

Influence of dendrites orientation on the high-temperature oxidation behaviour of cast nickel alloys

Patrice Berthod, Sébastien Noël, Emilie Guestin-Grandmougin, Lionel Aranda, Christophe Rapin, Renaud Podor

▶ To cite this version:

Patrice Berthod, Sébastien Noël, Emilie Guestin-Grandmougin, Lionel Aranda, Christophe Rapin, et al.. Influence of dendrites orientation on the high-temperature oxidation behaviour of cast nickel alloys. Eurocorr 2005, Sep 2005, Lisboa, Portugal. hal-04015348

HAL Id: hal-04015348 https://hal.science/hal-04015348

Submitted on 5 Mar 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFLUENCE OF DENDRITES ORIENTATION ON THE HIGH-TEMPERATURE OXIDATION BEHAVIOUR OF CAST NICKEL ALLOYS

P. BERTHOD, S. NOËL, E. GRANDMOUGIN, L. ARANDA, C. RAPIN, R. PODOR Laboratoire de Chimie du Solide Minéral-UMR 7555 Université Henri Poincaré Nancy 1 54506 Vandoeuvre-Les-Nancy - FRANCE

The local high temperature oxidation behaviour of conventionally cast metallic alloys can depend on the orientation of the dendritic structure, i.e. how grain boundaries are oriented. Such a dependence was previously observed on Co-base and Ni-base superalloys. This effect was studied here for two simple Ni-30Cr-C alloys, and two more complex Ni-30Cr-C-Ta alloys.

EXPERIMENTAL PROCEDURE

 \rightarrow Elaboration by HF induction melting of 100g ingots

 \rightarrow Two cutting modes to obtain a sample with an external

either parallel

surface

or perpendicular

Uncoupling of the 2 global Kp to obtain local Kp $_{\prime\prime}$ et Kp $_{\perp}$

to dendrites

Chemical compositions for the four alloys						
(% _w)	Ni	Cr	Та	С		
А	Bal.	29.5	/	≅ 0.2		
В	Bal.	29.2	/	≅ 0.8		
С	Bal.	30.0	2.0	≅ 0.2		
D	Bal.	30.0	5.4	≅ 0.4		

THERMOGRAVIMETRY RESULTS

however it was always possible to estimate the parabolic constant)

Dendritic orientation may have an influence on the local oxidation rate, but depends on the chemical composition and on temperature ; for example:

 \rightarrow faster oxidation of Ni30CrC alloys at 1000°C for the parallel orientation but no such differences at 1100°C

 \rightarrow no differences for Ni30CrCTa alloys at 1000°C but faster oxidation for Alloy D (0.4C 5.4Ta) at 1100°C for the perpendicular orientation

Good fit of the real mass gain curves by model curves based on the calculated $\,Kp_{/\!/}\,et\,Kp_{\perp}$

The high temperature oxidation behaviour of cast alloys may depend on the average dendritic orientation, i.e. where and how pieces were machined in the castings. For the studied alloys, differences are often small but there are some cases for which dendritic orientation really influences the resistance against oxidation, It can be useful to always cut the samples following the same geometry and orientation to better compare cast alloys to each other.

CENTRE NATIONAL

DE LA RECHERCHE SCIENTIFIQUE

			100000	110000
	Alloy	Orientation	1000°C	1100°C
		Kp para	12 E-12	43 E-12
	Alloy A (Ni-30Cr-0.2C)	Kp perp	4.9 E-12	33 E-12
		Kp para	10 E-12	48 E-12
	Alloy B (Ni-30Cr-0.8C)	Kp perp	7.4 E-12	69 E-12
		Kp para	4.4 E-12	43 E-12
	Alloy C (Ni-30Cr-0.2C-3Ta)	Kp perp	3.0 E-12	40 E-12
		Kp para	2.7 E-12	27 E-12
	Alloy D (Ni-30Cr-0.4C-6Ta)	Kp perp	3.6 E-12	55 E-12

