_REF] and (20) respectively for t j , tj P r0, 1s for j " 1, . . . , k. Then:

}E} F ď 4e 4 σ 2 ? m σ 2 } t ´t˚} 2 . (114) 
By using triangle inequality and norm submultiplicativity in (97), and then substituting (113) and (114), we obtain

}a ˚´ã} 2 ď }E} 2 }Φ : } 2 }a ˚}2 `}E} 2 2 }Φ : } 2 2 }a ˚}2 `}E} 2 D}Φ : } 4 2 1 ´D}Φ : } 2 2 p}Φ} 2 `}E} 2 q}a ˚}2 ď 4e 4 σ 2 ? m}a ˚}2 σ 2 σ min pΦq } t ´t˚} 2 `Op} t ´t˚}2 2 q, (115) 
which is the bound given in Theorem 3. Note that because }E} 2 " Op} t ´t˚} 2 q (see (114)), the first term is the only term that is Op} t ´t˚} 2 q in the first inequality above, so the other terms are included in the Op} t ´t˚}2

2 q term at the end. Lastly, we return to condition (105), which must be satisfied in order for the bound above to hold. By using norm submultiplicativity and the bound on }∆} 2 from (110), we obtain

}Φ : T ∆Φ : } 2 ď }Φ : } 2 2 }E} 2 2 `2}Φ} 2 }Φ : } 2 2 }E} 2 (116) 
and by requiring that the right hand side above is less than one, we obtain a quadratic constraint on }E} 2 , satisfied if

}E} 2 ă σ max pΦq ¨d1 `σ2 min pΦq σ 2 max pΦq ´1' .
By using the bound on }E} 2 from (114), the above holds if [START_REF] Hua | Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise[END_REF] holds. Note that by imposing this, we also ensure that the condition for the series in (111) to converge holds, since D}Φ : } 2 2 is equal to the right hand side of (116).

Proof of Lemma 7 (Bound of }E} F )

Since E " Φ ´Φ, for tj being a perturbation of t j , we have that

|E ij | " ˇˇˇˇe´p s i ´t j q 2 σ 2 ´e´p s i ´tj q 2 σ 2
ˇˇˇˇ" e

´ps i ´tj q 2 σ 2 ˇˇe 1 σ 2 rpsi´tjq 2 ´psi´tj q 2 s ´1ˇˇˇ.
Then the exponent can be written as

ˇˇˇ1 σ 2 "
ps i ´tj q 2 ´ps i ´t j q 2 ı ˇˇˇ" ˇˇˇ1 σ 2 " 2s i p tj ´tj q `pt j `t j qpt j ´t j q

ı ˇˇˇď 4| tj ´tj | σ 2 ,
where we used that s i , tj , t j P r0, 1s, so

e ´4 σ 2 | tj ´tj | ď e 1 σ 2 rpsi´tjq 2 ´psi´tj q 2 s ď e 4 σ 2 | tj ´tj | ,
which implies that 

|E ij | ď ˇˇe 1 σ 2 rpsi´tjq 2 ´psi´tj q 2 s ´1ˇˇď max ! 1 ´e´4 σ 2 | tj ´tj | , e 4 
´ps i ´tj q 2 σ 2 ď 1. Then |E ij | ď 4 σ 2 | tj ´tj | ¨e 4 σ 2 | tj ´tj | ď 4e 4 σ 2 σ 2 | tj ´tj |,
where the last inequality holds if tj , t j P r0, 1s. We can therefore conclude that

}E} 2 ď }E} F ď g f f e m ÿ i"1 k ÿ j"1 ˜4e 4 σ 2 σ 2 ¸2 | tj ´tj | 2 " 4e 4 σ 2 ? m σ 2 } t ´t˚} 2 , (117) 
provided that tj , t j P r0, 1s for all j " 1, . . . , k.

Proof of Theorem 4 (Dependence of }λ ´λ˚} 2 on the noise w)

We apply the quantitative implicit function theorem to the function F defined in (35). However, in order to simplify the notation, we use F, λ, w instead of F , λ, w respectively throughout this proof. The partial derivatives of F are:

B λ l F j " ´k ÿ i"1 ν i φ 1 pt i pλq ´sj qB λ l t i pλq l " 1, . . . , k, j " 1, . . . , 2k, (118) 
B ν l F j " ´φpt l pλq ´sj q, l " 1, . . . , k, j " 1, . . . , 2k,

B w l F j " # 1, if l " j, 0, otherwise, l, j " 1, . . . , 2k. (119) 
Let γ " rλ, νs T and γ ˚" rλ ˚, as T , so that we can write F prλ, νs T , wq as F pγ, wq and F pγ ˚, 0q " 0. In order to apply the implicit function theorem, the following conditions must be satisfied:

1. B γ F pγ ˚, 0q is invertible, 2.
We choose the radius δ γ of the ball V δγ around γ where the result of the quantitative implicit function theorem holds:

sup pγ,wqPV δγ › › ›I ´"B γ F pγ ˚, 0q ‰ ´1 B γ F pγ, wq › › › 2 ď 1 2 , ( 121 
)
3. The radius δ w of the ball around w ˚" 0 that contains w is:

δ w " p2M w B δγ q ´1δ γ , (122) 
where

B δγ " sup pγ,wqPV δγ }B w F pγ, wq} 2 , ( 123 
)
M w " }B γ F pγ ˚, 0q ´1} 2 . ( 124 
)
The first condition is also one of the conditions in the theorem, and it has been discussed in Section 3.1. We now need to establish the two radii for the balls of the perturbations.

Perturbation radii

Before proceeding to calculating the radii of the balls where the implicit function theorem holds, we need to state the following lemma, which allows us to write the Jacobian of F with respect to the first variable as a sum of the Jacobian evaluated at pγ ˚, w ˚q " prλ ˚, as T , 0q and a perturbation matrix, whose norm is bounded explicitly. The proof of Lemma 8 is given in Section 4.3.2.

Lemma 8. (Bound on the perturbation of the Jacobian of F ) Let Jpλ, ν, wq be the Jacobian of F pγ, wq with respect to γ " rλ, νs T and δ γ an upper bound on the perturbation of γ ˚" rλ ˚, as T , namely:

› › › › › " λ ´λν ´a  › › › › › 2 ď δ γ .
Then: We can now use Lemma 8 to write

Jpλ, ν, wq " Jpλ ˚, a, 0q `E, (125) 
B γ F pγ, wq " B γ F pγ ˚, 0q `E, (128) 
then

I ´"B γ F pγ ˚, 0q ‰ ´1 B γ F pγ, wq " I ´"B γ F pγ ˚, 0q ‰ ´1 " B γ F pγ ˚, 0q `E‰ " ´"B γ F pγ ˚, 0q ‰ ´1 E, ( 129 
) so › › ›I ´"B γ F pγ ˚, 0q ‰ ´1 B γ F pγ, wq › › › 2 ď › › › " B γ F pγ ˚, 0q ‰ ´1› › › 2 ¨}E} F ď }E} F σ min pB γ F pγ ˚, 0qq ď P pk, σ, Π, τ, C t ˚q σ min pB γ F pγ ˚, 0qq ¨δγ , (130) 
where P ¨δγ is the upper bound on }E} F given in (127). Therefore, from the condition that the right-hand side of the last inequality is less than or equal to 1 2 , we choose the radius δ γ to be:

δ γ " σ min pB γ F pγ ˚, 0qq 2P pk, σ, Π, τ, C t ˚q . (131) 
Using (120), we have that B δγ " 1.

(132)

Then M w " 1 σ min pB γ F pγ ˚, 0qq , (133) 
so, using (131), we obtain

δ w " σ min pB γ F pγ ˚, 0qq 2 4P pk, σ, Π, τ, C t ˚q .
(134)

Applying the quantitative implicit function theorem

Having calculated the radii where the quantitative implicit function theorem holds, we apply it to obtain:

B w gpwq " ´"B 1 F pgpwq, wq ‰ ´1 , (135) 
where B 1 is the partial derivative with respect with the first argument and gpwq gives the dependence of rλ, νs T on w. Specifically, we write:

λ i pwq " g i pwq for i " 1, . . . , k, (136) 
ν i pwq " g k`i pwq for i " 1, . . . , k. (137) 
Let Jpλ, ν, wq " B 1 F prλ, νs T , wq, where λ " λpwq and ν " νpwq by ( 136) and (137). Lemma 8 gives Jpλ, ν, wq " Jpλ ˚, a, 0q `E, (138) so E is the perturbation of Jpλ ˚, a, 0q due to perturbed λ, ν, w and a bound on }E} F is given in the lemma.

We will now use the following result, proved in Section 4.3.1, which enables us to make use of the upper bound on the norm of the perturbation given by Lemma 8 in order to lower bound the smallest singular value of J. Lemma 9. Let J P R mˆn . If J " A `E, then σ min pJq ě σ min pAq ´}E} F .

By applying Lemma 9, we have that:

1 σ min pJpλ, ν, wqq ď 1 σ min pJpλ ˚, a, 0qq ´}E} F " 1 
σ min pJpλ ˚, a, 0qq ´1 ´}E} F σminpJpλ ˚,a,0qq ď 1 σ min pJpλ ˚, a, 0qq ¨ˆ1 `2}E} F σ min pJpλ ˚, a, 0qq ˙, (139) 
for

}E} F σ min pJpλ ˚, a, 0qq ď 1 2 , ( 140 
)
where we used the fact that p1 ´xq ´1 ď 1 `2x for x P r0, 1 2 s. Note that the condition above is the same as the condition that the right hand side of ( 130) is less than or equal to 1 2 , which is satisfied for our choice of δ γ and δ w .

From ( 135) and ( 139), we have that:

}B w gpwq} 2 " 1 σ min pJpλ ˚, a, 0q `Eq ď 1 σ min pJpλ ˚, a, 0qq ˆ1 `2 σ min pJpλ ˚, a, 0qq ¨}E} F ď 2 σ min pJpλ ˚, a, 0qq , (141) 
where }E} F is upper bounded in (127) and w, λ and ν satisfy

}w} 2 ď δ w , }λ ´λ˚} 2 ď δ γ , }ν ´a} 2 ď δ γ .
The first-order Taylor expansion of gpwq around w " 0 is:

gpwq " gp0q `Bw gpw δ q T w, (142) 
for some w δ on the segment between the zero vector and w. Noting that gpwq is our notation for the vector:

gpwq "

" λpwq νpwq  , (143) 
with λp0q " λ ˚and νp0q " a, from (142) we have that:

› › › › › " λpwq ´λν pwq ´a  › › › › › 2 " › › ›Bwgpwδq T w › › › 4.3.1 Proof of Lemma 9
We have that

σpJq " min }v}2"1 max }u}2"1 u T pA `Eqv ě min }v}2"1 max }u}2"1 u T Av ´max }v}2"1 max }u}2"1 u T Ev ě σ min pAq ´}E} F .
4.3.2 Proof of Lemma 8 (Bound on the perturbation of the Jacobian of F )

Let Jpλ, ν, wq " B 1 F prλ, νs T , wq, where λ " λpwq and ν " νpwq by ( 136) and ( 137), and we want to write J in the form Jpλ, ν, wq " Jpλ ˚, a, 0q `E

i.e. E is the perturbation of Jpλ ˚, a, 0q due to perturbed λ, ν, w. In order to apply Lemma 9, we need an upper bound on }E} F , so we need to upper bound each entry of E. Let

J " rJ 1 J 2 s , (146) 
where J 1 corresponds to the terms (118) and J 2 to the terms (119) and

E " rE 1 E 2 s (147) 
the corresponding perturbation terms.

Entries in J 1

For i " 1, . . . , k and j " 1, . . . , 2k:

J 1j,i " ´k ÿ p"1
pν p ´ap `ap qφ 1 pt p pλq ´tp `tp ´sj qB λi t p pλq " ´k ÿ

p"1 B λi t p pλq " a p φ 1 pt p ´sj `tp pλq ´tp q `pν p ´ap qφ 1 pt p ´sj `tp pλq ´tp q ı " ´k ÿ

p"1 B λi t p pλq " a p φ 1 pt p ´sj q `ap pt p pλq ´tp qφ 2 pξ j,p q `pν p ´ap qφ 1 pt p ´sj q `pν p ´ap qpt p pλq ´tp qφ 2 pξ j,p q ‰ " ´k ÿ

p"1

B λi t p pλq ´ap φ 1 pt p ´sj q `∆1j,p ¯, (148) 
where ∆ 1j,p " a p pt p pλq ´tp qφ 2 pξ j,p q `pν p ´ap qφ 1 pt p ´sj q `pν p ´ap qpt p pλq ´tp qφ 2 pξ j,p q,

for some ξ j,p P rt p ´sj ´|t p ´tp |, t p ´sj `|t p ´tp |s. The factor involving the partial derivative in (148) has the same form as (52) so in order to bound it we write the Taylor expansion of (52) around λ ˚:

B λ t p pλq " B λ t p pλ ˚q `B2 λλ t p pλ δ q `λ ´λ˚˘, (150) 
for some λ δ on the segment between λ and λ ˚. By using (52) with ( 56) and (57), the entry i, l in the Hessian matrix H " B 2 λλ t p pλ δ q is ´HT ¯i,l " F i,l pλq " ř m j"1 λ j φ 2 pt p pλq ´sj q

ı 2 , (151) 
for i, l " 1, . . . , k, where F i,l pλq " ´φ2 pt p pλq ´si qB λ l t p pλq m ÿ j"1 λ j φ 2 pt p pλq ´sj q `φ1 pt p pλq ´si q ¨m ÿ j"1 λ j φ 3 pt p pλq ´sj qB λ l t p pλq `φ2 pt p pλq ´sl q '. (

Note that in the denominator (151) we use all m entries of λ and samples due to how we defined the function from (52), and the same is true for the sums in (152). From ( 150) and (152), we then write:

B λi t p pλq " B λi t p pλ ˚q `∆2i,p , (153) 
where

∆ 2i,p " k ÿ l"1 pλ l ´λl qF i,l pλ δ q " ř m j"1 λ j φ 2 pt p pλ δ q ´sj q ı 2 . (154) 
Note that l goes up to k because we only work with k entries in λ. Therefore, we have that:

J 1j,i " ´k ÿ p"1 `Bλi t p pλ ˚q `∆2i,p ˘´a p φ 1 pt p ´sj q `∆1j,p ¯, (155) 
where

∆ 1j,p " Op|t p ´tp | `|ν p ´ap |q, (156) 
∆ 2i,p " Op}λ ´λ˚} 2 q, (157) 
for i " 1, . . . , k, j " 1, . . . , 2k and p " 1, . . . , k. 

for j " 1, . . . , 2k and p " 1, . . . , k, where we have used the maxima of the Gaussian and its derivatives given in footnote 3.

Bounding ∆ 2i,p

By applying the Cauchy-Schwartz inequality, we have that:

|∆ 2i,p | ď 1 ˇˇř m j"1 λ j φ 2 pt p pλ δ q ´sj q ˇˇ2 ¨› › › › › › › › » - - - F i,1 pλ δ q . . . F i,k pλ δ q fi ffi ffi fl › › › › › › › › 2 ¨}λ ´λ˚} 2 (159) 
We now bound |F i,l | for i, l " 1, . . . , k:

|F i,l pλ δ q| ď |φ 2 pt p pλ δ q ´si q| ˇˇB λ l t p pλ δ q ˇˇˇˇˇˇˇˇm ÿ j"1 λ j φ 2 pt p pλ δ q ´sj q ˇˇˇˇ| φ 1 pt p pλ δ q ´si q| ¨ˇB λ l t p pλ δ q ˇˇˇˇˇˇˇˇm ÿ j"1

λ j φ 3 pt p pλ δ q ´sj q ˇˇˇˇˇ`| φ 2 pt p pλ δ q ´sl q| ‹ ' ď 2C t σ2 }λ δ } 2 ¨› › › " φ 2 pt p pλ δ q ´sj q ‰ m j"1 › › › 2 `?2 ? eσ ˆCt ˚}λ δ } 2 ¨› › › " φ 3 pt p pλ δ q ´sj q ‰ m j"1 › › › 2 `2 σ 2 ď 2C t σ2 }λ δ } 2 ¨2? m σ 2 `?2 ? eσ ˜Ct ˚}λ δ } 2 ¨c? m σ 3 `2 σ 2 ¸, (160) 
where we used the Cauchy-Schwartz inequality, the bounds in footnote 3 and C t ˚from [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]. Therefore, the above inequality holds for λ δ P Bpλ ˚, δ λ q with δ λ from [START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF]. The final bound on |F i,l | is

|F i,l | ď c 2 C t ˚?m}λ δ } 2 σ 4 `2? 2 ? eσ 3 , (161) 
where c 2 " 4 `c? 2 ? e « 7.3484, for i, l " 1, . . . , k. The next step is to obtain a lower bound on the denominator in (159). By adding and subtracting λ j to λ j and applying the reverse triangle inequality, we obtain:

ˇˇˇˇˇm ÿ j"1 λ j φ 2 pt p pλq ´sj q ˇˇˇˇˇě B 1 ´ˇˇˇˇˇm ÿ j"1 pλ j ´λj qφ 2 pt p pλq ´sj q ˇˇˇˇě B 1 ´2? m}λ ´λ˚} 2 σ 2 , (162) 
where B 1 has the same form as B in (63), except that we evaluate it at a different tpλ δ q and possibly a subset of the entries in λ ˚, and then we apply Cauchy-Schwartz inequality and the bound in footnote 3. For B 1 , the bound in (71) is valid. By combining (159), ( 161) and (162), we obtain the final bound on |∆ 2i,p |:

|∆ 2i,p | ď ∆2 ¨}λ ´λ˚} 2 (163) 
for i " 1, . . . , k and p " 1, . . . , k, where

∆2 " ´c2 C t ? m}λ δ } 2 `2? 2 ? e σ ¯?k `σ2 B 1 ´2? m}λ ´λ˚} 2 ˘2 . (164) 
Therefore, from (155) and by using the definitions of ∆1p and ∆2 from (158) and ( 163) respectively, we have that: 

|E 1j,i | " ˇˇˇˇˇk ÿ p"1 B λi t p pλ ˚q∆ 1j,p `ap φ 1 pt p ´sj q∆ 2i,p `∆1j,p ∆ 2i,p ˇˇˇˇď C t k ÿ p"1 ∆1p `}λ ´λ˚} 2 ∆2 }a} 2 ¨› › › › " φ 1 pt p ´sj q ı k p"1 › › › › 2 `}λ ´λ˚} 2 ∆2 k ÿ p"1 ∆1p ď pC t `}λ ´λ˚} 2 ∆2 q ´2 σ 2 }a}

Entries in J 2

By adding and subtracting t j then taking a Taylor expansion like before, we obtain:

J 2j,i " ´φpt i ´sj `ti pλq ´ti q " ´φpt i ´sj q ´pt i pλq ´ti qφ 1 pξ j q " ´φpt i ´sj q ´E2i,j ,

for some ξ j P rt i ´sj ´|t i pλq ´ti |, t i ´sj `|t i pλq ´ti |s and E 2j,i is the perturbation term. Then:

|E 2j,i | ď |t i pλq ´ti | ¨?2 σ ? e , (167) 
for i " 1, . . . , k and j " 1, . . . , 2k.

Putting everything together

We have that

}E} F " g f f e k ÿ i"1 2k ÿ j"1 E 2 1j,i `k ÿ i"1 2k ÿ j"1 E 2 2j,i ď g f f e 2k 2 Ē2 1 `4k σ 2 e k ÿ i"1 |t i pλq ´ti | 2 ď k Ē1 ? 2 `2? k σ ? e }tpλq ´t˚} 2 ď k Ē1 ? 2 `2C t ˚k σ ? e }λ ´λ˚} 2 , (168) 
where we have used the bounds on the entries of E 1 and E 2 from (165) and (167) and Theorem 2, so this result holds for λ P Bpλ ˚, δ λ q for δ λ defined in the theorem. Finally, by substituting the expression of Ē1 from (165), we obtain: 

}E} F ď ? 2k « ˆCt ˚`
Let δ γ be a bound on the perturbation:

› › › › › " λ ´λν ´a  › › › › › 2 ď δ γ , (170) 
and therefore: }λ ´λ˚} 2 ď δ γ and }ν ´a} 2 ď δ γ .

We also have that:

}ν ´a} 2 ď }ν ´a} 1 ď }ν} 1 `}a} 1 ď 2Π, (172) 
where we used that ν 1 `. . . `νk ď Π and the fact that x " ř k p"1 a p δ tp is the solution to [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF], so it satisfies }x} T V " }a} 1 ď Π.

Similarly, we have that:

}λ ´λ˚} 2 ď }λ} 2 `}λ ˚}2 ď ? k}λ} 8 `?k}λ ˚}8 ď 2 ? kτ, (173) 
since both λ and λ ˚satisfy the constraint in [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF]. In order to write the bound (169) as P ¨δγ , we expand the parentheses and use the following bounds: 

}λ

Numerical experiments

In this section, we present numerical experiments which verify the bounds given by our main results, Theorem 2, Theorem 3 and Theorem 4. To do this, we take an example of a source and sample configuration and a Gaussian kernel for a given σ and solve the exact penalty formulation [START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF] of the dual problem [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] using the level method [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF], given in Appendix B. We introduce inaccuracies in λ by stopping the algorithm early and show how these perturbations affect the source locations and weights. Next, we add noise to the measurements to show how λ is affected. We are, therefore, able to compare the ratios of the perturbations obtained numerically with the constants in the theorems to show the validity of our results in practice. The specific details are discussed in the next subsections.

Setup

We place three sources at locations t i P T " t0.25, 0.63, 0.889u with weights a i P t0.8, 0.5, 0.9u and m " 21 equispaced samples in r0, 1s, with a Gaussian kernel φptq " e ´t2 {σ 2 with σ " 0.07. We show this configuration in Figure 2. 

Effect of λ ˚perturbations on t

We then solve the dual problem [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] in the exact penalty formulation [START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF] with box constraint parameter τ " 10 5 and penalty parameter Π " 100 and run it for P " 500 iterations. This gives an accuracy in the source locations of |t i ´ti | ď 10 ´8 for t i P T . While it is possible to optimise the parameters τ , Π and P in order to obtain better accuracy in the source locations t i and weights a i , it is not the aim of this section. Note that Theorem 2 gives the result [START_REF] Candès | Super-resolution from noisy data[END_REF] in the form |t i ´ti | ď C t ˚}λ ´λ˚} 2 , where t i P T is an arbitrary true source location, λ ˚is the solution to the dual problem (24)6 and t is obtained by perturbing t ˚as a consequence of the perturbation λ ˚in λ.

One way of showing that a relationship of the type of ( 16) holds in practice is to plot the ratio

|t ppq i ´ti |
}λ ppq ´λ˚} 2 , for p " p 0 , . . . , P and i " 1, . . . , k, where P is the number of iterations the level method is run for, p is the index of each iteration and t ppq i and λ ppq are the values of t i and λ obtained at iteration p, where p 0 ě 1 is large enough so that }λ ppq ´λ˚} 2 satisfies the condition in Theorem 2. The level method computes the value λ ppq after p iterations and tt ppq i u k i"1 are obtained by calculating the global maxima of the dual certificate q ppq psq " ř m j"1 λ ppq j φps ´sj q. Since we know the true value of t i , we can find t 

for p " p 0 , . . . , P and i " 1, . . . , k. One issue is that the true value of λ ˚is not known. The best estimate we have is λ best " λ pP q , namely the value of λ ˚given by the level method after P iterations. Therefore, the result of Theorem 2 cannot be verified directly in practice, but must be adapted to take into account this inaccuracy. For i " 1, . . . , k, we have that:

|t ppq i ´ti | ď C t ˚}λ ppq ´λ˚} 2 ď C t ˚´}λ ppq ´λb est } 2 `}λ best ´λ˚} 2 ¯, (179) 
and so

|t ppq i ´ti | }λ ppq ´λb est } 2 ď C t ˚˜1 `}λ best ´λ˚} 2 }λ ppq ´λb est } 2 ¸. (180) 
For fixed P , which in the experiments in this section is P " 500, }λ best ´λ˚} 2 above is fixed and as p approaches P , we have that }λ ppq ´λb est } 2 Ñ 0, and therefore the right hand side above goes to infinity. This is not a problem for our results, as it is not relevant how the ratio 

In Figure 3 Specifically, in the left hand side panels (a), (c) and (e), we show the errors }t ppq i ´ti } and }λ ppq ´λb est } 2 for each i P t1, 2, 3u respectively at each iteration p for p " 20, . . . , 270 and λ best " λ pP q at P " 500. In the right hand side panels (b), (d) and (f), we show the ratio }t ppq i ´ti } }λ ppq ´λb est }2 and the constant C t ˚from Theorem 2.

Effect of t ˚perturbations on a

In the case of Theorem 3, it is more straightforward to check the ratio of the errors, since we know the true values of the source locations and weights, which we denote by t ˚" rt 1 , . . . , t k s T and a ˚" ra 1 , . . . , a k s T respectively. The error bound [START_REF] Chretien | Multi-kernel unmixing and super-resolution using the Modified Matrix Pencil method[END_REF] given by the theorem is of the form:

}a ´a˚} 2 ď C a ˚}t ´t˚} 2 `Op}t ´t˚}2 2 q,
where t is the perturbed vector t ˚and a is the perturbed vector a ˚as a consequence of perturbing t ˚. For the values t ppq i , i P t1, 2, 3u, obtained after p iterations of the level method, we now solve the least squares problem argmin â}Φ ppq â ´y} 2 with the entries in the data matrix Φ ppq given by Φ ppq j,i " φpt ppq i ´sj q to find the corresponding perturbed weights a ppq i for i P t1, 2, 3u. Then, according to Theorem 3, we have that:

}a ppq ´a˚} 2 }t ppq ´t˚} 2 ď C a ˚`Op}t ppq ´t˚} 2 q. (182) 
In Figure 4, panel (a), we show }a ppq ´a˚} 2 and }t ppq ´t˚} 2 in the same setting as in Figure 3, for iterations p " 20, . . . , 270, and in panel (b) we see the ratio }a ppq ´a˚} 2 }t ppq ´t˚} 2 . We do not plot the value of C a ˚, as it is of the order of 10 5 , and therefore (182) holds. Effect of the noise w on λ ˚and t Ås in the case of Theorem 2, where we rely on a best approximation λ best of λ ˚for the numerical experiments, a similar approach is required to check the validity of the results of Theorem 4 in practice. Theorem 4 gives the bound (36) in the form: }λ ẘ ´λ˚} 2 ď C λ ˚¨}w} 2 , where λ ˚is the true solution of the dual problem [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] and λ ẘ is the solution to the same problem with y perturbed by the noise w.

As it is not possible to know exactly the values λ ˚and λ ẘ, let λ best " λ pP q be value of λ given by the level method after P iterations when is exact and λ best be the value of λ returned by the level method P iterations when y corrupted by the additive noise w. , where λ best is the solution we obtain by solving the dual problem [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] in its exact penalty formulation using the level method with P " 100 iterations and λ best is the 'noisy' solution, which is obtained by solving the problem with P " 100 iterations when y is corrupted by additive noise w. We repeat this for different magnitudes of the noise w, which we increase gradually as follows. For each component y j of y, we add a sample X j from the standard uniform distribution U p0, 1q, multiplied by a coefficient w c : y noisy j " y j `wc ¨Xj .

We repeat this for different values of the coefficient w c from the set: 

w c P t0.
Therefore, in Figure 5 we show the basic setup described at the beginning of this section. Panel (a) shows }λ best ´λb est } 2 against the norm of the noise }w} 2 , and in order to check that the algorithm actually converges to a useful λ best , we also plot plot }t best ´t˚} 2 against }w} 2 in panel (b), since we know the true value t ˚.

Then, in panel (c) we plot the ratio }λ best ´λb est }2 }w}2 and C λ ˚as given by Theorem 4, where we see that the ratio is smaller than the constant, as the theorem states. In the same plot, we also show the ratio }t best ´t˚} 2 }w}2 and we see that it does not grow as the magnitude of the noise increases.

We end this section by mentioning that in these experiments we only take into account 2k entries of λ and w, corresponding to the 2k samples that are the closest to the k sources, as described in Section 3, for which Theorem 4 holds. However, in Figure 6 we show the same plot where we calculate the errors using the full vectors λ best , λ best and w and we see that the ratio of the two norms follows a similar pattern. 186), in the setting described at the beginning of this section.

Conclusion

In this paper, we proved primal stability in the non-negative super-resolution problem, when addressed via convex duality. The main ingredient in our analysis is a quantitative version of the implicit function theorem, a folklore result in the theory of dynamical systems community.

In the noise-free setting, our results provide quantitative bounds in terms of the number of measurements for the accuracy of the primal solution with respect to the convex dual problem solution in an 8 error bound on the primal spike locations and an 2 error bound on the spike weights. In the case when the measurements and }t best ´t}2 }w}2 for }w} 2 in a range as given in ( 185) and (186) in the setting described at the beginning of this section. Here, instead of selecting only 2k entries of λ and w as described in Section 3, we calculate the errors using all the components of the vectors. are corrupted by additive noise, we have proved a similar result for how the dual variable is perturbed as a function of the magnitude of the noise.

A Duality in the noisy case

In this section, we show the duality of the following problems:

min xě0 › › › › y ´ż Φptqxpdtq › › › › 1 subject to }x} T V ď Π,
which is given in [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF], and max βą0 λPR m β ´λT y ´Π¯s ubject to λ T Φptq ď 1, @t P r0, 1s and }λ} 8 ď 1{β,

which is a more general version of the dual problem [START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF]. We start from the primal problem [START_REF] Bendory | Robust recovery of stream of pulses using convex optimization[END_REF] (190) where in the last equality we make the substitution w " z ´y.

The integral on the right hand side is equal to ´8 if there exists t 0 P r0, 1s such that λ T Φpt 0 q ą β, as we can set x " 8 ¨δt0 . Therefore, we impose the condition that λ T Φptq ď β for all t P r0, 1s, in which case the integral is equal to zero by taking x to be zero wherever the integrand is non-zero, and the dual becomes: `λT w ¯`λ T y ´βΠ subject to λ T Φptq ď β, @t P r0, 1s.

which can be rewritten as:

max βě0 λPR m
max wPR m ´´λ T w ´}w} 1 ¯`λ T y ´βΠ subject to λ T Φptq ď β, @t P r0, 1s.

and note that for f pwq " }w} 1 :

f ˚pλq " max w ´λT w ´}w} 1 ¯" # 0, if }λ} 8 ď 1, 8, otherwise, (193) 
is its conjugate [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]. Therefore, we impose the condition that }λ} 8 ď 1 and the dual becomes:

max βě0 λPR m
λ T y ´βΠ subject to λ T Φptq ď β, @t P r0, 1s and }λ} 8 ď 1.

We then make the substitution λ 1 " λ{β (for β ą 0) to obtain: max βą0 λ 1 PR m β ´λ1T y ´Π¯s ubject to λ 1T Φptq ď 1, @t P r0, 1s and }λ 1 } 8 ď 1{β,

which is the problem (187).

Note that if we fix β and solve for λ 1 , given that we are interested in the value of λ 1 rather than the value of the objective function, the problem above becomes: argmax λ 1 PR m λ 1T y subject to λ 1T Φptq ď 1, @t P r0, 1s and }λ 1 } 8 ď 1{β, (196) which is the problem (24) that we consider in Section 3.

B The level bundle method

In this section, we describe the level bundle method [START_REF] Nesterov | Introductory Lectures on Convex Optimization: A Basic Course[END_REF] applied to [START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF] for which experiments were presented in Section 1.1 and Section 5. The algorithm progressively builds up a polyhedral model of the objective function from a 'bundle' of subgradients at each iteration. The algorithm proceeds by projecting iterates onto a level set of the model, an approach which is known to improve robustness in comparison with the standard cutting planes subgradient method (Kelley's method). A statement of the algorithm is given in Algorithm 1.

Algorithm 1 Level bundle method for solving Program [START_REF] Eftekhari | Sparse nonnegative super-resolution -simplified and stabilised[END_REF].

Input: Kernel function Φ : I Ñ R m , measurements y P R m , sample locations ts j u jPt1,...,mu P I, penalty parameter Π ą 0, level set parameter α P p0, 1q and number of iterations L.

Initialize: l " 1.

While l ď L , do 1. Compute a subgradient as t l P arg sup sPI pλ l´1 q T Φpsq, g l " # ´y `Π " pλ l´1 q T Φpt l q ´1‰ , pλ l´1 q T Φpt l q ě 1 ´y, pλ l´1 q T Φpt l q ă 1 2. Build the polyhedral model p Ψ l Π pλq " max r"1,...,l Ψ Π pλ r´1 q `pg r q T pλ ´λr´1 q.

3. Compute ν l " inf λ p Ψ l Π pλq and µ l " min r"1,...,l Ψ Π pλ r q.

4. Project onto the level set as λ l " P L l α pλ l´1 q where L l α " tλ : p Ψ Π pλq ď αµ l `p1 ´αqν l u.

5. l " l `1.

Output: λ L P R m .

In the experiments shown in Section 1.1, Π was chosen to be 2}a ˚}1 and the level set parameter α was taken to be 1{4.
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 1 Figure 1: (a) Solution and dual certificate obtained using the level bundle method. (b) Decrease in optimality gap with iteration number.
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 2 Figure 2: The source-sample configuration used for numerical experiments in the current section.
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 34 Figure 3: The result of Theorem 2 for T " t0.25, 0.63, 0.888u, σ " 0.07 and m " 21. In panels (a), (c) and (e) we show how |t ppq i ´ti | and }λ ppq ´λppq best } 2 change at each iteration p " 20, . . . , 270 of the level method for t 1 , t 2 and t 3 respectively, while in panels (b), (d) and (f) we show their ratio and C t ˚given by Theorem 2.
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 5 Figure 5: Plots of }λ best ´λb est } 2 (panel(a)), }t best ´t} 2 (panel (b)) and their ratio to the noise }w} 2 (panel(c)) for }w} 2 in a range as given in (185) and (186), in the setting described at the beginning of this section.
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max βě0 λPR m min wPR m ´}w} 1

 1 

  2kC t

	?e	`4? kC 2 t ˚Π	`2? 2 ∆2 Π ? e	`8kC t ˚∆ 2 τ Π	`?2k ∆2 Π ? e	`c 2 e	C t

˚¸ff

, where C t ˚is given in

[START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF] 

in Theorem 2 and ∆2 is given in (163) in the proof of Lemma 8.

  for }λ ´λ˚} ď δ λ , where δ λ and C t ˚are given in[START_REF] Boyd | The alternating descent conditional gradient method for sparse inverse problems[END_REF] and (17) respectively in Theorem 2 and ∆2 is given in (163) in the proof.

	where:							
				«				
	P pk, σ, Π,τ, C t ˚q "	?	2k	1 σ 2	´2?	kC 2 t ˚Π `4kC t ˚∆ 2 τ Π `2C t ˚1
	σ	˜?2kC t ?e	`4? kC 2 t ˚Π	`2? 2 ∆2 Π ? e	`8kC t ˚∆ 2 τ Π	`?2k ∆2 Π ? e	¸ff,	(127)

with }E} F ď P pk, σ, Π, τ, C t ˚q ¨δγ ,

(126)

  The next step now is to upper bound |∆ 1j,p | and |∆ 2i,p |. By the triangle inequality, we have that: |∆ 1j,p | ď |a p ||t p pλq ´tp ||φ 2 pξ j,p q| `|ν p ´ap ||φ 1 pt p ´sj q| `|ν p ´ap ||t p pλq ´tp ||φ 2 pξ j,p q|

	Bounding ∆ 1j,p				
	ď |a p ||t p pλq ´tp |	2 σ 2 `|ν p ´ap |	? ? eσ 2	`|ν p ´ap ||t p pλq ´tp |	2 σ 2 ": ∆1p ,

  " 1, . . . , k and j " 1, . . . , 2k.

					2 }tpλq ´t˚} 2	`?2 ? eσ	}ν ´a} 1
	`2 σ	}ν ´a} 2 }tpλq ´t˚} 2	¯`? 2k ? eσ	}a} 2 ∆2
	ď pC t `}λ ´λ˚} 2 ∆2 q	´2? kC t σ2	}a} 2 }λ ´λ˚} 2	`?2 ? eσ	}ν ´a} 1
	`2? kC t	σ }ν ´a} 2 }λ ´λ˚} 2	¯`? 2k ? eσ	}a} 2 }λ ´λ˚} 2 ∆2 ": Ē1	(165)
	for i				

  with t i as the initial condition. For a large enough value of p, this will give an accurate value of t ´ti | for each p " p 0 , . . . , P and t i P T . Then we check that: |t

	local optimisation algorithm ppq i and we can, therefore, calculate |t	ppq i
	ppq i }λ ppq ´λ˚} 2 ´ti |	ď C t ˚,
			ppq i	by running a

  , we plot }2 for p " 20, . . . , 270, where we see that the ratio is less than C t

	|t ppq i	´ti |
	}λ ppq ´λb

est

˚.

  can reformulate the bound (36) in of λ best and λ best :

		}λ best	est } }λ best	´λb est	`λ˚´λ˚`λẘ ´λẘ } 2
			ď }λ best	´λẘ } 2 `}λ ˚´λ ẘ} 2 `}λ ˚´λ best } 2
			ď }λ best	´λẘ } 2 `Cλ ˚}w} 2 `}λ ˚´λ best } 2 ,	(183)
	so	}λ best }w} 2 ´λb est } 2	ď C λ ˚`}λ best	´λẘ } 2 `}λ ˚´λ best } 2 }w} 2	.	(184)
	As before, we plot	}λ best }w}2 ´λb est }2				

  000002, 0.000004, . . . , 0.00001,

0.00002, 0.00004, . . . , 0.0001, 0.0002, 0.0004, . . . , 0.001, 0.002, 0.003, . . . , 0.01, 0.02, 0.03, . . . , 0.1u.

  Lpx, z, β, λq " }z ´y} 1 `λT ˆz ´ż Φptqxpdtq ˙`β `}x} T V

							by introducing
	a new variable z "	ş	Φptqxpdtq:	
							ż
						min zPR m xě0	}z ´y} 1 subject to z "	Φptqxpdtq,
							}x} T V ď Π,	(188)
	and then we write the Lagrangian:
							´Π˘,	(189)
	so the Lagrangian dual problem is:
	max βě0 λPR m	min zPR m xě0	Lpx, z, β, λq "
							"	
				" max βě0 λPR m	min zPR m xě0	}z ´y} 1	`λT z	`ż ´β ´λT Φptq ¯xpdtq	´βΠ
							"	
				" max βě0 λPR m	min wPR m xě0	}w} 1	`λT w	`ż ´β ´λT Φptq ¯xpdtq	`λT y ´βΠ,

Since }λ ´λ˚} ď δ 0 and λ δ is on the line segment between λ ˚and λ, then λ δ is in the ball centred at λ ˚with radius δ 0 .

Using the SVD Φ " U ΣV T , we have Φ : " pΦ T Φq ´1Φ T " pV Σ 2 V T q ´1V ΣU T " V Σ ´1U T , so the conclusion follows.

ď }B w gpw δ q} 2 ¨}w} 2 ,(144)for w, λ and ν such that }w} 2 ď δ w , }λ ´λ˚} 2 ď δ γ , }ν ´a} 2 ď δ γ , where we use the bound from (141).

Note that the analysis of the dual problem[START_REF] Azais | Spike detection from inaccurate samplings[END_REF] from Section 2 applies to the dual problem[START_REF] Josz | Sparse polynomial interpolation: sparse recovery, super-resolution, or Prony?[END_REF] considered in Section 3 as well, as the only difference difference between[START_REF] Azais | Spike detection from inaccurate samplings[END_REF] and (24) is a box constraint on λ.
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