
Thibaut Cuvelier
February 23, 2023

OR-Tools' Vehicle Routing
Solver:
A Generic Constraint-Programming Solver with
Heuristic Search for Routing Problems (VRPs)

01

Agenda
02

03

Operations research @ Google

VRP modelling

VRP solving

Operations research @ Google
01

● Team based in Paris (FR) and Cambridge (US)
● Started in 2008
● One mission: optimise Google

○ Initially: route vehicles to create the Street View data base efficiently
○ Now: also datacenter design, robotics
○ Vehicle routing is also available on Google Cloud

https://cloud.google.com/optimization

https://cloud.google.com/optimization

OR-Tools
● Core solver technology: OR-Tools

○ In-house CP and linear solvers — CP-SAT has won many MiniZinc gold medals!
○ Generic modelling layer, access to MIP solvers
○ Routing modelling layer

● Open-source software since 2010 (Apache 2.0 license)
● Written in C++, accessible from Python, Java, C#

https://github.com/google/or-tools/

https://github.com/google/or-tools/

Vehicle-routing modelling
02

Vehicle routing (VRP): given a fleet of vehicles, find routes to serve clients
● Generalises the travelling salesperson problem
● Applies to deliveries, pickup-and-delivery, field-service management, carsharing,

etc.
● Many complex constraints: time windows (hard/soft), vehicle capacities, visit

alternatives…

Modelling concepts
● OR-Tools offers a few orthogonal concepts for modelling:

○ Weighted graph (of which one or more depots)
○ Vehicles
○ Dimensions: anything that accumulates or dissipates on a route:

distance, time, weight, etc.
When going from i to j:

cumul(j) = cumul(i) + transit(i, j) + slack(i)

● If that’s not enough: the model is built atop a CP model

How to model a TSP?
Travelling salesperson problem:
● Weighted graph
● One vehicle
● No capacities
● No time

Model:
● Index manager: maps indices between

nodes and internal variables
● Actual model
● Callback for distances

RoutingIndexManager manager(num_nodes,
 /*num_vehicles=*/1, /*depot=*/1);
RoutingModel routing(manager);

const int dist_callback_index =
 routing.RegisterTransitCallback(
 [&dist, &manager](int from, int to) {
 return dist(
 manager.IndexToNode(from).value(),
 manager.IndexToNode(to).value());
 });
routing.SetArcCostEvaluatorOfAllVehicles(
 dist_callback_index);

auto solution = routing.Solve();

https://developers.google.com/optimization/routing/tsp

https://developers.google.com/optimization/routing/tsp

How to model a CVRP?
Capacitated vehicle-routing problem:
● Weighted graph
● Vehicles with capacities

Model:
● Callback for demand values
● New dimension: demand, for capacities

No slack: hard constraint

RoutingIndexManager manager(num_nodes,
 num_vehicles, /*depot=*/1);
RoutingModel routing(manager);

const int node_demand_callback_index =
 model->RegisterUnaryTransitCallback(
 [&demand, &manager](int i) {
 return demand[
 manager->IndexToNode(i).value()];
});
model->AddDimension(
 node_demand_callback_index,
 /*slack_max=*/0,
 /*capacity=*/max_capacity,
 /*fix_start_cumul_to_zero=*/false,
 /*name=*/‘Demand’);

auto solution = routing.Solve();

https://developers.google.com/optimization/routing/cvrp

https://developers.google.com/optimization/routing/cvrp

How to model a VRPTW?
Vehicle-routing problem with time windows:
● Weighted graph
● Vehicles with no capacity
● Visits with time windows:

Model:
● Callback for arc lengths
● New dimension: time

Slack: waiting time
● Variable bounds: time windows

const int max_end_time = …;
const int arc_length =
 model->RegisterTransitCallback(…);
model->AddDimension(
 arc_length,
 /*slack_max=*/max_end_time,
 /*capacity=*/max_end_time,
 /*fix_start_cumul_to_zero=*/false,
 "Time");
RoutingDimension* time_dimension =
 model->GetMutableDimension("Time");

for (NodeIndex node(0);
 node < manager->num_nodes(); ++node) {
 const int index =
 manager->NodeToIndex(node);
 IntVar* const cumul =
 time_dimension->CumulVar(index);
 cumul->SetMin(time_start(node));
 cumul->SetMax(time_end(node));
}

https://developers.google.com/optimization/routing/vrptw

https://developers.google.com/optimization/routing/vrptw

Vehicle-routing solving
03

Solving is done in three steps:
● First-solution heuristics
● Local search and metaheuristics
● Feasibility check

● Goal: generate a first set of routes
○ Hopefully feasible
○ Possibly, not many visits performed

● Many techniques, including:
○ Incremental route creation: cheapest arc, most constrained arc
○ Savings, sweep, Christofides

First-solution heuristics

● Local-search operators to improve a solution:
○ Intra-route neighbourhoods (like a TSP)
○ Inter-route neighbourhoods (between routes)
○ Large neighbourhoods (LNS)

● Metaheuristic to guide the search:
○ Guided local search (most effective, usually)
○ Tabu search, simulated annealing

Local search and metaheuristics

● Local-search operators ignore constraints!
○ Extremely quick filters reject infeasible neighbours
○ Very few false positives, but extremely quick

● After the search: CP engine to check for constraint satisfaction

● If you want: tree exploration to prove optimality

Constraint satisfaction

Final words
04

● OR-Tools' Vehicle Routing Solver is a complete vehicle-routing library
○ Focus on rich problems: many constraints
○ High-level modelling interface,

access to the underlying CP model if you need
○ Apache 2.0 license: https://github.com/google/or-tools

● Base of Google Cloud’s Cloud Fleet Routing
○ Major differences: integration with Google Maps for distances, automatic

decomposition for large instances
https://cloud.google.com/blog/products/ai-machine-learning/

google-cloud-optimization-ai-cloud-fleet-routing-api

https://github.com/google/or-tools
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-optimization-ai-cloud-fleet-routing-api
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-optimization-ai-cloud-fleet-routing-api

Thank You
Thibaut Cuvelier
Software engineer

