
HAL Id: hal-04015264
https://hal.science/hal-04015264v2

Submitted on 6 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cartesian Coherent Differential Categories
Thomas Ehrhard, Aymeric Walch

To cite this version:
Thomas Ehrhard, Aymeric Walch. Cartesian Coherent Differential Categories. Thirty-Eighth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), Jun 2023, Boston (MA), United States.
�hal-04015264v2�

https://hal.science/hal-04015264v2
https://hal.archives-ouvertes.fr

Cartesian Coherent Differential Categories

Thomas Ehrhard

Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Aymeric Walch

Universié Paris Cité, CNRS, IRIF, F-75013, Paris, France

June 6, 2023

Abstract

We extend to general cartesian categories the idea of Coherent Differentiation re-

cently introduced by Ehrhard in the setting of categorical models of Linear Logic.

The first ingredient is a summability structure which induces a partial left-additive

structure on the category. Additional functoriality and naturality assumptions on this

summability structure implement a differential calculus which can also be presented in

a formalism close to Blute, Cockett and Seely’s cartesian differential categories. We

show that a simple term language equipped with a natural notion of differentiation can

easily be interpreted in such a category.

Contents

Introduction 2

1 Left summability structure 4

1.1 Left pre-summability structures . 4
1.2 Left summability structures . 6
1.3 Comparison with summability structures . 7

2 Differential 8

2.1 Differential Structure . 8
2.2 Linearity . 9
2.3 The Differentiation Monad . 11

3 Interpreting the axioms as properties of the derivative 12

4 Compatibility with the cartesian product 15

4.1 Cartesian product and summability structure 16
4.2 Cartesian product and differential structure 17
4.3 Partial derivatives . 18
4.4 Generalization to arbitrary finite products . 19
4.5 Multilinear morphism . 20

5 Kleisli category of the exponential of a model of LL 24

5.1 Coherent differentiation in a linear setting . 24
5.2 The example of probabilistic coherence spaces 27

1

6 Link with cartesian differential categories 29

6.1 Cartesian left additive categories . 29
6.2 Cartesian differential categories . 29

7 A first order coherent differential language 30

7.1 Terms . 31
7.2 Semantics . 33
7.3 Reduction . 34

Introduction

This article is a long version of a paper, with the same title and by the same authors,
accepted at the ACM/IEEE Symposium on Logic in Computer Science 2023. In particular,
all the proofs which are missing in the conference version are provided in the present article.

Linear Logic (LL) and its models [1] strongly suggest that differentiation of proofs should
be a natural operation extracting their best “local” linear approximation. Remember that
for any E,F Banach spaces, f : E → F is differentiable at x ∈ E if there is a neighborhood
U of 0 in E and a linear and continuous function ϕ : E → F such that, for all u ∈ U

f(x+ u) = f(x) + ϕ(u) + o(‖u‖) . (1)

When ϕ exists, it is unique and is denoted as f ′(x). When f ′(x) exists for all x ∈ E, the
function f ′ : E → L(E,F), where L(E,F) is the Banach space of linear and continuous
functions E → F , is called the differential of f . This function can itself admit a differential
and so on. When all these iterated differentials exist one says that f is smooth and the
nth derivative of f is a function f (n) : E → Ln(E,F) where Ln(E,F) is the space of
n-linear symmetric functions En → F . It can even happen that f is locally (or even
globally) expressed using its iterated derivatives by means of the Taylor Formula f(x+u) =∑∞

n=0
1
n!f

(n)(x)(u, . . . , u); when this holds locally at any point x, f is said to be analytic.
Based on categorical models of LL where morphisms are analytic functions, the differen-

tial λ-calculus and differential LL provide a logical and syntactical account of differentiation.
A program of type A⇒ B can be turned into a program of type A⇒ (A⊸ B). This pro-
vides a new approach of finite approximations of functions by a syntactical version of the
Taylor Formula which has shown relevance in the study of the λ-calculus and of LL. Differ-
entiation is deeply connected with addition, as it can already be seen in its definition Eq. (1).
This connection also appears when writing the differential of f : Rn → R as a sum of partial
derivatives:

f ′(x1, . . . , xn) · (u1, . . . , un) =
n∑

i=1

∂f(x1, . . . , xn)

∂xi
ui

and, of course, in the Taylor formula itself. For this reason, until recently, all categorical
models of the differential λ-calculus and of differential LL [2,3] were using categories where
hom-sets have a structure of commutative monoid and both formalisms feature a formal
and unrestricted addition operation on terms or proofs of the same type. The only available
operational interpretation of such a sum being erratic choice, these formalisms are inherently
non-deterministic.

Recently, the first author observed [4] that, in a setting where all coefficients are non-
negative, differentiation survives to strong restrictions on the use of addition. Consider
for instance a function [0, 1] → [0, 1] which is smooth on [0, 1) and all of whose iterated

2

derivatives are everywhere ≥ 01. If x, u ∈ [0, 1] are such that x + u ∈ [0, 1] then f(x) +
f ′(x)u ≤ f(x + u) ∈ [0, 1] (this makes sense even if f ′(1) = ∞, which can happen: take
f(x) = 1−

√
1− x). So if S is the set of all such pairs (x, u) that we call summable, we can

consider the function D̃(f) : (x, u) 7→ (f(x), f ′(x)u) as a map S → S. This basic observation
is generalized in [5] to a wide range of categorical models L of LL including coherence spaces,
probabilistic coherence spaces etc. where hom-sets have only a partially defined addition. In
these summable categories, S becomes an endofunctor L → L equipped with an additional
structure which allows to define summability and (partial) sums in a very general way and
turns out to induce a monad. Differentiation is then axiomatized as a distributive law
between this monad (similar to the tangent bundle monad of a tangent category [6]) and
the resource comonad !_ of the LL structure of the category2 L. Indeed, this distributive

law allows one to extend S to L! the Kleisli category of !_ and this extension D̃ : L! → L!

turns out to be a monad which has all the required properties of differentiation.
It is well known that L! is a cartesian closed category, and it can be interesting to drift

away from the LL structure of L by only looking at the structure of its Kleisli category. This
is what happened with differentiation. It was first axiomatized in a typical LL setting with
additive categories and differential categories [2]. It was then carried to the setting of carte-
sian categories with left-additive categories and cartesian differential categories (CDC) [3].
Unsurprisingly, the Kleisli categories of the former provide instances of the latter, but carte-
sian differential categories cover a wider range of models. As mentionned in [5], differential
categories can be seen as a special instance of summable categories equipped with differen-
tiation (we will call those coherent differential categories) in which addition is unrestricted.
Naturally, we can wonder if there is a notion of cartesian coherent differential categories,
that arise as the Kleisli categories of coherent differential categories, and that generalize
CDC to a partial setting.

We provide a positive answer to this question. We define coherent differentiation in
an arbitrary category, whose morphisms are intuitively considered as smooth. So we start
from a category C equipped with a map3 D̃ : Ob(C) → Ob(C) given together with morphisms

π0,X , π1,X , σX ∈ C(D̃(X), X) (for eachX ∈ Obj(C)). The intuition is that D̃(X) is the object
of summable pairs of elements of X , that πi are the obvious projections and that σ computes
the sums. We assume π0, π1 to be jointly monic and this is sufficient to say when f0, f1 ∈
C(X,Y) are summable: this is when there is a necessarily unique h ∈ C(X, D̃(Y)) such that
πi ◦ h = fi and when this holds we set f0 + f1 = σ ◦ h. Under suitable assumptions this
very light structure suffices to equip hom-sets of C with a structure of partial commutative
monoid which is compatible with composition on the left4.

This structure is a convenient setting for differentiation: it suffices to furthermore equip
D̃ with a functorial action on morphisms wrt. which some morphisms (definable in terms of
π0, π1, σ) are natural. This is the notion of coherent differential category whose axioms are
in one-to-one correspondence with those of a CDC. Just as in tangent categories [6, 7], our

functor D̃ can be equipped with a monad structure. Contrarily to the additive framework
of CDC our differentiation functor D̃ is not defined in terms of the cartesian product so
it is important to understand how it interacts with the cartesian product when available:
this is formalized by the concept of cartesian coherent differential category (CCDC). This

compatibility can be expressed in terms of a strength with which D̃ can be equipped, turning
it into a commutative monad. This induces a satisfactory theory of partial derivatives. We

1This actually implies that f is analytic.
2Which by the way needs not be a fully-fledged LL model.
3It will become a functor and even a monad later.
4And not on the right in general since, intuitively, the morphisms of C are not assumed to be linear.

3

provide a concrete example of such a category based on probabilistic coherence spaces and
illustrate our formalism by interpreting a simple term language equipped with a notion of
differentiation in a CCDC.

1 Left summability structure

We introduce in this section the notion of left summability structure in order to generalize
the notion of summability structure introduced in [5] to a setting where morphisms are not
necessarily additive.

1.1 Left pre-summability structures

Let C be a category with objects Obj(C) and hom-set C(X,Y) for any X,Y ∈ Obj(C). We
assume that any hom-set C(X,Y) contains a distinguished morphism 0X,Y (usually X and
Y are kept implicit) such that for any f ∈ C(Z,X), 0X,Y ◦ f = 0Z,Y .

Definition 1. A summable pairing structure on a category C is a tuple (D̃, π0, π1, σ) where:

• D̃ : Obj(C) → Obj(C) is a map (a functional class) on objects;

• (π0,X)X∈Obj(C), (π1,X)X∈Obj(C) and (σX)X∈Obj(C) are families of morphisms in C(D̃X,X).
The object X will usually be kept implicit;

• π0 and π1 are jointly monic: for any f, g ∈ C(Y, D̃X), if π0◦f = π0◦g and π1◦f = π1◦g
then f = g.

We assume in what follows that C is equipped with a summable pairing structure
(D̃, π0, π1, σ).

Definition 2. Two morphisms f0, f1 ∈ C(X,Y) are said to be summable if there exists

h ∈ C(X, D̃Y) such that πi ◦ h = fi. The joint monicity of the πi’s ensures that when
h exists, it is unique. We set ⟪f0, f1⟫ := h, and we call it the witness of the sum. By
definition, πi ◦ ⟪f0, f1⟫ = fi. Then we set f0 + f1 := σ ◦ ⟪f1, f2⟫.

Remark 1. A more standard approach to notations would be to write π1 and π2 instead of
π0 and π1. The reason we proceed that way is that Equation (1) will be formalized in our
setting with the use of a pair ⟪f(x), f ′(x) · u⟫. That is, the left element of this pair is of
order 0, and the right element is of order 1.

Notations 1. We write f0 ⊞ f1 for the property that f0 and f1 are summable. We say that
an algebraic expression containing binary sums is well defined if each pair of morphisms
involved in these sums are summable. For example, (f0 + f1) + f2 is well defined if f0 ⊞ f1
and (f0 + f1) ⊞ f2.

Proposition 1. The morphism π0 and π1 are summable with witness ⟪π0, π1⟫ = id and
sum π0 + π1 = σ.

Proof. πi ◦ id = πi so by definition, π0 ⊞ π1 with witness id and sum σ ◦ id = σ.

Proposition 2 (Left compatibility of sum). For any f0, f1 ∈ C(Y, Z) and g ∈ C(X,Y), if
f0 ⊞ f1, then (f0 ◦ g) ⊞ (f1 ◦ g) with witness ⟪f0 ◦ g, f1 ◦ g⟫ = ⟪f0, f1⟫ ◦ g. Moreover,
(f0 ◦ g) + (f1 ◦ g) = (f0 + f1) ◦ g.

4

Proof. Let w = ⟪f0, f1⟫ ◦ g. Then πi ◦ w = fi ◦ g so w is a witness for the summability of
f0 ◦ g and f1 ◦ g. And f0 ◦ g + f1 ◦ g := σ ◦ w = (f0 + f1) ◦ g.

An important class of morphisms is that of additive morphisms, for which addition is
compatible with composition on the right.

Definition 3. A morphism h ∈ C(Y, Z) is additive if h◦0 = 0 and if for any f0, f1 ∈ C(X,Y),
if f0 ⊞ f1 then h ◦ f0 ⊞ h ◦ f1 and h ◦ (f0 + f1) = h ◦ f0 + h ◦ f1. Note that id is additive
and that the composition of two additive morphisms is an additive morphism.

Proposition 3. A morphism h such that h ◦ 0 = 0 is additive if and only if h ◦ π0 ⊞ h ◦ π1
with sum h ◦ σ.

Proof. For the forward implication, recall that π0 ⊞ π1 with sum σ. Thus by additivity of
h, h ◦ π0 ⊞ h ◦ π1 with sum h ◦ σ. For the reverse implication, assume that f0 ⊞ f1. Since
h◦π0 ⊞ h◦π1, Proposition 2 ensures that h◦f0 = h◦π0◦⟪f0, f1⟫ and h◦f1 = h◦π1◦⟪f0, f1⟫
are summable, with sum (h ◦ π0 + h ◦ π1) ◦ ⟪f0, f1⟫ = h ◦ σ ◦ ⟪f0, f1⟫ = h ◦ (f0 + f1).

Definition 4. The summable pairing structure (D̃, π0, π1, σ) is a left pre-summability struc-
ture if π0, π1 and σ are additive.

The additivity of the projections implies that the sum behaves well with respect to the
operation ⟪_,_⟫ itself.

Proposition 4. Assume that π0 and π1 are additive. Then for any f0, f1, g0, g1 ∈ C(X,Y),
if f0 ⊞ f1, g0 ⊞ g1 and ⟪f0, f1⟫ ⊞ ⟪g0, g1⟫, then f0 ⊞ g0, f1 ⊞ g1, (f0 + g0) ⊞ (f1 + g1) and
⟪f0, f1⟫+ ⟪g0, g1⟫ = ⟪f0 + g0, f1 + g1⟫.

Proof. By additivity of πi, πi ◦ ⟪f0, f1⟫ = fi and πi ◦ ⟪g0, g1⟫ = gi are summable with sum
fi + gi = πi ◦ (⟪f0, f1⟫+ ⟪g0, g1⟫). Since π0 ⊞ π1 this entails by Proposition 2 that f0 + g0,
f1 + g1 are summable with witness ⟪f0, f1⟫+ ⟪g0, g1⟫.

The additivity of σ implies that whenever ⟪f0, f1⟫ ⊞ ⟪g0, f1⟫, one has σ ◦ ⟪f0, f1⟫ ⊞

σ ◦ ⟪g0, g1⟫ and

σ ◦ (⟪f0, f1⟫+ ⟪g0, g1⟫) = (σ ◦ ⟪f0, f1⟫) + (σ ◦ ⟪g0, g1⟫)

Assuming the additivity of the projections, the additivity of σ implies that whenever
⟪⟪f0, f1⟫, ⟪g0, g1⟫⟫ exists, the two sums below are well defined (see Notations 1) and

(f0 + g0) + (f1 + g1) = (f0 + f1) + (g0 + g1) . (2)

Proposition 5. The morphisms 0 and 0 are summable with witness 0 and sum 0. In
particular, 0 is additive.

Proof. On the one hand, πi ◦ 0 = 0 by additivity of πi, so 0 ⊞ 0 with witness 0. On the
other hand, σ ◦ 0 = 0 by additivity of σ so 0 + 0 = 0. In particular, 0 is additive thanks
to Proposition 3 because 0 ◦ π0 = 0 and 0 ◦ π1 = 0 are summable with witness 0 and sum
0 = 0 ◦ σ.

5

1.2 Left summability structures

We consider a category C equipped with a left pre-summability structure (D̃, π0, π1, σ).
The goal of this section is to make (C(X,Y),+, 0) a partial commutative monoid. Similar
structures appear in [8] or more recently in [9], in a setting where sums can be infinitary. Our
partial monoids have only finite sums5. More crucially, the categorical notion of summability
defined above is essential for us whereas it is not categorically formalized in these works.

Definition 5. The left pre-summability structure is commutative if for any object X ,
π1, π0 ∈ C(D̃X,X) are summable with sum σ. Then we set γ = ⟪π1, π0⟫ ∈ C(D̃X, D̃X)

so that πi ◦ γ = π1−i. This property is called (D̃-com).

Proposition 6 (Commutativity). The left pre-summability structure is commutative if and
only if for any f0, f1 ∈ C(X,Y), if f0 ⊞ f1 then f1 ⊞ f0 and f0 + f1 = f1 + f0.

Proof. For the direct implication, assume that f0 ⊞ f1. Then πi ◦ γ ◦ ⟪f0, f1⟫ = π1−i ◦
⟪f0, f1⟫ = f1−i so f1 ⊞ f0 with witness γ ◦ ⟪f0, f1⟫. Furthermore, f1 + f0 = σ ◦ γ ◦
⟪f0, f1⟫ = σ ◦ ⟪f0, f1⟫ = f0 + f1. Conversely, π0 ⊞ π1 so by commutativity π1 ⊞ π0 and
π1 + π0 = π0 + π1 = σ.

Definition 6. The left pre-summability structure has 0 as a neutral element if for any
object X , idX ⊞ 0 and 0 ⊞ idX with sums equal to idX . We call this property (D̃-zero). We

define ι0, ι1 ∈ C(X, D̃X) as ι0 := ⟪idX , 0⟫ and ι1 := ⟪0, idX⟫.

Proposition 7 (Neutrality of 0). The left pre-summability structure has 0 as a neutral
element if and only if for any morphism f ∈ C(X,Y), 0 ⊞ f , f ⊞ 0 and f + 0 = 0+ f = f .

Proof. By definition of ι0, π0 ◦ ι0 ◦ f = id ◦ f = f and π1 ◦ ι0 ◦ f = 0 ◦ f = 0. So f ⊞ 0
with witness ι0 ◦ f and f + 0 = σ ◦ ι0 ◦ f = id ◦ f = f . We do the same for 0 + f with ι1.
Conversely, we apply the neutrality of 0 on id to get that id ⊞ 0 and 0 ⊞ id, with sum id.

Associativity is not that straightforward, as there are two possible notions. The situa-
tion is similar in the infinitary setting of [9] with the distinction between Weak Partition
Associativity and Partition Associativity.

Definition 7 (Weak Associativity). The operation + is called weakly associative if whenever
(f0+f1)+f2 and f0+(f1+f2) are well defined (recall Notations 1), we have (f0+f1)+f2 =
f0 + (f1 + f2).

Definition 8 (Associativity). The operation + is called associative if whenever (f0+f1)+f2
or f0+(f1+f2) is well defined, the other expression is also well defined and (f0+f1)+f2 =
f0 + (f1 + f2).

We need to work in a partial setting in which addition is associative: this is required for
instance in Section 2.1 to define θ = ⟪π0 ◦ π0, π0 ◦ π1 + π1 ◦ π0⟫. This associativity seems
related to a kind of positivity of morphisms.

Example 1. Let x, y ∈ [−1, 1] be summable when |x|+ |y| ≤ 1, with x+ y as sum. Then +
is weakly associative, but is not associative. Indeed, take x0 = − 1

2 , x1 = 1
2 , y1 = 1. Then

(x0 + x1) + y1 is defined, but x0 + (x1 + y1) is not since |x1|+ |y1| = 3
2 > 1. However, the

same definition on [0, 1] yields an associative operation.

5Although the extension of the finite sum to an infinitary operations will have to be considered when
dealing with fixpoints.

6

Recall from Equation (2) that whenever ⟪⟪f0, f1⟫, ⟪g0, g1⟫⟫ exists, the expressions (f0+
g0) + (f1 + g1) and (f0 + f1) + (g0 + g1) are well defined and equal. Taking g0 = 0 and

assuming (D̃-zero), this means that whenever ⟪⟪f0, f1⟫, ⟪0, g1⟫⟫ exists, (f0 + f1) + g1 and

f0 + (f1 + g1) are well defined and equal. Taking f1 = 0 and assuming (D̃-zero), this means
that whenever ⟪⟪f0, 0⟫, ⟪g0, g1⟫⟫ exist, f0 + (g0 + g1) and (f0 + g0) + g1 are well defined

and equal. Thus associativity holds if (D̃-zero) holds and if whenever (f0 + f1) + g1 is
defined (respectively f0 + (g0 + g1) is defined), then ⟪⟪f0, f1⟫, ⟪0, g1⟫⟫ exists (respectively
⟪⟪f0, 0⟫, ⟪g0, g1⟫⟫ exists). This shows that associativity follows from the following axiom.

Definition 9. The left pre-summability structure admits witnesses if for any f, g ∈ C(Y, D̃X),

if σ ◦ f ⊞ σ ◦ g then f ⊞ g. We call this property (D̃-witness).

Theorem 1. The properties (D̃-zero), (D̃-com) and (D̃-witness) give to C(X,Y) the struc-
ture of a partial commutative monoid for any objects X,Y . That is, for any f, f0, f1, f2 ∈
C(X,Y):

• f ⊞ 0, 0 ⊞ f and 0 + f = f + 0 = f ;

• If f0 ⊞ f1 then f1 ⊞ f0 and f0 + f1 = f1 + f0;

• If (f0 + f1)+ f2 or f0+(f1+ f2) is defined, then both are defined and (f0 + f1)+ f2 =
f0 + (f1 + f2).

One can define inductively from this binary sum a notion of arbitrary finite sum. The
empty family is always summable with sum 0. The family (fi)i∈I for I 6= ∅ is summable
if ∃i0 ∈ I such that (fi)i∈I/{i0} is summable and if (

∑
i∈I/{i0}

fi) ⊞ fi0 . Then we set∑
i∈I fi :=

∑
i∈I/{i0}

fi + fi0 . Theorem 2 shown in [5] ensures that the choice of order for
the sum is irrelevant.

Theorem 2. A family (fi)i∈I is summable if and only if for all partition6 I1, . . . , In of I,
we have that for all j ∈ J1, nK := {1, . . . , n}, (fi)i∈Ij is summable and (

∑
i∈Ij

fi)j∈J1,nK is

summable. Moreover,
∑

i∈I fi =
∑

j∈J1,nK

∑
i∈Ij

fi.

Definition 10. A left summability structure is a left pre-summability structure (D̃, π0, π1, σ)

such that (D̃-zero), (D̃-com) and (D̃-witness) hold.

1.3 Comparison with summability structures

In the LL setting of [5], the first author introduced a notion of pre-summability structure
(S, π0, π1, σ) as a summable pairing structure (recall Definition 1) where S is a functor for
which π0, π1, σ are natural transformations.

Theorem 3. The following are equivalent

• (S, π0, π1, σ) is a left pre-summability structure and every morphism is additive;

• (S, π0, π1, σ) is a pre-summability structure [5].

Remember that in [5], the underlying category C is assumed to be enriched over the
monoidal category of pointed sets, the distinguished element of C(X,Y) being denoted 0.
In particular f ◦ 0 = 0 always holds.

6Where we admit that some Ijs can be empty.

7

Proof. Let (S, π0, π1, σ) be a left pre-summability structure in which every morphism is
additive. By Proposition 3, for any f ∈ C(X,Y) we can define Sf := ⟪f ◦ π0, f ◦ π1⟫ and
the following equations hold: πi ◦ Sf = f ◦ πi, σ ◦ Sf = f ◦ σ. Furthermore, S is a functor:
πi ◦ Sid = id ◦ πi = πi ◦ id and πi ◦ Sf ◦ Sg = f ◦ πi ◦ Sg = f ◦ g ◦ πi = πi ◦ S(f ◦ g). Thus, by
joint monicity of the πi, Sid = id and S(f ◦ g) = Sf ◦Sg. Then the equations πi ◦Sf = f ◦πi
and σ ◦ Sf = f ◦ σ introduced above correspond to the naturality of π0, π1 and σ.

Conversely, let (S, π0, π1, σ) be a pre-summability structure in the sense of [5]. The
naturality of π0 and π1 ensures that for any f , f ◦ π0 ⊞ f ◦ π1 with witness Sf . The
naturality of σ ensures that the sum of those two morphisms is σ ◦ Sf = f ◦ σ. Finally,
f ◦ 0 = 0 by assumption. So every morphism is additive by Proposition 3. In particular,
π0, π1 and σ are additive, so (S, π0, π1, σ) is a left pre-summability structure.

Corollary 1. The summability structures of [5] are the left summability structures where
all morphisms are additive.

2 Differential

2.1 Differential Structure

Recall from Equation (1) the main idea of the differential calculus. We generalize it to a
partial additive setting: f is differentiable at x if for any u, if x ⊞ u then f ′(x) ·u is defined,
f(x) ⊞ f ′(x) · u and, intuitively, f(x+ u) ≃ f(x) + f ′(x) · u. Hence the differential of f can

be seen as a function D̃f that maps a pair of two summable elements ⟪x, u⟫ to a pair of two

summable elements D̃f(x, u) = ⟪f(x), f ′(x) · u⟫.

Definition 11. A pre-differential structure is a left summability structure (D̃, π0, π1, σ)

together with, for each X,Y ∈ Obj(C), an operator C(X,Y) → C(D̃X, D̃Y), also denoted as

D̃, and such that π0◦D̃f = f◦π0. We define the differential of f as Df := π1◦D̃f ∈ C(D̃X,Y).

By our assumptions D̃f = ⟪f ◦ π0,Df⟫.

At this point we do not assume D̃ to be a functor, this will be the Chain Rule. Then the
equation π0 ◦ D̃f = f ◦ π0 will be the naturality of π0. We can also introduce three families
of morphisms θ, l and c whose naturality will correspond to some axioms of differentiation.
This is very similar to what happens in tangent categories [7], the difference being the

structure of the functor D̃ itself7.
The additivity of σ ensures that σ◦π0 ⊞ σ◦π1. That is, (π0◦π0+π1◦π0) ⊞ (π0◦π1+π1◦

π1). By associativity, this implies that ((π0 ◦π0+π1 ◦π0)+π0 ◦π1)+π1 ◦π1 is well defined,
so (π0◦π0+π1◦π0)+π0◦π1 is well defined. By associativity again, π0◦π0+(π1◦π0+π0◦π1)
is well defined, so Definition 12 below makes sense.

Definition 12. For any object X , define θ ∈ C(D̃2X, D̃X) as θ := ⟪π0 ◦π0, π1◦π0+π0◦π1⟫.

By (D̃-zero), (π0 + 0) ⊞ (0 + π1) so by (D̃-witness) ⟪π0, 0⟫ ⊞ ⟪0, π1⟫. So Definition 13
below makes sense.

Definition 13. For any object X , define l ∈ C(D̃X, D̃2X) as l := ⟪⟪π0, 0⟫, ⟪0, π1⟫⟫.

7There might be a way to combine tangent categories and coherent differentiation in one notion allowing
to axiomatize objects similar to manifolds where the tangent spaces have an addition of vectors which is
only partially defined. The first step should be to develop convincing concrete examples of such objects,
which might be related to the semantics of Type Theory.

8

By Proposition 2 (left compatibility) π0 ◦ (π0 + π1) ⊞ π1 ◦ (π0 + π1). By additivity of

π0 and π1, it means that (π0 ◦ π0 + π0 ◦ π1) ⊞ (π1 ◦ π0 + π1 ◦ π1). So by (D̃-witness),
⟪π0 ◦ π0, π0 ◦ π1⟫ ⊞ ⟪π1 ◦ π0, π1 ◦ π1⟫ and Definition 14 below makes sense.

Definition 14. For any object X , we can define c ∈ C(D̃2X, D̃2X) as c := ⟪⟪π0 ◦ π0, π0 ◦
π1⟫, ⟪π1 ◦ π0, π1 ◦ π1⟫⟫.

It is probably easier to understand those morphisms by how they operate on witnesses.
This corresponds to Proposition 8 below. The proof is a straightforward computation using
the joint monicity of π0 and π1.

Proposition 8. For any x, u, v, w ∈ C(U,X) such that ⟪⟪x, u⟫, ⟪v, w⟫⟫ is defined,

θ ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = ⟪x, u + v⟫

c ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = ⟪⟪x, v⟫, ⟪u,w⟫⟫
l ◦ ⟪x, u⟫ = ⟪⟪x, 0⟫, ⟪0, u⟫⟫

Definition 15. A differential structure is a pre-differential structure (D̃, π0, π1, σ) where
the following axioms hold, using the associated notation Df introduced in Definition 11:

(1) (Dproj-lin) Dπ0 = π0 ◦ π1, Dπ1 = π1 ◦ π1;

(2) (Dsum-lin) Dσ = σ ◦ π1, D0 = 0;

(3) (D-chain) D̃ is a functor (Chain Rule);

(4) (D-add) ι0, θ are natural transformations (additivity of the derivative);

(5) (D-lin) l is a natural transformation (linearity of the derivatives);

(6) (D-Schwarz) c is a natural transformation (Schwarz Rule).

A coherent differential category is a category C equipped with a differential structure.

The axiom (Dproj-lin) corresponds to an important structural property of D̃ with regard
to ⟪_,_⟫. The axiom (Dsum-lin) corresponds to the additivity of the derivative operator,
that is, (f + g)′ = f ′ + g′. The axiom (D-chain) corresponds to the Chain Rule of the
differential calculus. The axiom (D-add) says that u 7→ f ′(x) · u is additive. The axiom
(D-lin) says that u 7→ f ′(x) · u is not only additive, but also equal to its own derivative
in 0. It is shown in Prop. 4.2 of [7] (in the left-additive setting of cartesian differential
categories) that it implies that u 7→ f ′(x) · u is equal to its own derivative in any points.
The same reasoning can be generalized to our setting, but it would require too much technical
development to be developed in this paper. Finally, the axiom (D-Schwarz) corresponds to
the Schwarz Rule, that is, the second derivative f ′′(x) (a bilinear map) is symmetric. An
account of these axioms as properties of D can be found in Section 3 and might help the
reader understand the ideas mentioned above.

2.2 Linearity

For the rest of this section, C is only assumed to be equipped with a pre-differential structure.
Any use of an axiom of coherent differential categories will be made explicit.

Definition 16 (D̃-linearity). A morphism f ∈ C(X,Y) is D̃-linear if the following diagrams
commute.

9

D̃X D̃Y

X Y

D̃f

π1 π1

f

D̃X D̃Y

X Y

D̃f

σ σ

f

X

X Y

0
0

f

Remark 2. The first diagram can also be written as D(f) = f ◦ π1 and means that D̃f =
⟪f ◦ π0, f ◦ π1⟫.

Proposition 9. A morphism f is D̃-linear if and only if it is additive and Df = f ◦ π1
(that is, D̃f = ⟪f ◦ π0, f ◦ π1⟫).

Proof. Assume that f is D̃-linear. Then f ◦ 0 = 0 and, by Remark 2, f ◦ π0 ⊞ f ◦ π1 of
witness D̃f . Thus f ◦ π0 + f ◦ π1 := σ ◦ D̃f = f ◦ σ by assumption. So f is additive
by Proposition 3, and Df = f ◦ π1 by assumption. Conversely, only the second diagram is
not part of the assumptions.

σ ◦ D̃f = (π0 + π1) ◦ D̃f
= π0 ◦ D̃f + π1 ◦ D̃f by Proposition 2

= f ◦ π0 + f ◦ π1 by assumption

= f ◦ (π0 + π1) = f ◦ σ by additivity of f

Thus f is D̃-linear.

Thus D̃-linear morphisms are in particular additive. As we will see, our notion of additive
and D̃-linear morphisms ultimately coincides with that of [3], so this distinction between
additivity and linearity is as relevant as it is in their setting.

Corollary 2. (Dproj-lin) is equivalent to the linearity of π0 and π1. (Dsum-lin) is equivalent
to the linearity of σ and 0.

Thus D̃-linear morphisms are special instances of additive ones. Our notion of additive
and D̃-linear morphisms ultimately coincides with the one of [3] thanks to Proposition 10
below, so this distinction between additivity and linearity is as relevant as it is in their
setting.

Proposition 10. Assuming (Dproj-lin), (D-chain) and (D-add), any morphism h ∈ C(X,Y)

such that Dh = h ◦ π1 is additive, hence D̃-linear.

Proof. The proof relies on Propositions 18 and 19 of Section 3. If h = Dh ◦ π1, then for
any g ∈ C(Z,X), h ◦ g = h ◦ π1 ◦ ⟪0, g⟫ = Dh ◦ ⟪0, g⟫. Thus, h ◦ 0 = Dh ◦ ⟪0, 0⟫ = 0 by
Proposition 18, and h◦(f0+f1) = Dh◦⟪0, f0+f1⟫ = Dh◦⟪0, f0⟫+Dh◦⟪0, f1⟫ = h◦f0+h◦f1
by Proposition 19 again. Thus, h is additive, so h is D̃-linear by Proposition 9.

Thanks to (D-chain), (Dproj-lin) and (Dsum-lin), we can show that linear morphisms
are closed under composition, witnesses and sum.

Proposition 11. Assuming (D-chain), D̃-linear morphisms are closed under composition
and inverses.

Proof. Easy verification using the functoriality of D̃.

Proposition 12 (D̃-linearity and pairing). Assume (D-chain) and (Dproj-lin). Assume

that h0, h1 ∈ C(X,Y) are summable and both D̃-linear. Then ⟪h0, h1⟫ is D̃-linear.

10

Proof. Let us do the diagram involving σ, the other two being very similar. By joint monicity
of the πi’s, it suffices to solve the diagram chase below for i = 0, 1.

D̃X D̃2Y D̃Y

D̃Y Y

X D̃Y

D̃⟪h0,h1⟫

σ

D̃hi

(c)

(a)

σ

D̃πi (b) πi

σ

⟪h0,h1⟫

hi πi

(a) is a consequence of (D-chain), (b) is a consequence of (Dproj-lin) and (c) is the D̃-linearity
of hi.

Proposition 13. Assuming (D-chain) and (Dproj-lin), σ is D̃-linear if and only if for all

h0, h1 ∈ C(X,Y) summable and both D̃-linear, h0 + h1 is D̃-linear.

Proof. Assume that h0, h1 are D̃-linear. By Proposition 12, ⟪h0, h1⟫ is D̃-linear so h0+h1 =

σ ◦ ⟪h0, h1⟫ is D̃-linear (D̃-linearity is closed under composition). Conversely, σ = π0 + π1
and π0, π1 are D̃-linear so σ is D̃-linear.

Corollary 3. Assuming (Dproj-lin), (Dsum-lin) and (D-chain), ι0, ι1, c, l, θ are all D̃-linear.

Proof. All these morphisms are obtained through pairing, sums and composition of D̃-linear
maps.

On a side note, by Remark 2 the D̃-linearity of πi means that D̃πi = ⟪πi ◦ π0, πi ◦ π1⟫.
In particular, it implies that c = ⟪D̃π0, D̃π1⟫. This is very useful because the differential of
a pair can then be obtained from the pair of the differentials.

Proposition 14. Assume (Dproj-lin), (D-chain). Let f0, f1 ∈ C(X,Y) such that f0 ⊞ f1.

Then D̃f0 ⊞ D̃f1 and ⟪D̃f0, D̃f1⟫ = c ◦ D̃⟪f0, f1⟫.

Proof. πi ◦ c ◦ D̃⟪f0, f1⟫ = D̃πi ◦ D̃⟪f0, f1⟫ = D̃fi.

2.3 The Differentiation Monad

Proposition 15. Assuming (D-chain), (Dproj-lin) and (Dsum-lin), the following diagrams
commute.

D̃X D̃2X D̃X

D̃X

D̃ι0

id
D̃X

θ

ι0

id
D̃X

D̃3X D̃2X

D̃2X D̃X

D̃θX

θ
D̃X θX

θX

Proof. By Corollary 3, ι0 is D̃-linear. Thus by Remark 2, D̃ι0 = ⟪ι0 ◦ π0, ι0 ◦ π1⟫ =

⟪⟪π0, 0⟫, ⟪π1, 0⟫⟫. Hence θ ◦ D̃ι0 = ⟪π0, 0 + π1⟫ = ⟪π0, π1⟫ = id
D̃X by Proposition 8. Next

ιD̃X
0 = ⟪⟪π0, π1⟫, ⟪0, 0⟫⟫ since ⟪π0, π1⟫ = id and ⟪0X,X , 0X,X⟫ = 0D̃X,D̃X . By Proposition 8

again, θ ◦ ι0 = ⟪π0, π1 + 0⟫ = ⟪π0, π1⟫ = id
D̃X so the triangles commute.

11

The square is a direct computation. We use simple juxtaposition for the composition of
projections for the sake of readability. The bottom path can be reduced using left compat-
ibility of addition (Proposition 2) and additivity of the projections:

θ ◦ θ = ⟪π0 ◦ π0 ◦ θ, π1 ◦ π0 ◦ θ + π0 ◦ π1 ◦ θ⟫
= ⟪π0 ◦ π0 ◦ π0, π1 ◦ π0 ◦ π0 + π0 ◦ (π1 ◦ π0 + π0 ◦ π1)⟫
= ⟪π0 ◦ π0 ◦ π0, π1 ◦ π0 ◦ π0 + (π0 ◦ π1 ◦ π0 + π0 ◦ π0 ◦ π1)⟫ .

The upper path can be reduced by D̃-linearity of θ and left compatibility of sum (Proposition 2):

θ ◦ D̃θ = ⟪π0 ◦ π0 ◦ D̃θ, π1 ◦ π0 ◦ D̃θ + π0π1 ◦ D̃θ⟫
= ⟪π0 ◦ θ ◦ π0, π1 ◦ θ ◦ π0 + π0 ◦ θ ◦ π1⟫
= ⟪π0 ◦ π0 ◦ π0, (π1 ◦ π0 + π0 ◦ π1) ◦ π0 + π0 ◦ π0 ◦ π1)⟫
= ⟪π0 ◦ π0 ◦ π0, (π1 ◦ π0 ◦ π0 + π0 ◦ π1 ◦ π0) + π0 ◦ π0 ◦ π1)⟫ .

We conclude that those two morphisms are equal, using the associativity of the partial
sum.

Corollary 4. (Dproj-lin), (Dsum-lin), (D-chain) and (D-add) imply that (D̃, ι0, θ) is a
monad.

3 Interpreting the axioms as properties of the derivative

In this section, C is only assumed to be a category equipped with a pre-differential struc-
ture (Definition 11). We show that the various axioms of a coherent differential category
correspond to standard rules of the differential calculus, written as properties about D(f).
The results of this section are only necessary for Section 6 but they also provide some
intuitions on the axioms of coherent differentiation.

All the proofs are similar, and consist in using the joint monicity of π0 and π1 to reduce
the axioms to a set of equations, then show that only one of those equations is non trivial.
In what follows, “linear” always means D̃-linear.

Proposition 16. D̃ is a functor if and only if D(id) = π1 and D(g◦f) = D(g)◦⟪f◦π0,D(f)⟫.

Proof. D̃ is a functor if and only if D̃idX = id
D̃X and for any g, f , D̃(g◦f) = D̃g◦D̃f . By joint

monicity of the πi, D̃id = id if and only if πi ◦ D̃id = πi ◦ id = πi. But π0 ◦ D̃id = id ◦ π0 = π0
by assumptions on Pre-Differential Structures. So D̃id = id if and only if π1 ◦ D̃id = π1, that
is, if and only if D(id) = π1.

Similarly, π0 ◦ D̃g ◦ D̃f = g ◦ π0 ◦ D̃f = g ◦ f ◦ π0 = π0 ◦ D̃(g ◦ f) by assumption on

pre-differential-structures. So by joint monicity of the πi, D̃(g ◦ f) = D̃g ◦ D̃f if and only if

π1 ◦ D̃(g ◦ f) = π1 ◦ D̃g ◦ D̃f . By definition of D, this corresponds exactly to the equation

D(g ◦ f) = D(g) ◦ D̃f = D(g) ◦ ⟪f ◦ π0,D(f)⟫

Proposition 17. Assuming (Dproj-lin), σ is linear if and only if D̃σ = D̃π0+ D̃π1. Assum-
ing (Dproj-lin) and (D-chain), σ is linear if and only if for any f0, f1 that are summable,

D̃(f0 + f1) = D̃f0 + D̃f1 (recall that D̃f0 ⊞ D̃f1 by Proposition 14).

12

Proof. By linearity of πi, D̃πi = ⟪πi◦π0, πi◦π1⟫ so by Proposition 4, D̃π0+D̃π1 = ⟪π0◦π0+
π1 ◦π0, π0 ◦π1 +π1 ◦π1⟫ = ⟪(π0 +π1) ◦π0, (π0 +π1) ◦π1⟫ = ⟪σ ◦π0, σ ◦π1⟫. But σ is linear

if and only if D̃σ = ⟪σ ◦π0, σ ◦π1⟫ by Proposition 9, that is, if and only if D̃σ = D̃π0+ D̃π1.
For the second part of the lemma, notice that the right statement for f0 = π0 and f1 = π1

is exactly D̃σ = D̃π0+D̃π1, so the converse direction holds. For the forward direction, notice
that

D̃(f0 + f1) = D̃(σ ◦ ⟪f0, f1⟫)
= D̃σ ◦ D̃⟪f0, f1⟫ by (D-chain)

= (D̃π0 + D̃π1) ◦ D̃⟪f0, f1⟫ by assumptions

= D̃π0 ◦ D̃⟪f0, f1⟫+ D̃π1 ◦ D̃⟪f0, f1⟫
= D̃f0 + D̃f1 by (D-chain)

Corollary 5. Assuming (Dproj-lin) and (D-chain), σ is linear if and only if for any f0, f1
that are summable, D(f0 + f1) = D(f0) + D(f1)

Proof. The linearity of σ is equivalent to D̃(f0 + f1) = D̃f0 + D̃f1 for any f0, f1 summable.
By Proposition 4, this is equivalent to ⟪(f0+f1)◦π0,D(f0+f1)⟫ = ⟪f0 ◦π0+f1◦π0,D(f0)+
D(f1)⟫. The left compatibility of addition (Proposition 2) ensures that the first coordinates
are always equal. So σ is linear if and only if for all f0 ⊞ f1, D(f0+f1) = D(f0)+D(f1).

Proposition 18. The following assertions are equivalent:

(1) ι0 is natural;

(2) For any f ∈ C(X,Y), Df ◦ ι0 = 0;

(3) For any f ∈ C(X,Y), any object U and x ∈ C(U,X), Df ◦ ⟪x, 0⟫ = 0.

Proof. (1) ⇔ (2). By joint monicity of the πi, for any f ∈ C(X,Y), D̃f ◦ ι0 = ι0 ◦ f if and

only if π0 ◦ D̃f ◦ ι0 = π0 ◦ ι0 ◦ f = f and π1 ◦ D̃f ◦ ι0 = π1 ◦ ι0 ◦ f = 0. The first condition
always hold by naturality of π0 and definition of ι0. So ι0 is natural if and only if the second
identity holds. This equation is precisely (2).

(2) ⇔ (3). The forward direction is directly obtained by composing the identity of (2)
by x on the right. The reverse is directly obtained by applying the equation of (3) to
x = idX .

Proposition 19. Assuming (Dproj-lin) and (D-chain), the following assertions are equiv-
alent:

(1) θ is natural;

(2) for any f ∈ C(X,Y), Df ◦ D̃π0 ⊞ Df ◦ π0 and Df ◦ θ = Df ◦ D̃π0 + Df ◦ π0;
(3) for any f ∈ C(X,Y), any object U and any x, u, v ∈ C(U,X) that are summable,

Df ◦ ⟪x, u⟫ ⊞ Df ◦ ⟪x, v⟫ and

Df ◦ ⟪x, u + v⟫ = Df ◦ ⟪x, u⟫+ Df ◦ ⟪x, v⟫ .

13

Proof. (1) ⇔ (2). By joint monicity of the πi, for any f ∈ C(X,Y), D̃f ◦ θ = θ ◦ D̃2f

if and only if π0 ◦ D̃f ◦ θ = π0 ◦ θ ◦ D̃2f and π1 ◦ D̃f ◦ θ = π1 ◦ θ ◦ D̃2f . The equation
π0 ◦ D̃f ◦ θ = π0 ◦ θ ◦ D̃2f always holds. Indeed

π0 ◦ D̃f ◦ θ = f ◦ π0 ◦ θ by naturality of π0

= f ◦ π0 ◦ π0 by definition of θ

π0 ◦ θ ◦ D̃2f = π0 ◦ π0 ◦ D̃2f by definition of θ

= f ◦ π0 ◦ π0 by naturality of π0 .

The left hand side of the equation π1 ◦ D̃f ◦ θ = π1 ◦ θ ◦ D̃2f is D(f) ◦ θ by definition. The
right hand side rewrites as follows.

π1 ◦ θ ◦ D̃2f = (π0 ◦ π1 + π1 ◦ π0) ◦ D̃2f

= π0 ◦ π1 ◦ D̃2f + π1 ◦ π0 ◦ D̃2f by Proposition 2

= π1 ◦ D̃π0 ◦ D̃2f + π1 ◦ π0 ◦ D̃2f by D̃-linearity of π0

= π1 ◦ D̃(π0 ◦ D̃f) + π1 ◦ π0 ◦ D̃2f by (D-chain)

= π1 ◦ D̃(f ◦ π0) + π1 ◦ D̃f ◦ π0 by naturality of π0

= π1 ◦ D̃f ◦ D̃π0 + π1 ◦ D̃f ◦ π0 by (D-chain)

= Df ◦ D̃π0 + Df ◦ π0 by definition

So this second equation under consideration is equivalent to the equation of (2).

(2) ⇔ (3). Recall that D̃π0 = ⟪π0 ◦ π0, π0 ◦ π1⟫ by linearity of π0. Then the forward
direction is directly obtained by composing the equation of (2) with ⟪⟪x, v⟫, ⟪u, 0⟫⟫ on the
right. The converse is directly obtained by applying the equation of (3) to x = π0 ◦ π0,
u = π1 ◦ π0 and v = π0 ◦ π1.

Remark 3. Notice that D(D(f)) = π1 ◦ D̃(π1 ◦ D̃f) = π1 ◦ D̃π1 ◦ D̃2f = π1 ◦π1 ◦ D̃2f assuming
(D-chain) and (Dproj-lin). Thus, D(D(f)) is nothing more than the rightmost coordinate

of D̃2f . This will be useful for what follows in this part.

Proposition 20. Assuming (Dproj-lin), (D-chain) and the naturality of ι0, the following
assertions are equivalent:

(1) l is natural;

(2) for all morphism f ∈ C(X,Y), D(D(f)) ◦ l = D(f);

(3) for all morphism f ∈ C(X,Y), for all morphisms x, u ∈ C(U,X) summable,

D(D(f)) ◦ ⟪⟪x, 0⟫, ⟪0, u⟫⟫ = D(f) ◦ ⟪x, u⟫ .

Proof. By joint monicity of the πi, l is natural if and only if for all f and for all i, j ∈
{0, 1}, πi ◦ πj ◦ D̃2f ◦ l = πi ◦ πj ◦ l ◦ D̃f . By Remark 3 (and because π1 ◦ π1 ◦ l = π1), the
equation for i = j = 1 corresponds exactly to the equation D(D(f)) ◦ l = D(f). Thus, it

suffices to show that πi ◦ πj ◦ D̃2f ◦ l = πi ◦ πj ◦ l ◦ D̃f always holds when (i, j) 6= (1, 1) to
conclude that (1) is equivalent to (2).

• Case i = 0, j = 0: π0 ◦π0◦ l◦D̃f = π0 ◦D̃f = f ◦π0 and π0 ◦π0◦D̃2f ◦ l = f ◦π0◦π0◦ l =
f ◦ π0;

14

• Case i = 1, j = 0: π0 ◦π1 ◦ l ◦ D̃f = 0 ◦ D̃f = 0 and π1 ◦ π0 ◦ D̃2f ◦ l = π1 ◦ D̃f ◦ π0 ◦ l =
π1 ◦ D̃f ◦ ι0 ◦ π0 = π1 ◦ ι0 ◦ f ◦ π0 = 0 thanks to the naturality of ι0;

• Case i = 0, j = 1: π0 ◦π1 ◦ l◦ D̃f = 0◦ D̃f = 0 and π0 ◦π1 ◦ D̃2f ◦ l = π1 ◦ D̃π0 ◦ D̃2f ◦ l =
π1 ◦ D̃f ◦ D̃π0 ◦ l = π1 ◦ D̃f ◦ ι0 ◦π0 = π1 ◦ ι0 ◦ f ◦ π0 = 0 thanks to the naturality of ι0.

Next (2) is a particular case of (3) for x = π0 and u = π1. Conversely, assuming (2) we
have that D(D(f)) ◦ ⟪⟪x, 0⟫, ⟪0, u⟫⟫ = D(D(f)) ◦ l ◦ ⟪x, u⟫ = D(f) ◦ ⟪x, u⟫.

Proposition 21. Assuming (Dproj-lin) and (D-chain), the following assertions are equiv-
alent:

(1) c is natural;

(2) for all morphism f ∈ C(X,Y), D(D(f)) ◦ c = D(D(f));

(3) for all morphism f ∈ C(X,Y) and x, u, v, w ∈ C(U,X) that are summable,

D(D(f)) ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = D(D(f)) ◦ ⟪⟪x, v⟫, ⟪u,w⟫⟫

Proof. By joint monicity of the πi, c is natural if and only if for all f and for all i, j ∈
{0, 1}, πi◦πj◦D̃2f◦c = πi◦πj◦c◦D̃2f . But πi◦πj◦c◦D̃2f = πj◦πi◦D̃2f . Then, by Remark 3,
the equation for i = j = 1 corresponds exactly to the equation D(D(f))◦c = D(D(f)). Thus,

it suffices to show that πi ◦ πj ◦ D̃2f ◦ c = πj ◦ πi ◦ D̃2f when (i, j) 6= (1, 1) to conclude
that (1) is equivalent to (2).

• i = 0, j = 0: The equation holds by reflexivity of equality.

• i = 1, j = 0: π0 ◦ π1 ◦ D̃2f = π1 ◦ D̃π0 ◦ D̃2f = π1 ◦ D̃f ◦ D̃π0 and π1 ◦ π0 ◦ D̃2f ◦ c =
π1 ◦ D̃f ◦ π0 ◦ c = π1 ◦ D̃f ◦ D̃π0 so both sides are equal.

• i = 0, j = 1: π0◦π1◦D̃2f ◦c = π1 ◦π0◦D̃2f if and only if π0 ◦π1◦D̃2f = π1◦π0◦D̃2f ◦c
because c is involutive. But this equation holds, as seen above.

Next, (2) is a particular case of (3) for x = π0◦π0, u = π0◦π1, v = π1◦π0 and w = π1◦π1.
Conversely, if (3) holds then D(D(f)) ◦ ⟪⟪x, u⟫, ⟪v, w⟫⟫ = D(D(f)) ◦ c ◦ ⟪⟪x, v⟫, ⟪u,w⟫⟫ =
D(D(f)) ◦ ⟪⟪x, v⟫, ⟪u,w⟫⟫.

4 Compatibility with the cartesian product

We assume in this section that C is cartesian and is equipped with a left summability
structure (D̃, π0, π1, σ).

Notations 2. We use & for the cartesian product, following the notations of LL. For
any objects Y0, Y1, the projection will be written as pi ∈ C(Y0 & Y1, Yi) and the pairing of
f0 ∈ C(X,Y0) and f1 ∈ C(X,Y1) as 〈f0, f1〉. Finally, the terminal object will be written ⊤.
Note that the uniqueness of the pairing in the universal property of the cartesian product
can be understood as the joint monicity of the pi.

15

4.1 Cartesian product and summability structure

Definition 17. The summability structure (D̃, π0, π1, σ) is compatible with the cartesian
product if 〈0, 0〉 = 0 and, for all f0, g0 ∈ C(X,Y0) and f1, g1 ∈ C(X,Y1):

• 〈f0, f1〉 ⊞ 〈g0, g1〉 if and only if f0 ⊞ g0 and f1 ⊞ g1

• and then 〈f0, f1〉+ 〈g0, g1〉 = 〈f0 + f1, g0 + g1〉.

That is, sums are computed componentwise. Let us break down this definition in more
details.

Proposition 22. The following are equivalent

• p0, p1 are additive;

• 〈0, 0〉 = 0 and for all f0, g0 ∈ C(X,Y0) and f1, g1 ∈ C(X,Y1), if 〈f0, f1〉 ⊞ 〈g0, g1〉 then
f0 ⊞ g0, f1 ⊞ g1 and 〈f0, f1〉+ 〈g0, g1〉 = 〈f0 + f1, g0 + g1〉.

Proof. Assume that p0, p1 are additive. Then pi ◦ 0 = 0 = pi ◦ 〈0, 0〉. Thus by joint
monicity, 0 = 〈0, 0〉. Furthermore, assume that 〈f0, f1〉 ⊞ 〈g0, g1〉. Then by additivity of pi,
pi ◦ 〈f0, f1〉 = fi and pi ◦ 〈g0, g1〉 = gi are summable and fi + gi = pi ◦ (〈f0, f1〉 + 〈g0, g1〉).
So the joint monicity of the pi implies that 〈f0, f1〉+ 〈g0, g1〉 = 〈f0 + f1, g0 + g1〉.

Conversely, since 〈0, 0〉 = 0 we have pi ◦ 0 = pi ◦ 〈0, 0〉 = 0. Let f, g ∈ C(X,Y0 & Y1) be
summable. One can write f = 〈p0 ◦ f, p1 ◦ f〉 and g = 〈p0 ◦ g, p1 ◦ g〉. Since f ⊞ g we have
pi ◦ f ⊞ pi ◦ g and f + g = 〈p0 ◦ f + p0 ◦ g, p1 ◦ f + p1 ◦ g〉. Applying pi on this equation
yields that pi ◦ (f + g) = pi ◦ f + pi ◦ g so pi is additive.

Corollary 6. If p0 and p1 are additive, then 0 & 0 = 0 and for all f0, g0 ∈ C(X0, Y0) and
f1, g1 ∈ C(X1, Y1), if f0 & f1 ⊞ g0 & g1 then f0 ⊞ g0, f1 ⊞ g1 and f0 & f1 + g0 & g1 =
(f0 + g0) & (f1 + g1).

Proof. We simply use the fact that f & g = 〈f ◦ p0, g ◦ p1〉 and Proposition 22 together with
the left compatibility of sum with regard to composition (Proposition 2).

We now assume that the projections p0 and p1 are additive. This allows us to define a
morphism c& ∈ C(D̃(X0 &X1), D̃X0 & D̃X1) for any objects X0, X1 as c& := 〈⟪p0 ◦ π0, p0 ◦
π1⟫, ⟪p1 ◦ π0, p1 ◦ π1⟫〉. In other words, πi ◦ pj ◦ c& = pj ◦ πi, that is

c& ◦ ⟪〈f0, f1〉, 〈g0, g1〉⟫ = 〈⟪f0, g0⟫, ⟪f1, g1⟫〉 .

This is very reminiscent of the flip c (it swaps the two middle coordinates), except that
there are no summability conditions associated with the 〈_,_〉 pairing.

Theorem 4. The following assertions are equivalent

(1) c& is an isomorphism;

(2) π0 & π0 ⊞ π1 & π1;

(3) for any f0, g0 ∈ C(X,Y0), f1, g1 ∈ C(X,Y1), if f0 ⊞ g0 and f1 ⊞ g1 then f0 & f1 ⊞

g0 & g1;

(4) for any f0, g0 ∈ C(X,Y0), f1, g1 ∈ C(X,Y1), if f0 ⊞ g0 and f1 ⊞ g1 then 〈f0, f1〉 ⊞

〈g0, g1〉
and then ⟪π0 & π0, π1 & π1⟫ = c−1

& .

16

Proof. (1) ⇒ (2): Assume that c& is an isomorphism with inverse w. Then πi ◦pj = πi ◦pj ◦
c&◦w = pj ◦πi◦w. But πi◦pj = pj ◦(πi&πi) by naturality of pj so pj ◦πi◦w = pj ◦(πi&πi).
By joint monicity of the pj ’s we have πi ◦ w = (πi & πi). That is w = ⟪π0 & π0, π1 & π1⟫.

(2) ⇒ (1): Assume that π0&π0 ⊞ π1&π1, of witness w. Then, pj ◦πi◦w = pj ◦(πi&πi) =
πi ◦ pj . Hence

pj ◦ πi ◦ w ◦ c& = πi ◦ pj ◦ c& = pj ◦ πi
πi ◦ pj ◦ c& ◦ w = pj ◦ πi ◦ w = πi ◦ pj

By joint monicity of the pj ’s and of the πi’s we get w ◦ c& = id
D̃(X0&X1)

and c& ◦ w =

id
D̃X0&D̃X1

.

(2) ⇒ (3): We have ⟪f0, g0⟫ ∈ C(X, D̃Y0) and ⟪f1, g1⟫ ∈ C(X, D̃Y1). Let w = ⟪π0 &
π0, π1 & π1⟫ ◦ (⟪f0, g0⟫& ⟪f1, g1⟫). We have π0 ◦ w = f0 & f1 and π1 ◦ w = g0 & g1 so that
f0 & f1 ⊞ g0 & g1.

(3) ⇒ (2): (2) is a particular case of case (3).
(3) ⇒ (4): Assume that f0 ⊞ g0 and f1 ⊞ g1. Then by assumption, f0 & f1 ⊞ g0 & g1.

Let w = ⟪f0 & f1, g0 & g1⟫ ◦ 〈id, id〉. Then π0 ◦ w = 〈f0, f1〉 and π1 ◦ w = 〈g0, g1〉 so that
〈f0, f1〉 ⊞ 〈g0, g1〉.

(4) ⇒ (3): Assume that f0 ⊞ g0 and f1 ⊞ g1. Then f0◦p0 ⊞ g0◦p0 and f1◦p1 ⊞ g1◦p1 by
left compatibility wrt. composition (Proposition 2). Hence, by assumption, 〈f0◦p0, f1◦p1〉 ⊞
〈g0 ◦ p0, g1 ◦ p1〉. That is f0 & f1 ⊞ g0 & g1.

Corollary 7. A summability structure is compatible with the cartesian product if and only
if p0, p1 are additive and c& is an isomorphism.

4.2 Cartesian product and differential structure

We now assume that C is a cartesian category with a pre-differential structure (D̃, π0, π1, σ).

Definition 18. The (pre-)differential structure (D̃, π0, π1, σ) is compatible with the cartesian
product if the underlying summability structure is compatible with the cartesian product,
and if p0, p1 are D̃-linear. A cartesian coherent differential category (CCDC) is a coherent
differential category whose cartesian product is compatible with the differential structure.

We assume that C is a CCDC. By D̃-linearity of p0 and p1, all constructions involving
only the cartesian product are D̃-linear.

Proposition 23. If h0 ∈ C(X,Y0) and h1 ∈ C(X,Y1) are D̃-linear, then 〈h0, h1〉 is D̃-linear.

If f0 ∈ C(X0, Y0) and f1 ∈ C(X1, Y1) are D̃-linear, then f0 & f1 is D̃-linear.

Proof. For the first statement we proceed as for Proposition 12 except that the paring as a
summable pair is replaced by the pairing of the cartesian product. The second statement
follows from the first one, because f0 & f1 = 〈f0 ◦ p0, f1 ◦ p1〉, the projections are D̃-linear,

and D̃-linearity is closed under composition.

For any objects X0, X1, there is a natural transformation 〈D̃p0, D̃p1〉 ∈ C(D̃(X0 &

X1), D̃X0 & D̃X1). By D̃-linearity of p0 and p1 this natural transformation is equal to
〈⟪p0 ◦ π0, p0 ◦ π1⟫, ⟪p1 ◦ π0, p1 ◦ π1⟫〉 = c&. Whence a result similar to Proposition 14.

Proposition 24. For any f0 ∈ C(X,Y0) and f1 ∈ C(X,Y1), 〈D̃f0, D̃f1〉 = c& ◦ D̃〈f0, f1〉

Proof. pi ◦ c& ◦ D̃〈f0, f1〉 = D̃pi ◦ D̃〈f0, f1〉 = D̃fi.

17

4.3 Partial derivatives

Using c−1
& , we define two natural transformations

Φ0 = (c&)
−1 ◦ (id

D̃X0
& ι0) ∈ C(D̃X0 &X1, D̃(X0 &X1))

Φ1 = (c&)
−1 ◦ (ι0 & id

D̃X1
) ∈ C(X0 & D̃X1, D̃(X0 &X1))

Note that c&, (c&)
−1, Φ0 and Φ1 are all D̃-linear, thanks to Propositions 11 and 23 and Corollary 3.

Proposition 25. Φ0 = ⟪π0 & idX1
, π1 & 0⟫ and Φ1 = ⟪idX0

& π0, 0 & π1⟫

Proof. By Theorem 4, (c&)
−1 = ⟪π0&π0, π1&π1⟫ and the result follows by a straightforward

computation.

Definition 19 (Partial derivative). If f ∈ C(X0 &X1, Y) one can define D̃0f := D̃f ◦Φ0 ∈
C(D̃X0 &X1, D̃Y) and D̃1f := D̃f ◦ Φ1 ∈ C(X0 & D̃X1, D̃Y), the partial derivatives of f .

Proposition 26. For any f ∈ C(X0 & X1, Y), π0 ◦ D̃0f = f ◦ (π0 & id) and π0 ◦ D̃1f =
f ◦ (id& π0).

Proof. π0 ◦ D̃0f = π0 ◦ D̃f ◦ Φ0 = f ◦ π0 ◦ Φ0 = f ◦ (π0 & id) by Proposition 25. The proof
for Φ1 is similar.

Proposition 27. The following diagram commutes.

D̃(X0 & D̃X1) D̃X0 & D̃X1 D̃(D̃X0 &X1)

D̃2(X0 &X1) D̃2(X0 &X1)

D̃Φ1

Φ0 Φ1

D̃Φ0

c

Proof. We use Proposition 25 to compute D̃Φ1 ◦ Φ0 and D̃Φ0 ◦ Φ1. Since Φ0 is D̃-linear,
D̃Φ0 = ⟪Φ0 ◦ π0,Φ0 ◦ π1⟫ by Remark 2. Thus

D̃Φ0 ◦ Φ1 = D̃Φ0 ◦ ⟪idX0
& π0, 0 & π1⟫

= ⟪Φ0 ◦ (idX0
& π0),Φ

0 ◦ (0 & π1)⟫

= ⟪⟪π0 & π0, π1 & 0⟫, ⟪0 & π1, 0 & 0⟫⟫

Similarly, D̃Φ1 ◦ Φ0 = ⟪⟪π0 & π0, 0 & π1⟫, ⟪π1 & 0, 0 & 0⟫⟫. The commutation results
from Proposition 8.

Proposition 28. The following diagram commutes

D̃(X0 & D̃X1) D̃X0 & D̃X1 D̃(D̃X0 &X1)

D̃2(X0 &X1) D̃(X0 &X1) D̃2(X0 &X1)

D̃Φ1

Φ0 Φ1

c
−1

& D̃Φ0

θ θ

Proof. Thanks to the computation of D̃Φ0 ◦ Φ1 in the proof of Proposition 27, we know
that θ ◦ D̃Φ0 ◦ Φ1 = ⟪π0 & π0, π1 & 0 + 0 & π1⟫ = ⟪π0 & π0, π1 & π1⟫ by Corollary 6.

So θ ◦ D̃Φ0 ◦ Φ1 = (c&)
−1 by Theorem 4. A similar computation yields the result for

θ ◦ D̃Φ1 ◦ Φ0.

18

Remark 4. We can check that the natural morphisms Φ0,Φ1 are strenghts [10, 11] for the

monad (D̃, ι0, θ). Then the diagram of Proposition 28 means that this strong monad is a
commutative monad. The diagrams can be checked by hand, but are also a consequence of
very generic properties about strong monads on cartesian categories.

As mentioned in [12] in paragraph 2.3, any monad (M, η, µ) on a cartesian category can
be endowed with the structure of a colax symmetric monoidal monad8 taking

• n0 is the unique element of C(M⊤,⊤)

• n2X1,X2
:= 〈Mp1,Mp2〉 ∈ C(M(X1 &X2),MX1 &MX2)

If n2 and n0 are isos, M becomes a (strong) symmetric monoidal monad. This is what

happens here for M = D̃, because n2 = c& and we can show that n0 is an isomorphism with
inverse ι0 using the join monicity of the πi. But symmetric monoidal monad are the same
as commutative monads as shown in [10, 14], and it turns out that the strengths induced
from the symmetric monoidal structure are exactly Φ0 and Φ1.

The axioms (D-Schwarz) and (D-add) carry to the setting of partial derivatives very
naturally thanks to Propositions 27 and 28 respectively, giving the full fledged Schwarz
and Leibniz rules. The fact that the Leibniz rule is a consequence of the additivity of
the derivative is not surprising, as it is also the case in the usual differential calculus:
f ′(x, y) · (u, v) = f ′(x, y) · (u, 0) + f ′(x, y) · (0, v) = ∂f

∂x (x, y) · u+
∂f
∂y (x, y) · v.

Proposition 29 (Leibniz rule). D̃f ◦ c−1
& = θ ◦ D̃0D̃1f = θ ◦ D̃1D̃0f

Proof. Let us prove that D̃f ◦ c−1
& = θ ◦ D̃0D̃1f .

θ ◦ D̃0D̃1f = θ ◦ D̃(D̃f ◦ Φ1) ◦ Φ0 by definition

= θ ◦ D̃2f ◦ D̃Φ1 ◦ Φ0 by (D-chain)

= D̃f ◦ θ ◦ D̃Φ1 ◦ Φ0 by (D-add)

= D̃f ◦ c−1
& by Proposition 28

The proof of D̃f ◦ c−1
& = θ ◦ D̃1D̃0f is similar.

Proposition 30 (Schwarz rule). D̃0D̃1f = c ◦ D̃1D̃0f

Proof. Very similar to that of Proposition 29, except that it uses the naturality of c of
(D-Schwarz) instead of the naturality of θ.

4.4 Generalization to arbitrary finite products

Notations 3. Recall that the existence of arbitrary finite products is equivalent to the
existence of a binary product and a terminal object. In order to stay consistent with the
current notations, we write the finite products starting from 0: X0&· · ·&Xn. We allow empty
products, with the convention that taking n = −1 yields a product X0 & · · ·&X−1 := ⊤.

The constructions above can be extended to arbitrary finite products. On can indeed
define a (symmetric monoidal) natural transformation cn& ∈ C(D̃(X0 & · · · & Xn), D̃X0 &

· · · & D̃Xn) inductively by (c&)X := t
D̃⊤ ∈ C(D̃⊤,⊤), (c0&)X := id

D̃X ∈ C(D̃X, D̃X) and

cn+1
& := c& ◦ 〈cn&, idD̃Xn+1

〉. By associativity of the cartesian product, this definition does

not depend on the actual parenthesizing of X0 & · · ·&Xn.

8Also called oplax symmetric monoidal monad, or symmetric comonoidal monad, or Hopf monad, see [13]

19

Notations 4. Let X0, Y0, . . . , Xn, Yn ∈ Obj(C), i ∈ J0, nK and fk ∈ C(Xk, Yk) for each k 6= i.
Let g ∈ C(Xi, Yi). Define (g; f−i) := f0 & · · ·& fi−1 & g& fi+1 & · · ·& fn in which we use fi
everywhere except at position i where we use g.

Similarly to the binary case, one can then define a strength Φi ∈ C(X0 & · · · & D̃Xi &

· · ·&Xn, D̃(X0 & · · ·&Xn)) as

Φi := (cn&)
−1 ◦ (id

D̃Xi
; (ι0)−i) .

Proposition 31. cn& is an isomorphism and (cn&)
−1 = ⟪π0& · · ·&π0, π1& · · ·&π1⟫. Hence,

Φi = ⟪(π0; id−i), (π1; 0−i)⟫.

Proof. The equation on cn& is obtained by unfolding the inductive definition and using Theorem 4.
The equations on the Φi’s follow from this, as in Proposition 25.

Definition 20. For any f ∈ C(X0 & · · ·&Xn, Y) one can define the i-th partial derivative

of f as D̃if := D̃f ◦ Φi ∈ C(X0 & · · ·& D̃Xi & · · ·&Xn, D̃Y).

Proposition 32. π0 ◦ D̃if = f ◦ (π0; id−i).

Proof. Same as Proposition 26.

Definition 21. For any X ∈ Obj(C) and n ≥ 0, we can define θkX ∈ C(D̃n+1X, D̃X) as
the composition of k copies of θ: θ0X = id

D̃X and θk+1
X = θkX ◦ θ

D̃kX . We define similarly

πk
i ∈ C(D̃kX,X).

Note that θk = ⟪πk+1
0 ,

∑k
j=0 π

j
0 ◦ π1 ◦ πk−j

0 ⟫. In other words, the right component of

θk sums over all of the possible combinations of k left projections and one right projection.
One can prove a generalization of Proposition 28 for n ≥ 1,

(cn&)
−1 = θn ◦ D̃nΦα(n) ◦ · · · ◦ D̃Φα(1) ◦ D̃Φα(0)

for any α permutation of J0, nK. As in Proposition 29, this generalizes the Leibniz Rule to
the n-ary case.

Proposition 33 (Leibniz, generalized). For any n ≥ 1 and for any permutation α of J0, nK,

D̃f ◦ (cn&)−1 = θn ◦ D̃α(n) . . . D̃α(0)f .

4.5 Multilinear morphism

We generalize to multivariate functions the notion of additivity and D̃-linearity.

Definition 22. A morphism f ∈ C(Y0 & · · · & Yn, Z) is additive in its ith argument (for
i ∈ J0, nK) if f ◦ (0; id−i) = 0 and if for all h0, h1 ∈ C(X,Yi) such that h0 ⊞ h1, then
f ◦ (h0; id−i) ⊞ f ◦ (h1; id−i) and

f ◦ (h0; id−i) + f ◦ (h1; id−i) = f ◦ (h0 + h1; id−i)

Proposition 34. A morphism f ∈ C(Y0& · · ·&Yn, Z) such that f ◦ (0; id−i) = 0 is additive
in its ith argument if and only if f ◦ (π0; id−i) ⊞ f ◦ (π1; id−i) with sum f ◦ (σ; id−i).

Proof. The proof is the same as Proposition 3, using the fact that for any k ∈ {0, 1},
f ◦ (hk; id−i) = f ◦ (πk; id−i) ◦ (⟪h0, h1⟫; id−i).

20

Definition 23. A morphism f ∈ C(X0 & · · · &Xn, Y) is linear in its ith argument if it is

additive in this argument and if π1 ◦ D̃if = f ◦ (π1; id−i).

As in Proposition 10, (D-add) ensures that the equation π1 ◦ D̃if = f ◦ (π1; id−i) is a
sufficient condition for linearity in the ith argument.

Proposition 35. Assume that π1 ◦ D̃if = f ◦ (π1; id−i). Then f is additive in its ith

argument, hence linear in that argument.

Proof. The equation allows rewriting f ◦ (h; id−i) as follows.

f ◦ (h; id−i) = f ◦ (π1; id−i) ◦ (⟪0, h⟫; id−i)

= D̃if ◦ (⟪0, h⟫; id−i) by assumption

= D̃f ◦ Φi ◦ (⟪0, h⟫; id−i)

= D̃f ◦ ⟪(0; id−i), (h; 0−i)⟫ by Proposition 31

In particular, f ◦ (0; id−i) = D̃f ◦ ⟪(0; id−i), (0; 0−i)⟫. But (0; 0−i) = 0 by Corollary 6.
So by (D-add) and Proposition 18, f ◦ (0; id−i) = 0. Similarly, if h0 ⊞ h1,

f ◦ (h0 + h1; id−i)

= D̃f ◦ ⟪(0; id−i), (h0 + h1; 0−i)⟫

= D̃f ◦ ⟪(0; id−i), (h0; 0−i) + (h1; 0−i)⟫ by Corollary 6

= D̃f ◦ ⟪(0; id−i), (h0; 0−i)⟫+ D̃f ◦ ⟪(0; id−i), (h1; 0−i)⟫ by (D-add) and Proposition 19

= f ◦ (h0; id−i) + f ◦ (h1; id−i) .

Definition 24. A morphism f ∈ C(X0 & · · · &Xn, Y) is multilinear (and more precisely,
(n + 1)-linear) if it is linear in all of its argument. Note that the 1-linear morphisms are

exactly the D̃-linear ones.

As a sanity check of the notion, we can use the result below together with the Leibniz
rule to show a result similar to the fact that in differential calculus, if Φ is a bilinear map,
then Φ′(x, y) · (u, v) = Φ(x, v) + Φ(u, y).

Lemma 1. For any f ∈ C(X0 & · · ·&Xn, Y) and i, j ∈ J0, nK such that i 6= j,

D̃π0 ◦ D̃iD̃jf = D̃if ◦ (π0; id−j)

Proof. This is a direct computation

D̃π0 ◦ D̃iD̃jf = D̃π0 ◦ D̃(D̃jf) ◦Φi

= D̃(π0 ◦ D̃jf) ◦ Φi by (D-chain)

= D̃(f ◦ (π0; id−j)) ◦ Φi by Proposition 32

= D̃f ◦ D̃(π0; id−j) ◦ Φi by (D-chain)

= D̃f ◦ Φi ◦ (π0; id−j) since Φi natural and i 6= j

= D̃if ◦ (π0; id−j)

21

Theorem 5. For any (n+ 1)-linear morphism f ∈ C(X0 & · · ·&Xn, Y)

π0 ◦ D̃f ◦ (c&)−1 = f ◦ (π0 & · · ·& π0)

π1 ◦ D̃f ◦ (c&)−1 = f ◦ (π1 & π0 & · · ·& π0) + · · ·+ f ◦ (π0 & · · ·& π0 & π1)

Proof. We will write the proof for n = 1. The general case relies on the same arguments.
The first equation is just a direct consequence of the naturality of π0 and Proposition 25. For
the second equation, Leibniz (Proposition 29) ensures that π1 ◦ D̃f ◦ c−1

& = π1 ◦ θ ◦ D̃0D̃1f =

π1 ◦ π0 ◦ D̃0D̃1f + π0 ◦ π1 ◦ D̃0D̃1f . We can compute those two summands separately.

π1 ◦ π0 ◦ D̃0D̃1f = π1 ◦ D̃1f ◦ (π0 & id) by Proposition 26

= f ◦ (id& π1) ◦ (π0 & π1) by bilinarity of f

= f ◦ (π0 & π1)

π0 ◦ π1 ◦ D̃0D̃1f = π1 ◦ D̃π0 ◦ D̃0D̃1f by linearity of π0

= π1 ◦ D̃0f ◦ (id& π0) by Lemma 1

= f ◦ (π1 & id) ◦ (id& π0) by bilinarity of f

= f ◦ (π1 & π0)

Which concludes the proof.

We can expand on the ideas of the proof Lemma 1 to show the following result. This
result is crucial, as it explains how to project on a series of partial derivatives.

Proposition 36. Let n ≥ 0, f ∈ C(X0 & · · ·&Xn), d ≥ 0 and i, i1, . . . , id ∈ J0, nK. Then,

D̃dπ0 ◦ D̃id . . . D̃i1D̃if = D̃id . . . D̃i1f ◦ (D̃hd(i)π0; id−i)

where hd(i) = #{k ∈ J1, dK | ik = i}. Furthermore, if f is (n+ 1)-linear, then

D̃dπ1 ◦ D̃id . . . D̃i1D̃if = D̃id . . . D̃i1f ◦ (D̃hd(i)π1; id−i)

Proof. By induction on d. The case d = 0 is Proposition 32 for π0, and the definition of
n-linearity for π1. We deal with the inductive step for π0. The inductive step for π1 is dealt
with similarly.

D̃d+1π0 ◦ D̃id+1
. . . D̃i1D̃if = D̃(D̃dπ0) ◦ D̃(D̃id . . . D̃i1D̃if) ◦ Φid+1 by definition

= D̃(D̃dπ0 ◦ D̃id . . . D̃i1D̃if) ◦ Φid+1 by (D-chain)

= D̃(D̃id . . . D̃i1D̃if ◦ (D̃hd(i)π0; id−i)) ◦ Φid+1 by inductive hypothesis

= D̃D̃id . . . D̃i1D̃if ◦ D̃(D̃hd(i)π0; id−i) ◦ Φid+1 by (D-chain)

The next step is to use the naturality of Φid+1 :

D̃(f0 & · · ·& fn) ◦Φid+1 = (D̃fid+1
; f−id+1

)

If id+1 = i, then

D̃(D̃hd(i)π0; id−i) ◦ Φid+1 = Φid+1 ◦ (D̃hd(i)+1π0; id−i)

22

If id+1 6= i then

D̃(D̃hd(i)π0; id−i) ◦ Φid+1 = Φid+1 ◦ (D̃hd(i)π0; id−i)

In both case,
D̃(D̃hd(i)π0; id−i) ◦ Φid+1 = Φid+1 ◦ (D̃hd+1(i)π0; id−i)

Consequently:

D̃d+1π0 ◦ D̃id+1
. . . D̃i1D̃if = D̃D̃id . . . D̃i1D̃if ◦ Φid+1 ◦ (D̃hd+1(i)π0; id−i)

= D̃id+1
D̃id . . . D̃i1D̃if ◦ (D̃hd+1(i)π0; id−i)

which concludes the proof.

This property instantiated in d = 1 gives back something similar to Lemma 1.

Corollary 8. If f ∈ C(X0 & · · ·&Xn) is (n+ 1)-linear, then for any i, j ∈ J0, nK such that
i 6= j and for any k ∈ {0, 1},

D̃πk ◦ D̃iD̃jf = D̃if ◦ (πk; id−j)

D̃πk ◦ D̃iD̃if = D̃if ◦ (D̃πk; id−i)

We can use this corollary to show that the partial derivative of a (n+1)-linear morphism
is also (n+ 1)-linear.

Theorem 6. If f ∈ C(X0 & · · · & Xn) is (n + 1)-linear, then for any i ∈ J0, nK, D̃if is
(n+ 1)-linear.

Proof. Let j ∈ J0, nK. The goal is to prove that π1 ◦ D̃jD̃if = D̃if ◦ (π1; id−j). By joint

monicity of the πk, it suffices to prove that πk ◦ π1 ◦ D̃jD̃if = πk ◦ D̃if ◦ (π1; id−j) for any
k ∈ {0, 1}. If i 6= j,

πk ◦ π1 ◦ D̃jD̃if = π1 ◦ D̃πk ◦ D̃jD̃if by D̃-linearity of π1

= π1 ◦ D̃jf ◦ (πk; id−i) by Corollary 8

= f ◦ (π1; id−j) ◦ (πk; id−i) since f is (n+ 1)-linear

= f ◦ (πk; id−i) ◦ (π1; id−j) since i 6= j

= πk ◦ D̃if ◦ (π1; id−j) since f is (n+ 1)-linear

The case i = j is very similar

πk ◦ π1 ◦ D̃iD̃if = π1 ◦ D̃πk ◦ D̃iD̃if by D̃-linearity of π1

= π1 ◦ D̃if ◦ (D̃πk; id−i) by Corollary 8

= f ◦ (π1; id−i) ◦ (D̃πk; id−i) since f is (n+ 1)-linear

= f ◦ (πk; id−i) ◦ (π1; id−i) since πk is D̃-linear

= πk ◦ D̃if ◦ (π1; id−i) since f is (n+ 1)-linear.

Composition with a linear morphism preserves multilinearity. Thus, the Leibniz rule
ensures that if f is multilinear then D̃f is also multilinear.

23

Proposition 37. If f ∈ C(X0 & · · · &Xn, Y) is (n + 1)-linear and h ∈ C(Y, Z) is linear,
then h ◦ f is (n+ 1)-linear.

Proof. This follows from a straightforward computation π1 ◦ D̃i(h ◦ f) = π1 ◦ D̃(h ◦ f) ◦Φi =

π1 ◦ D̃h ◦ D̃f ◦ Φi = h ◦ π1 ◦ D̃if = h ◦ f ◦ (π1; id−i).

Theorem 7. If f ∈ C(X0 & · · · & Xn, Y) is (n + 1)-linear, then D̃f ◦ (cn&)
−1 ∈ C(D̃X0 &

· · ·& D̃Xn, D̃Y) is also (n+ 1)-linear.

Proof. By Leibniz (Proposition 33), D̃f ◦ (cn&)
−1 = θn ◦ D̃α(n) . . . D̃α(0)f . But the partial

derivatives preserves multilinearity by Theorem 6 and composition by θn on the left pre-
serves multilinearity by Proposition 37.

5 Kleisli category of the exponential of a model of LL

5.1 Coherent differentiation in a linear setting

Let L be a symmetric monoidal closed category that is a model of LL, and more precisely
a Seely category in the sense of [15]. We write the composition of f ∈ L(X,Y) with
g ∈ L(Y, Z) as g f to stress the intuition that the morphisms of L are linear. The axioms of
a Seely category include the existence of a cartesian product & and a comonad (!, der, dig) on
L, where derX ∈ L(!X,X) and digX ∈ L(!X, !!X) are natural transformations. The Kleisli
category L! of this comonad is the category whose objects are the objects of L and whose
hom-sets are L!(X,Y) = L(!X,Y). Composition is defined in this category as g◦f = g !f dig
and the identity at X is derX , the unit of the comonad. It is well known that L! is a cartesian
(closed) category, with the same cartesian product & as L.

The goal of this section is to show that coherent differentiation on L as introduced in [5]
in the setting of LL gives L! a CCDC structure.

Theorem 8. Any differential structure on a summable category L (see [5]) induces a CCDC
structure on L!.

Let us detail first what the assumption means. The category L is said to be summable [5]
if it has a summability structure (S, π0, π1, σ) in the sense of the first author. By Theorem 3,
this means that (S, π0, π1, σ) is a left summability structure in the sense of Definition 10
where every morphism is additive and the functorial action of S is given by Sf := ⟪f ◦
π0, f ◦π1⟫. Then, we can define ιi, θ, l and c as usual9. The difference is that the additivity
of every morphism ensures that those families are natural transformations for the functor
S. In particular, (S, ι0, θ) is de facto a monad. The category L is said to be summable
as a cartesian category if 〈Sp0, Sp1〉 = c& is an isomorphism10. Because every morphism
of L is additive, this corresponds by Corollary 7 to the fact that the cartesian product is
compatible with the left summability structure as in Definition 17.

It is well known that there is a faithful functor Der : L → L! which maps X to X
and f ∈ L(X,Y) to f derX ∈ L(!X,Y). We can show that this functor induces a left

summability structure (D̃,Der(π0),Der(π1),Der(σ)) on L! (where D̃X := SX) compatible
with the cartesian product & of L!. The reason is that Der preserves monicity and additivity,
thanks to the well known fact that Der(h) ◦ f = h f . Finally, the definition of Der ensures

9Note that in [5], θ is called τ
10We can show that the condition required in [5] that 0 ∈ L(S⊤,⊤) is an isomorphism always hold, using

the joint monicity of the πi

24

that Der(⟪f0, f1⟫) = ⟪Der(f0),Der(f1⟫. In particular, the families of morphism generated by

the Left Summability Structure (D̃,Der(π0),Der(π1),Der(σ)) in Definitions 6 and 12 to 14
are Der(ιi), Der(θ), Der(l) and Der(c) respectively.

Then a differential structure on a summable category L is a natural transformation
∂X ∈ L(!SX, S!X) satisfying some equations called (∂-chain), (∂-local), (∂-lin), (∂-&) and
(∂-Schwarz) (see [5]). The first axiom, (∂-chain), is a compatibility condition of ∂ with
regard to dig and der, making ∂ a distributive law between the functor S and the comonad
!_.

Definition 25. A distributive law between a functor F : L → L and the comonad !_
on L is a natural transformation λF ∈ L(!FX,F !X) such that the two following diagrams
commute.

!FX F !X

FX

λF
X

derFX

FderX

!FX F !X

!!FX !F !X F !!X

digFX

λF
X

FdigX

!λF
X λF

!X

A definition of distributive laws can be found in [16], together with a proof of Propositions 38
and 39 stated below (corollary 5.11 of [16])11.

Proposition 38. Let F : C → C be an endofunctor. There is a bijection between distributive
laws λF ∈ L(!FX,F !X) and liftings12 F̂ of F on L!. A lifting F̂ of F is a functor F̂ : L! →
L! such that F̂X = FX and F̂ (Der(h)) = Der(Fh).

Proof. Given a distributive law λF ∈ L(!FX,F !X), one can define an extension mapping X
to FX and f ∈ L!(X,Y) to F (f)λFX ∈ L!(FX,FY). We can check that it is a functor using
the diagrams of distributive laws, and a lifting of F using the naturality of λF . Conversely,
any lifting F̂ of F induces a family λFX = F̂ id!X ∈ L!(!FX,F !X). The two diagrams of

distributive law comes from the functoriality of F̂ and the naturality comes from the fact
that F̂ is an extension of F .

Remark 5. Let F,G : L → L be two functors, with respective lifting F̂ and Ĝ associated
to the distributive laws λF ∈ L(!FX,F !X) and λG ∈ L(!GX,G!X). Then ĜF̂ is a lifting
of GF and the distributive law associated with ĜF̂ is the following natural transformation:
λGF
X = G(λFX)λGFX ∈ L(!GFX,GF !X).

The result below, proved in [16], is rather overlooked. While the proof is indeed quite
simple, it provides a very interesting perspective on the idea of extending structure to a
Kleisli (or similarly to an Eilenberg-Moore) category.

Proposition 39. Let F,G : L → L be two endofunctors. Assume that F̂ and Ĝ are lifting
of F and G respectively, and let λF and λG be their respective associated distributive law.
Let αX ∈ L(FX,GX) be a natural transformation. Then Der(αX) ∈ L!(F̂X, ĜX) is natural
if and only if the following diagram commutes.

!FX F !X

!GX G!X

λF

!α α

λG

(3)

11These observations are made in the more general setting of 2-categories
12The word “extension” is also used. We use the term lifting in order to stick to the terminology of [16]

25

Proof. straightforward computation.

In the case of differentiation, the axiom (∂-chain) implies that ∂ ∈ C(!SX, S!X) is a
distributive law between the comonad ! and the functor S. This means that S can be lifted
to an endofunctor D̃ on L!. Besides, there is a trivial distributive law id!X ∈ L(!X, !X) as-
sociated to the lifting of the identity functor on L to the identity functor on L!. Then
(∂-local) is an instance of Equation (3) in which F = S, G = Id and α = π0. This

means that (∂-local) holds if and only if Der(π0) ∈ L!(D̃X,X) is a natural transforma-

tion. Thus, (D̃,Der(π0),Der(π1),Der(σ)) is a pre-differential structure on L! (in the sense of
Definition 11) and (D-chain) holds.

Moreover, since D̃ is a lifting of S, for any h ∈ L(X,Y), the morphism Der(h) ∈ L!(X,Y)

is D̃-linear. Indeed, Der(π0) ◦ D̃(Der(h)) = Der(π0) ◦ Der(Sh) = Der(π0 Sh) = Der(hπ0) =
Der(h)◦Der(π0). As a result, Der(πi),Der(σ),Der(pi) are all linear so (Dproj-lin), (Dsum-lin)
hold and the pre-differential structure is compatible with the cartesian product.

Furthermore, (∂-lin) consists of two instances of Equation (3). The first one is an instance
in which F = S, G = Id and α = ι0 ∈ L(X, SX). The second one is an instance in which
F = S2, G = S and α = θ ∈ L(S2X,X). Indeed, as we saw in Remark 5, there is a

distributive law S(∂X) ∂SX ∈ C(!S2X, S2!X) associated to D̃2, the lifting of S2 to L!. So

(∂-lin) holds if and only if Der(ι0) ∈ L!(D̃
2X, D̃X) and Der(θ) ∈ L!(D̃

2X, D̃X) are natural
transformation, that is if and only if (D-add) hold13.

Finally, (∂-Schwarz) consists of an instance of Equation (3) in which F = S2, G =

S2 and α = c. So (∂-Schwarz) holds if and only if Der(c) ∈ L!(D̃
2X, D̃2X) is natural.

The only lacking axiom is (D-lin) that corresponds to the naturality of Der(l). Thanks
to Proposition 39, it would hold if and only if the diagram below commutes.

!SX S!X

!S2X S!SX S2!X

!l

∂X

l!X

∂SX S∂X

(4)

This diagram is not mentioned in [5] but makes perfectly sense in the setting of coherent
differentiation in LL and holds in all known LL models of coherent differentiation. The
study of the consequences of this diagram is left for further work. This ends the proof of
Theorem 8.

Remark 6. The only remaining axiom is (∂-&) that deals with the Seely isomorphisms
mn ∈ L(!X0 ⊗ . . .⊗!Xn, !(X0 & . . . &Xn)) of the Seely category L. It is possible to define

in LL a notion of multilinearity: given any l ∈ L(X0 ⊗ . . . ⊗ Xn, Y), one can define l̃ ∈
L!(X0&. . .&Xn, Y) as l̃ = l (der⊗. . .⊗der) (mn)−1. Then a morphism in L!(X0&. . .&Xn, Y)

is (n+ 1)-linear (in the sense of LL) if it can be written as h̃ for some h. The axiom (∂-&)
allows to show that any (n+1)-linear morphism in the sense of LL is also (n+1)-linear in the
sense of Definition 24. A proof of this fact can be implicitly found in Theorem 4.26 of [17].
This is a crucial fact, because it shows that what really matters is the (n + 1)-linearity in
terms of CCDC rather than the (n+ 1)-linearity in terms of LL.

Many models of LL have a coherent differential structure, such as coherence spaces, non-
uniform coherence spaces and probabilistic coherence spaces. Thus, their Kleisli categories

13As we saw, this gives to D̃ the structure of a Monad on L!. In fact, (∂-chain) and (∂-lin) taken together

make ∂ a distributive law between the monad D̃ and the comonad !_. There is a striking symmetry, because
it also allows to lift !_ to a comonad on LS the Kleisli category of S

26

are all CCDCs. This provides a rich variety of examples. We present here the example of
probabilistic coherence spaces.

5.2 The example of probabilistic coherence spaces

A probabilistic coherence space (PCS) [18] is a pair X = (|X |,PX) where |X | is a set and
PX ⊆ (R≥0)

|X| satisfies PX = {x ∈ (R≥0)
|X| | ∀x′ ∈ P ′ 〈x, x′〉 :=

∑
a∈|X| xax

′
a ≤ 1} for

some P ′ ⊆ (R≥0)
|X| called a predual of X . To avoid ∞ coefficients it is also assumed that

∀a ∈ |X | 0 < supx′∈P′ x′a < ∞ and then it is easily checked that for all ∀a ∈ |X | 0 <
supx∈PX xa <∞.

A multiset of elements of a set I is a function m : I → N such that the set supp(m) = {i ∈
I | m(i) 6= 0} is finite. The set Mfin(I) of these multisets is the free commutative monoid
generated by I. We use [i1, . . . , ik] for the m ∈ Mfin(I) such that m(i) = #{j | ij = i}, for
i1, . . . , ik ∈ I.

Given PCSs X and Y , a function f : PX → PY is analytic14 if there is a ma-
trix t ∈ (R≥0)

Mfin(|X|)×|Y | such that, for all x ∈ PX and b ∈ |Y |, one has f(x)b =∑
(m,b)∈Mfin(|X|)×|Y | tm,bx

m where xm =
∏

a∈|X| x
m(a)
a . Thanks to the fact that all the

coefficients in t are finite, it is not difficult to see that they can be recovered from the func-
tion f itself by means of iterated differentiation, see [18]. So an analytic function has exactly
one associated matrix.

The identity function PX → PX is analytic (of matrix t given by tm,a = δm,[a]) and
the composition of two analytic functions is still analytic. We use APcoh for the category
whose objects are PCSs and morphisms are analytic functions. For instance, if 1 is the
PCS ({∗}, [0, 1]) then f1, f2 : [0, 1] → [0, 1] given by f1(x) = 1 −

√
1− x2 and f2(x) = ex−1

are in APcoh(1, 1), but f3(x) = 2x − x2 is not because of the negative coefficient. The

(pointwise) sum of two analytic functions PX → PY is always well defined PX → R
|Y |
≥0 , but

is not necessarily in APcoh(X,Y) so APcoh is not left-additive15.

If X is a PCS then D̃X = ({0, 1} × |X |,P(D̃X) = {z ∈ (R≥0)
{0,1}×|X| | π0(z) + π1(z) ∈

PX}), where πi(z)a = zi,a, is a PCS. Then π0, π1 ∈ APcoh(D̃X,X) and we have also

σ ∈ APcoh(D̃X,X) given by σ(z) = π0(z) + π1(z). In other words D̃X is the PCS whose
elements are the pairs (x, u) ∈ PX2 such that x + u ∈ PX . In that way we have equipped
APcoh with a left pre-summability structure and the associated notion of summability
is the obvious one: f0, f1 ∈ APcoh(X,Y) are summable if their pointwise sum f0 + f1
is in APcoh(X,Y) (the matrix of this sum is the sum of the matrices of f0 and f1). It
is easily checked that this left pre-summability structure is a left summability structure
(see Definition 10).

As explained in Section 2.1, differentiation boils down to extending the operation D̃

to morphisms in such a way that the conditions of Definition 15 be satisfied. Given f ∈
14There is also a purely functional characterization of these functions as those which are totally monotone

and Scott continuous, see [19]
15At least for this most natural addition.

27

APcoh(X,Y) of matrix t and (x, u) ∈ P(D̃X) we have

f(x+ u) =
∑

(m,b)∈Mfin(|X|)×|Y |

tm,b(x + u)m

=
∑

(m,b)∈Mfin(|X|)×|Y |

tm,b

∑

p≤m

(
m

p

)
xm−pup

= f(x) +
∑

a∈supp(m)

(
m

[a]

)
xm−[a]ua + r(x, u)

= f(x) +
∑

a∈supp(m)

m(a)xm−[a]ua + r(x, u)

where
(
m
p

)
=
∏

a∈|X|

(m(a)
p(a)

)
∈ N when p ≤ m for the pointwise order. In these expressions

the remainder r(x, u) is a power series in x and u all of whose monomials have total degree
> 1 in u (such as xaubuc if a, b, c ∈ |X |). In particular ‖r(x, u)‖ ∈ o(‖u‖) where ‖x‖ =
sup{〈x, x′〉 | x′ ∈ P ′} ∈ [0, 1] for any predual of X (this norm does not depend on the choice
of P ′). Using Definition 11 we set

Df(x, u) =
∑

a∈supp(m)

m(a)xm−[a]ua.

Since all coefficients of t are ≥ 0 we have f(x)+Df(x, u) ≤ f(x+u) for the pointwise order so

that D̃f(x, u) = (f(x),Df(x, u)) ∈ P(D̃Y). In that way we have defined an analytic function

D̃f ∈ APcoh(D̃X, D̃Y) and it is easily checked that APcoh is a coherent differential
category in the sense of Definition 15. For the two examples above we get Df2(x, u) = ex−1u
and Df1(x, u) = xu/

√
1− x2 which seems to be undefined when x = 1 but is not because

then we must have u = 0 and so Df1(1, 0) = 0.
An analytic f ∈ APcoh(X,Y) is linear if its matrix t satisfies that whenever tm,b 6=

0, one has m = [a] for some a ∈ |X |. This notion of linearity16 coincides with both

additivity Definition 3 and D̃-linearity Definition 16.
The category APcoh is cartesian, with ⊤ = (∅, {0}) and X & Y = ({0} × |X | ∪ {1} ×

|Y |), {z ∈ (R≥0)
{0}×|X|∪{1} | p0(z) ∈ PX and p1(z) ∈ PY } which is easily seen to be a PCS

(pi is defined exactly as πi) such that P(X & Y) = PX×PY up to a trivial bijection. The pro-

jections pi are additive, and c& (see Section 4.1) is an iso: if ((x, u), (y, v)) ∈ P(D̃X & D̃Y)

then ((x, y), (u, v)) ∈ P(D̃(X & Y)) since (x, y) + (u, v) = (x + u, y + v) so the summability
structure is compatible with the cartesian product by Corollary 7.

An f ∈ APcoh(X0 &X1, Y) is bilinear in X0, X1 if it is linear (or additive) separately
in both inputs, which is equivalent to saying that its matrix t satisfies that if tm,b 6= 0 then
m = [(0, a0), (1, a1)] with ai ∈ |Xi| for i = 0, 1. Let N = (N, {x ∈ (R≥0)

N | ∑n∈N
xn ≤ 1})

which represents the type of integers in APcoh, then the function h : APcoh(N&N&N,N)
given by h(u, x, y) = u0x + (

∑∞
n=1 un)y is bilinear in N, N & N and can be understood as

an ifzero operator. The function k ∈ APcoh(N,N) such that k(x)n = xn+1 is linear and
represents the successor operation.

16Which arises from the fact that APcoh is the Kleisli category of the comonad “ !” on the PCS model of
LL of [18].

28

6 Link with cartesian differential categories

We show in this section that CCDCs are a generalization of cartesian differential cate-
gories [3].

6.1 Cartesian left additive categories

We rely on the presentation of [20] for left additive categories, since this article uses a
minimal set of assumptions.

Definition 26. A left additive category is a category such that each hom-set is a commu-
tative monoid, with addition + and zero 0 commuting with composition on the right, that
is (f + g) ◦ h = f ◦ h+ g ◦ h and 0 ◦ f = 0.

Definition 27. A morphism h is additive if addition is compatible with composition with
h on the left, that is h ◦ (f + g) = h ◦ f + h ◦ g and h ◦ 0 = 0. Note that the identity is
additive, and additive morphisms are closed under addition and composition.

Definition 28. A cartesian left additive category is a left additive category such that the
projections are additive.

Given a cartesian left additive category C, one can define a summable pairing structure
(Definition 1) (D̃&, p0, p1, p0 + p1) with D̃&X = X & X . Then one can check that all
morphisms are summable (the witness of f ⊞ g is 〈f, g〉). Moreover the left additivity of the

category ensures that the notion of sum induced by (D̃&, p0, p1, p0 + p1) coincides with the
native structure of monoid on the hom-sets. In particular, a morphism is additive in the
sense of Definition 3 if and only if it is additive in the sense of Definition 28. Consequently,
p0, p1 and p0+p1 are additive. Thus, (D̃&, p0, p1, p0+p1) is a left pre-summability structure.

Finally, it is a left summability structure because (D̃-witness) trivially holds (everything is

summable), and (D̃-zero), (D̃-com) hold thanks to the fact that everything is summable and
that (C(X,Y),+, 0) is a commutative monoid.

Conversely any left summability structure on C of shape (D̃&, p0, p1, σ) with D̃&X =
X&X endows each hom-set with a commutative monoid structure and Proposition 2 ensures
that the category is left additive. Then, as above, a morphism is additive in the sense of
Definition 3 if and only if it is additive in the sense of Definition 28. Thus p0, p1 are additive
so the category is cartesian left additive. Moreover σ = p0 + p1 by Proposition 1 so the
left summability structure induced by the monoid on the hom-set coincides with the left
summability structure we started from. We just proved Theorem 9 below.

Theorem 9. Let C be a cartesian category. Define D̃&X = X & X. There is a bijection
between the monoid structures on the hom-set that make C a cartesian left additive category
and the left summability structures (D̃, π0, π1, σ) on C such that D̃ = D̃&, π0 = p0 and
π1 = p1.

Remark 7. Any left summability structure on C of shape (D̃&, p0, p1, σ) with D̃&X = X&X
is de facto compatible with the cartesian product. The additivity of p0 and p1 is part of the
axioms of summability, and c& is an isomorphism thanks to Theorem 4 and the fact that
everything is summable.

6.2 Cartesian differential categories

We give the axioms of a cartesian differential category following the alternative formulation
of [7] for convenience.

29

Definition 29. A cartesian differential category is a cartesian left additive category C
equipped with a differential combinator D that maps each morphism f ∈ C(X,Y) to a
morphism Df ∈ C(X &X,Y) such that

(1) Dp0 = p0 ◦ p1, Dp1 = p1 ◦ p1;

(2) D0 = 0 and D(f + g) = Df + Dg;

(3) Did = π1 and D(g ◦ f) = Dg ◦ 〈f ◦ π0,Df〉;

(4) Df ◦ 〈x, 0〉 = 0 and Df ◦ 〈x, u + v〉 = Df ◦ 〈x, u〉+ Df ◦ 〈x, v〉;

(5) DDf ◦ 〈〈x, 0〉, 〈0, u〉〉 = Df ◦ 〈x, u〉;

(6) DDf ◦ 〈〈x, u〉, 〈v, w〉〉 = DDf ◦ 〈〈x, v〉, 〈u,w〉〉.
Note that the axiom Did = p1 seems to be missing from the axioms given in [7], although

it can be found in the original formulation in [3]. There is usually another axiom, that states
that D〈f, g〉 = 〈Df,Dg〉. But as observed in [20], this axiom is a consequence of the linearity
of the projections and of the chain rule so we discard it.

Let C be a left additive category. As stated in Theorem 9, the structure of monoid in
the hom-set arises from a summability structure (D̃&, p0, p1, p0 + p1) compatible with the
cartesian product. Then, there is a bijection between pre-differential structures on top of
this summability structure and differential combinators in the sense of Definition 29: we
can define the functorial action of D̃& from D as D̃&f := 〈f ◦ p0,Df〉, and we can define D

from D̃& as Df = p1 ◦ D̃&f .
Besides, we have shown in Section 3 that the axioms of coherent differentiation are equiv-

alent to some equational properties on D. When the underlying left summability structure
is (D̃&, p0, p1, p0 + p1), those properties turn out to be exactly the axioms of cartesian
differential categories. The axiom (1) corresponds to (Dproj-lin). By Corollary 5, (2) corre-
sponds to (Dsum-lin). By Proposition 16, (3) corresponds to (D-chain). By Propositions 18
and 19, (4) corresponds to (D-add). By Proposition 20, (5) corresponds to (D-lin). By
Proposition 21, (6) corresponds to (D-Schwarz).

Finally, the differential structures on top of the left summability structure (D̃&, p0, p1, σ)
are de facto compatible with the cartesian product, because the linearity of p0 and p1 is
included in (1).

Theorem 10. The cartesian differential categories are exactly the cartesian coherent dif-
ferential categories in which D̃X = X &X, π0 = p0, π1 = p1.

Remark 8. In [3], h is said to be linear if D(h) = h ◦ p1. Then Proposition 10 ensures that

this notion of linearity exactly corresponds through Theorem 10 to our notion of D̃-linearity
introduced in Definition 16.

Remark 9. Every cartesian differential category is also a tangent category [7], and the

tangent functor induced from D is exactly the same functor as D̃&. This makes sense,
as coherent differentiation and tangent categories are very similar: they extend cartesian
differential categories by generalizing addition in two different ways.

7 A first order coherent differential language

We introduce a first order language associated to these models. Note that a development
of a whole coherent differential PCF of which our language can be roughly considered as a

30

fragment can already be found in [17], with a semantics based on [5]. Our main contribution
here is that CCDCs provide the tools for a more principled and synthetic treatment of the
semantics. This tighter connection between syntax and semantics allows for the development
of new ideas, such as a more systematic treatment of multilinearity.

7.1 Terms

Definition 30. Le B be a set of ground type symbols, ranged over by α, β, . . . For any
α ∈ B and h ∈ N, D̃hα is a ground type. General types are inductively defined by

A,B,C := D̃hα | A&B .

For any type A, we define the type D̃A inductively on A by D̃D̃hα = D̃h+1α and D̃(A&

B) = D̃A& D̃B.

Definition 31. Let ϕ, ψ, . . . be function symbols. Each function symbol ϕ is uniquely
assigned a function type of the form A0, . . . , An → B where Ai and B are types. Then,
n+ 1 is called the arity of ϕ, denoted as ar(ϕ).

A function symbol ϕ of type A0, . . . , An → B will be interpreted in section Section 7.2 as
a (n+1)-linear morphisms JϕK ∈ C(JA0K& · · ·& JAnK, JBK) (recall Definition 24). Note that
the types Ai can themselves be products and need not be ground types. For example, a 2-
linear map in C((A&B)&C,D) can by no means be seen as a 3-linear map in C(A&B&C,D).

Definition 32. Define functions as

f, g, . . . := ϕ | πA
i | pA,B

i | ιAi | θAn
where i ∈ {0, 1}, n ≥ 0, ϕ are function symbols and A,B are types. Each function f has

a function type: πA
0 , π

A
1 have type D̃A → A, ιA0 , ι

A
1 have type A → D̃A, the θAn have type

D̃n+1A → D̃A and p
A,B
0 , pA,B

1 have types A &B → A and A &B → B respectively. Notice
that projections have arity 1 and not 2. The type attached to the constructors πi, pi, ιi and
θn will always be kept implicit in what follows.

Remark 10. Taking n = −1 allows to write constants.

Definition 33. Let V be a set of variable symbols. The set Λ1 of terms is defined inductively
as follows

t, u, . . . := 〈t0, t1〉 | f ζ(t0, . . . , tn) | x
where x ∈ V , f are function symbols of arity n+ 1 and ζ ∈ J0, nK∗, the set of finite words17

of elements of J0, nK.

Remark 11. Nothing prevents us from adding to this calculus non multilinear function
symbols, assuming that the formal derivatives for the function symbols are also provided.
We focus on multilinear functions though, due to the nature of the basic operations of PCF.
A coherent differential PCF would contain a base type nat, two function symbols pred

and succ of type nat → nat, a family of function symbols ifA of type nat, A & A → A
(conditional) and a family of function symbols letA of type nat, (nat → A) → A (call-by-
value on the type of integers). An analysis of the semantics of these symbols in coherent
differentiation in the LL setting of [17] or in the example of Section 5.2 indeed shows that

17Such a word represents a successive application of partial derivatives on the multilinear symbol f , more
on this in Section 7.2.

31

x : A ∈ Γ
(Var)

Γ ⊢ x : A

Γ ⊢ t0 : A Γ ⊢ t1 : B
(Pair)

Γ ⊢ 〈t0, t1〉 : A&B

f : A0, . . . , An → B ζ ∈ J0, nK∗ (Γ ⊢ ti : D̃|ζ|iAi)
n
i=0

(App)
Γ ⊢ f ζ(t0, . . . , tn) : D̃

|ζ|B

Figure 1: Typing rules

∂(x, y) =

{
x if y = x

ι0(y) otherwise

∂(x, 〈t0, t1〉) = 〈∂(x, t0), ∂(x, t1)〉
∂(x, f ζ(t0, . . . , tn)) = θn(f

ζn···10(∂(x, t0), . . . , ∂(x, tn)))

Figure 2: Differential of a term

pred and succ should be interpreted as linear morphisms, and that ifA and letA should
be interpreted as 2-linear morphisms. Using the fact that variables can be used in a non-
linear way as well as the PCF fixpoint operator, it is then possible to write terms whose
interpretation is not multilinear. For instance, f1 of Section 5.2 is the semantics of a term,
see [4].

Notations 5. For any word ζ, we write |ζ| for its length, and |ζ|j for the number of
occurrences of the letter j. We will write f for f ǫ, where ǫ is the empty word. Notice that
when ar(f) = 0, a word ζ ∈ J0, 0K∗ can be uniquely seen as an integer d = |ζ|. We will then
write f (d) for f ζ .

We introduce the typing rules in Figure 1. The systematic treatment of multilinear
morphisms allows for a great factorization of the rules. We write f : A0, . . . , An → B if f
has type A0, . . . , An → B. Given any term t, one can define a term ∂(x, t) by induction on
t. The inductive steps are given in Figure 2.

Proposition 40. If Γ, x : A ⊢ t : B then Γ, x : D̃A ⊢ ∂(x, t) : D̃B
Proof. By induction on the typing derivation.

• If the last rule applied is (Var) then the first possibility is that t = x and Γ, x : A ⊢
x : A. But then, ∂(x, x) = x and Γ, x : D̃A ⊢ x : D̃A. The second possibility is that

t = y with y 6= x and Γ ⊢ y : B. But then, ∂(x, y) = ι0(y) and Γ ⊢ ι0(y) : D̃B. Thus,

Γ, x : D̃A ⊢ ι0(y) : D̃B in both cases.

• If the last rule applied is (Pair), then t = 〈t0, t1〉, t is of type B0&B1, Γ, x : A ⊢ t0 : B0

and Γ, x : A ⊢ t1 : B1. But ∂(x, t) = 〈∂(x, t0), ∂(x, t1)〉. By induction hypothesis

Γ, x : D̃A ⊢ ∂(x, t0) : D̃B0 and Γ, x : D̃A ⊢ ∂(x, t1) : D̃B1. Thus, by applying (Pair),

Γ, x : D̃A ⊢ 〈∂(x, t0), ∂(x, t1)〉 : D̃B0 & D̃B1. But D̃B0 & D̃B1 = D̃(B0 & B1) so

Γ, x : D̃A ⊢ ∂(x, 〈t0, t1〉) : D̃(B0 &B1).

• If the last rule applied is (App) then t = f ζ(t0, . . . , tn), f has some type A0, . . . , An →
B, and Γ, x : A ⊢ t : D̃|ζ|B. Besides, for any i, Γ, x : A ⊢ ti : D̃

|ζ|iAi. By induction

32

hypothesis, Γ, x : D̃A ⊢ ∂(x, ti) : D̃|ζ|i+1Ai. But |ζn · · · 10|i = |ζ|i + 1 so apply-

ing the (App) rule gives a derivation for Γ, x : D̃A ⊢ f ζn···10(∂(x, t0), . . . , ∂(x, tn)) :

D̃|ζ|+n+1B. Applying the (App) rule again for f = θn yields a derivation of Γ, x :

D̃A ⊢ θn(f ζn···10(∂(x, t0), . . . , ∂(x, tn))) : D̃
|ζ|+1B, which concludes the proof.

7.2 Semantics

Let C be a CCDC. For the sake of simplicity, we assume that D̃(X & Y) = D̃X & D̃Y and
c& = id18. Assume that we are given an object JαK of C for any ground type symbol α.

Then one can interpret any type as an object: JD̃hαK = D̃hJαK and JA & BK = JAK & JBK.

It follows by a straightforward induction that JD̃AK = D̃JAK. This interpretation extends as
usual to contexts, setting Jx0 : A0, . . . , xn : AnK = JA0K & · · ·& JAnK. The semantics of the
empty context is ⊤.

Assume that we are given a (n+1)-linear morphism JϕK ∈ C(JA0K& · · ·& JAnK, JBK) for
any function symbol ϕ : A0, . . . , An → B. Then any function f : A0, . . . , An → B can be
interpreted as an (n+ 1)-linear morphism JfK by setting JπiK = πi, JιiK = ιi, JθnK = θn (as
defined in Definition 21) and JpiK = pi.

Remark 12. Since c& = id, we have D̃pi = D̃pi ◦ (c&)
−1 = D̃pi ◦ ⟪π0 & π0, π1 & π1⟫ =

⟪pi◦(π0&π0), pi◦(π1&π1)⟫ = ⟪π0◦pi, π1◦pi⟫ = pi. Notice also that 〈D̃f0, D̃f1〉 = D̃〈f0, f1〉
by Proposition 24

Theorem 11. For any term t such that Γ ⊢ t : A, we can define JtKΓ ∈ C(JΓK, JAK).

Proof. We proceed by induction on the term.

• If t = x then the last typing rule must be (Var) so that Γ = Γ0, x : A,Γ1. Define
JxKΓ = p|Γ0| ∈ C(JΓ0K & JAK & JΓ1K, JAK).

• If t = 〈t0, t1〉 then the last typing rule must be (Pair), so t is of type A & B, Γ ⊢
t0 : A and Γ ⊢ t1 : B. By induction, one can define Jt0KΓ ∈ C(JΓK, JAK) and Jt1KΓ ∈
C(JΓK, JBK). Then we define J〈t0, t1〉KΓ = 〈Jt0KΓ, Jt1KΓ〉 ∈ C(JΓK, JA &BK).

• If t = f ζ(t0, . . . , tn) with f : A0, . . . , An → B then the last typing rule must be
(App). That is, t must be of type D|ζ|B for some type B and for i = 0, . . . , n we have

a derivation of Γ ⊢ ti : D̃|ζ|iAi. By inductive hypothesis, we can define JtiKΓ ∈
C(JΓK, JD|ζ|iAiK). But JD|ζ|iAiK = D̃|ζ|iJAiK and D̃ζk . . . D̃ζ1JfK ∈ C(D̃|ζ|0JA0K &

· · · & D̃|ζ|nJAnK, D̃|ζ|JBK). Thus, we can set Jf ζ1···ζk(t0, . . . , tn)KΓ = D̃ζk . . . D̃ζ1JfK ◦
〈Jt0KΓ, . . . , JtnKΓ〉.

Notations 6. We use JxKΓ = px for the projection on JΓK to the coordinate where x appears
in Γ.

Remark 13. In particular, Jπ
(d)
i (t)K = D̃dπi ◦ JtK, Jι

(d)
i (t)K = D̃dιi ◦ JtK, Jθ

(d)
n (t)K = D̃dθn ◦ JtK.

More importantly, Jp
(d)
i (t)K = D̃dpi ◦ JtK = pi ◦ JtK because of our assumption that c& is the

identity.

18This assumption is by no mean necessary but it simplifies the notations and the results

33

Notations 7. For any word ζ = ζ1 · · · ζk in J0, nKk, define D̃ζ := D̃ζk . . . D̃ζ1 . Then for any

f ∈ C(X0 & . . .&Xn, Y), D̃ζf ∈ C(D̃|ζ|0X0 & · · ·& D̃|ζ|nXn, D̃
|ζ|Y). Note that D̃ζ·δ = D̃δD̃ζ .

Then, Proposition 36 can be seen as the property that for any f (n+1)-linear, for any word

δ of length d, D̃dπi ◦ D̃δD̃jf = D̃δf ◦ (D̃|δ|jπi; id−j)

The main result of this section on the calculus consists in showing that the semantics of
this syntactical derivative operation corresponds to the derivative in the model.

Theorem 12. If Γ, x : A ⊢ t : B then J∂(x, t)KΓ,x:D̃A = D̃1JtKΓ,x:A where JtKΓ,x:A is seen as

a morphisms of C(JΓK & JAK, JBK).

Proof. By induction on t.

• If t = x then JtKΓ,x:A = p1 ∈ C(JΓK & JAK, JAK). Then D̃1p1 = D̃p1 ◦ Φ1 = D̃p1 ◦ ⟪id&
π0, 0&π1⟫ = ⟪p1 ◦(id&π0), p1 ◦(0&π1)⟫ = ⟪π0 ◦p1, π1◦p1⟫ = p1 using Proposition 25
and the linearity of p1.

• If t = y 6= x then JtKΓ,x:A = JyKΓ ◦p0 = py ◦p0 ∈ C(JΓK&JAK, JBK). Then D̃1(py ◦p0) =
D̃py ◦ D̃p0 ◦Φ1 = D̃py ◦ D̃p0 ◦ ⟪id& π0, 0& π1⟫ = D̃py ◦ ⟪p0 ◦ (id& π0), p0 ◦ (0 & π1)⟫ =

D̃py ◦ ⟪p0, 0⟫ = ⟪py ◦ p0, 0⟫ = Jι0(y)K = J∂(x, y)K.

• If t = 〈t0, t1〉, then J∂(x, t)K = J〈∂(x, t0), ∂(x, t1)〉K = 〈J∂(x, t0)K, J∂(x, t1)K〉. By in-

ductive hypothesis, J∂(x, t)K = 〈D̃1Jt0K, D̃1Jt1K〉. But 〈D̃1Jt0K, D̃1Jt1K〉 = 〈D̃Jt0K ◦
Φ1, D̃Jt1K◦Φ1〉 = 〈D̃Jt0K, D̃Jt1K〉◦Φ1. By Remark 12, this is equal to D̃〈Jt0K, Jt1K〉◦Φ1 =

D̃1〈Jt0K, Jt1K〉 = D̃1JtK.

• If t = f ζ(t0, . . . , tn) then by definition ∂(x, t) = θn(f
ζn···10(∂(x, t0), . . . , ∂(x, tn))).

Thus, J∂(x, t)K = θn ◦ D̃n···10D̃ζf ◦ 〈J∂(x, t0)K, . . . , J∂(x, tn)K〉 = θn ◦ D̃n···10D̃ζf ◦
〈D̃1Jt0K, . . . , D̃1JtnK〉 by inductive hypothesis. But then, the Leibniz rule (Proposition 33)

states that θn ◦ D̃n···10D̃ζf = D̃D̃ζf . Thus, J∂(x, t)K = D̃D̃ζf ◦ 〈D̃Jt0K ◦Φ1, . . . , D̃JtnK ◦
Φ1〉 = D̃D̃ζf ◦ 〈D̃Jt0K, . . . , D̃JtnK〉 ◦ Φ1 = D̃(D̃ζf ◦ 〈Jt0K, . . . , JtnK〉) ◦ Φ1 = D̃JtK ◦ Φ1 =

D̃1JtK.

7.3 Reduction

We introduce in this section a set of reduction rules that deals with the differential content
of the terms. The set of rules is more compact than the one given in [17], but covers all of
the rules concerning the fragment we are looking at.

Remark 14. We could have added a construct t[u/x] for explicit substitutions, with the
typing rule

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ t[u/x] : B (Cut)

as well as reduction rules that performs the substitution steps (for example, x[u/x] →Λ1

u). We decided not to do so because, in a higher order λ-calculus setting, such explicit
substitutions are not necessary.

The main difference with the differential lambda-calculus of [21] is the absence of sum,
because we do not want a non deterministic typing rules such as

34

Γ ⊢ t : A Γ ⊢ u : A

Γ ⊢ t+ u : A

But the reduction of a π1 against a θ will introduce sums. Handling sum without the typing
rule above is tricky, because of subject reduction. There will be no guarantee indeed that
if Γ ⊢ t + u : A and t →Λ1

t′ then Γ ⊢ t′ + u : A. For this reason, we chose a conservative
approach, by keeping sums as a formal multiset on top of the terms.

Definition 34. A term multiset is a finite multiset of term.

See Section 5.2 for the notations we use on multisets. We define a reduction →Λ1
from

terms to term multisets. The reduction rules are given in Figure 3. Then we define →?
Λ1

as the “reflexive” closure of →Λ1
. That is, t →?

Λ1
L if t →Λ1

L or if L = [t]. It allows to
lifts →Λ1

to a reduction from a term multiset to a term multiset in a monadic fashion: if
t1 →Λ1

L1 and for all i 6= 1, ti →?
Λ1
Li, then

[t1, . . . , tn] →M(Λ1)

n∑

i=1

Li

where
∑

is the multiset union, that is, the pointwise sum of the functions Li : Λ1 → N.

p
(d)
i (〈t0, t1〉) →Λ1

[ti]

π
(d)
i (f ζjδ(t0, . . . , tn)) →Λ1

[f ζδ(t0, . . . , π
(|δ|j)
i (tj), . . . , tn)] where |δ| = d

π
(d)
i (ι

(d)
i (t)) →Λ1

[t]

π
(d)
i (ι

(d)
1−i(t)) →Λ1

[]

π
(d)
0 (θ(d)n (t)) →Λ1

[(π
(d)
0)n+1(t)]

π
(d)
1 (θ(d)n (t)) →Λ1

n∑

k=0

[(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)] .

Here, (π
(d)
i)n is a notation for n successive applications of π

(d)
i .

Figure 3: Reduction rules

Definition 35. A term multiset [t1, . . . , tn] of type A in context Γ is C-summable if
Jt1KΓ, . . . , JtnKΓ are summable (in the sense of Theorem 2). Then, we define J[t1, . . . , tn]KΓ =
Jt1KΓ + · · ·+ JtnKΓ. Note that [] is always C-summable, and J[]K = 0.

The main point of coherent differentiation is that the reduction →Λ1
will always introduce

term multisets that are C-summable, for any model C.

Theorem 13 (Invariance of semantics under reduction). For any Γ ⊢ t : A, if t →Λ1
L

then L is C-summable and JLKΓ = JtKΓ.

Proof. Let us consider every application of the rule →Λ1
. Note that when a term multiset

has one element, it is always C-summable and J[t]K = JtK.

Jp
(d)
i (〈t0, t1〉)K = D̃dpi ◦ 〈Jt0K, Jt1K〉

= pi ◦ 〈Jt0K, Jt1K〉
= JtiK .

35

The rule below is the one where most of the differential content appears. Recall that JfK

is assumed to be multilinear, for any function f . It implies that D̃ζJfK is also multilinear
by Theorem 6, so it is possible to apply Proposition 36 on it.

Jπ
(d)
i (f ζjδ(t0, . . . , tn))K

= D̃dπi ◦ D̃δD̃jD̃ζJfK ◦ 〈Jt0K, . . . , JtnK〉
= D̃δD̃ζJfK ◦ (D̃|δ|jπi; id−j) ◦ 〈Jt0K, . . . , JtnK〉 by Proposition 36

= D̃ζδJfK ◦ 〈Jt0K, . . . , D̃|δ|jπi ◦ JtjK, . . . , JtnK〉
= Jf ζδ(t0, . . . , π

(|δ|j)
i (tj), . . . , tn)K .

The three next rules are rather standard and are consequence of the definition of πi, ιj and
θn.

Jπ
(d)
i (ι

(d)
i (t))K = D̃dπi ◦ D̃dιi ◦ JtK

= D̃d(πi ◦ ιi) ◦ JtK by (D-chain)

= D̃did ◦ JtK = JtK by (D-chain)

Jπ
(d)
i (ι

(d)
1−i(t))K = D̃dπi ◦ D̃dι1−i ◦ JtK

= D̃d(πi ◦ ι1−i) ◦ JtK by (D-chain)

= D̃d0 ◦ JtK = 0 ◦ JtK by (Dsum-lin)

= 0 = J[]K

Jπ
(d)
0 (θ(d)n (t))K = D̃dπ0 ◦ D̃dθn ◦ JtK

= D̃d(π0 ◦ θn) ◦ JtK by (D-chain)

= D̃d(πn+1
0) ◦ JtK

= (D̃dπ0)
n+1 ◦ JtK by (D-chain)

= J(π
(d)
0)n+1(t)K .

The last rule is where finite multisets of size greater than 1 are introduced. Most lines in
the following sequence of equations should be understood as follows: “the sum above is well
defined, so the sum below is well defined and they are equal”.

Jπ
(d)
1 (θ(d)n (t))K = D̃dπ1 ◦ D̃dθn ◦ JtK

= D̃d(π1 ◦ θn) ◦ JtK by (D-chain)

=

(
D̃d(

n∑

k=0

πk
0 ◦ π1 ◦ πn−k

0)

)
◦ JtK

=

(
n∑

k=0

D̃d(πk
0 ◦ π1 ◦ πn−k

0)

)
◦ JtK by (Dsum-lin) and Proposition 17

=
n∑

k=0

D̃d(πk
0 ◦ π1 ◦ πn−k

0) ◦ JtK by Proposition 2

36

=

n∑

k=0

(D̃dπ0)
k ◦ D̃dπ1 ◦ (D̃dπ0)

n−k ◦ JtK by (D-chain)

=

n∑

k=0

J(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)]K .

Thus,
∑n

k=0[(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)] is C-summable of semantics Jπ

(d)
1 (θ

(d)
n (t))K .

Corollary 9. For any term multiset Γ ⊢ L : A that is C-summable, if L →M(Λ1) L
′ then

L′ is C-summable and JL′KΓ = JLKΓ.

Proof. Assume that [t1, . . . , tn] is C-summable and that [t1, . . . , tn] →M(Λ1) L. That is,

for any i, ti →?
Λ1

[t1i , . . . , t
ki

i] and L =
∑n

i=1[t
1
i , . . . , t

ki

i]. Then by Theorem 13, for any

i, Jt1i K, . . . , Jt
ki

i K are summable of sum JtiK. By assumption, Jt1K, . . . , JtnK are summable,

that is,
∑k1

j=1Jt
j
1K, . . . ,

∑kn

j=1Jt
j
nK are summable. By Theorem 2, it means that the family

Jt11K, . . . , Jt
k1

1 K, . . . , Jt1nK, . . . , Jtkn
n K is summable of sum

n∑

i=1

ki∑

j=1

Jtji K =
n∑

i=1

JtiK

Thus L is C-summable and JLK = J[t1, . . . , tn]K.

The usage of such term multisets may seem somewhat non deterministic. But any
multiset generated by reductions of the calculus can be interpreted as a summable family
in deterministic models such as probabilistic coherence spaces19 (see Section 5.2) or non
uniform coherence spaces. This determinism of the models allows to prove in [17] a result
that roughly state that whenever a closed term of type integer reduces to a term multiset
C + [ν] (where ν are the usual integer variables of PCF), then JCK = 0. That is, only one of
the branches of the reduction rule

π
(d)
1 (θ(d)n (t)) →Λ1

n∑

k=0

[(π
(d)
0)kπ

(d)
1 (π

(d)
0)n−k(t)]

produces a non empty multiset. The proof relies on the fact that any term of type integer will
be interpreted in APcoh as a Dirac distribution δn on N or as the zero distribution, because
the calculus does not feature any form of probabilistic branching. Thus, a term multiset of
type integer is APcoh-summable if and only if there is at most one term in the multiset
whose semantic is not 0. In particular, JνKAPcoh = δν and C+ [ν] is APcoh-summable (by
Corollary 9) so JCKAPcoh = 0. One can also use non-uniform coherence spaces for proving
the same result in a similar way. This observation led to the development of a completely
deterministic Krivine Machine for a coherent differential version of PCF in [17], extending
the projections path with a writable memory structure.

Conclusion

We have introduced and studied a general categorical framework for coherent differentiation,
a new approach to the differential calculus which does not require the ambient category to
be (left-)additive. We have also proposed some basic syntactical constructs accounting

19Probabilistic branching is by no mean a form of non determinism

37

in a term language for these new categorical constructs. These are the foundations for a
principled and systematic approach to the denotational semantics of functional programming
languages like (probabilistic) PCF extended with coherent differentiation. As shown in [17]
such an extension can perfectly feature general recursive definitions as well as deterministic
or probabilistic behaviors, in sharp contrast with the Differential λ-calculus [22] which is
inherently non-deterministic. Accordingly, the next step will be to specialize the present
general axiomatization to the case where the category is cartesian closed.

Acknowledgment

We thank the reviewers for their careful reading and helpful comments. This work was
partly supported by the ANR project Probabilistic Programming Semantics (PPS) ANR-
19-CE48-0014.

References

[1] J. Girard, “Linear logic,” Theoretical Computer Science, vol. 50, pp. 1–102, 1987.
[Online]. Available: https://doi.org/10.1016/0304-3975(87)90045-4

[2] R. Blute, R. Cockett, and R. Seely, “Differential categories,” Mathematical Structures
in Computer Science, vol. 16, pp. 1049 – 1083, 12 2006.

[3] ——, “Cartesian differential categories,” Theory and Applications of Categories, vol. 22,
pp. 622–672, 01 2009.

[4] T. Ehrhard, “Differentials and distances in probabilistic coherence spaces,”
Logical Methods in Computer Science, vol. 18, no. 3, 2022. [Online]. Available:
https://doi.org/10.46298/lmcs-18(3:2)2022

[5] ——, “Coherent differentiation,” Mathematical Structures in Computer Science, p. 1–52,
2023.

[6] J. Rosicky, “Abstract tangent functors,” Diagramme, no. 12, 1984.

[7] R. Cockett and G. Cruttwell, “Differential Structure, Tangent Structure, and SDG,”
Applied Categorical Structures, vol. 22, 04 2014.

[8] M. A. Arbib and E. G. Manes, “Partially additive categories and flow-diagram
semantics,” Journal of Algebra, vol. 62, no. 1, pp. 203–227, 1980. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0021869380902124

[9] P. Hines, “A categorical analogue of the monoid semiring construction,” Mathematical
Structures in Computer Science, vol. 23, no. 1, p. 55–94, 2013.

[10] A. Kock, “Strong functors and monoidal monads,” Archiv der Mathematik, vol. 23, pp.
113–120, 12 1972.

[11] E. Moggi, “Notions of computation and monads,” Information and Com-
putation, vol. 93, no. 1, pp. 55–92, 1991, selections from 1989
IEEE Symposium on Logic in Computer Science. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0890540191900524

38

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.46298/lmcs-18(3:2)2022
https://www.sciencedirect.com/science/article/pii/0021869380902124
https://www.sciencedirect.com/science/article/pii/0890540191900524

[12] M. Aguiar, M. Haim, and I. Franco, “Monads on higher monoidal categories,” Applied
Categorical Structures, vol. 26, 06 2018.

[13] I. Moerdijk, “Monads on tensor categories,” Journal of Pure and Applied Algebra, vol.
168, no. 2, pp. 189–208, 2002, category Theory 1999: selected papers, conference held
in Coimbra in honour of the 90th birthday of Saunders Mac Lane. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022404901000962

[14] A. Kock, “Monads on symmetric monoidal closed categories,” Archiv der Mathematik,
vol. 21, pp. 1–10, 01 1970.

[15] P.-A. Melliès, “Categorical semantics of linear logic,” Panoramas et Synthèses, vol. 27,
pp. 1–196, 2009.

[16] J. Power and H. Watanabe, “Combining a monad and a comonad,”
Theoretical Computer Science, vol. 280, no. 1, pp. 137–162,
2002, coalgebraic Methods in Computer Science. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S030439750100024X

[17] T. Ehrhard, “A coherent differential PCF,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.04109

[18] V. Danos and T. Ehrhard, “Probabilistic coherence spaces as a model of higher-order
probabilistic computation,” Information and Computation, vol. 152, no. 1, pp. 111–137,
2011.

[19] R. Crubillé, “Probabilistic Stable Functions on Discrete Cones are Power Series,” in
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, A. Dawar and E. Grädel, Eds. ACM,
2018, pp. 275–284. [Online]. Available: https://doi.org/10.1145/3209108.3209198

[20] J.-S. P. Lemay, “A tangent category alternative to the Faa di Bruno construction,”
Theory and Applications of Categories, vol. 33, no. 35, pp. 1072–1110, 2018. [Online].
Available: http://www.tac.mta.ca/tac/volumes/33/35/33-35abs.html

[21] T. Ehrhard and L. Regnier, “The differential lambda-calculus,” Theoretical
Computer Science, vol. 309, no. 1, pp. 1–41, 2003. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S030439750300392X

[22] ——, “The differential lambda-calculus,” Theoretical Computer Science, vol. 309, no.
1-3, pp. 1–41, 2003.

39

https://www.sciencedirect.com/science/article/pii/S0022404901000962
https://www.sciencedirect.com/science/article/pii/S030439750100024X
https://arxiv.org/abs/2205.04109
https://doi.org/10.1145/3209108.3209198
http://www.tac.mta.ca/tac/volumes/33/35/33-35abs.html
https://www.sciencedirect.com/science/article/pii/S030439750300392X

	Introduction
	Left summability structure
	Left pre-summability structures
	Left summability structures
	Comparison with summability structures

	Differential
	Differential Structure
	Linearity
	The Differentiation Monad

	Interpreting the axioms as properties of the derivative
	Compatibility with the cartesian product
	Cartesian product and summability structure
	Cartesian product and differential structure
	Partial derivatives
	Generalization to arbitrary finite products
	Multilinear morphism

	Kleisli category of the exponential of a model of LL
	Coherent differentiation in a linear setting
	The example of probabilistic coherence spaces

	Link with cartesian differential categories
	Cartesian left additive categories
	Cartesian differential categories

	A first order coherent differential language
	Terms
	Semantics
	Reduction

