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INTRODUCTION

SAT solvers have been commonly used to solve NPcomplete problems since two decades, and thus have become commonplace in many computing applications (Biere et al., 2021). As an AI application, SAT solvers are now also expected to provide explanations. When an instance is satisfiable, the model found can be given as an explanation, and compressed by reducing it to a prime implicant [START_REF] Déharbe | Computing prime implicants[END_REF]. When the instance is unsatisfiable, giving a good explanation is harder as we have to show that no solution can be found. Some forms of explanation were proposed to prove the unsatisfiability of a formula. For example, we may consider giving to the user a Minimal Unsatisfiable Subset (MUS) [START_REF] Ignatiev | Smallest MUS extraction with minimal hitting set dualization[END_REF], which gives the origin of the unsatisfiability, or a certificate of unsatisfiabiliy expressed in a particular format such as DRAT [START_REF] Wetzler | Drattrim: Efficient checking and trimming using expressive clausal proofs[END_REF]. The latter registers the important steps of a solver and can then be verified by an independent checker. However, these techniques may be of limited interest to the user because, in the first case, there is no guarantee that a MUS is smaller than the complete formula and, in the second case, a certificate can have an exponential number of steps. In both cases, these kinds of proofs cannot be easily understood by a user.

In our case, we only consider unsatisfiable formulas and our goal is to significantly compress the search tree of a solver in order to obtain a proof that is small enough to be given as explanation to the user. We shall focus on finding recurring patterns because of their potentially huge impact on the tree size, and also because they can be explained individually and independently to the user. A cache can be used to recognize these patterns. If the current subformula was already explored and proved unsatisfiable, the current branch can be pruned. Our actual goal is to reduce the size of the explanation, and we do not mind spending much time for this task if in the end we can achieve a good compression. Therefore we do not reject costly techniques such as NP oracles, as long as they let us reduce the proof size.

This paper is organized as follows. In Section 2, we introduce fundamental notions. In Section 3, after an example dedicated to the Pigeon Hole Principle (PHP) problem, we discuss the integration of a cache for unsatisfiable formulas into SAT solvers, considering two solver architectures. Then, we present some experimental results in Section 4. Finally, we conclude and present some future works.

PRELIMINARIES

A Boolean variable v can be either true or false. A literal is either a variable v or its negation ¬v. A clause is a disjunction (or a set) of literals and a formula in Conjunctive Normal Form (CNF) is a conjunction (or a set) of clauses. An assignment is a function from a set of variables to the truth values 0 (for false) or 1 (for true). A clause is satisfied by an assignment if it contains at least one literal l which is assigned true. A formula is satisfied by an assignment if and only if all its clauses are satisfied. Deciding if there exists an assignment that satisfies a given formula in CNF is known as the satisfiability problem (SAT), which is NP-complete [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]. The formula is SAT if it is possible to find such an assignment and it is UN-SAT otherwise. Given an assignment I, F |I denotes the formula simplified by I: satisfied clauses are removed from the formula and falsified literals are removed from the remaining clauses. Given an assignment I, a unit clause is a clause c which contains only one non falsified literal l, therefore l must be assigned true. Clause c can then be considered as the reason for the assignment of l and will be denoted reason(l). Applying this operation until there remains no unit clause is called unit propagation. Extending an assignment with a literal assignment without reason is called a decision. A function DL(l) provides the level at which the literal l has been decided or propagated.

SAT solvers are computer programs able to solve the satisfiability problem. Early SAT solvers able to prove unsatisfiability relied on the Davis Putnam Logemman Loveland (DPLL) architecture [START_REF] Davis | A computing procedure for quantification theory[END_REF][START_REF] Davis | A machine program for theorem-proving[END_REF]. Two decades ago, a new architecture called Conflict Driven Clause Learning (CDCL) [START_REF] Silva | GRASP: A search algorithm for propositional satisfiability[END_REF][START_REF] Moskewicz | Chaff: Engineering an efficient SAT solver[END_REF][START_REF] Eén | An extensible sat-solver[END_REF] appeared and made SAT solvers commodity software oracles for solving NP-Complete problems (Biere et al., 2021). SAT solvers explore a search tree, in which a path from the root to the leaves is a partial assignment, and leaves correspond to falsified clauses (so called a conflict) when the formula is unsatisfiable. While DPLL approaches explore a binary tree by branching on variables truth values, CDCL solvers use conflict analysis and clause learning to drive the search (Marques- [START_REF] Marques-Silva | Conflictdriven clause learning SAT solvers[END_REF].

REDUNDANCY IN SEARCH

Detecting common subtrees in a search tree is not new: in model counters for instance [START_REF] Thurley | sharpsat -counting models with advanced component caching and implicit BCP[END_REF][START_REF] Sang | Combining component caching and clause learning for effective model counting[END_REF], common subtrees are used to cache already computed number of models. In this work, we want to implement a similar idea, but targeting unsatisfiable formulas. In this context, the cache will contain proven UNSAT formulas, which we expect to recognize during the search. An element of the cache is called an entry. The time needed to perform the compression is not important at this stage. We rather investigate the compression capabilities.

Motivating example

Pigeon Hole formulas are a classic unsatisfiable problem famous for being hard for solvers and for featuring lots of symmetries [START_REF] Haken | The intractability of resolution[END_REF]. The problem is to assign n + 1 pigeons to n holes with the constraints that a pigeon has to be associated with one hole and a hole cannot contain more than one pigeon. For this problem, we define the variables x i,k , with i ∈ {1, . . . n + 1} and k ∈ {1, . . . n}, that state that pigeon i is assigned hole k. The first constraint can then be encoded by using a clause of size n for each pigeon:

C 1,n = 1≤i≤n+1 (x i,1 ∨ • • • ∨ x i,n ).
For the second one, we may create all the mutual exclusions between two different pigeons and for a specific hole: When variable x 1,k is assigned true and propagated, we end up with a PHP problem of size n -1. This occurs when we explore the n ways to place the first pigeon. Once the first PHP n-1 subproblem has been explored, it can be added to a cache and the n -1 other subproblems can be recognized. This method can be repeated recursively until the problem PHP 2 is encountered. The latter only needs two branches, a decision and its negation, to be fully explored. Figure 1 illustrates the imbricated PHP subproblems.

C 2,n = 1≤i< j≤n+1 1≤k≤n (¬x i,k ∨ ¬x j,k ). With these considerations, a PHP problem for a value n (PHP n ) is defined as PHP n = C 1,n ∧C 2,n .
As an example, take the problem PHP 4 and a heuristics that negatively decides the first unassigned variable. This heuristics will start by assigning ¬x 1,1 , ¬x 1,2 and ¬x 1,3 . After these three decisions, the clause x 1,1 ∨ x 1,2 ∨ x 1,3 ∨ x 1,4 will propagate x 1,4 . This last assignment will also propagate the literals ¬x 2,4 , ¬x 3,4 , ¬x 4,4 and ¬x 5,4 . We have now to explore the problem PHP 3 . The heuristics will now decide ¬x 2,1 and ¬x 2,2 and this will propagate x 2,3 thanks to the clause x 2,1 ∨ x 2,2 ∨ x 2,3 ∨ x 2,4 . This will also propagate ¬x 3,3 , ¬x 4,3 and ¬x 5,3 . We end up now with the problem PHP 2 . The latter will be fully explored by deciding ¬x 3,1 and then by flipping this decision. The two branches will lead to a conflict. As we have proved the problem PHP 2 UNSAT, we can register it in the cache. When we flip the decision ¬x 2,2 and then ¬x 2,1 , we will obtain each time a problem PHP 2 based on different variables. By looking up the cache, we know that we have already explored the same problem up to a renaming of variables and we can directly conclude that these two branches are unsatisfiable. We can now store the problem PHP 3 and a similar behaviour will happen when flipping the decisions ¬x 1,3 , ¬x 1,2 and ¬x 1,1 . After that, the search will finish and the instance will be considered unsatisfiable. Figure 2 shows the tree obtained with this method. It can be noticed that it contains a single branch with all decisions. In the end, we have 5 isomorphism detections for a total of 7 branches in the search tree.

With this method, it is possible to have a total of ∑ n-1 y=2 y = ((n -2)(n + 1))/2 isomorphism detections for PHP n . Counting the two branches of PHP 2 , we have a total of (((n -2)(n + 1))/2) + 2 branches.

Caching for UNSAT

To generalize the result on the PHP problem, we need to find a way to detect that a given subformula was already found in the search tree. Model counters [START_REF] Gomes | Model counting[END_REF] use such feature to avoid computing again the number of models of a subformula (including the UNSAT case, for which the number of models is 0). To do so, they use a normalized representation of the subformula. The one implemented in the model counter Cachet [START_REF] Sang | Combining component caching and clause learning for effective model counting[END_REF] ensures that two subformulas with the same clauses can be considered identical even if the clauses are not in the same order or if they do not have the same index. However, this technique is not going to work on our PHP example. Indeed, in that case, the subformulas are not identical, they are based on different variables. So we need to support the notion of equality modulo a renaming. There is also a specific issue related to caching UNSAT formulas: a formula is UNSAT if it contains an UNSAT subformula. So we are not just looking for identical formulas, but also for formulas subsumed by one entry in the cache. In that context, the cache can no longer be implemented by a map. We have to check sequentially all the entries which have at least as many clauses of each size as the considered formula. Both features (inclusion and renam-ing) can be implemented by solving an NP-complete Subgraph Isomorphism problem when querying our cache. To do so, formulas are encoded as graphs in a classical way: literals are mapped to nodes of the same color, and clauses are mapped to nodes with a color corresponding to their size. An edge connects opposite literals and a clause is connected to each of its literals. Figure 3 shows an example of this graph representation. Each color is represented here by a different shape. 

3: Graph corresponding to F = (¬x 2 ∨ x 3 ) ∧ (¬x 3 ∨ ¬x 2 ∨ ¬x 1 ) ∧ (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 1 ∨ ¬x 2 ).
Literals are shown as circles, binary/ternary clauses as triangles/squares.

Sources of inconsistency

A node of the search tree is identified by the interpretation I of variables that lead to that node. When the subformula F |I obtained at a node is inconsistent, our goal is to record it in the cache. But obviously, we do not want to store the whole subformula in the cache, but only a hopefully small subset of F |I which is inconsistent. In other words, we want to record an unsatisfiable subset of F |I , but not necessarily a minimal one (MUS) because this would be too costly. Modern SAT solvers are able to provide one source of unsatisfiability of a formula F when it is UNSAT (a so called UNSAT core [START_REF] Zhang | Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications[END_REF]). However, such a core is generally given at the end of search and it corresponds to the complete formula. In contrast, we must generate an unsatisfiable core locally for any node of the tree such that F |I is unsatisfiable. To obtain this unsatisfiable subset, we need to collect the clauses that were identified as conflicts or used in the propagation leading to these conflicts. In the rest of the paper, we shall call sources of an unsatisfiable subformula F |I the initial clauses of F used by the solver to prove the unsatisfiability of F |I . This set will be denoted S(F, I). These sources are easily obtained in the solver by gathering recursively the reason of each propagation leading to the conflicts. This process is in essence the same as conflict analysis in a CDCL solver, except that no resolution step is performed. One important point is that the sources may only contain clauses of the initial formula. In a CDCL solver, if a learned clause appears in the sources, it is replaced by the set of initial clauses that generated it. Formally, sources can be defined as follows. Definition 1. We first define the source of a clause S(C). When C is an initial clause, S(C) = {C}. When L is a learned clause, S(L) is the set of initial clauses of F that appear in the derivation of L by resolution.

Let F |I be an unsatisfiable subformula and let {I 1 , . . . I m } be the set of branches developped by the solver to prove this inconsistency. Each F |I j contains a conflict C j . We define S 0 (F, I j ) = {C j } and S i+1 (F,

I j ) = S i (F, I j ) ∪ {S(reason(l))|l ∈ c ∧ c ∈ S i (F, I j ) ∧ DL(l) ≥ DL(I j )}.
This sequence has a least fixed-point denoted S(F, I j ). At last, the sources S(F, I) of F |I are defined as S(F, I) = ∪ j S(F, I j ).

By construction, S(F, I) |I is unsatisfiable because it contains all the initial clauses used by the solver to prove the inconsistency of F |I . We also have S(F, I) |I ⊆ F |I . Therefore S(F, I) |I is an unsatisfiable core of F |I . In a DPLL-like solver, S(F, I) can be obtained by collecting the sources of the two children nodes S(F, I ∪ {l}) and S(F, I ∪ {¬l}) and adding the clauses that propagated from l a literal that appears in the sources of the children nodes. This point will be discussed in section 3.5. In a CDCL solver, sources are obtained by collecting all clauses used in conflict analysis, and replacing each learned clauses by its sources (i.e. the clauses collected at the conflict that generated this learned clause).

CDCL case

CDCL architecture is currently the state-of-the-art approach for practical SAT solving (Marques- [START_REF] Marques-Silva | Conflictdriven clause learning SAT solvers[END_REF]. It thus makes sense to implement the cache on that architecture. However, this raises several issues. CDCL solvers explore the search space in a non chronological way, since each time it learns a new clause, the solver backtracks to the decision level which propagates a literal thanks to that clause. The example in Figure 4 shows such behavior. Let us consider a propositional formula F = {x ∨y∨z, ¬x ∨y} ∪ F. It is not known if F is satisfiable or not. Let us suppose that the CDCL solver takes some decisions over any variables but x, y, z, then the decision ¬z which deletes the literal z in the first clause. After that, some other decisions are taken and then the solver decides ¬y, which deletes the literal y in the first two clauses. At this point, a conflict will be derived by unit propagation, as we have to satisfy both x and ¬x. After conflict analysis, the solver learns the clause y ∨ z, which is the resolvent of the two first clauses, and backtracks to decision ¬z and directly propagates literal y, which satisfies the two first clauses. Note that the non chronological search will ignore the nodes between decisions ¬y and ¬z. Hence, the satisfiability of the corresponding subformulas remains unknown. In other words, the backtrack step in CDCL does not indicate that the subformulas associated to unexplored nodes are unsatisfiable. This is clear on our example. The decision y could have been taken at any level between the decisions ¬z and ¬y. In that case, the first two clauses would have been satisfied and the satisfiability of the subformula would only depend on the satisfiability of F. This has a consequence in the way we feed our cache: we may add an entry to the cache only when we are assured that the current simplified formula is UNSAT and when this has been proved by the solver. In a CDCL solver, this only occurs when we are at the leaves of the tree, when we meet a conflicting clause. The sources of inconsistency are computed by performing a graph traversal in the implication graph from the conflict clause. Compared to the classical conflict analysis procedure, the information stored in learned clauses is expressed in terms of original clauses. In some ways, the sources we compute "unfold" the learned clauses into original clauses. In practice, as the search progresses, the size of the sources found increases. We create entries in our cache by computing the sources of the leaves simplified using the current decisions and unit propagation. During this simplification, we exclude the literals propagated by a learned clause, otherwise we would always get an empty clause. We made some initial experiments with this setting. We could retrieve a small tree for PHP benchmarks similar to the one shown in Figure 2 by adapting the decision heuristics to branch first positively on variables occurring more frequently in the formula (instead of negatively as in Minisat default heuristics). However, such heuristics does not perform well on the considered benchmarks. Furthermore, we were limited to use our cache in a postprocessing step, because CDCL requires a reason to backtrack. Changing the way the reason is computed changes the exploration of the search space, so may increase the final search tree. Therefore we have considered also the older DPLL approach, which does not suffer from that problem.

DPLL case

In a DPLL-like solver, when the two children of a node corresponding to interpretation I have been explored (one branch for decision l, another one for decision ¬l) and both were unsatisfiable, F |I is known to be unsatisfiable and the sources S(F, I) can be obtained as presented in Section 3.3. S(F, I) simplified by I is unsatisfiable and is added to the cache. When a new node identified by interpretation I is explored, the first step is to look up in the cache if there exists an entry E which is contained in the current formula F |I up to a renaming of literals. If there exists E in the cache and σ a renaming of literals such that σ(E) ⊆ F |I , then F |I is necessarily unsatisfiable since E is unsatisfiable. This test can be translated to the subgraph isomorphism problem (see Section 3.2). If one is found, the set F of clauses of F |I that map to clauses of E is easily obtained by mapping back nodes to clauses. F |I is unsatisfiable but in general F may be satisfiable. Indeed, F has to be supplemented with the clauses required to propagate literals erased in F at the current decision level to obtain an unsatisfiable formula. As an example, let us assume a PHP problem P is encoded with clauses {C 1 ,C 2 , . . . ,C n } and let us consider the formula F defined as {¬x ∨ y, ¬x ∨ ¬y, x ∨ C 1 ,C 2 , . . . ,C n }. Let us also assume the PHP instance P is already present in the cache. Starting from F, when we branch on y, ¬x is propagated, and the simplified formula now contains P which is recognized as an entry of the cache. The clauses of F corresponding to P are F = {x ∨C 1 ,C 2 , . . . ,C n }. When branching on ¬y, we also obtain F = {x ∨C 1 ,C 2 , . . . ,C n } in the same way. However, F is satisfiable because the first clause of P can be neutralized by x. To recover an unsatisfiable formula, we have to add all the clauses used to propagate ¬x on both branches, which means we must add {¬x ∨ y, ¬x ∨ ¬y} to F to get an unsatisfiable formula, which is the source S(F, / 0) and therefore F can now be added as an entry in the cache. It must be emphasized that looking up in the cache has a high cost: we are solving several times an NPcomplete problem. However, since our goal is not to speed up the resolution time but instead to reduce the size of the search tree, it is acceptable to spend a long time in looking up the cache if, in the end, the generated tree is small enough. When a new entry is added in the cache, we can use the greatest decision level present in the sources to perform a backjump. The idea here is to avoid backtracking to the decisions that were not involved in the conflict. These nodes would give us the same entry to add in the cache as the current one. We can then go back to the decision level found that way. If we are back to a decision that has not been flipped already, we flip that decision and otherwise, we add another new entry to the cache and we repeat this procedure. As an example, let us consider a formula that contains clauses {a ∨ b ∨ c, a ∨ b ∨ ¬c, a ∨ ¬b ∨ c, a ∨ ¬b ∨ ¬c} and the interpretation I = ¬a, x, y, z . Then branching on b and ¬b will both yield a conflict, which means that F |I is unsatisfiable as well as S(F, I) = {a ∨ b ∨ c, a ∨ b ∨ ¬c, a ∨ ¬b ∨ c, a ∨ ¬b ∨ ¬c}. As long as a is not flipped, these unsatisfiable clauses remain in the formula, therefore we may backtrack to decision level 1. Note that, even if this backjump technique is similar to the conflict analysis of CDCL solvers, there are still some differences. First we do not perform any resolution step, hence have no cut in the implication graph (UIP). Second, we are only allowed to skip the subtrees that are known to be unsatisfiable. Another difference here is the fact that the clauses used during a conflict analysis are an explanation of the learned clause whereas the sources are an explanation of the unsatisfiability of the subformula.

EXPERIMENTAL RESULTS

We implemented the proposed approaches on top of Minisat [START_REF] Eén | An extensible sat-solver[END_REF]. We disabled database simplification to keep the original clauses during the whole search. We also disabled restarts which build a sequence of search trees. For the DPLL approach, we also disabled clause learning and conflict analysis. The latter is replaced by a dedicated procedure used to collect the sources. The activity of a variable, which is updated for each new learned clause in classical CDCL solver, is updated each time a new clause is added to the sources in our context. For the CDCL approach, we have both the conflict analysis procedure and the sources computation procedure (the heuristics and clause learning is unchanged compared to Minisat). The Glasgow Subgraph Solver (GSS for short) [START_REF] Mccreesh | The glasgow subgraph solver: Using constraint programming to tackle hard subgraph isomorphism problem variants[END_REF] is called to compute subgraph isomorphism, i.e. to query our cache. We used benchmarks from the the SAT'02 (submitted part) [START_REF] Simon | The SAT2002 competition[END_REF] and SAT'03 (handmade and industrial parts) (Le Berre and [START_REF] Le Berre | The essentials of the SAT 2003 competition[END_REF] competitions. We selected those benchmarks because we needed "easy" benchmarks for Minisat since our approach has a high computational complexity. A summary of our results is found in Table 1. Minisat is obviously much more efficient than our postprocessing/integrated caching approaches (described later) due to the high cost of our cache. DPLL with postprocessing is clearly less effi-Table 1: Summary of our experiments. For each competition, we give the number of instances known to be UNSAT and the number of instances solved by MiniSat within 1 minute (easy instances). Then, we give the number of instances solved in each experiment. The number between parenthesis indicates the number of single branch search trees that were found. cient than CDCL with postprocessing on those benchmarks. However, integrating the cache directly inside the DPLL solver provides significantly better results than CDCL with postprocessing. It even allows to solve benchmarks that Minisat cannot solve in 4 hours (e.g. instances from the Urquhart families).

Postprocessing traces

In this section, we are interested in the compression potential of our approach. It is thus necessary to compare the tree with and without caching. The only way to do so is to first solve the problem and to store the search tree and second to run the caching mechanism on the stored tree. That way, it is easy to compare the original tree and the tree obtained using caching.

In practice, storing the search tree can lead to huge files, so we simulate the postprocessing directly on the solver. We impose a timeout of 2 seconds for each call to GSS when trying to identify a subgraph isomorphism. We ran both DPLL and CDCL approaches with a timeout of 15 minutes on our benchmarks. Some individual results of these experiments on a few families of benchmarks can be seen in Table 2. We compare the numbers of conflicts, thus the number of branches, of both search trees. The ratio between these two numbers represents the compression power of our approach. The size of an instance is the sum of its clauses length. A distribution of the ratios obtained by both approaches can be found in Table 3.

The compression ratio can be very good (less than 10 -3 ), especially for the CDCL approach. Unfortunately, it only happens on a small subset of the benchmarks, mainly marg, Urquhart and xor chain families, which are highly structured. For the DPLL approach, the postprocessor behaved on PHP problems mainly as expected and described in section 3.1. The only difference comes from the heuristics used in Minisat, which negatively decides the first variable and then negatively decides the variables starting by the last one and in decreasing order. So, after the problem PHP n-1 has been added into the cache, it is recognized n -1 times with the first variable assigned (this problem has been added just before PHP n-1 ). This problem is also recognized when flipping the first decision. This behaviour creates an additional branch and so, the number of branches found differs by one from the expected number of branches. Concerning the instances from the SAT competitions, from the families marg, Urquhart and xor chain, we have often obtained a single branch search tree as shown in Figure 2. For these instances, when the solver adds a new entry to the cache after a certain decision, it is often recognized after the negation of that decision. This allows us to prune a lot of branches and this explains the good ratios we have obtained. It is not strictly the case for some instances (e.g. marg2x6.cnf and x1 16.cnf) but we have obtained very short trees for them. As an example, Figure 5 shows the search tree obtained by our approach when the cache system is used in both the DPLL and CDCL approaches. The purple boxes represent the addition of a new entry in the cache and the green boxes correspond to the recognition of an entry. The label "i x" means that the element registered at "cache x" has been recognized. 

Solver with integrated cache

As a second experiment, we used the cache during the search itself. We could only provide a DPLL implementation, since generating a conflict clause from a cache hit is an open question at this stage. We considered the same instances as before and still with a timeout of 15 minutes per benchmark. A relevant excerpt of the results is shown in Table 4. In a total of 95 instances, the solver develops a single branch tree as shown in Figure 2. The good compression previously obtained for the families marg, Urquhart and xor chain is still found, also on larger instances. We observed that the DPLL solver with integrated cache can solve in less than 15 minutes some instances that Minisat is unable to solve in more than 4 hours. This is the case for some SAT'02 Urquhart crafted instances for example. Stopping the search as soon as a cache entry is detected allows to solve much more instances than the original DPLL, notably in the families tested in the first experiment. However, the size of the cache only increases and as it becomes bigger and bigger during the search, trying to recognize an entry of the cache can become very expensive, even with the timeout of 2 seconds. Moreover, as the subformulas can be very big as well, finding an isomorphism may take more time than the imposed limit. On large instances, some calls to GSS may be aborted and we may miss some existing isomorphisms, hence some possible compression. This occurs for example on problems bigger than PHP 16 .

CONCLUSION

Our goal in this work is to prune as much as possible the branches of an UNSAT search tree to reduce its size. To do so, we have proposed a cache inspired by what already exists for model counters. The idea is to register some UNSAT subformulas and to try to recognize them later in the search tree in order to avoid exploring several similar subparts of the tree. We have presented a syntactic method based on the detection of subgraph isomorphisms. We have seen that it is possible to obtain rather good compression ratios and short proof sizes and even a single branch search tree for some families of instances, notably those with a lot of symmetries or similarities but it is still unclear if this approach may work on a wide set of instances.

We proposed an implementation of this cache on both the DPLL and CDCL architectures. If the latter provided promising results, it currently does not scale well because we could only implement it as a postprocessing step. The integration of the cache directly in the DPLL solver allowed to reduce drastically many more search trees, including some cases for which Minisat could not even solve the problem. Unfortunately, generating a conflict clause from a cache hit is an open question at this stage. Some ways to improve our approach can be considered. First of all, we have considered an approach based on the management of a cache but we do not have implemented the possibility to delete entries that do not seem useful. This operation is also available in model counters to avoid exceeding a specific memory limit. This could be a good addition to our approach. We have only considered two heuristics (the one of Minisat and a variant). But some other heuristics could be tried, for instance the ones used in model counters. Concerning the detection of subgraph isomorphisms, it may be interesting to collect some information during a call to GSS and try to use it in future calls. Moreover, we are interested in detecting entries of the cache where some literals are falsified, since these are unsatisfiable too. Indeed, one of the reason why CDCL does not often produce a single branch tree is that the current subformula is not directly an entry in the cache but one with falsified literals. Finally, we are looking for other forms of redundancy in order to compress UNSAT trees in a more general situation.
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 1 Figure 1: Pigeon Hole Principle problem of size n.
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 2 Figure 2: Expected single branch when solving the problem PHP 4 . The propagations have been omitted.
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  Figure 3: Graph corresponding toF = (¬x 2 ∨ x 3 ) ∧ (¬x 3 ∨ ¬x 2 ∨ ¬x 1 ) ∧ (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 1 ∨ ¬x 2 ).Literals are shown as circles, binary/ternary clauses as triangles/squares.
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 4 Figure 4: Example to illustrate the problem induced by CDCL non chronological search.
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 5 Figure 5: Search tree for marg2x2.cnf with caching.

Table 2 :

 2 Experimental results about the compression power of our approach. For each instance, we provide its size in number of literals, and the number of conflicts found with and without caching for both DPLL and CDCL approaches. A dash denotes a timeout. The compression ratio is the number of conflicts with caching divided by the number of conflicts without caching.

			DPLL-like (postprocessing)	CDCL (postprocessing)
	Instance	Size	Conflicts	Conflicts Compression	Conflicts	Conflicts Compression
			(no cache)	(cache)	Ratio	(no cache)	(cache)	Ratio
	PHP 7	448	6.8 10 3	23	3.4 10 -3	5.6 10 3	853	1.5 10 -1
	PHP 12	2,028	-	-	-	-	-	-
	marg2x6.sat03-1444	528	5.2 10 5	21	4.0 10 -5	3.0 10 4	20	6.6 10 -4
	marg3x3add8.sat03-1449 1,056	-	-	-	1.8 10 5	32	1.8 10 -4
	Urquhart-s3-b9	1,240	5.1 10 5	20	3.9 10 -5	1.9 10 4	21	1.1 10 -3
	Urquhart-s3-b3	2,152	-	-	-	1.6 10 6	29	1.8 10 -5
	x1 16	364	6.0 10 4	18	3.0 10 -4	2.2 10 3	20	9.1 10 -3
	x1 24	556	-	-	-	2.0 10 5	78	3.9 10 -4
	3col20 5 6	646	33	20	6.0 10 -1	27	27	1
	3col40 5 5	1,286	756	198	2.6 10 -1	118	72	6.1 10 -1
	homer06	1,800	5.1 10 5	195	3.8 10 -4	-	-	-
	homer17	3,718	-	-	-	-	-	-

Table 3 :

 3 Distribution of the ratios for the postprocessing techniques for the DPLL and CDCL approaches.

	Ratio	Unsolved [1;0.75[ [0.75;0.5[ [0.5;0.25[ [0.25;10 -1 [ [10 -1 ;10 -2 [ [10 -2 ;10 -3 [ ≤ 10 -3
	DPLL	524	4	5	11	11	5	6	13
	CDCL	462	38	13	5	3	6	7	45

Table 4 :

 4 Experimental results when the cache is used during the search. For each instance, we give the numbers of conflicts, of entries of the cache, of calls to GSS that found an isomorphism as well as the total number of calls. The number between parenthesis indicates the number of different entries of the cache recognized by isomorphism. We also provide the time spent by the solver (without isomorphism detection) and the cumulated time of all the calls to GSS. All times are in seconds.

			DPLL-like (integrated cache)		
	Instance	Conflicts Cache size	Subgraph	Calls	Time	Time
				Isomorphisms		(Search)	(GSS)
	PHP 7	23	22	21 (6)	21	0.007	0.180
	PHP 12	68	67	66 (11)	66	0.071	5.728
	PHP 16	122	121	120 (15)	120	0.274	63.741
	marg2x6.sat03-1444	21	20	17 (17)	18	0.004	0.162
	marg3x3add8.sat03-1449	26	25	22 (22)	24	0.024	0.813
	marg6x6.sat03-1456	86	85	84 (84)	84	0.134	7.446
	Urquhart-s3-b9	20	19	18 (18)	18	0.009	0.175
	Urquhart-s3-b3	29	28	27 (27)	27	0.024	0.486
	Urquhart-s5-b5	94	93	92 (91)	101	0.292	36.967
	x1 16	18	17	14 (14)	42	0.005	0.419
	x1 24	25	24	23 (23)	23	0.037	0.779
	x2 80.sat03-1605	395	394	393 (318)	2,257	0.919 427.492
	3col20 5 6	12	11	6 (3)	31	0.004	0.178
	3col40 5 5	357	319	235 (41) 52,583	1.451 564.310
	homer06	111	105	98 (27)	420	0.495 116.096
	homer17	363	348	352 (92)	1,691	3.249 712.465
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