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Operations research @ Google
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● Team based in Paris (FR) and Cambridge (US)
● Started in 2008
● One mission: optimise Google

○ Initially: route vehicles to create the Street View data base efficiently
○ Now: also datacenter design, robotics
○ Vehicle routing is also available on Google Cloud

https://cloud.google.com/optimization 

https://cloud.google.com/optimization


OR-Tools
● Core solver technology: OR-Tools

○ In-house CP and linear solvers — CP-SAT has won many MiniZinc gold medals!
○ Generic modelling layer, access to MIP solvers
○ Routing modelling layer

● Open-source software since 2010 (Apache 2.0 license)
● Written in C++, accessible from Python, Java, C#

https://github.com/google/or-tools/ 

https://github.com/google/or-tools/


Vehicle-routing modelling
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Vehicle routing (VRP): given a fleet of vehicles, find routes to serve clients
● Generalises the travelling salesperson problem
● Applies to deliveries, pickup-and-delivery, field-service management, carsharing, 

etc.
● Many complex constraints: time windows (hard/soft), vehicle capacities, visit 

alternatives… 



Modelling concepts
● OR-Tools offers a few orthogonal concepts for modelling:

○ Weighted graph (of which one or more depots)
○ Vehicles
○ Dimensions: anything that accumulates or dissipates on a route: 

distance, time, weight, etc. 
When going from i to j:

cumul(j) = cumul(i) + transit(i, j) + slack(i)

● If that’s not enough: the model is built atop a CP model



How to model a TSP? 
Travelling salesperson problem:
● Weighted graph
● One vehicle
● No capacities
● No time

Model: 
● Index manager: maps indices between 

nodes and internal variables
● Actual model
● Callback for distances

RoutingIndexManager manager(num_nodes,
  /*num_vehicles=*/1, /*depot=*/1);
RoutingModel routing(manager);

const int dist_callback_index =
  routing.RegisterTransitCallback(
    [&dist, &manager](int from, int to) {
      return dist(
        manager.IndexToNode(from).value(),
        manager.IndexToNode(to).value());
  });
routing.SetArcCostEvaluatorOfAllVehicles(
  dist_callback_index);

auto solution = routing.Solve();

https://developers.google.com/optimization/routing/tsp 

https://developers.google.com/optimization/routing/tsp


How to model a CVRP? 
Capacitated vehicle-routing problem:
● Weighted graph
● Vehicles with capacities

Model: 
● Callback for demand values
● New dimension: demand, for capacities

No slack: hard constraint

RoutingIndexManager manager(num_nodes,
  num_vehicles, /*depot=*/1);
RoutingModel routing(manager);

const int node_demand_callback_index =
  model->RegisterUnaryTransitCallback(
    [&demand, &manager](int i) {
     return demand[
       manager->IndexToNode(i).value()];
});
model->AddDimension(
  node_demand_callback_index,
  /*slack_max=*/0,
  /*capacity=*/max_capacity,
  /*fix_start_cumul_to_zero=*/false,
  /*name=*/‘Demand’);

auto solution = routing.Solve();

https://developers.google.com/optimization/routing/cvrp  

https://developers.google.com/optimization/routing/cvrp


How to model a VRPTW? 
Vehicle-routing problem with time windows:
● Weighted graph
● Vehicles with no capacity
● Visits with time windows: 

Model: 
● Callback for arc lengths
● New dimension: time

Slack: waiting time
● Variable bounds: time windows

const int max_end_time = …;
const int arc_length =
    model->RegisterTransitCallback(…);
model->AddDimension(
  arc_length,
  /*slack_max=*/max_end_time,
  /*capacity=*/max_end_time,
  /*fix_start_cumul_to_zero=*/false,
  "Time");
RoutingDimension* time_dimension =
  model->GetMutableDimension("Time");

for (NodeIndex node(0);
    node < manager->num_nodes(); ++node) {
  const int index =
    manager->NodeToIndex(node);
  IntVar* const cumul =
    time_dimension->CumulVar(index);
  cumul->SetMin(time_start(node));
  cumul->SetMax(time_end(node));
}

https://developers.google.com/optimization/routing/vrptw  

https://developers.google.com/optimization/routing/vrptw


Vehicle-routing solving
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Solving is done in three steps: 
● First-solution heuristics
● Local search and metaheuristics
● Feasibility check



● Goal: generate a first set of routes
○ Hopefully feasible
○ Possibly, not many visits performed

● Many techniques, including:
○ Incremental route creation: cheapest arc, most constrained arc
○ Savings, sweep, Christofides

First-solution heuristics



● Local-search operators to improve a solution:
○ Intra-route neighbourhoods (like a TSP)
○ Inter-route neighbourhoods (between routes)
○ Large neighbourhoods (LNS)

● Metaheuristic to guide the search:
○ Guided local search (most effective, usually)
○ Tabu search, simulated annealing

Local search and metaheuristics



● Local-search operators ignore constraints!
○ Extremely quick filters reject infeasible neighbours
○ Very few false positives, but extremely quick

● After the search: CP engine to check for constraint satisfaction

● If you want: tree exploration to prove optimality

Constraint satisfaction



Final words
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● OR-Tools' Vehicle Routing Solver is a complete vehicle-routing library
○ Focus on rich problems: many constraints
○ High-level modelling interface,

access to the underlying CP model if you need
○ Apache 2.0 license: https://github.com/google/or-tools 

● Base of Google Cloud’s Cloud Fleet Routing
○ Major differences: integration with Google Maps for distances, automatic 

decomposition for large instances
https://cloud.google.com/blog/products/ai-machine-learning/ 

google-cloud-optimization-ai-cloud-fleet-routing-api

https://github.com/google/or-tools
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-optimization-ai-cloud-fleet-routing-api
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-optimization-ai-cloud-fleet-routing-api
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