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The goal of this note is to study the smallest conic singular value of a matrix from a Lagrangian duality viewpoint and provide an efficient method for its computation.

Introduction

Given a cone K, the minimum conic singular value of a matrix A ∈ R d×n is defined as

σ min (A; K) = min x∈K, x 2=1 Ax 2 .
The conic singular value has emerged as an important concept in statistics [START_REF] Amelunxen | Living on the edge: A geometric theory of phase transitions in convex optimization[END_REF], [START_REF] Tropp | Convex recovery of a structured signal from independent random linear measurements[END_REF] and [START_REF] Thrampoulidis | Isotropically random orthogonal matrices: Performance of lasso and minimum conic singular values[END_REF]. The associated problem of computing the smallest conic eigenvalue of a matrix M has also been extensively studied in the field of optimisation theory in relation to K co-positivity [START_REF] Hiriart-Urruty | A variational approach to copositive matrices[END_REF], [START_REF] Pinto | Cone-constrained eigenvalue problems: theory and algorithms[END_REF], [START_REF] Seeger | On eigenvalues induced by a cone constraint[END_REF], etc. Application to contact problems [START_REF] Pinto | Cone-constrained eigenvalue problems: theory and algorithms[END_REF], elliptic PDE's [START_REF] Riddell | Eigenvalue problems for nonlinear elliptic variational inequalities on a cone[END_REF], problems on matrix cones [START_REF] Seeger | On eigenvalues induced by a cone constraint[END_REF] are numerous. Some interesting methods have been proposed for the computation of coneconstrained eigenvalue problems, e.g. the SPA method of [START_REF] Pinto | Numerical resolution of coneconstrained eigenvalue problems[END_REF]. The goal of this short note is to describe an efficient dual method for solving this problem.One problem with the computation of the minimum conic singular value is that the constraint set is nonconvex due to the spherical constraint. In order to circumvent this problem, we use a Lagrangian framework and Lagrangian duality and a well known formula for the solution of the problem of quadratic programming over the sphere.

The plan of the paper is as follows. In section 2, the Lagragian approach is explained and a strong duality result is proved. An efficient dual algorithm is described in Section 3. Simulation experiments showing the efficiency of the dual approach is tested are presented in Section 3.3.

The Lagrangian approach

In the present section, we study the smallest singular value from a dual viewpoint, following the approach of [START_REF] Hiriart | Convex analysis and minimization algorithms ii: Advanced theory and bundle methods[END_REF].

Presentation of the method

We will address the minimum singular value problem via the solution of

1 2 σ min (A; K) 2 = min x∈K, x 2=1 1 2 Ax 2 2 . (2.1)
For this purpose, we form the Lagrangian function [13, Chapter XII]

L(x, u) = 1 2 Ax 2 2 + u, x
and the dual function

θ(u) = min x 2=1 L(x, u). (2.2)
The dual problem is

sup K∈K • θ(u).
In order to motivate the dual approach it is common to point out that

sup u∈K • L(x, u) =      +∞ if x ∈ K 1 2 Ax 2 2 otherwise.
Thus, problem (2.1) is equivalent to

inf x 2 =1 sup u∈K • L(x, u). (2.3) 
On the other hand, the dual problem of maximizing θ is equivalent to solving

sup u∈K • inf x 2=1 L(x, u), (2.4) 
with the hope that the two optimal values coincide. In general, weak duality holds, i.e.

OPT (2.3) ≥ OPT (2.4) (2.5)
where "OPT" denotes the optimal value. When equality holds, we say that the problem enjoys the strong duality property. Strong duality automatically holds for linear programs. It also holds for convex programs when an additional constraint qualification condition holds [START_REF] Hiriart | Convex analysis and minimization algorithms ii: Advanced theory and bundle methods[END_REF]Chapter XII]. It may not hold for nonconvex programs except in certain circumstances. For instance, if K = R n in (2.1), then, strong duality holds despite the nonconvex spherical constraint.

The subdifferential of θ

The theory of [13, Chapter XII] directly provides a complete description of the subdifferential of θ, because the so called filling property holds due to the compactness of the spherical constraint. More precisely,

∂θ(u) = conv (X * u )
where X * u is the set of minimizers in (2.2) and conv denotes the closure of the convex hull.

Lemma 2.2 in [START_REF] Hager | Minimizing a quadratic over a sphere[END_REF] gives the explicit form of the solution set X * u . Let λ 1 ≤ . . . ≤ λ n be the eigenvalues of A t A and φ 1 ,. . . ,φ n be associated pairwise orthogonal, unit-norm eigenvectors. Let

γ i = φ t i u, i = 1, . . . , n. Let E 1 = {i s.t. λ i = λ 1 } and E + = {i s.t. λ i > λ 1 }. Then, x * u belongs to X * u if and only if x * = n i=1 c * i φ i (2.6) and 1. degenerate case: if γ i = 0 for all i ∈ E 1 and i∈E+ γ 2 i (λ i -λ 1 ) 2 ≤ 1. then c * i = γ i /(λ i -λ 1 ), (2.7) 
i ∈ E + and c * i , i ∈ E 1 are arbitrary under the constraint that

i∈E1 c * 2 i = 1 - i∈E+ c * 2 i . (2.8) 
2. nondegenerate case: if not in the degenerate case,

c * i = γ i /(λ i -µ), (2.9 
) i = 1, . . . , n for µ > -λ 1 which is a solution of i=1,...,n γ 2 i (λ i -µ) 2 = 1. (2.10)
Moreover, lower and upper bounds are given in [START_REF] Hager | Minimizing a quadratic over a sphere[END_REF] and the value of µ can be found very quickly by the bisection method. Using this representation of X c * u , we immediately deduce the following result. Proposition 2.1. The set X c * u is a unit sphere of dimension less than or equal to n.

Strong duality for the minimum conic singular value

Consider now a full Lagrangian scheme for this problem. For this purpose, let us define

L c (x, u, v) = 1 2 Ax 2 2 + u, x + v x 2 2 -1
and the dual function

θ c (u, v) = min x 2≤1 L c (x, u, v).
(2.11)

One interesting point with this full Lagrangian approach is that we can easily prove that strong duality holds.

Theorem 2.2. Strong duality holds for the dual problem

sup (u,v)∈K • ×R θ c (u, v) = σ min (A; K) 2 .
Proof. Indeed the subdifferential of θ c can be computed easily as before as

∂θ c (u) = conv     X c * u X c * u 2 2 -1    
where X c * u is the set of minimizers in (2.11). One interesting feature of this subdifferential is that it has one (and only one) quadratic component. From this, we can deduce that the image of the map

x →   x x 2 2 -1  
On the other hand, the optimality condition for the dual problem is that there exists g in the normal cone to K • at u * such that

(g, 0) ∈ ∂θ c (u * ).
In other words,

g 0 ∈ conv     X c * u * X c * u * 2 2 -1     .
Since X c * u * is included in the unit ball by the definition of θ c , the set

S u * =   X c * u * X c * u * 2 2 -1  
is included in a compact set and therefore. Thus, the closure of its convex hull is the convex hull of its closure. Because the Lagrangian is continuous, X c * u * is also compact, the set S u * is equal to its closure. Now since X c * u * is a sphere by Corollary 2.1, Brickman's celebrated theorem [START_REF] Barvinok | A course in convexity[END_REF] on the quadratic image of a sphere gives that S u * is convex. Therefore, the optimality condition becomes that there exists g in the normal cone to K • at u * such that

(g, 0) ∈ S u * which implies that there exists x * u * in X c * u * such that g 0 =   x * u * x * u * 2 2 -1   .
The end of the proof is standard. Since g is in the normal cone to K • at u * , and g = x u * , we have

u * , x * u * = 0.
Thus,

θ c (u * ) = 1 2 Ax u * 2 2 .
This proves that

θ(u * ) ≥ 1 2 σ min (A; K) 2
but since, by weak duality,

θ(u * ) ≤ 1 2 σ min (A; K) 2
we finally obtain that strong duality holds and that x u * is a solution.

We now obtain the following corollary.

Corollary 2.3. Strong duality holds for the dual problem

sup (u)∈K • θ(u) = 1 2 σ min (A; K) 2 .
Proof. Use the same proof as in [START_REF] Lemarechal | Sdp relaxations in combinatorial optimization from a lagrangian viewpoint[END_REF] to obtain that the full Lagrangian scheme is weaker than the Lagrangian scheme. Since the full Lagrangian scheme is exact, so is the Lagrangian one.

3. Computation of the smallest conic singular value

3.1. The polar cone K • of a cone K 3.1.1.

The polyhedral case

The polar cone K • to K is a key object in our computations. It has been studied in [START_REF] Pillers | A matrix approach to finding a set of generators and finding the polar (dual) of a class of polyhedral cones[END_REF]. A simplified version of the main theorem of [START_REF] Pillers | A matrix approach to finding a set of generators and finding the polar (dual) of a class of polyhedral cones[END_REF] is the following. 

K = x ∈ R n | A t x ≤ 0 and B t x = 0 for A ∈ R n×m and B ∈ R r×n . (3.12)
Assume that there exist two matrices G A and G B such that G A A = I and G B B = I. If in addition, G A B = 0, then, we have

K • = {y ∈ R n | -G A y ≤ 0 and (I -AG A -BG B )y = 0} . (3.13)
Therefore, in order to be able to use this theorem, we have to solve the system of equations G A A = I, G B B = I and G A B = 0. As noticed in [START_REF] Pillers | A matrix approach to finding a set of generators and finding the polar (dual) of a class of polyhedral cones[END_REF], this system may have more than one solution and these solution can often by found in the form G A = (A t DA) -1 A t D for some full rank matrix D. If B = 0, then a solution may be found in the simple form

G A = (A t A) -1 A t .

The non-polyhedral case

In the nonpolyhedral case, the computation of the polar may be more difficult except for some standard cases where the polar is well known, like for the Positive Semi-Definite cone. One option to get around this is to find a good polyhedral approximation and apply the formulas from the previous section. We will not enter the details here, but will refer instead the interested reader to [START_REF] Efim | The approximation of convex sets by polyhedra[END_REF].

A quasi-Newton approach for optimising the dual problem

The dual approach assumes that we can easily compute the polar to the cone K. This can be done efficiently using the results in [START_REF] Pillers | A matrix approach to finding a set of generators and finding the polar (dual) of a class of polyhedral cones[END_REF] in the case of polyhedral cones. One very efficient method for this type of nonsmooth problem is the bundle method [START_REF] Hiriart | Convex analysis and minimization algorithms ii: Advanced theory and bundle methods[END_REF]. We will not describe this method here and refer the reader to [START_REF] Hiriart | Convex analysis and minimization algorithms ii: Advanced theory and bundle methods[END_REF] for an very pedagogical introduction. In Algorithm 1, we propose a very simple non-smooth quasi-Newton approach inspired from [START_REF] Yu | A quasi-newton approach to nonsmooth convex optimization problems in machine learning[END_REF].

Before presenting the algorithm, let us recall that the BFGS quasi-Newton update is given by

H (l+1) = H (l) + yy t y t s - H (l) ss t H (l) s t H (l) s (3.14)
with u (l+1) -u (l) and y = ∇θ(u (l+1) ) -∇θ(u (l) ). This gives the inverse formula:

H (l+1) -1 = I - sy t y t s H (l) -1 I - ys t y t s + ss t y t s . ( 3 

.15)

Algorithm 1: The dual quasi-Newton method

1 Initialise with u (1) = u (0) = 0 and

H (1) = I. 2 While u (l+1) -u (l) 2 ≥ ε 3 -Compute X * u (l) using (2.6
) with (2.7) and (2.8) in the degenerate case and (2.9) and (2.10) in the nondegenerate case.

4 -Choose x * u (l) ∈ X * u such that H (l) -1 g (l) = H (l) -1 x * u (l) (3.16)
is a descent direction for θ.

5

-Solve

u (l+1) ∈ argmin u∈K • g (l) , u + 1 2 u, H (l) -1 u .
(3.17)

6

-Update H (l+1) -1 using the quasi-Newton update rule (3.15) 7 End while 8 Output: x (L) = x * u (L) .

Simulation experiments

We ran our method on random instances in dimensions 15000, 20000 and 25000. In these experiments, the conic constraints were sampled randomly from 100 random inequalities with i.i.d. standard Gaussian distribution and the matrix A was chosen randomly from an i.i.d. standard Gaussian distribution. The stopping criterion was set to ε = 1e -4.

The following table shows the average computational time for different problem sizes both for our method and the SPA method of [START_REF] Pinto | Numerical resolution of coneconstrained eigenvalue problems[END_REF]. The symbol '*' stands for 'did not converge in less than 10 times the computation time of our method'.

Problem size 15000 20000 25000 Ave. Comp. time our method (sec) 4167 9563 24356 Ave. Comp. time SPA (sec) * * *

Figure 1 shows how spread the computation time is around the mean. It also shows that some outliers have a much larger computational time.

Application to sensor placement in power grids

In the present section, we describe an application of the conic singular value to the problem of sensor placement in power grids. 

Background on the state estimation problem

Power grids have been a topic of extensive interest lately in the optimisation community. One of the main reason for this surge of activity in the field of power networks stems from the recent interest in estimating the state of the network with as few measurements as possible to the potential inaccessibility of certain points on the grid.

From a mathematical viewpoint, our goal is to estimate a vector V ∈ C n whose components are the voltage values at the various buses on the grid. This vector is observed through noisy quadratic measurements z l , l = 1, . . . , L and are related to V via the following equation.

z l = V * H l V + ε l (4.18)
where ε 1 , . . . , ε L are i.i.d. random variables with distribution N (0, σ 2 ). The reason for these measurements to be quadratic stems from the fact that often times, only power measurements are possible due to budget constraints.

The least squares problem and a Semi-Definite Relaxation

The least squares estimation problem is thus given by min A standard way to obtain a Semi-Definite relaxation is just to relax the rank one constraint. The resulting Semi-Definite Relaxation is given by min

V ∈C N ×N L l=1 z l -trace(H l V V * ) 2 (4.
W ∈C N ×N L l=1 z l -trace(H l W ) 2 s.t. W 0. (4.20)

A real relaxation

In Section 4.4, we intend to study a perturbed version of the Semi-Definite Relaxation. Sensitivity analysis of Semi-Definite Programs has been proposed in a number of works; see [START_REF] Shapiro | First and second order analysis of nonlinear semidefinite programs[END_REF], [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF], [START_REF] Roland W Freund | Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling[END_REF]. However, we are not aware of any sensitivity analysis of complex Semi-Definite Programs. Fortunately, a simple transformation can be performed in order to obtain a real Semi-Definite Program from a complex one; see [START_REF] Michel | Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming[END_REF]. As expected, it suffices to decompose the problem into real and complex parts.

Let H R l (resp. H I l ) denote the real (resp. imaginary) part of H l l = 1, . . . , L. Similarly, let W R (resp. W I ) denote the real (resp. imaginary) part of W . Let us now define the variable W by

W = W R W I -W I W R .
Similarly, let

H l = H R l H I l -H I l H R l l = 1, . . . , L.
Notice that the matrices W and H l enjoy some obvious symmetries. Let us denote by M ⊂ R 2N ×2N the space of such matrices. Finally, for the sake of reducting the redundency, let us define the transformation 

T : M → R N 2 +N (N +1)/
min w∈R 2N (2N +1)/2 1 2 q -Qw 2 2 s.t. T -1 (w) 0 (4.21) 
with

Q = 2 l=1,...,L (T -1 ) * (H l )(T -1 ) * (H l ) t and q = 2 l=1,...,L z l (T -1 ) * (H l )
Proof. Straightforward computation.

If this Semi-Definite Program has a solution w opt such that T -1 (w opt ) has rank one, then,

T -1 (w opt ) = v opt v opt t
and, clearly, v opt is a solution to (4.19).

Sensitivity of the solution

Sensitivity of Nonlinear Semi-Definite Programs such as (4.21) have been studied in many previous works; see e.g. [START_REF] Roland W Freund | Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling[END_REF] and the comprehensive [START_REF] Bonnans | Perturbation analysis of optimization problems[END_REF]. We can also use the main result from [START_REF] Steven | Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions[END_REF] in the particular setting of our Semi-Definite Relaxation. Assume that for all l = 1, . . . ,

z l = T -1 * )(H l ), w 0 + n l
for some vector w 0 ∈ R 2N (2N +1)/2 satisfying the constraint T (w 0 ) 0 and with (n l ) l=1,...,L an i.i.d. sequence of random variables with distribution N (0, σ 2 ). Let

I(w) = ∇ 2 l L (w).
Let G be a Gaussian N (0, I(w 0 ) -1 ) vector and let W be the (random) solution of the following optimization problem

min τ ∈Tang C (w0) 1 2 (Z -τ )I(w 0 )(Z -τ ).
Then, √ L (w * L -w 0 ) → L W.

Optimal design via conic eigenvalue maximisation

Now that the estimation problem has been linearised via Semi-Definite Relaxation and transformed into a real Semi-Definite Program, we can address the problem of finding an optimal design of experiments. For this purpose, we define a selection vector δ ∈ {0, 1} n whose components will specify if a measurement z l is being made (if δ l = 1) or not (if Since, due to the fact that l δ,L (w) is quadratic, I δ,L (w) does not depend on w, we will simply denote it by I δ,L . A straightforward computation (taking into account that δ 2 l = δ l ) gives

δ l = 0). Let l δ,L (w) = L l=1 δ l z l -T -1 * )(δ l H l ), w
I δ,L = 2 L δ l T -1 * )(H l ) T -1 * )(H l ) t .
Recalling that the asymptotic distribution of w * δ,L depends on the behavior of the quadratic form τ t I δ,L τ when τ is subject to lie in the cone Tang C (w 0 ), one of the most adequate objective functions to use is the function σ min (I δ,L , Tang C ) which denotes the smallest 'conic' singular value of I δ,L , i.e. Furthermore, one can easily prove that Tang C (w) = τ | T * P M (u j u t j ) t τ ≥ 0, for all j for (u j ) j=1,...,dim(Ker(T (w))) a basis of Ker(T (w)) .

Given these computations, we obtain that

σ min (M, Tang C ) = min τ 2=1 τ t M τ
under the additional constraint

T * P M (u j u t j ) t τ ≥ 0,
for all j and (u j ) j=1,...,dim(Ker(T (w))) a basis of Ker(T (w)).

The optimal choice of δ then consists in maximizing this smallest conic eigenvalue. Hence, we want to solve max δ∈{0,1} L σ min (I δ,L , Tang C (w 0 )).

(4.25)

One important remark to make at this point is that our criterion takes into account the underlying geometry of the estimation problem via the introduction of the tangent cone to C at w 0 .

Preliminary experiments with a relaxation

We performed some preliminary experiments with a small network. We relaxed the binary constraint to the convex set [0, 1] L and used a level bundle method to optimise the relaxed problem In the application, w 0 is clearly unknown and it has to be replaced with an appropriate estimator ŵ0 . For this purpose, we solved the estimation problem using different estimated values obtained from pseudo-measurements [START_REF] Clements | The impact of pseudo-measurements on state estimator accuracy[END_REF].

An example of the type of result we can obtain is given in the Figure 2 below. This example was obtained using a real network with 150 buses.

This experiment shows that the relaxation based on a conic singular value is able to provide a simple method for sensor placement that takes into account the constraints in the E-optimal-type of design.

Thorough experiments with larger networks will be undertaken in future works on power grid, state estimation and sensor placement based on the smallest singular value criterion.

Conclusion

The goal of the present paper was to propose a fast algorithm for computing the smallest conic singular value of a matrix. The notion of conic singular value has appeared in recent works on compressed sensing as a very natural object to study and might be very useful in other applications as well. Our paper presents the first analysis of the numerical aspects of the smallest conic singular value. We found that the BFGS quasi-Newton method is running fast on simulated data. We will further experiment with real datasets from statistics, design of quadratic experiments and Compressed Sensing in future works.
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