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Abstract
Large classes of problems can be formulated as inverse problems, where the goal
is to find parameter values that best explain some observed measures. The rela-
tionship between parameters and observations is typically highly non-linear, with
relatively high dimensional observations and correlated multidimensional parame-
ters. To deal with these constraints via inverse regression strategies, we consider
the Gaussian Local Linear Mapping (GLLiM) model, a special instance of mixture
of expert models. We propose a general scheme to design a Bayesian nonparamet-
ric GLLiM model to avoid any commitment to an arbitrary number of experts. A
tractable estimation algorithm is designed using variational Bayesian expectation-
maximisation. We establish posterior consistency for the number of mixture com-
ponents after the merge-truncate-merge algorithm post-processing. Illustrations on
simulated data show good results in terms of recovering the true number of experts
and the regression function.

KEYWORDS
Bayesian nonparametrics; mixture of experts; inverse problems; Gaussian
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1. Introduction

Inverse problems. Many problems can be formulated as inverse problems, where the
goal is to find parameter values that best explain an observed phenomenon. Typical
constraints in practice are that the relationships between parameters and observations
are highly non-linear, with relatively high dimensional observations and correlated mul-
tivariate parameters. To handle these constraints, we consider probabilistic mixtures of
locally linear models, namely the Gaussian locally linear mapping (GLLiM) approach of
Deleforge et al. (2015), which includes affine instances of the mixture of experts (MoE)
model (Xu et al., 1995) and the classical inverse linear regression model (Hoadley, 1970;
Li, 1991), as special cases. We propose to address inverse problems in a Bayesian frame-
work, making use of the availability of simulations from forward models of interest. The
GLLiM approach has been used in many applications, e.g., in medical imaging (Boux



et al., 2021), planetary science (Kugler et al., 2022; Nguyen et al., 2024), head-pose
estimation problem in computer vision (Lathuilière et al., 2017) and quantitative trait
prediction from biological data (Blein-Nicolas et al., 2024).

Mixture of experts models (MoE) are generalizations of neural network architec-
tures proposed by Jacobs et al. (1991). Further, these flexible models also generalize
the classical mixture models (MMs) and mixture of regression models (McLachlan and
Peel, 2000). Their flexibility comes from the fact that they allow the mixture weights (or
the gating functions) to depend on the explanatory variables, together with the compo-
nent densities (or the experts). In regression, MoE models with Gaussian experts and
softmax or normalized Gaussian gating functions (as in GLLiM) are the most popular
choices. These models are powerful tools for modelling complex nonlinear relationships
between outputs (responses) and inputs (predictors) that arise from different subpop-
ulations. The popularity of these conditional mixture density models is largely due
to their universal approximation properties (Norets, 2010; Nguyen et al., 2016, 2019,
2021a) as well as their good convergence rate, see, e.g., for mixture of regression in Ho
et al. (2022) and for MoE in Jiang and Tanner (1999); Nguyen et al. (2024b, 2023a,
2024a). It is worth noting that these results improve the approximation capabilities
and convergence rates of unconditional MMs, as discussed in Genovese and Wasser-
man (2000); Rakhlin et al. (2005); Nguyen (2013); Shen et al. (2013); Ho and Nguyen
(2016a,b); Nguyen et al. (2020, 2023b). At a high level, universal approximation theo-
rems state that given a large enough number of components, MMs and MoE models can
approximate a large class of unconditional and conditional probability density functions
(cPDF), respectively, to any degree of accuracy. See, e.g., Yuksel et al. (2012); Nguyen
and Chamroukhi (2018); Do et al. (2023); Nguyen (2021); Chen et al. (2022), for further
detailed reviews of practical and theoretical aspects of MoE models in statistics and in
diverse domains, e.g., natural language processing and computer vision.

Model selection in MoE models. Although universal approximation allows us to
conclude that, given a sufficient number of components, a finite MoE can approximate
any other cPDF to an arbitrary degree of accuracy, it is not clear how to choose a large
enough number of components for realistic problems. This motivates a careful study of
interesting and important model selection problems for MMs and MoE models, which
have attracted much attention in statistics and machine learning over the last 50 years,
see, e.g., Celeux et al. (2019) for a recent comprehensive review.

When selecting the best data-driven number of components for MoE models, there
are several approaches to controlling and accounting for model complexity. Typically,
model selection is performed using an information criterion, such as the Akaike informa-
tion criterion (AIC; Akaike, 1974), the Bayesian information criterion (BIC; Schwarz,
1978, BIC-GLLiM; Forbes et al., 2022a,b) or the BIC-like approximation of integrated
classification likelihood (ICL-BIC; Biernacki et al., 2000). However, an important lim-
itation of these criteria is that they are only asymptotically valid (Westerhout et al.,
2024). This means that there are no finite sample guarantees when using AIC, ICL-BIC
or BIC to choose between different levels of complexity. Therefore, their use in small
sample settings is ad hoc.

To overcome such difficulties, and to partially support the so-called slope heuristic
approach (Birgé and Massart, 2007, also see Arlot, 2019 for a recent review), Nguyen
et al. (2021b, 2022c,b, 2023d,c) recently established non-asymptotic risk bounds in the
form of weak oracle inequalities, provided that lower bounds on the penalties hold, in
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high-dimensional regression scenarios for a variety of MoE models, including GLLiM.
Another approach, from Nguyen et al. (2022a), is based on the closed testing principle
and leads to a sequential testing procedure that allows for confidence statements to be
made regarding the order of a finite mixture model. These works lead to an optimal
data-driven choice of the number of components in finite-sample settings. However, all
previous approaches require that a range of models with different values be trained and
compared, which can be a computational bottleneck in a high-dimensional framework.

Recently, Kock et al. (2022) proposed computationally efficient variational inference
approaches for architecture selection in high-dimensional deep Gaussian mixture models
using overfitted mixtures (see, e.g., Rousseau and Mengersen, 2011; Forbes et al., 2019),
where unnecessary components are dropped in the estimation. However, we are inter-
ested here in the more general context of the Bayesian nonparametric (BNP) approach,
(see, e.g., Hjort et al., 2010; Ghosal and Van der Vaart, 2017), where it is not necessary
to know an upper bound of the true number of components as in Bayesian overfitted
MM. This is one motivation for the BNP priors that are considered here for GLLiM.

Dirichlet process mixture models (DP-MMs) and Pitman-Yor process mixture models
(PYP-MMs) are among the most popular BNP models, particularly suitable for density
estimation and probabilistic clustering. However, the posterior of the DP-MMs or PYP-
MMs are inconsistent for the number of components if the true number of components
is finite and the concentration parameter is fixed (see, e.g., Miller and Harrison, 2014,
and Alamichel et al., 2024 for a review). This is because a BNP prior such as DP or PYP
places zero probability on mixing measures with a finite number of supporting atoms.
An interesting recent result in Ascolani et al. (2022) is that consistency for the number
of components can be achieved if a prior is placed on the concentration parameter of
the DP-MM, under some assumptions on this prior.

It appears that BNP-GLLiM tends to produce many small extraneous components
around the true clusters in our numerical experiment Section 6. This makes it difficult
to use them to infer the true number of components when this becomes a quantity of
interest (Maceachern and Müller, 1998; Green and Richardson, 2001). This encourages
the use of a novel, simple post-processing algorithm in the spirit of the Merge-Truncate-
Merge (MTM) introduced by Guha et al. (2021). This post-processing procedure consis-
tently estimates the number of components for any general Bayesian prior, even without
knowing its exact structure, as long as the posterior for that prior contracts to the true
mixing distribution at a known rate.

Contributions. To address the challenges of highly nonlinear inverse problems with
relatively high dimensional observations and correlated parameters, we propose a novel
BNP-GLLiM model and inference procedure, which is computationally efficient and
avoids any commitment to an arbitrary number of components. Although BNP mixture
models (BNP-MM), which are special cases of the BNP-GLLiM model, have been exten-
sively studied in the literature (Escobar and West, 1995; Maceachern and Müller, 1998;
Neal, 2000; Arbel et al., 2021; Li et al., 2022; Durand et al., 2022), the extension to MoE
models in an inverse regression framework has not been covered. In addition, we estab-
lish theoretical properties such as posterior consistency for recovering the true number
of components in BNP-GLLiM using the post-processing merge-truncate-merge (MTM)
algorithm. Finally, our illustrations on simulated data show good results in terms of re-
covering the true number of components and mean regression functions. It is worth
emphasising that, for the first time, we provide evidence that MTM consistency holds
not only for the MMs results of Guha et al. (2021), but also in the more general context
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of MoE models for cPDFs.

Notations. Throughout this paper, {1, . . . , D} is abbreviated as [D] for D ∈ N⋆, where
N⋆ denotes the positive natural numbers. The notation ≡ refers to a definition. It is
used to simplify the notation or expression. For a parametric model S, dim(S) refers to
its dimension, i.e., the total number of parameters to be estimated. Furthermore, [·; ·]
denotes vertical vector concatenation. Throughout, we use the following colour rule for
observations and parameters: observations are represented in green; latent, random or
unknown parameters in red; and (fixed) hyperparameters in blue.

Outline. The paper is organized as follows. In Section 2, we first discuss how to con-
struct the BNP-GLLiM model. A VBEM algorithm and the corresponding ELBO are
described in Section 3, and predictive cPDFs in Section 4. Next, Section 5 shows how
we can integrate the Merge-Truncate-Merge (MTM) post-processing procedure and
prove consistency for the MTM output. This is useful to perform regression, cluster-
ing and model selection, simultaneously. We experimentally evaluate our new results
on simulated datasets in Section 6. Some perspectives are provided in Section 7. We
recall the standard Bayesian nonparametric priors and variational Bayesian expectation-
maximisation principle in Appendices A and B, respectively. All details of VBEM for
the BNP-GLLiM model, evidence lower-bound, and technical proofs not included in the
main paper are relegated to Appendices C to E, respectively. Appendix F presents a
more general model with a hyperprior on the gating parameters, called BNP-GLLiM2.

2. BNP-GLLiM model

In Sections 2.1 and 2.2, we present the advantage of adopting a GLLiM model, which
uses an inverse regression approach to estimate nonlinear high-to-low dimensional map-
pings. Such a strategy allows to greatly reduce the number of required parameters. To
avoid any commitment to an arbitrary number of components, we then construct the
BNP-GLLiM model in Section 2.3.

2.1. Inverse regression framework

We are interested in estimating the law of a low-dimensional random variable X =
(Xl)l∈[L] conditionally on a high-dimensional Y = (Yd)d∈[D], where typically D ≫ L.
We follow an inverse regression framework as in e.g., Li (1991); Deleforge et al. (2015).
Therefore, in training, the low-dimensional variable X plays the role of the regressor,
while the response Y is a function of X, possibly corrupted by noise through inverse
cPDF p(Y | X;ψ), where ψ is an inverse parameter. The low dimension of the regressor
X allows to drastically reduce the number of parameters to be estimated. In addition,
the forward parameter ψ∗ and cPDF p(X | Y;ψ∗) are tractable after estimating the
inverse parameter ψ. Therefore, this density can be used to predict the low-dimensional
response x of a high-dimensional test point y. This inverse-then-forward regression
strategy justifies the unconventional notation: Y for the high-dimensional input and X
for the low-dimensional response. Here and subsequently, we refer to the low-dimensional
data sample as X ≡ {xn}n∈[N ] ⊂

(
RL
)N , the high-dimensional data sample as Y ≡

{yn}n∈[N ] ⊂
(
RD
)N . We denote the observed values as (x,y), which are independently
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and identically distributed (i.i.d.) samples from the random variables (X,Y).

2.2. Nonlinear high-to-low dimensional mapping via GLLiM model

The GLLiM models, as originally introduced in Deleforge et al. (2015), are used to cap-
ture the non-linear relationship between the response and the set of covariates from a
high-to-low heterogeneous data. Specifically, Deleforge et al. (2015) overcame the diffi-
culty of high-to-low regression by tackling the problem the other way round, i.e., low-
to-high. This means that the roles of input and response variables are swapped so that
the low-dimensional variable X becomes the regressor as in Section 2.1. GLLiM then
relies on a piecewise linear model in the following way. The high-dimensional response
Y is approximated by the local affine mappings K:

Y =
K∑

k=1
I (Z = k) (AkX + bk + Ek) .

Here, I is an indicator function and Z is a latent variable that captures a cluster rela-
tionship, such that Z = k if Y comes from cluster k ∈ [K]. Matrices Ak ∈ RD×L and
vectors bk ∈ RD define cluster-specific affine transformations. In addition, Ek are error
terms that capture both the reconstruction error due to the local affine approximations
as well as the observation noise in RD.

Following the usual assumption that Ek is a zero-mean Gaussian variable with a
covariance matrix Σk ∈ RD×D, it follows that

p (y | x, Z = k;ψ) = ND (y | Akx + bk,Σk) , (1)

where ψ is the vector of model parameters, ND (y; Akx + bk,Σk) is the Gaussian cPDF
of dimension D. In order to enforce the affine transformations to be local, X is defined
as a mixture of K Gaussian components as follows:

p (x | Z = k;ψ) = NL (x | ck,Γk) , p (Z = k;ψ) = πk,

where ck ∈ RL, Γk ∈ RL×L, and π = (πk)k∈[K] belongs to a probability simplex, defined
as
{

(πk)k∈[K] ∈ (R+)K
,
∑K

k=1 πk = 1
}

. Then, via the conditional property of Gaussian
variables and hierarchical decomposition, given any ψ = (πk, ck,Γk,Ak,bk,Σk)k∈[K] ∈
Ψ, we obtain the following inverse conditional density:

p (y | x;ψ) =
K∑

k=1

πkNL (x | ck,Γk)∑K
l=1 πlNL (x | cl,Γl)

ND (y | Akx + bk,Σk) . (2)

Using the inverse regression framework, in (1), the roles of input and response vari-
ables should be reversed so that Y becomes the covariate and X plays the role of the
multivariate response. Therefore, based on a similar previous hierarchical one in (2), its
corresponding forward conditional density from RD to RL is defined by

p (x | y;ψ∗) =
K∑

k=1

π∗
kND (y | c∗

k,Γ∗
k)∑K

l=1 π
∗
l ND (y | c∗

l ,Γ
∗
l )

NL (x | A∗
ky + b∗

k,Σ∗
k) . (3)

5



A useful feature of GLLiM models is described in the following Lemma 2.1, established
for multivariate Gaussian and Student components in Deleforge et al. (2015); Perthame
et al. (2018) and which can be straightforwardly extended to Gaussian scale mixtures
and elliptical distributions (Nguyen et al., 2022c; Ingrassia et al., 2012).

Lemma 2.1. The parameter ψ∗ in the forward cPDF, defined in (3), can then be
deduced from ψ in (2) via the following one-to-one correspondence:



πk

ck

Γk

Ak

bk

Σk


k∈[K]

7→



π∗
k

c∗
k

Γ∗
k

A∗
k

b∗
k

Σ∗
k


k∈[K]

=



πk

Akck + bk

Σk + AkΓkA⊤
k

Σ∗
kA⊤

k Σ−1
k

Σ∗
k(Γ−1

k ck − A⊤
k Σ−1

k bk)(
Γ−1

k + A⊤
k Σ−1

k Ak

)−1


k∈[K]

.

Remark 1 (GLLiM models are computationally efficient). Without assum-
ing anything about the structure of the parameters, the dimension of GLLiM is
dim (Ψ) = K

(
1 + D(L + 1) + D(D + 1)/2 + L(L+ 1)/2 + L

)
− 1. It is worth not-

ing that dim (Ψ) can be very large compared to the sample size (see, e.g., Deleforge
et al. 2015 for real data sets) whenever D is large and D ≫ L. Furthermore, under
the assumption that the K transformations are affine, it is more realistic to make the
assumption on the residual covariance matrices Σk of the error vectors Ek rather than
on Γk (cf., Section 3 Deleforge et al., 2015). This justifies using the inverse regression
trick from Deleforge et al. (2015), drastically reducing the number of parameters to be
estimated. For instance, Ek can be modelled with equal isotropic Gaussian noise, so
we have Σk = σ̃2 ID,∀k ∈ [K], with some positive σ̃2. The number of parameters to
be estimated is then K + K (L+ L(L+ 1)/2 +DL+D). For example, it is 30, 060 if
K = 10, L = 2, D = 1000. However, if a high-to-low regression is estimated directly
instead, the size of the parameter vector will be K + K(D + LD + D(D + 1)/2 + L),
which is 5, 035, 030 ≫ 30, 060 in the previous example.

A notable recent illustration of the GLLiM good features is described in Blein-Nicolas
et al. (2024), tackling the challenge of nonlinear quantitative trait prediction using
biological data. In this work, the authors focused on predicting a small set of continuous
quantitative traits (L = 2) from a large set of biomarkers (D ≈ 1000 ≫ L). Their inverse
regression approach is not only computationally efficient, but also has the advantage of
preserving all covariates while assuming a specific structure for the covariance matrix,
which aids dimensionality reduction and improves prediction accuracy. This method
operates by estimating an inverse model through several low-dimensional regressions and
then inverting these estimators to solve the initial high-dimensional regression problem
using Lemma 2.1.

2.3. Construction of BNP-GLLiM model

We propose the following hierarchical representation of BNP-GLLiM model to generate
a data point (yn,xn) within our BNP-GLLiM model:
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τ zn xn

yn

N

c,Γαs1, s2

σa A,b,Σ

Figure 1. Graphical representation of BNP-GLLiM: the plate denotes N i.i.d. observations, white-filled circles
correspond to latent variables and random or unknown parameters represented in red, while grey-filled circles
correspond to observed variables represented in green. Hyperparameters are represented in blue.

(1) BNP prior: G ∼ BNP (α, σ,G0).

(α, σ) | s1, s2, a ∼ SG (α | σ; s1, s2) p(σ | a) ≡ Gam (α + σ | s1, s2) p(σ | a), (4)

τk | α, σ ind∼ Beta (τk | 1 − σ, α+ kσ) , k ∈ N⋆. (5)

Define πk(τ ) = τk
∏k−1

l=1 (1 − τ l) , k ∈ N⋆, θ⋆
k | G0

iid∼ G0, where θ⋆
k ≡

(ck,Γk,Ak,bk,Σk) , k ∈ N⋆, and finally define G =
∑∞

k=1 πk(τ )δθ⋆
k
.

(2) BNP-GLLiM model: for each n ∈ [N ], yn ∼ BNP-GLLiM(s1, s2, a, G).

θn | G iid∼ G, if θn = θ⋆
k, set zn = k; (6)

xn | zn, c,Γ
iid∼ NL (xn | czn ,Γzn) , (c,Γ) ≡ (ck,Γk)k∈N⋆ ; (7)

yn | xn, zn,A,b,Σ
iid∼ ND (yn | Aznxn + bzn ,Σzn) , (A,b,Σ) ≡ (Ak,bk,Σk)k∈N⋆ .

3. Variational inference for BNP-GLLiM

For a brief summary of variational Bayesian expectation maximisation (VBEM) and its
notation, see Appendix B. The task of conditional density estimation and clustering us-
ing the BNP-GLLiM model is mainly to estimate the unknown labels Z = (zn)n∈[N ] from
the observed data (Y ,X ) = (yn,xn)n∈[N ], whose joint distribution p (Y ,X ,Z,Θ;ϕ) is
determined by a set of BNP prior parameters Θ = (τ , α, σ,θ⋆), namely the stick-
breaking construction of Pitman–Yor process (PYP) (Pitman and Yor, 1997) in Ap-
pendix A; and by additional hyperparameters ϕ = (s1, s2, a). Then the desired joint
distribution is given by:

p(Y ,X ,Z,Θ;ϕ) =
N∏

n=1
p (yn | xn, zn; A,b,Σ) p (xn | zn, c,Γ) p(Z | τ )

×
∏

k∈N⋆

p (τk | α, σ) p (α, σ | s1, s2, a) p(θ⋆|G0). (8)

In most variational approximations, the posterior for the stick-breaking variables
is approximated in a factorized form (mean-field approximation). Following the same
approach, by factorizing the latent variables and the parameters, we choose the following
variational distribution: q(Z,Θ) = qZ(Z)qΘ(Θ). In particular, the intractable posterior
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on Z is approximated as qZ(Z) that factorizes so as to handle intractability, namely

qZ(Z) =
N∏

n=1
qzn (zn) . (9)

Then the infinite state space for each zj is dealt with by choosing a truncation of the
state space to a maximum label K ∈ N⋆, see, e.g., Blei and Jordan (2006); Wang et al.
(2011). In practice, this consists of assuming that the variational distributions qzn for
n ∈ [N ], satisfy qzn(k) = 0 for k > K and that the variational distribution on τ also
factorizes as qτ (τ ) =

∏K−1
k=1 qτk

(τk) with the additional condition that τK = 1. Thus
the truncated variational posterior of parameters Θ is given by

qΘ(Θ) = qα,σ(α, σ)
K−1∏
k=1

qτk
(τk)

K∏
k=1

qθ⋆
k
(θ⋆

k).

In practice, for tractability reasons, we have to restrict to p(θ⋆
k|G0) ∝ 1 and qθ⋆

k
(θ⋆

k) to
Dirac distributions, qθ⋆

k
= δθ⋆

k
, which is equivalent to treating the θ⋆

k as fixed unknown
hyperparameters, as illustrated graphically in Figure 1. These forms of qZ and qΘ lead
to our three VB-E steps and four VB-M steps, summarized below and with more detail
in Appendix C. Set the initial value of ϕ to ϕ(0). Then repeat the following steps,
iteratively. The iteration index is omitted in the update formulas for simplicity. Note
that a more complex version with a normal-inverse-Wishart (NIW) distribution on the
gating parameters (ck,Γk), referred to as BNP-GLLiM2, is presented in Appendix F.

3.1. VB-E steps

VB-E-τ step. The VB-E-τ step corresponds to a variational approximation in the
exponential family case and results in a posterior from the same family as the prior.
More precisely, to achieve this, we use (5), (6), (8), and are only interested in the
functional dependence of (B3) on the variable τk. Thus, any terms that do not depend
on τk can be included in the additive normalization constant. Then, given for k ∈ [K−1]
that Nk =

∑N
n=1 qzn(k) corresponds to the weight of the cluster k, see more details in

Appendix C.1, it holds that

qτk
(τk) = Beta (τk | γ̂k,1, γ̂k,2) , where,

γ̂k,1 = 1 − Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +
K∑

l=k+1
Nl.

VB-E-(α, σ) step. The (α, σ) variational posterior is more complex, but has a simple
form in the DP case (σ = 0). Specifically, we have to compute

ŝ1 = s1 +K − 1, ŝ2 = s2 −
K−1∑
k=1

ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2) , (10)

where ψ(·) is the digamma function defined by ψ(γ) = d
dγ log Γ(γ) = Γ′(γ)

Γ(γ) .
When σ = 0 then qα,σ ≡ qα,0 is a gamma distribution Gam (ŝ1, ŝ2) with Eqα,σ [α] =

ŝ1/ŝ2. Otherwise (PYP case), qα,σ is only identified up to a normalizing constant but
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the required Eqα,σ [α] and Eqα,σ [σ] can be computed by importance sampling, see Ap-
pendix C.2 for more details.

We next consider the derivation of the update equation for the factor qZ(Z).

VB-E-Z step. By using the mean-field approximation (9) and the truncation (see
Appendix C.3), for all n ∈ [N ] and for all k ∈ [K], this step consists in computing

qzn(k) = ρnk∑K
l=1 ρnl

, where we define log ρnk as follows: (11)

log ρnk = − 1
2

{
D log(2π) + log

∣∣∣Σ̂k

∣∣∣+ (yn − Âkxn − b̂k)⊤Σ̂−1
k (yn − Âkxn − b̂k)

+ L log(2π) + log
∣∣∣Γ̂k

∣∣∣+ (xn − ĉk)⊤ Γ̂−1
k (xn − ĉk)

}

+ ψ(γ̂k,1) − ψ(γ̂k,1 + γ̂k,2) +
k−1∑
l=1

[ψ(γ̂l,2) − ψ(γ̂l,1 + γ̂l,2)] .

Note that in the above formula, symbols
(
ĉk, Γ̂k, Âk, b̂k, Σ̂k

)
are the hyperparame-

ters Specifically defined in the following Section 3.2. It is important to note that (11)
provides assignment probabilities qzn(k) rather than intermediate commitments to hard
assignments of zn. However, the hard assignments can be postponed to the end if desired
to obtain a segmentation by the following MAP estimation ẑn = argmaxk∈[K] qzn(k).

3.2. VB-M steps

The maximisation step consists of updating the hyperparameters ϕ =
(
s1, s2, a,θ

⋆
[K]

)
,

where θ⋆
[K] = (ck,Γk,Ak,bk,Σk)k∈[K], by maximizing the free energy as follows:

ϕ(r) = argmax
ϕ

E
q

(r)
Z q

(r)
τ q

(r)
α,σ

[log p (Y ,X ,Z, τ , α, σ;ϕ)] .

The VB-M-step can therefore be divided into 4 independent sub-steps, as listed below.
From the conditional independence of (s1, s2, a) and (Y ,X ,Z) given (τ , α, σ), the solu-
tion for the VB-M-(s1, s2) (in the DP case) step is straightforward. Only the M-(s1, s2, a)
(in the PYP case) and M-θ⋆

[K] steps are more involved.

VB-M-(s1, s2, a) step. This step is straightforward in the DP case (σ = 0). It can
be expressed easily using the fact that both the prior and the variational posterior are
Gamma distributions, and using the cross-entropy properties,

(s1, s2)(r) = argmax
(s1,s2)

E
q

(r)
α,0

[log p(α | s1, s2)] = (ŝ(r)
1 , ŝ

(r)
2 ),

where (ŝ(r)
1 , ŝ

(r)
2 ) is given in (10). We can also solve this step numerically using impor-

tance sampling in the more general case of PYP (σ ̸= 0). For more details, see Appendix
A.7 in Lü et al. (2020).
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VB-M-(c,Γ) step. This step is divided into solving K optimisation problems:

(
ĉk, Γ̂k

)
≡
(

ĉ(r)
k , Γ̂(r)

k

)
= argmax

(ck,Γk)
E

q
(r)
Z

[log p (X | Z; ck,Γk)] .

We can then update the Gaussian gating parameters as follows:

ĉk = 1
Nk

N∑
n=1

qzn(k)xn, Γ̂k = 1
Nk

N∑
n=1

qzn(k) (xn − ĉk) (xn − ĉk)⊤ .

The technical details will be left to the Appendix C.4.

VB-M-(A, b,Σ) step. Using the same idea, this step is divided into K sub-steps,
which include the following optimisation problems

(
Âk, b̂k, Σ̂k

)
≡
(

Â(r)
k , b̂

(r)
k , Σ̂(r)

k

)
= argmax

(Ak,bk,Σk)
E

q
(r)
Z

[log p (Y | X ,Z; Ak,bk,Σk)] .

Given the following quantities:

x̄k = 1
Nk

N∑
n=1

qzn(k) xn, Xk = 1√
Nk

(√
qz1(k)(x1 − x̄k), . . . ,

√
qzN

(k)(xN − x̄k)
)
,

ȳk = 1
Nk

N∑
n=1

qzn(k) yn, Yk = 1√
Nk

(√
qz1(k)(y1 − ȳk), . . . ,

√
qzN

(k)(yN − ȳk)
)
,

We can update the parameters for the Gaussian experts as follows (cf. Appendix C.5):

Âk = YkX
⊤
k (XkX

⊤
k )−1, b̂k = 1

Nk

N∑
n=1

qzn(k) (yn − Âkxn),

Σ̂k = 1
Nk

N∑
n=1

qzn(k) (yn − Âkxn − b̂k)(yn − Âkxn − b̂k)⊤.

3.3. Evidence lower-bound (ELBO)

Evaluating the ELBO in (B1) allows us to not only monitor the bound during the
re-estimation to test for convergence but also to check both the mathematical ex-
pressions for the solutions and their software implementation. Indeed, the value of
this bound (B1) at each step of the iterative re-estimation procedure should not
decrease (Svensén and Bishop, 2005), in particular, see recent results for Bayesian
nonparametric mixture models in Appendix A of Durand et al. (2022). Recall that
ϕ̂ = (ŝ1, ŝ2, â, (ĉk, Γ̂k, Âk, b̂k, Σ̂k)k∈N⋆). Here, in order to keep the notation uncluttered,
we will sometimes omit the subscripts on the expectation operators because each expec-
tation is taken with respect to all of the random variables in its argument, and the hat
superscript ·̂ on the hyperparameters ϕ̂ of q distribution. If σ ̸= 0 and there are enough
training data, the ELBO can be evaluated via the fact that the integral reduces to a
point evaluation at the posterior mean of each parameter, see, e.g., Yuan and Neubauer
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(2008); Luo and Sun (2017); Wu and Ma (2018); Nguyen and Bonilla (2014). When
σ = 0, we can analytically compute the ELBO in the BNP-GLLiM via Proposition 3.1
which is proved in Appendix E.2.

Proposition 3.1. If σ = 0, the ELBO in the BNP-GLLiM is decomposed as follows:

F
(
qZ , qΘ, ϕ̂

)
= E

[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)] − E [log q(Θ)] , (12)

where all the terms have a closed-form expression.

The closed-form expressions for the terms of the right-hand side of Equation (12) are
provided in Appendix D. Note that if the free energy is computed at the end of each
VBEM iteration, as in Section 3.2, we have E [log qα,0(α)] = E [log p (α | ŝ1, ŝ2)].

4. Predictive conditional density

The most popular uses of BNP-GLLiM with discrete random probability measures,
such as the one displayed in (7), relate to conditional density estimation and data
clustering. Specifically, we are interested in the predicted conditional density for a new
value (ŷ, x̂) of the observed variables. Note that there will be a corresponding latent
variable ẑ associated with these observations. If σ ̸= 0, we can use the previous remark
in Section 3.3, where the integral reduces to a point evaluation at the posterior mean
of each parameter. When σ = 0, we can analytically approximate such densities via
several following theorems. In Theorems 4.1 to 4.3, the notation “≈” means that we
approximate the desired densities of the BNP-GLLiM by a mixture of Gaussians using
factorized variational approximation posteriors and a truncation of K.

4.1. Joint density

We first compute the joint density via Theorem 4.1, which is proved in Appendix E.3.

Theorem 4.1. With ŵ ≡ [x̂; ŷ], we have

µk ≡ E [ŵ] =
(

ĉk

Âkĉk + b̂k

)
, Vk = cov [ŵ] =

(
Γ̂k Γ̂kÂ⊤

k

ÂkΓ̂k Σ̂k + ÂkΓ̂kÂ⊤
k

)
, (13)

p (ŷ, x̂,X ,Y) ≈
K∑

k=1
Eqτk

[τk]
k−1∏
l=1

Eqτl
[1 − τ l] NL+D (ŵ | µk,Vk) , (14)

Eqτk
[τk] = γ̂k,1

γ̂k,1 + γ̂k,2
, Eqτk

[1 − τk] = γ̂k,2

γ̂k,1 + γ̂k,2
.

4.2. Inverse conditional density

We then show how to approximate the inverse conditional density p(ŷ | x̂,X ,Y). This
predictive density in BNP-GLLiM is approximated by a GLLiM via Theorem 4.2 with
the proof in Appendix E.4.
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Theorem 4.2. We approximate the inverse conditional density p(ŷ | x̂,X ,Y) and its
conditional expectation for prediction by:

p (ŷ | x̂,X ,Y) ≈
K∑

k=1
gLk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
, (15)

E [ŷ | x̂,X ,Y ] ≈
K∑

k=1
gLk

(
x̂ | Θ̂, ϕ̂,X ,Y

) [
Âkx̂ + b̂k

]
, where

gLk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
=

Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)
∑K

l=1 Eqτ [πl (τ )] NL

(
x̂ | ĉl, Γ̂l

) , k ∈ [K].

4.3. Forward conditional density

Given the inverse conditional density p(ŷ | x̂,X ,Y), we approximate the following
forward conditional density via Theorem 4.3, whose proof is provided in Appendix E.5.

Theorem 4.3. We approximate the forward conditional density and its corresponding
conditional expectation and variance for prediction and uncertainty estimation by

p (x̂ | ŷ,X ,Y) ≈
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
,

E [x̂ | ŷ,X ,Y ] ≈
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

) (
Â∗

kŷ + b̂
∗
k

)
,

var [x̂ | ŷ,X ,Y ] ≈
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

) [
Σ̂∗

k +
(
Â∗

kŷ + b̂
∗
k

) (
Â∗

kŷ + b̂
∗
k

)⊤
]

− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤ , where

gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
=

Eqτ [πk (τ )] ND

(
ŷ | ĉ∗

k, Γ̂
∗
k

)
∑K

l=1 Eqτ [πl (τ )] ND

(
ŷ | ĉ∗

l , Γ̂
∗
l

) ,
Σ̂∗

k =
(
Γ̂−1

k + Â⊤
k Σ̂−1

k Âk

)−1
, b̂

∗
k = Σ̂∗

k

[
Γ̂−1

k ĉk − Â⊤
k Σ̂−1

k b̂k

]
,

Â∗
k = Σ̂∗

kÂ⊤
k Σ̂−1

k , ĉ∗
k = Âkĉk + b̂k, Γ̂∗

k = Σ̂k + ÂkΓ̂kÂ⊤
k .

5. Bayesian nonparametric model selection

Notations. A coupling between π ≡ (πk)k∈[K] and π0 ≡
(
π0

l

)
l∈[K0] is a joint distribu-

tion Q on [K] × [K0], which is expressed as a matrix Q = (qkl)k∈[K],l∈[K0] ∈ [0, 1]K×K0

with marginal probabilities
∑

k∈[K]
qkl = π0

l and
∑

l∈[K0]
qkl = πk, for any k ∈ [K] and

l ∈ [K0]. We use Q(π,π0) to denote the space of all such couplings. Regarding the
space of mixing measures, let EK ≡ EK(Θ) and OK ≡ OK(Θ) respectively denote
the space of all mixing measures with exactly and at most K support points, all in
some parameter space Θ. Additionally, with G ≡ G(Θ) = ∪

K∈N+
EK to denote the set of

all discrete measures with finite supports on Θ. Moreover, G(Θ) denotes the space of
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all discrete measures (including those with countably infinite supports) on Θ. Finally,
P(Θ) stands for the space of all probability measures on Θ.

5.1. Posterior contraction rate in Bayesian infinite mixtures

Problem setup. We first recall the GMM where we have i.i.d. samples (Wn)n∈[N ] ≡ W
coming from a true but unknown distribution PG0 with given PDF

pG0 ≡
∫

N (w | θ)dG0(θ) =
∑

k∈[K0]
π0

kN (w | θ0
k), θ0

k ≡
(
µ0

k,V0
k

)
, (16)

where G0 =
∑

k∈[K0]
π0

kδθ0
k

is a true but unknown mixing distribution with exactly K0

number of support points, where K0 is also unknown. Furthermore, Θ is a chosen pa-
rameter space, to which we believe that the true parameters belong. In a well-specified
setting, all support points of G0 reside in Θ, but this may not be the case in a mis-
specified setting. In this section, we assume that the GMM is well-specified, i.e., the
data are i.i.d. samples from the mixture density pG0 , where mixing measure G0 has K0
support atoms in compact parameter space Θ.

A Bayesian modeller places a prior distribution Π on a suitable subspace of G(Θ).
Then, the posterior distribution over G is given by:

Π (G ∈ B | W) ≡
∫

B

∏N
n=1 pG (Wn) dΠ(G)∫

G(Θ)
∏N

n=1 pG (Wn) dΠ(G)
.

Here, the GMM pG is defined in (16) with K ≤ ∞ unknown number of support points.
We are interested in the posterior contraction behaviour of G toward G0, in addition to
recovering the true number of components K0.

We next recall the notion of Wasserstein distance for mixing measures that prove
useful in the next sections.

Wasserstein distance for MM. It is useful to analyze the identifiability and con-
vergence of parameter estimation in mixture models using the notion of Wasserstein
distance, as in Nguyen (2013); Ho and Nguyen (2016b). This distance can be defined as
the optimal cost of moving masses in the transformation from one probability measure
to another (Villani, 2003, 2009).

Definition 5.1. Suppose Θ is equipped with a metric d. The Wasserstein distance Wr

between two discrete measures G =
∑

k∈[K]
πkδθk

and G0 =
∑

l∈[K0]
π0

l δθ0
l

is given by

Wr (G,G0) = inf
Q∈Q(π,π0)

[ ∑
k∈[K],l∈[K0]

qkl

[
d
(
θk,θ

0
l

)]r
]1/r

,

where couplings Q are defined at the beginning of this section. See Delon and Desolneux
(2020) for more details.

It should be emphasized that if a sequence of probability measures GN ∈ OK0 con-
verges to G0 ∈ EK0 under the Wr metric at a rate ωN = o(1) for some r ≥ 1, then there
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exists a subsequence of GN such that the set of atoms of GN converges to the K0 atoms
of G0, up to a permutation of the atoms, at the same rate ωN .

Posterior contraction rate in infinite mixtures. With a similar idea as in Guha
et al. (2021), our starting point is the availability of a mixing measure sample G that
is drawn from the posterior distribution Π (G | W), where W are i.i.d. samples of the
mixing density pG0 . Under certain conditions on the kernel density, it can be established
that for some Wasserstein metric Wr,

Π
(
G ∈ G(Θ) : Wr(G,G0) ≤ δωN | W

)
N→∞−−−−→ 1 in PG0-probability, (17)

for all constant δ > 0, while ωN = o(1) is a vanishing rate. Thus ωN can be assumed
to be (slightly) slower than the actual rate of posterior contraction of the mixture
measure. We can also write that ωN is a rate such that, under the posterior distribution
Π (G | W), Wr(G,G0) = oPG0

(ωN ). See Nguyen (2013); Gao and Vaart (2016); Ho and
Nguyen (2016b) for concrete examples of posterior contraction rates in infinite and
(overfitted) finite mixtures.

5.2. Merge-Truncate-Merge (MTM) algorithm for BNP-GLLiM

Link between GLLiM and joint GMM. We start by noting that a GLLiM model
on (X,Y), see (2), with unconstrained parameters ψ = (πk, ck,Γk,Ak,bk,Σk)k∈[K],
is equivalent to a GMM on the joint variable [X; Y] with unrestricted parameters, via
Lemma 5.2, which is briefly proved in Appendix E.1.

Lemma 5.2. A GLLiM model on (X,Y) with unconstrained parameters ψ =
(πk, ck,Γk,Ak,bk,Σk)k∈[K], defined in (2), is equivalent to a GMM on the joint variable
[X; Y] ≡ W with unconstrained parameters ν = {µk,Vk, ρk}K

k=1, i.e.,

p (w | ψ) =
K∑

k=1
ρkNL+D (w | µk,Vk) .

The parameter ψ can be expressed as a function of ν by:

πk = ρk, ck = µx
k , Γk = Vxx

k , Ak = Vxy⊤
k (Vxx

k )−1 ,

bk = µy
k − Vxy⊤

k (Vxx
k )−1µx

k , Σk = Vyy
k − Vxy⊤

k (Vxx
k )−1 Vxy

k . (18)

Here, we have defined

µk =
[
µx

k

µy
k

]
, Vk =

[
Vxx

k Vxy
k

Vyx
k Vyy

k

]
.

Note that the symmetry V⊤
k = Vk of the covariance matrix implies that Vxx

k and Vyy
k

are symmetric, while Vxy⊤
k = Vyx

k . The parameter vector ν can be expressed as a
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function of ψ by:

ρk = πk, µk =
[

ck

Akck + bk

]
, Vk =

[
Γk (AkΓk)⊤

AkΓk Σk + AkΓkA⊤
k

]
. (19)

Merge-Truncate-Merge (MTM) algorithm is a post-processing procedure applied
to a posterior sample of the mixing measure G in BNP-MM, essential for achieving pos-
terior contraction rates under the Wasserstein metric (Guha et al., 2021). We propose
in Algorithm 1 an algorithm for BNP joint GMM which follows the same steps as the
original MTM algorithm for BNP-MM from Guha et al. (2021). This algorithm involves
two main stages: the Merge procedure and the Truncate-Merge procedure. In the Merge
stage, atoms are reordered by simple random sampling without replacement, ensuring
random permutation. Sequentially, atoms are merged based on a distance threshold ωN ,
updating weights and removing merged atoms from the set, resulting in a new measure
G′ with reordered weights. In the Truncate-Merge stage, atoms are divided into two sets
based on a weight threshold (cωN )r. For each atom in the significant weight set, if an-
other atom within the threshold distance exists, it is moved to the negligible weight set.
Atoms in the negligible set are then merged with the nearest significant atom, resulting
in the final measure G̃ and the number of its supporting atoms K̃. See Algorithm 1 for
a pseudo-code description.

Algorithm 1 MTM Algorithm for BNP joint GMM

Require: Posterior sample G =
K∑

k=1
πkδθk

, posterior contraction rate ωN from

from (17), and a tunning parameter c.
Ensure: Discrete measure G̃ and its number of supporting atoms K̃.

Stage 1: Merge procedure:
1: Reorder atoms {θk}k∈[K] by simple random sampling without replacement with

corresponding weights {π1, π2, . . . }. Let τ 1, τ2, . . . denote the new indices, and set
E = {τ j}j as the existing set of atoms.

2: Sequentially for each index τ j ∈ E , if there exists an index τ i < τ j such that
d
(
θτ i ,θτ j

)
≤ ωN , then update πτ i = πτ i + πτ j , and remove τ j from E .

3: Collect G′ =
∑

j: τ j∈E πτ jδθτj
. Then write G′ as

∑K
k=1 qkδϕk

so that q1 ≥ q2 ≥ . . . .
Stage 2: Truncate-Merge procedure:

4: Set A = {i : qi > (cωN )r}, N = {i : qi ≤ (cωN )r}.
5: For each index i ∈ A, if there is j ∈ A such that j < i and qi∥ϕi −ϕj∥r ≤ (cωN )r,

then remove i from A and add it to N .
6: For each i ∈ N , find atom ϕj among j ∈ A that is nearest to ϕi, then update
qj = qj + qi.

7: Return G̃ =
∑

j∈A qjδϕj
and K̃ = |A|.

As a consequence of our MTM algorithm, we obtain the theoretical guarantee of
Theorem 5.3 for the outcome of Algorithm 1.

Theorem 5.3 (MTM consistency for BNP joint GMM). Let G be a posterior sample
from the posterior distribution of any Bayesian procedure, namely, Π (G | W) according
to which the upper bound (17) holds for all δ > 0. Let G̃ and K̃ be the outcome of
Algorithm 1 applied to G, for an arbitrary constant c > 0. Then the following hold

15



(a) Π
(
K̃ = K0 | W

)
N→∞−−−−→ 1 in PG0-probability.

(b) For all δ > 0, Π
(
G ∈ G(Θ) : Wr(G̃, G0) ≤ δωN | W

)
N→∞−−−−→ 1 in PG0-probability.

Proof of Theorem 5.3. Lemma 5.2 implies that BNP joint GMM and BNP-GLLiM
are considered equivalent with respect to the number of components in the model selec-
tion problem. Therefore, using Theorem 3.2 from Guha et al. (2021) and Lemma 5.2,
it follows that the result of the MTM Algorithm 1 for BNP joint GMM is a consistent
estimate of both the number of components and the mixing measure. The latter also
admits the upper bound of the posterior contraction rate ωN , which leads to the desired
Theorem 5.3.

Remark 2. Regarding the above theorem, we provide the following comments on poste-
rior consistency for the number of components in BNP-GLLiM after the MTM algorithm
post-processing.

(i) As a complementary result to Guha et al. (2021), the aim of this paper is to study
the practical viability of MTM Algorithm 1 and Theorem 5.3 in the context of
high-to-low dimensional inverse regression via BNP-GLLiM model. In order to
do this, we first need to specify the metric d in Θ, e.g., d

(
θτ i ,θτ j

)
= ∥µτ i

−
µτ j

∥ +
∥∥Vτ i − Vτ j

∥∥ . Here, ∥·∥ denotes either the l2-norm elements in RL+D or
the entrywise l2-norm for matrices in R(L+D)×(L+D).

(ii) In practice, one may not have a mixing measure G sampled from the posterior
Π (· | W), but rather a sample of G itself. In particular, to deal with large data
sets, we need to use VBEM. Therefore, in BNP-GLLiM, instead, we only ob-
tain a sample FN from the variational posterior GV =

K∑
k=1

Eqτ [πk(τ )] δθk
. Here,

Eqτ [πk(τ )] and θk = (µk,Vk) are defined in (14) and (13), respectively. However,
as long as FN is sufficiently close to G in the sense that Wr(FN , G) ≲ Wr(G,G0),
we can still apply the MTM algorithm to FN , instead. This requires an extension
of the above Theorem 5.3 to cover this scenario and verify this approximation
condition, which we leave for future work.

6. Numerical experiments

The code to reproduce our simulation study is publicly available1 and all simulations be-
low were performed in Python 3.9.13 on a standard Unix machine. For proof-of-concept
numerical experiments, we consider only the simple data generating mechanism with
D = 1 and L = 1 and demonstrate that BNP-GLLiM performs well in model selection,
clustering and cPDF estimation with the MTM procedure. Real world examples are
postponed to future work.

6.1. Data generation

We illustrate our theoretical results on simulated datasets in a more general setting
for the BNP approach compared to those considered by Chamroukhi et al. (2010);
Montuelle and Le Pennec (2014); Nguyen et al. (2022c). Specifically, we consider the

1https://github.com/Trung-TinNGUYEN/BNP-GLLiM
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following true inverse cPDF from GLLiM model as follows:

s0
(
y | x;ψ0

)
=

K0∑
k=1

π0
kNL

(
x | c0

k,Γ0
k

)∑K
l=1 π

0
l NL

(
x | c0

l ,Γ
0
l

)ND

(
y | A0

kx + b0
k,Σ0

k

)
.

Here K0 = 3, L = D = 1, and ψ0 =
(
π0, c0,Γ0,A0,b0,Σ0

)
, where

π0 = (0.3, 0.4, 0.3), c0 = (1, 0.05,−1), Γ0 = (0.1, 0.2, 0.1),
A0 = (−15, 3, 15), b0 = (−2, 1,−2), Σ0 = (0.5, 0.3, 0.5).

Figure 2a shows typical N = 1, 000 realisations of the true inverse cPDF from GLLiM,
representing a π-shape simulation with three clusters without labels.

6.2. Model selection, clustering and regression tasks via
MTM-BNP-GLLiM

Our goal is to evaluate the inverse and forward cPDF, as well as the conditional means,
to investigate the empirical performance of our MTM-BNP-GLLiM in the previous
simulation. In Figure 2 it is clear that with the help of MTM Algorithm 1, MTM-
BNP-GLLiM can simultaneously perform regression, clustering and model selection well.
Without the MTM procedure, BNP-GLLiM performs poorly in model selection, clus-
tering and cPDF estimation, except for conditional expectations as shown in Figure 3.

Next, we illustrate the performance of the MTM algorithm when applied to the
variational posterior from BNP-GLLiM. Specifically, the samples in our 100 trials are
drawn fromGV =

K∑
k=1

Eqτ [πk(τ )] δθk
, wherere Eqτ [πk(τ )] and θk = (µk,Vk) are defined

in (14) and (13), respectively. We know that for some constant C̃, which depends on the
covariance matrix V0

k, the location parameters µ0
k and the weights π0

k, the contraction
rate of mixing measures under the location Gaussian DP-MM is C̃ (log(N))−1/2 with
respect to the W2-norm. Similar to Guha et al. (2021), our first attempt to choose
wN to satisfy (17) is wN =

(
log(log(N))

log(N)

)1/2
. In fact, we can choose any wN , as long as

wN

log(N)−1/2 → ∞, in order for wN to satisfy (17).
Since we only work with finite sample N , it is not expected that the posterior prob-

ability for KMTM = K0 is close to 1 and the input c to Algorithm 1 should be cho-
sen so that C̃

(log(log(N)))1/2 ≤ c. Furthermore, based on Equation (26) from Guha et al.
(2021), with a useful lower bound on the posterior mass the mode, for any 1 > ϵ > 0,
(1 − ϵ)

(
1 −

∑3
k=1

c
r/2
0
π0

k

)
> 1

2 , we hope to identify K0 via the posterior mode with a rea-
sonable estimate. To guarantee K = K0 consistently using the posterior mode safety,
we have to choose c < c0, with c0 satisfying

(1 − ϵ)
(

1 −
3∑

k=1

c
r/2
0
π0

k

)
>

1
2 ⇔ 1 − 2ϵ

2(1 − ϵ)

( 3∑
k=1

1
π0

k

)−1

> c
r/2
0 > cr/2.
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(a) Typical realisations without labels.
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(b) True conditional expectations with labels.
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(c) True and estimated inverse means.
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(d) True and estimated forward means.
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(e) Contour of estimated inverse cPDF.
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(f) Contour of estimated forward cPDF.
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(g) Contour of true inverse cPDF.
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Figure 2. Top row: Typical 1, 000 realisations of GLLiM’s true inverse cPDF with its true conditional
expectations. 2nd row and below: True and estimated inverse and forward cPDF of GLLiM with the true
number of components (KMTM = 3) using MTM algorithm for post-processing in MTM-BNP-GLLiM.
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(b) True and estimated forward means.
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(c) Contour of estimated inverse cPDF.
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(d) Contour of estimated forward cPDF.

Figure 3. True and estimated inverse and forward means and CPDFs of GLLiM without MTM algorithm
for post-processing in BNP-GLLiM with truncated number of components K = 20.

Therefore, we can choose

 1 − 2ϵ
4(1 − ϵ)

( 3∑
k=1

1
π0

k

)−12/r

= c0 > c, for all 1
2 > ϵ > 0.

In particular, it is unrealistic to obtain the exact computation of the upper bound c0

and the lower bound C̃

(log(log(N)))1/2 . However, a reasonable estimate may be possible by
considering a large range of c, and show that there is a range where we can robustly
identify the true number of components via the posterior mode. Guha et al. (2021) also
used the same setting in their experiments. Figure 4 indicates that c = 0.45 leads to a
quite good posterior mode in our experiments.

Although we do not have a theoretical result for the convergence rate of the variational
posterior of BNP-GLLiM to the true data generating process, Figure 4 seems to suggest
that MTM-BNP-GLLiM gives a comparable good result to the location Gaussian DP-
MM in the simulation studies in Guha et al. (2021).

7. Perspectives

To address the dimensionality issue when N is less than D, we could incorporate sparsity
penalty terms as described in the GLLiM context in Chamroukhi et al. (2019). Alterna-
tively, we could impose additional structural restrictions, such as block-diagonal covari-
ance matrices as in Blein-Nicolas et al. (2024)), which extends the GLLiM method to
account for hidden module-structured regulatory networks of predictors through block-
diagonal structures. In particular, Blein-Nicolas et al. (2024) applied their method to
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Figure 4. Histogram of KMTM using variational posterior sample with 100 trials and c = 0.45.

the prediction of drought-related traits (L = 2) from protein abundance (D = 973) in
N = 233 maize genotypes. We leave for future research the intriguing but challenging
questions of how to integrate BNP priors into the GLLiM model and how to establish
posterior convergence theory in high-dimensional settings where D ≫ N .

As indicated in Remark 2, there is a crucial need to formally establish general condi-
tions on the prior, the likelihood and the variational class to characterise the convergence
rate of the variational posterior of BNP-GLLiM to the true data generating process.
Using the similar “prior mass and testing” conditions as in Ghosal et al. (2000), we be-
lieve that an interesting but challenging extension of the work on variational posterior
unconditional distributions for MMs (Zhang and Gao, 2020) and on adaptive Bayesian
estimation for MMs and MoE models but for true posterior distribution (Kruijer et al.,
2010; Shen et al., 2013; Norets and Pati, 2017) can help shed some light and answer this
important question. Furthermore, it is important to establish an extensional conver-
gence property of our VBEM algorithm for BNP-GLLiM. This property is only known
for GMM from Titterington and Wang (2006). A potential improvement of the VBEM
algorithm developed for BNP-GLLiM can be achieved by combining it with MCMC,
taking advantage of both inference approaches as in Ruiz and Titsias (2019). Finally, as
mentioned in Section 6.2, the selection of a good data-driven tuning parameter c as the
same idea from the slope heuristic of Birgé and Massart (2007) is crucial for the success
of the MTM procedure for any BNP model. We leave these interesting but challenging
questions for future research.
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Supplementary Materials for
“Bayesian nonparametric mixture of experts for inverse

problems”
In this supplementary material, we first recall the standard Bayesian nonparametric

priors and variational Bayesian expectation-maximisation principle in Appendices A
and B, respectively. Then, all specifications of the VBEM for the BNP-GLLiM model,
the evidence lower bound and the technical proofs that are not included in the main
paper are placed in Appendices C to E. . Finally, Appendix F proposes a more general
model with a hyper prior on the gating parameters, referred to as BNP-GLLiM2.
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Appendix A. Bayesian nonparametric priors

Stick-breaking construction of Dirichlet process. Note that the Dirichlet process
(DP) (Ferguson, 1973) is a central BNP prior and is the infinite-dimensional general-
ization of the Dirichlet distribution. Therefore, for the sake of completeness, let us first
recall the definition of the DP. A DP on the space G is defined as a random process
characterized by a concentration parameter α and a base distribution G0, denoted by
G ∼ DP (α,G0), such that for any finite partition {A1, . . . , Ap} of G, the random vector
(G (A1) , . . . , G (Ap)) is Dirichlet distributed:

(G (A1) , . . . , G (Ap)) ∼ Dir (αG0 (A1) , . . . , αG0 (Ap)) .
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We use the stick-breaking construction of the DP G (SBDP), due to Sethuraman (1994):

θ0
k | G0

iid∼ G0, k ∈ N⋆,

τk | α iid∼ Beta(τk | 1, α), k ∈ N⋆,

πk(τ ) = τk

k−1∏
l=1

(1 − τ l) , k ∈ N⋆,

G =
∞∑

k=1
πk(τ )δθ0

k
∼ DP (α,G0) .

Pitman–Yor process. As a generalized version of the Dirichlet process, in the
Pitman–Yor process (PYP) (Pitman and Yor, 1997), the τk’s are independent (ind∼ )
but not identically distributed. Specifically,

θ0
k | G0

iid∼ G0, k ∈ N⋆,

τk | α, σ ind∼ Beta(1 − σ, α+ kσ), k ∈ N⋆,

πk(τ ) = τk

k−1∏
l=1

(1 − τ l) , k ∈ N⋆,

G =
∞∑

k=1
πk(τ )δθ0

k
∼ PYP (α, σ,G0) .

Here σ ∈ (0, 1) is a discount parameter and α is a concentration parameter α > σ.
The PYP is a two-parameter generalisation of the DP that allows one to control the tail
behaviour when modelling data with either exponential or power-law tails (Ishwaran
and James, 2001; Pitman and Yor, 1997). The PYP reduces to a DP when σ = 0. More
general stick-breaking representations are possible, e.g., Gibbs-type priors (De Blasi
et al., 2015; Ghosal and Van der Vaart, 2017) or homogeneous normalised random
measures with independent increments (Favaro et al., 2016). The PYP has a power-law
behaviour for the number of clusters. This can make it more suitable for a number of
applications. In other words, the number of clusters grows as O (Nσ) for PYP, while
growing more slowly as O (logN) for DP.

Since the hyperparameters α and σ can have a significant effect on the growth of
the number of clusters with data sample size, it is possible to specify priors for them.
For the DP case obtained with σ = 0, it is suggested in Blei and Jordan (2006) to
use a gamma prior, α ∼ Gam (s1, s2), where the hyperparameters s1 and s2 can be
estimated or fixed. A natural question is whether one can also find a tractable prior for
the discount parameter σ. Following the work of Lü et al. (2020), we use the following
prior that satisfies the constraints σ ∈ (0, 1) and α > −σ,

p (α, σ | s1, s2, a) = p (α | σ; s1, s2) p(σ | a),

where p (α | σ; s1, s2) is a shifted gamma distribution SG (α | σ; s1, s2) and p(σ, a) is a
distribution depending on some parameter a which is not specified at the moment but
which can typically be assumed to be a uniform distribution on the interval (0, 1). Such a
shifted gamma distribution is the distribution of a variable U−σ, where σ is considered
fixed and U follows a gamma distribution Gam (s1, s2). The PDF of this shifted gamma
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distribution is obtained from the standard gamma distribution as SG (α | σ; s1, s2) =
Gam (α + σ | s1, s2).

Hierarchical representation of BNP-MM. BNP-MMs, including DP-MMs and
PYP-MMs, see, e.g., Lü et al. (2020); Durand et al. (2022), have the following hierar-
chical representation to generate a data point xn as a special case of BNP-GLLiMs:

1. BNP prior:

G =
∞∑

k=1
πk(τ )δ

θ
′⋆
k

∼ BNP (α, σ,G0) , θ
′⋆
k = (µk,Vk) ,

2. BNP-MM: for each n ∈ [N ],

θn | G iid∼ G,

If θn = θ
′⋆
k , set zn = k,

xn | zn,θ
⋆ iid∼ NL

(
xn | θ⋆

zn

)
, θ⋆ ≡

(
θ

′⋆
k

)
k∈[K]

.

Appendix B. Variational Bayesian expectation-maximisation principle

The clustering task consists mainly of estimating the unknown labels Z = (zn)n∈[N ] from
the observed data (Y ,X ) = (yn,xn)n∈[N ], whose joint distribution p (Y ,X ,Z,Θ;ϕ) is
determined by a set of parameters denoted by Θ and often by additional hyperparam-
eters ϕ.

The expectation-maximisation (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 1997) is a generative technique for maximum likelihood estimation (MLE)
in the presence of unobserved latent variables or missing data. An EM iteration consists
of two steps usually referred to as the E-step in which the expectation of the so-called
complete log-likelihood is computed and the M-step in which this expectation is max-
imized over Θ. An equivalent way to define EM is the following. As discussed in Neal
and Hinton (1998), EM can be viewed as an alternating maximisation procedure of a
function F0 defined, for any probability distribution qZ over labels Z, by

F0 (qZ ,Θ,ϕ) =
∑
Z
qZ(Z) log p (Y ,X ,Z | Θ,ϕ) − EqZ [log qZ(Z)]

= EqZ

[
log p (Y ,X ,Z | Θ,ϕ)

qZ(Z)

]
,

where −EqZ [log qZ(Z)] is the entropy of qZ and Eq [·] is the expectation with respect
to q. The function F0 depends on the observations (Y ,X ), which are fixed throughout
and are therefore omitted from the notation.

When prior knowledge on the parameters is available, an alternative approach consists
of replacing the MLE by a maximum a posteriori (MAP) estimation of Θ using the
prior knowledge encoded in a distribution p(Θ). More precisely, the MLE of Θ is then
replaced by a point estimation Θ̂ = argmaxΘ∈Θ p(Θ | Y ,X ). In this paper, instead of
considering only point estimation of Θ, we carry out a fully Bayesian approach. That
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is, we integrate out Θ as follows

p(Z | Y ,X ) =
∫

Θ
p(Z | Y ,X ,Θ)p(Θ | Y ,X )dΘ.

This integration requires the computation of the density p(Θ | Y ,X ), which is usu-
ally not available in closed-form. As an alternative to costly simulation-based meth-
ods (e.g., Markov chain Monte Carlo (MCMC)), an EM-like procedure using varia-
tional approximation can provide approximations of the marginal posterior distributions
p(Θ | Y ,X ) and p(Z | Y ,X ). This approach is referred to as VBEM for variational
Bayesian EM, as introduced by Beal and Ghahramani (2003).

To deal with the BNP-GLLiM model, we need to use the VBEM with hyperparameter
optimisation of Beal (2003, Figure 2.5 and Algorithm 5.3). Let qZ and qΘ denote the
distributions over Z and Θ, respectively, which will serve as approximations to the
true posteriors. Specifically, in the Bayesian setting, the intractable posterior p(Z,Θ |
Y ,X ;ϕ) is approximated by the variational posterior q(Z,Θ) = qZ(Z)qΘ(Θ).

Similar to standard EM, VBEM maximizes the following evidence lower bound (of-
ten abbreviated ELBO, and sometimes called the variational lower bound or negative
variational free energy), defined for arbitrary qZ and qΘ distributions by

F (qZ , qΘ,ϕ) = EqZ qΘ

[
log p(Y ,X ,Z,Θ;ϕ)

qZ(Z)qΘ(Θ)

]
(B1)

= log p(Y ,X | ϕ) − KL (qZqΘ∥p(Z,Θ | Y ,X ,ϕ)) ≤ log p(Y ,X | ϕ),

alternatively over qZ , qΘ and ϕ. Here, KL stands for Kullback-Leibler divergence. It is
worth noting that adding a prior on Θ is formally equivalent to considering Θ as missing
variables, while the hyperparameters ϕ play the role of the parameters of interest in
MLE.

The alternate maximisation over F leads to the VBEM algorithm, which can be
decomposed into three steps. It is easy to show, using the KL divergence properties,
that the maximisation over qZ and qΘ leads to the following E-steps, see, e.g., Chaari
et al. (2013, Appendix A), Beal (2003, Theorem 2.1) and Bishop (2006, Section 10.1.1),
which is essentially coordinate ascent in the function space of variational distributions.
Furthermore, the following update rules for E-steps converge to a local maximum of
F (qZ , qΘ,ϕ). At the rth iteration, using current values ϕ(r−1) and q

(r−1)
Θ , we get the

following updating,

VB-E-Z: q(r)
Z (Z) ∝ expE

q
(r−1)
Θ

[
log p(Y ,X ,Z,Θ;ϕ(r−1))

]
, (B2)

VB-E-Θ: q(r)
Θ (Θ) ∝ expE

q
(r)
Z

[
log p(Y ,X ,Z,Θ;ϕ(r−1))

]
, (B3)

VB-M-ϕ: ϕ(r) ∝ argmax
ϕ

E
q

(r)
Z q

(r)
Θ

[log p(Y ,X ,Z,Θ;ϕ)] .

In practice, we can decide which parameters to treat as genuine parameters Θ or as
hyperparameters ϕ, depending on whether some prior knowledge is available for only
a subset of the parameters, or whether the model has hyperparameters ϕ for which no
prior information is available. Furthermore, for complex models, qΘ and qZ may need
to be further restricted to simpler forms, such as factorised forms, to ensure tractable
VB-E steps. This is illustrated in the next Appendix F.1 for the BNP-GLLiM inference.
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Appendix C. Details of VBEM for BNP-GLLiM model

C.1. VB-E-τ step from Section 3.1

To achieve results from Section 3.1, we make use of (5), (6), (F1), and are only interested
in the functional dependence of the right-hand side of (B3) on the variable τk. Thus,
any terms that do not depend on τk can be absorbed into the additive normalization
constant, giving

qτk
(τk) = exp

{
Eqα,σ [log p (τk | α, σ)] +

N∑
n=1

Eqzn qτ\{k}
[log πzn (τ )]

}
+ constant

∝ exp
{

− Eqα,σ [σ] log τk +
[
Eqα,σ [α] + kEqα,σ [σ] − 1

]
log (1 − τk)

+
N∑

n=1
qzn (k) log τk +

N∑
n=1

K∑
j=k+1

qzn(j) log (1 − τk)
}

= Beta (τk | γ̂k,1, γ̂k,2) .

Here,

γ̂k,1 = 1 − Eqα,σ [σ] +
N∑

n=1
qzn (k) = 1 − Eqσ [σ] +

N∑
n=1

qzn (k) ,

γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +
N∑

n=1

K∑
j=k+1

qzn(j) = Eqα,σ [α] + kEqα,σ [σ] +
K∑

j=k+1

N∑
n=1

qzn(j).

Furthermore, we used the fact that

log p (τk | α, σ) = log [Beta (τk | 1 − σ, α+ kσ)] = log
[ Γ(1 − σ + kσ)

Γ(1 − σ)Γ(α + kσ)τ
1−σ−1
k (1 − τk)α+kσ−1

]
,

log πzn (τ ) = log
[
τ zn

zn−1∏
l=1

(1 − τ l)
]

= log τ zn +
zn−1∑
l=1

log (1 − τ l) ,

qτ\{k} (τ l) =
K−1∏

i=1,i ̸=k

qτ i (τ l) , dτ\{k} =
K−1∏

i=1,i ̸=k

dτ i.

Finally, we have for k ∈ [K], let Nk =
∑N

n=1 qzn(k) correspond to the weight of cluster
k, then

qτk
(τk) = Beta (τk | γ̂k,1, γ̂k,2) ,

γ̂k,1 = 1 − Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +
K∑

l=k+1
Nl.
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C.2. VB-E-(α, σ) step from Section 3.1

In the PY case, to achieve results from Section 3.1, we make use of (5), (4), (F1), (F2),
and are only interested in the functional dependence of the right-hand side of (B3) to
the variables (α, σ). Thus, any terms that do not depend on (α, σ) can be included in
the additive normalization constant. This results in qα,σ(α, σ) being proportional to

q̃α,σ(α, σ)

= p(α, σ | s1, s2, a) exp
{
E∏K−1

k=1 qτk

[
log

K−1∏
k=1

p (τk | α, σ)
]}

= p(α, σ | s1, s2, a)
K−1∏
k=1

Γ(1 − σ + α + kσ)
Γ(1 − σ)Γ(α + kσ)

× exp
{

K−1∑
k=1

Eqτk
[−σ log τk + (α− 1 + kσ) log (1 − τk)]

}

= p(α, σ | s1, s2, a) 1
Γ(1 − σ)K−1

K−1∏
k=1

[α + (k − 1)σ] Γ(α + (k − 1)σ)
Γ(α + kσ)

× exp
{

K−1∑
k=1

Eqτk
[−σ (log τk − k log (1 − τk)) + (α− 1) log (1 − τk)]

}

= p(α, σ | s1, s2, a) 1
Γ(1 − σ)K−1

K−1∏
k=1

[α + (k − 1)σ]
∏K−2

l=0 Γ(α + lσ)∏K−1
k=1 Γ(α + kσ)

× exp
{

K−1∑
k=1

Eqτk
[−σ (log τk − k log (1 − τk)) + (α− 1) log (1 − τk)]

}

= p(α, σ | s1, s2, a) Γ(α)
Γ(1 − σ)K−1Γ(α + (K − 1)σ)

K−1∏
k=1

[α + (k − 1)σ]

× exp
{

−σ
[

K−1∑
k=1

Eqτk
[log τk] −

K−1∑
k=1

kEqτk
[log (1 − τk)]

]
+ (α− 1)

K−1∑
k=1

Eqτk
[log (1 − τk)]

}
,

where we used the fact that Γ(x+1) = xΓ(x). Except in the DP-GLLiM case, i.e., σ = 0,
the normalizing constant, (

∫
q̃α,σ(α, σ)d(α, σ))−1, for q̃α,σ is not tractable. However, to

perform VBEM in Appendix F.1, we do not need the full qα,σ distribution, but only the
means Eqα,σ [α] and Eqα,σ [σ]. One solution, therefore, is to use importance sampling or
MCMC to compute these expectations by means of Monte Carlo sums. Via the prior
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on (α, σ) given in (4), it holds that

q̃α,σ(α, σ)

= 1
Γ(s1)s2

s1 (α + σ)s1−1 exp {−s2(α + σ)} Γ(α)p(σ | a)
Γ(1 − σ)K−1Γ(α + (K − 1)σ)

K−1∏
k=1

[α + (k − 1)σ]

× exp
{

−σ
[

K−1∑
k=1

Eqτk
[log τk] −

K−1∑
k=1

kEqτk
[log (1 − τk)]

]
+ (α− 1)

K−1∑
k=1

Eqτk
[log (1 − τk)]

}

= 1
Γ(s1)s2

s1 (α + σ)s1−1 exp
{

−
[
s2 −

K−1∑
k=1

Eqτk
[log (1 − τk)]

]
(α + σ)

}

× e−σξ exp
{

−
K−1∑
k=1

Eqτk
[log (1 − τk)]

}
Γ(α)p(σ | a)

Γ(1 − σ)K−1Γ(α + (K − 1)σ)

K−1∏
k=1

[α + (k − 1)σ]

= 1
Γ(s1) (α + σ)s1−1 exp

{
−
[
s2 −

K−1∑
k=1

Eqτk
[log (1 − τk)]

]
(α + σ)

}[
s2 −

K−1∑
k=1

Eqτk
[log (1 − τk)]

]s1−s1

× e−σξ exp
{

−
K−1∑
k=1

Eqτk
[log (1 − τk)]

}
Γ(α)p(σ | a)

Γ(1 − σ)K−1Γ(α + (K − 1)σ)

K−1∏
k=1

[α + (k − 1)σ] s2
s1

∝ Gam (α + σ | ŝ1, ŝ2) e−σξ Γ(α)p(σ | a)
Γ(1 − σ)K−1Γ(α + (K − 1)σ)

K−1∏
k=1

α + (k − 1)σ
α + σ

. (C1)

Here, given that ψ(·) is the digamma function defined by ψ(z) = d
dz log Γ(z) = Γ′(z)

Γ(z) , we
have

ξ =
K−1∑
k=1

Eqτk
[log τk] −

K−1∑
k=1

(k − 1)Eqτk
[log (1 − τk)] ,

Eqτk
[log τk] = ψ (γ̂k,1) − ψ (γ̂k,1 + γ̂k,2) ,

Eqτk
[log (1 − τk)] = ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2) ,

ŝ1 = s1 +K − 1, ŝ2 = s2 −
K−1∑
k=1

[ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2)] .

We propose to use the following important distribution ν(α, σ) =
Gam (α + σ | ŝ1, ŝ2) p(σ | a) where p(σ | a) is the uniform distribution on [0, 1],
denoted as U[0,1](σ). Then we obtain an expression for the importance weights,

W (α, σ) = q̃α,σ(α, σ)
ν(α, σ) = e−σξ Γ(α)

Γ(1 − σ)K−1Γ(α + (K − 1)σ)

K−1∏
k=1

α + (k − 1)σ
α + σ

.

The importance sampling scheme then consists of the following steps
• For m ∈ [M ], first simulate independently σm from U[0,1](σ) and then simulate

conditionally αm with the σm-shifted gamma G (σm, ŝ1, ŝ2). This later simulation
is easily obtained by simulating a standard γ (α′

m | ŝ1, ŝ2) and then subtracting
σm from the result.

• Compute the importance weights wm = W (αm, αm).
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• Approximate the means

Eqα,σ [α] ≃
M∑

m=1

wm∑M
i=1 wi

αm, Eqα,σ [σ] ≃
M∑

m=1

wm∑M
i=1 wi

σm.

Note that this complication is due to the PY. In the DP-GLLiM case, by substituting
σ = 0 in (C1), the E step is much simpler, as it reduces to computing the approximate
posterior expectation of α, namely,

Eqα,0 [α] = ŝ1

ŝ2
, qα,0 = Gam (α | ŝ1, ŝ2) .

C.3. VB-E-Z step from Section 3.1

In some situations, it is useful to use a 1-of-K binary vector zn to represent the la-
tent variable zn for each observation (yn,xn). To be more precise, we introduce a K-
dimensional binary random variable zn = (znk)k∈[K] , K ≤ ∞, with a 1-of-K representa-
tion in which a particular element znk is equal to 1, i.e., zn = k, and all other elements
are equal to 0. The values of znk thus satisfy znk ∈ {0, 1} and

∑
k∈[K] znk = 1,∀n ∈ N⋆.

If there is no confusion, we also denote Z as the latent matrix Z = (znk)n∈[N ],k∈[K]. It
is worth to mentioning that when using a 1-of-K representation of zn, we can also write
down marginal the conditional distributions of X and Y | X , corresponding to (7), in
the form

p (X | Z, c,Γ) =
N∏

n=1

K∏
k=1

NL (xn | ck,Γk)znk , (C2)

p (xn | c,Γ) =
K∑

k=1
pzn(k)NL (xn | ck,Γk) , pzn(k) ≡ p(zn = k) = πk(τ ),

(C3)

p (Y | X ,Z; A,b,Σ) =
N∏

n=1

K∏
k=1

ND (yn | Akxn + bk,Σk)znk , (C4)

p (yn | xn; A,b,Σ) =
K∑

k=1

pzn(k)NL (xn | ck,Γk)∑K
l=1 pzn(l)NL (xn | cl,Γl)

ND (yn | Akxn + bk,Σk) .

The observations X and Y are therefore i.i.d. and generated from the same GMM (C3)
and infinite GLLiM (C4), respectively. Similarly, (6) can be written down in the form

p (Z | τ ) =
N∏

n=1

K∏
k=1

πk (τ )znk .

By using the decomposition (8), the representation (C2), (C4) and absorbing any
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terms that are independent on Z into the additive normalization constant, we obtain

log qZ(Z) ≡ log q(r)
Z (Z)

= EqΘ

[
log p

(
Y | X ,Z; Â, b̂, Σ̂

)
p
(
X | Z; ĉ, Γ̂

)
p (Z | τ )

]
+ constant

∝ EqΘ

[
log p

(
Y | X ,Z; Â, b̂, Σ̂

)]
+ EqΘ

[
log p

(
X | Z; ĉ, Γ̂

)]
+ EqΘ [log p (Z | τ )]

=
N∑

n=1

K∑
k=1

znkEqΘ

[
log ND

(
yn | Âkxn + b̂k, Σ̂k

)]
+

N∑
n=1

K∑
k=1

znkEqΘ

[
log NL

(
xn | ĉk, Γ̂k

)]

+ EqΘ

[
N∑

n=1
log (πzn (τ ))

]

=
N∑

n=1

K∑
k=1

znk log ND

(
yn | Âkxn + b̂k, Σ̂k

)
+

N∑
n=1

K∑
k=1

znk log NL

(
xn | ĉk, Γ̂k

)

+
N∑

n=1

K∑
k=1

znkEqτ [log (πk (τ ))] =
N∑

n=1

K∑
k=1

znk log ρnk.

Here, we used the fact that

log ρnk = log ND

(
yn | Âkxn + b̂k, Σ̂k

)
+ log NL

(
xn | ĉk, Γ̂k

)
+ Eqτ [log (πk (τ ))]

= −D

2 log(2π) − 1
2 log

∣∣∣Σ̂k

∣∣∣− 1
2
(
yn − Âkxn − b̂k

)⊤
Σ̂−1

k

(
yn − Âkxn − b̂k

)
− L

2 log(2π) − 1
2 log

∣∣∣Γ̂k

∣∣∣− 1
2 (xn − ĉk)⊤ Γ̂−1

k (xn − ĉk)

+ ψ(γ̂k,1) − ψ(γ̂k,1 + γ̂k,2) +
k−1∑
l=1

ψ(γ̂l,2) − ψ(γ̂l,1 + γ̂l,2).

By taking exponential of both sides and taking into account the normalized constant,
it holds that

qZ(Z) = 1∑K
l=1 ρnl

N∏
n=1

K∏
k=1

ρznk

nk =
N∏

n=1

K∏
k=1

rznk

nk , rnk = ρnk∑K
l=1 ρnl

.

Note also that zn = k if and only if the latent matrix Z reduces to a sparse matrix
Znk which has only one position different from 0, namely znk = 1. This leads to the
following simplified notation:

log qzn (k) ≡ log qzn (zn = k) ≡ log qZ (Znk) = rnk.
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C.3.1. Updating Σk

By using matrix derivatives, the derivative of the log likelihood with respect to Σ−1
k is

given by

∂

∂Σ−1
k

f1
(
Âk,bk,Σ−1

k

)
= −1

2

N∑
n=1

qzn(k) ∂

∂Σ−1
k

[
− log

∣∣∣Σ−1
k

∣∣∣+ Tr
[
Σ−1

k (yn − Akxn − bk) (yn − Akxn − bk)⊤
]]

= −1
2

N∑
n=1

qzn(k)
[
−Σk + (yn − Akxn − bk) (yn − Akxn − bk)⊤

]

= Nk

2 Σk − 1
2

N∑
n=1

qzn(k) (yn − Akxn − bk) (yn − Akxn − bk)⊤ .

Finally, setting to zero yields

Σ̂k = 1
Nk

N∑
n=1

qzn(k)
(
yn − Âkxn − b̂k

) (
yn − Âkxn − b̂k

)⊤
.

C.4. VB-M-(c,Γ) step from Section 3.2

This step divides into K sub-steps that involve the following optimisations

(
ĉk, Γ̂k

)
≡
(

ĉ(r)
k , Γ̂(r)

k

)
= argmax

(ck,Γk)
E

q
(r)
Z

[log p (X | Z; ck,Γk)] .

By definition, we have

E
q

(r)
Z

[log (p (X | Z; ck,Γk))]

= E
q

(r)
Z

[
log

N∏
n=1

NL (xn | ck,Γk)znk

]

=
N∑

n=1
E

q
(r)
Z

[znk log NL (xn | ck,Γk)]

=
N∑

n=1
E

q
(r)
Z

[znk] log NL (xn | ck,Γk)

=
N∑

n=1
qzn(k) log NL (xn | ck,Γk)

=
N∑

n=1
qzn(k)

[
−L

2 log(2π) − 1
2 log |Γk| − 1

2 (xn − ck)⊤ Γ−1
k (xn − ck)

]
≡ f2 (ck,Γk) .
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We aim to solve the following optimisation(
ĉk, Γ̂k

)
= argmax

(ck,Γk)
f2 (ck,Γk) .

Similarly with Appendices C.3.1 and C.5.1, we obtain the following update:

ĉk = 1
Nk

N∑
n=1

qzn(k)xn,

Γ̂k = 1
Nk

N∑
n=1

qzn(k) (xn − ĉk) (xn − ĉk)⊤ .

C.5. VB-M-(A, b,Σ) step from Section 3.2

By definition, we have

E
q

(r)
Z

[log p (Y | X ,Z; Ak,bk,Σk)]

= E
q

(r)
Z

[
log

N∏
n=1

ND (yn | Akxn + bk,Σk)znk

]

=
N∑

n=1
E

q
(r)
Z

[znk log ND (yn | Akxn + bk,Σk)]

=
N∑

n=1
E

q
(r)
Z

[znk] log ND (yn | Akxn + bk,Σk)

=
N∑

n=1
qzn(k) log ND (yn | Akxn + bk,Σk)

=
N∑

n=1
qzn(k)

[
−D

2 log(2π) − 1
2 log |Σk| − 1

2 (yn − Akxn − bk)⊤ Σ−1
k (yn − Akxn − bk)

]
≡ f1 (Ak,bk,Σk) .

We aim to solve the following optimisation(
Âk, b̂k, Σ̂k

)
= argmax

(Ak,bk,Σk)
f1 (Ak,bk,Σk) .
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C.5.1. Updating bk

The derivative of the log likelihood with respect to bk is given by

∂

∂bk
f1 (Ak,bk,Σk) = −1

2

N∑
n=1

qzn(k) ∂

∂bk

[
(yn − Akxn − bk)⊤ Σ−1

k (yn − Akxn − bk)
]

= −
N∑

n=1
qzn(k)Σ−1

k (yn − Akxn − bk) ∂

∂bk
(yn − Akxn − bk)

=
N∑

n=1
qzn(k)Σ−1

k (yn − Akxn − bk) .

Setting this derivative to zero, we obtain the solution for VB-M-b step given by

N∑
n=1

qzn(k)Σ−1
k (yn − Akxn − bk) = 0

⇔
N∑

n=1
qzn(k)Σ−1

k (yn − Akxn) −
N∑

n=1
qzn(k)Σ−1

k bk = 0

⇔
N∑

n=1
qzn(k) (yn − Akxn) −

N∑
n=1

qzn(k)bk = 0 (left multiplying by Σk)

⇔ bk = 1∑N
n=1 qzn(k)

N∑
n=1

qzn(k) (yn − Akxn) ≡ 1
Nk

N∑
n=1

qzn(k) (yn − Akxn) . (C5)

C.5.2. Updating Ak

The derivative of the log likelihood with respect to Ak is given by

∂

∂Ak
f1 (Ak,bk,Σk) = −1

2

N∑
n=1

qzn(k) ∂

∂Ak

[
(yn − Akxn − bk)⊤ Σ−1

k (yn − Akxn − bk)
]

= −
N∑

n=1
qzn(k)Σ−1

k (yn − Akxn − bk) ∂

∂Ak
(yn − Akxn − bk)

=
N∑

n=1
qzn(k)Σ−1

k (yn − Akxn − bk) x⊤
n .
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Then, we set this derivative w.r.t. Ak equal to zero, giving

N∑
n=1

qzn(k)Σ−1
k (yn − Akxn − bk) x⊤

n = 0

⇔
N∑

n=1
qzn(k) (yn − Akxn − bk) x⊤

n = 0 (left multiplying by Σk)

⇔
N∑

n=1
qzn(k)ynx⊤

n −
N∑

n=1
qzn(k)Akxnx⊤

n −
N∑

n=1
qzn(k)bkx⊤

n = 0

⇔
N∑

n=1
qzn(k)ynx⊤

n − Ak

N∑
n=1

qzn(k)xnx⊤
n − bk

N∑
n=1

qzn(k)x⊤
n = 0

⇔ Ak

N∑
n=1

qzn(k)xnx⊤
n

=
N∑

n=1
qzn(k)ynx⊤

n − 1
Nk

N∑
n=1

qzn(k) (yn − Akxn)
N∑

n=1
qzn(k)x⊤

n (using (C5) for bk)

⇔ Ak

N∑
n=1

qzn(k)xn

(
x⊤

n − 1
Nk

N∑
n=1

qzn(k)x⊤
n

)
=

N∑
n=1

qzn(k)
(

yn − 1
Nk

N∑
n=1

qzn(k)yn

)
x⊤

n

⇔ NkAkXkX
⊤
k = NkYkX

⊤
k ⇔ Ak = YkX

⊤
k

(
XkX

⊤
k

)−1
.

Here, the last equality is obtained by firstly define the following quantities,

x̄k = 1
Nk

N∑
n=1

qzn(k)xn,

ȳk = 1
Nk

N∑
n=1

qzn(k)yn,

Xk = 1√
Nk

(√
qz1(k)(x1 − x̄k), . . . ,

√
qzn(k)(xN − x̄k)

)
L×N

,

Yk = 1√
Nk

(√
qz1(k)(y1 − ȳk), . . . ,

√
qzn(k)(yN − ȳk)

)
D×N

.
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Then, we used the fact that

N∑
n=1

qzn(k)xn

(
x⊤

n − 1
Nk

N∑
n=1

qzn(k)x⊤
n

)

=
N∑

n=1
qzn(k)xn

(
x⊤

n − x̄⊤
k

)

=
N∑

n=1
qzn(k) (xn − x̄k) (xn − x̄k)⊤ +

N∑
n=1

qzn(k)x̄k (xn − x̄k)⊤

=
N∑

n=1
qzn(k) (xn − x̄k) (xn − x̄k)⊤

= NkXkX
⊤
k ,

and

N∑
n=1

qzn(k)
(

yn − 1
Nk

N∑
n=1

qzn(k)yn

)
x⊤

n

=
N∑

n=1
qzn(k) (yn − ȳk) x⊤

n

=
N∑

n=1
qzn(k) (yn − ȳk) (xn − x̄k)⊤ +

N∑
n=1

qzn(k) (yn − ȳk) x̄⊤
k

=
N∑

n=1
qzn(k) (yn − ȳk) (xn − x̄k)⊤

= NkYkX
⊤
k .

Here, we also use the equalities

N∑
n=1

qzn(k)x̄k (xn − x̄k)⊤ =
N∑

n=1
qzn(k)x̄kx⊤

n − x̄kNkx̄⊤
k =

N∑
n=1

qzn(k)x̄kx⊤
n −

N∑
n=1

qzn(k)x̄kx⊤
n = 0,

N∑
n=1

qzn(k) (yn − ȳk) x̄⊤
k =

N∑
n=1

qzn(k)ynx̄⊤
k −Nkȳkx̄⊤

k =
N∑

n=1
qzn(k)ynx̄⊤

k −
N∑

n=1
qzn(k)ynx̄⊤

k = 0,
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and for each i, j ∈ [L], it holds that[
N∑

n=1
qzn(k) (xn − x̄k) (xn − x̄k)⊤

]
ij

=
N∑

n=1
qzn(k)

[
(xn − x̄k) (xn − x̄k)⊤

]
ij

=
N∑

n=1
qzn(k) [(xn − x̄k)]i1

[
(xn − x̄k)⊤

]
1j

≡
N∑

n=1
qzn(k) [(xn − x̄k)]i [(xn − x̄k)]j

=
[(√

qz1(k)(x1 − x̄k), . . . ,
√
qzn(k)(xN − x̄k)

)]
i·

[(√
qz1(k)(x1 − x̄k), . . . ,

√
qzn(k)(xN − x̄k)

)]⊤

·j

= Nk

[
XkX

⊤
k

]
ij
.

Appendix D. Details on the ELBO

In this section, we provide the closed-form expressions for the ELBO stated in Propo-
sition 3.1. Let us recal that when σ = 0, the ELBO in the BNP-GLLiM is derived as
follows:

F
(
qZ , qΘ, ϕ̂

)
= E

[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)] − E [log q(Θ)] ,

The terms of the right-hand side of the above equation have the following closed-form
expressions:

E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
=

N∑
n=1

K∑
k=1

qzn(k) log ND

(
yn | Âkxn + b̂k, Σ̂k

)
(D1)

E
[
log p(X | Z,Θ; ϕ̂)

]
=

N∑
n=1

K∑
k=1

qzn(k) log NL

(
xn | ĉk, Γ̂k

)
, (D2)

E
[
log p(Z | Θ; ϕ̂)

]
=

K∑
k=1

Nk

[
ψ (γ̂k,1) − ψ (γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ (γ̂l,2) − ψ (γ̂l,1 + γ̂l,2)]
]
,

(D3)

E
[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

E [log p (τk | α)] + E [log p (α | ŝ1, ŝ2)] , (D4)

E [log p (τk | α)] = ŝ1 − ŝ2

ŝ2
[ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2)] + ψ (ŝ1) − log(ŝ2),

E [log p (α | ŝ1, ŝ2)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log (ŝ2) − ŝ1,
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E [log q(Z)] =
N∑

n=1

K∑
k=1

qzn (k) log qzn (k) , (D5)

E [log q(Θ)] = E [log qα,0(α)] +
K−1∑
k=1

E [log qτk
(τk)] , (D6)

E [log qα,0(α)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log(ŝ2) − ŝ1,

E [log qτk
(τk)] =

2∑
l=1

(γ̂k,l − 1) {ψ (γ̂k,l) − ψ (γ̂k,1 + γ̂k,2)} + log Γ (γ̂k,1 + γ̂k,2)
Γ (γ̂k,1) Γ (γ̂k,2) .

Appendix E. Technical proofs

E.1. Proof of Lemma 5.2

We first want to prove (18). Using the partition of a joint Gaussian with xb ≡ x,µb =
µx

k ,Σbb ≡ Vxx
k ,xa ≡ y,µa ≡ µy

k ,Σaa ≡ Vyy
k , we obtain

p (xa | xb) = N
(
xa | µa|b,Γ−1

aa

)
, µa|b = µa − Γ−1

aa Γab (xb − µb) = µa − ΣabΣ−1
bb (xb − µb) ,

p (xb) = N (xb | µb,Σbb) . (E1)

Recall that

p (y | x, Z = k;ψ) = ND (y | Akx + bk,Σk) ,
p (x | Z = k;ψ) = NL (x | ck,Γk) , p (Z = k;ψ) = πk. (E2)

By identifying the parameters of (E1) and (E2), it holds that

πk = ρk

ck = µx
k ,

Γk = Vxx
k ,

Ak = −Γ−1
aa Γab = Vxy⊤

k (Vxx
k )−1 ,

bk = µa + Γ−1
aa Γabµb = µy

k − Vxy⊤

k (Vxx
k )−1µx

k ,

Σk = Γ−1
aa = Σaa − ΣabΣ−1

bb Σba = Vyy
k − Vxy⊤

k (Vxx
k )−1 Vxy

k .

The following decomposition of the joint probability distribution will be used:

p (w | ψ) =
K∑

k=1
p (y | x, Z = k;ψ) p (X = x | Z = k;ψ) p (Z = k;ψ)

=
K∑

k=1
πkND (y | Akx + bk,Σk) NL (x | ck,Γk)

≡
K∑

k=1
ρkNL+D (w | µk,Vk) .
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By using result for the joint Gaussian, see e.g., (E6), we obtain the desired result (19).
Finally, Lemma 5.2 is proved via using the following two statements (Deleforge et al.,

2015, Lemmas 1 and 2):
(i) For any ρk ∈ R,µk ∈ RL+D, and Vk ∈ SL+D

+ , there is a set of parameters
ck ∈ RL, λk ∈ SL

+, πk ∈ R,Ak ∈ RD×L,bk ∈ RD,Σk ∈ SD
+ such that (18) holds.

(ii) Reciprocally, for any ck ∈ RL,Λk ∈ SL
+, πk ∈ R,Ak ∈ RD×L,bk ∈ RD,Σk ∈ SD

+ ,
there is a set of parameters ρk ∈ R,µk ∈ RL+D and Vk ∈ SL+D

+ such that (19)
holds.

E.2. Proof of Proposition 3.1

Using the sum and product rules for both discrete and continuous variables, the ELBO
in BNP-GLLiM (B1) is given by

F
(
qZ , qΘ, ϕ̂

)
= EqZ qΘ

[
log p(Y ,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]
≡ E

[
log p(Y ,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]

=
∑
Z

∫ ∫ ∫
q(Z)q(Θ) log

[
p(Y ,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]
dZdΘ

= E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)] − E [log q(Θ)] . (E3)

Next, we evaluate the various terms in the ELBO (E3).

Proof of (D1)
Via the mean field approximation and the truncation, we have the following computa-
tions:

E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
= E

[
log

N∏
n=1

p
(
yn | xn, zn,Θ; ϕ̂

)]

= E
[
log

N∏
n=1

K∏
k=1

ND

(
yn | Âkxn + b̂k, Σ̂k

)znk

]

=
N∑

n=1

K∑
k=1

E
[
znk log ND

(
yn | Âkxn + b̂k, Σ̂k

)]

=
N∑

n=1

K∑
k=1

EqZ [znk] log ND

(
yn | Âkxn + b̂k, Σ̂k

)

=
N∑

n=1

K∑
k=1

qzn(k) log ND

(
yn | Âkxn + b̂k, Σ̂k

)
,
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where

log ND

(
yn | Âkxn + b̂k, Σ̂k

)
= −D

2 log(2π) − 1
2 log

∣∣∣Σ̂k

∣∣∣
− (yn − Âkxn − b̂k)⊤Σ̂−1

k (yn − Âkxn − b̂k).

Proof of (D2)
Similarly to the previous proof, we obtain

E
[
log p(X | Z,Θ; ϕ̂)

]
= E

[
log

N∏
n=1

p
(
xn | zn,Θ; ϕ̂

)]

= E
[
log

N∏
n=1

K∏
k=1

NL

(
xn | ĉk, Γ̂k

)znk

]

=
N∑

n=1

K∑
k=1

E
[
znk log NL

(
xn | ĉk, Γ̂k

)]

=
N∑

n=1

K∑
k=1

EqZ [znk] log NL

(
xn | ĉk, Γ̂k

)

=
N∑

n=1

K∑
k=1

qzn(k) log NL

(
xn | ĉk, Γ̂k

)
,

where

log NL

(
xn | ĉk, Γ̂k

)
= −L

2 log(2π) − 1
2 log

∣∣∣Γ̂k

∣∣∣− 1
2 (xn − ĉk)⊤ Γ̂−1

k (xn − ĉk) .

Proof of (D3)
Via calculation, it follows the expressions of the following quantities,

Eqτk
[log (τk)] = ψ (γ̂k,1) − ψ (γ̂k,1 + γ̂k,2) ,

Eqτk
[log (1 − τk)] = ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2) . (E4)
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Via (E4), it holds that

E
[
log p(Z | Θ; ϕ̂)

]
= E

[
log

N∏
n=1

K∏
k=1

[πk(τ )]znk

]

=
N∑

n=1

K∑
k=1

EqZ [znk]EqΘ

[
log
[
τk

k−1∏
l=1

(1 − τ l)
]]

=
K∑

k=1

N∑
n=1

qznk

[
Eqτk

[log τk] +
k−1∑
l=1

Eqτl
[log (1 − τ l)]

]

=
K∑

k=1
Nk

[
Eqτk

[log τk] +
k−1∑
l=1

Eqτl
[log (1 − τ l)]

]

=
K∑

k=1
Nk

[
ψ (γ̂k,1) − ψ (γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ (γ̂l,2) − ψ (γ̂l,1 + γ̂l,2)]
]
.

Proof of (D4)
Given a chosen truncated value K ∈ N⋆, it holds that

EqΘ

[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

EqΘ [log p (τk | α, σ)] + EqΘ [log p (α, σ | ŝ1, ŝ2, â)] .

Here, we have

EqΘ [log p (τk | α, σ)] = EqΘ [log Beta (τk | 1 − σ, α+ kσ)]

= EqΘ

[
log τ−σ

k (1 − τk)α+kσ−1 + logC(α, σ)
]
,

= −Eqα,σ [σ]Eqτk
[log τk] + Eqα,σ [α + kσ − 1]Eqτk

[log(1 − τk)]
+ Eqα,σ [logC(α, σ)] ,

where we have defined

C(α, σ) = Γ(1 − σ + α + kσ)
Γ(1 − σ)Γ(α + kσ) .

Next, for the sake of simplicity, for σ, we use a uniform prior U[0,1](σ) so that param-
eter a does not have to be taken into account. Then it holds that

EqΘ [log p (α, σ | ŝ1, ŝ2)] = Eqα,σ [log Gam (α + σ | ŝ1, ŝ2)] + Eqα,σ

[
log U[0,1](σ)

]
= log

[ 1
Γ (ŝ1) ŝ

ŝ1
2

]
+ (ŝ1 − 1)Eqα,σ [log (α + σ)] − ŝ2Eqα,σ [α + σ]

= log
[ 1

Γ (ŝ1) ŝ
ŝ1
2

]
+ (ŝ1 − 1)Eqα,σ [log (α + σ)] − ŝ2Eqα,σ [α + σ] .

When σ ̸= 0, the normalizing constant for qα,σ(α, σ) is not tractable. Nevertheless,
to compute the ELBO, we do not need the full qα,σ distribution but only the means
Eqα,σ [σ], Eqα,σ [α + kσ − 1], Eqα,σ [logC(α, σ)], Eqα,σ [log (α + σ)] and Eqα,σ [α + σ]. One
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solution is therefore to use importance sampling or MCMC to compute these expecta-
tions via Monte Carlo sums.

When σ = 0, using integration by parts, it holds that Γ(α + 1) = αΓ(α) and hence
C(α, σ) ≡ C(α) = α. Furthermore, the posterior qα,σ ≡ qα is again a gamma distribution
Gam (α | ŝ1, ŝ2) with Eqα,σ [α] ≡ Eqα [α] = ŝ1

ŝ2
and Eqα,σ [logα] ≡ Eqα [logα] = ψ (ŝ1) −

log (ŝ2). Therefore, we have the following tractable formulas:

EqΘ [log p (τk | α, σ)] ≡ EqΘ [log p (τk | α)]
=
[
Eqα,0 [α] − 1

]
Eqτk

[log(1 − τk)] + Eqα,0 [logα] ,

= ŝ1 − ŝ2

ŝ2
[ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2)] + ψ (ŝ1) − log(ŝ2),

EqΘ [log p (α, σ | ŝ1, ŝ2)] ≡ EqΘ [log p (α | ŝ1, ŝ2)]

= log
[ 1

Γ (ŝ1) ŝ
ŝ1
2

]
+ (ŝ1 − 1) [ψ (ŝ1) − log (ŝ2)] − ŝ1.

Proof of (D5)
Due to the mean-field approximation (9) and truncation, this step is analytically com-
puted as follows:

EqZ [log q(Z)] = EqZ

[
log

N∏
n=1

qzn (zn)
]

= EqZ

[
log

N∏
n=1

K∏
k=1

qzn (k)znk

]

=
N∑

n=1

K∑
k=1

log qzn (k)EqZ [znk] =
N∑

n=1

K∑
k=1

qzn (k) log qzn (k) .

Proof of (D6)
We have

E [log q(Θ)] = E [log qα,σ(α, σ)] +
K−1∑
k=1

E [log qτk
(τk)] .

Note that these terms involving expectations of the logs of the q distributions simply
represent the negative entropies of those distributions.

Since qα,σ(α, σ) is not tractable, when σ ̸= 0, we cannot calculate analytically
E [log qα,σ(α, σ)]. Furthermore, it is also difficult to approximate it using MCMC or
importance sampling.

When σ = 0, the posterior qα,σ ≡ qα is again a gamma distribution Gam (α | ŝ1, ŝ2)
with

E [log qα,0(α)] ≡ E [log Gam (α | ŝ1, ŝ2)]
= −H [Gam (α | ŝ1, ŝ2)]
= − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log(ŝ2) − ŝ1.
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Since we had qτk
(τk) = Beta (τk | γ̂k,1, γ̂k,2), its differential entropy is given by

E [log qτk
(τk)] = −H [Beta (τk | γ̂k,1, γ̂k,2)]

=
2∑

l=1
(γ̂k,l − 1) {ψ (γ̂k,l) − ψ (γ̂k,1 + γ̂k,2)} + log Γ (γ̂k,1 + γ̂k,2)

Γ (γ̂k,1) Γ (γ̂k,2) .

E.3. Proof of Theorem 4.1

Recall that Θ = (τ , α, σ). Then,

p (ŷ, x̂,X ,Y) =
∑

ẑ

∫
p (ŷ | x̂, ẑ,Θ,X ,Y) p (x̂ | ẑ,Θ,X ,Y) p (ẑ | Θ,X ,Y) p (Θ | X ,Y) dΘ

=
∑

ẑ

∫
p (ŷ | x̂, ẑ;A, b,Σ) p (x̂ | ẑ, c,Γ) p (ẑ | τ ; β) p (Θ | X ,Y) dΘ ≡ D1.

(E5)

Note that in (E5), p (Θ | X ,Y) is in fact the (unknown) true posterior distribution of
the parameters given a sample (X ,Y). Because the integrations w.r.t. true posterior dis-
tribution are intractable, we approximate the predictive conditional density by replacing
the true posterior distribution p (Θ | X ,Y) with its truncated variational posterior of
parameters Θ given by

qΘ(Θ | X ,Y) = qα,σ(α, σ | X ,Y)
K−1∏
k=1

qτk
(τk | X ,Y) .

Recall that the infinite state space for each zj is dealt with by choosing a truncation of
the state space to a maximum label K (Blei and Jordan, 2006). In practice, this consists
of assuming that the variational distributions qzn for n ∈ [N ], satisfy qzn(k) = 0 for k >
K and that the variational distribution on τ also factorizes as qτ (τ ) =

∏K−1
k=1 qτk

(τk)
with the additional condition that τK = 1. In particular, here we choose K = K̂, where
K̂ is estimated from some suitable procedures.
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For simplicity, we consider the case when β = 0, σ = 0. Then we have

D1 ≈
∑

ẑ

∫
p
(
ŷ | x̂, ẑ; Â, b̂, Σ̂

)
p
(
x̂ | ẑ, ĉ, Γ̂

)
p (ẑ | τ ) qΘ(Θ | X ,Y)dΘ

=
∞∑

k=1

∫
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | ĉk, Γ̂k

)
πk(τ )qΘ(Θ | X ,Y)dΘ

≈
K∑

k=1
NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

) ∫
πk(τ )qΘ(Θ | X ,Y)dΘ

=
K∑

k=1
NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

) ∫
πk(τ )qτ (τ | X ,Y)dτ

∫
qα,0(α | X ,Y)dα︸ ︷︷ ︸

=1

=
K∑

k=1
Eqτ [πk(τ )] NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)

≡
K∑

k=1
Eqτ [πk (τ )] NL+D (ŵ | E [w] , cov [w])

=
K∑

k=1
Eqτk

[τk]
k−1∏
l=1

Eqτl
[1 − τ l] NL+D (ŵ | E [w] , cov [w]) .

Here, by defining ŵ ≡ [x̂; ŷ], we used the fact that

E [w] =
(

ĉk

Âkĉk + b̂k

)
, cov [w] =

(
Γ̂k Γ̂kÂ⊤

k

ÂkΓ̂k Σ̂k + ÂkΓ̂kÂ⊤
k

)
.

Indeed, we made use of the following result for the joint Gaussian, see, e.g., Bishop (2006,
Eq. (2.115), page 93). Given a marginal Gaussian distribution for x and a conditional
Gaussian distribution for y given x in the form

p(x) = N
(
x | µ,Γ−1

)
,

p(y | x) = N
(
y | Ax + b,L−1

)
,

then the joint distribution of w ≡ [x; y] is given by

p(w) = N (w | E [w] , cov [w]) , where

cov [w] =
(

Γ−1 Γ−1A⊤

AΓ−1 L−1 + AΓ−1A⊤

)
, E [w] =

(
µ

Aµ+ b

)
. (E6)

In our situation, the desired result is obtained via using y ≡ ŷ,A ≡ Âk,b ≡ b̂k,L−1 =
Σ̂k, x ≡ x̂,µ ≡ ĉk,Γ−1 ≡ Γ̂k.
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Furthermore, we also used the fact that

Eqτ [πk (τ )] =
∫
τkqτk

(τk | X ,Y) dτk

∫ k−1∏
l=1

(1 − τ l)
K−1∏

j=1,j ̸=k

qτ j (τ j | X ,Y)
K∏

j=1,j ̸=k

dτ j

= Eqτk
[τk]

∫ k−1∏
l=1

(1 − τ l)
k−1∏
j=1

qτ j (τ j | X ,Y)
∫ K−1∏

j=k+1
qτ j (τ j | X ,Y)

K−1∏
j=k+1

dτ j︸ ︷︷ ︸
=1

k−1∏
j=1

dτ j

= Eqτk
[τk]

k−1∏
l=1

∫
(1 − τ l) qτ l

(τ l | X ,Y) dτ l

= Eqτk
[τk]

k−1∏
l=1

Eqτl
[1 − τ l] .

Next, we aim to prove that

K∑
k=1

Eqτ [πk (τ )] = 1.

Indeed, recall that we have defined

τk | α, σ ind∼ Beta (τk | 1 − σ, α+ kσ) , k ∈ N⋆,

πk(τ ) = τk

k−1∏
l=1

(1 − τ l) , k ∈ N⋆,

p (Z | τ ) ∝
N∏

n=1
πzn (τ ) ,

and to deal with the infinite state space for each zj , we considered a truncation of the
state space to a maximum label K ≡ Kmax, Kmax ∈ N⋆ (Blei and Jordan, 2006). In
practice, this consists of assuming that the variational distributions qzn for n ∈ [N ],
satisfy qzn(k) = 0 for k > K and that the variational distribution on τ also factorizes
as qτ (τ ) =

∏K−1
k=1 qτk

(τk) with the additional condition that τK = 1. Based on the
proof from Ghosal and Van der Vaart (2017, Lemma 3.4), it holds that a necessary and
sufficient condition to guarantee that these πk’s sum to 1 almost surely, i.e.,

∞∑
k=1

πk(τ ) =
∞∑

k=1
τk

k−1∏
l=1

(1 − τ l) = 1,

is that the expectation E
[∏k−1

l=1 (1 − τ l)
]

tends to 0 as k tends to ∞. In particular, if
τ 1, τ2, . . . are i.i.d., e.g., when σ = 0, it suffices that p (τ 1 > 0) > 0. Then

1 = Eqτ

[ ∞∑
k=1

πk(τ )
]

=
∞∑

k=1
Eqτ [πk(τ )] =

K∑
k=1

Eqτ [πk(τ )] .
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E.4. Proof of Theorem 4.2

From the product rule of probability, we see that this conditional distribution can be
evaluated from the joint and marginal distributions. Furthermore, by integrating out ẑ
and Θ, the predictive conditional density is then given by

p (ŷ | x̂,X ,Y) = p (ŷ, x̂ | X ,Y)
p (x̂ | X ,Y) =

∑
ẑ
∫
p (ŷ, x̂, ẑ,Θ | X ,Y) dẑdΘ∑

ẑ
∫
p (x̂, ẑ,Θ | X ,Y) dẑdΘ ≡ D1

D2
.

Next, with a similar step as in the proof of Theorem 4.1, we also obtain

D2 ≈
K∑

k=1
Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)
.

Therefore, we obtain

p (ŷ | x̂,X ,Y)

≈
∑K

k=1 Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
∑K

k=1 Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)
=

K∑
k=1

Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)
∑K

k=1 Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)

≡
K∑

k=1
gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
,

which is a mixture of Gaussian experts since we have

gLk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
=

Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

)
∑K

k=1 Eqτ [πk (τ )] NL

(
x̂ | ĉk, Γ̂k

) , k ∈ [K],

belongs to a K − 1 dimensional probability simplex.

E.5. Proof of Theorem 4.3

To deal with high-dimensional regression data, namely high-to-low regression, given the
inverse conditional density p(ŷ | x̂,X ,Y), we want to compute the following forward
conditional density

p(x̂ | ŷ,X ,Y) = p(x̂, ŷ | X ,Y)
p(ŷ | X ,Y) = p(x̂, ŷ | X ,Y)∫

x̂ p(x̂, ŷ | X ,Y)dx̂ = D1∫
x̂ D1(x̂)dx̂ ≡ D1

D3
.
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Then, we have to compute or approximate D3. Using Theorem 4.1, we obtain

D3 ≈
K∑

k=1
Eqτ [πk (τ )]

∫
NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
dx̂

=
K∑

k=1
Eqτ [πk (τ )] ND

(
ŷ | Âkĉk + b̂k, Σ̂k + ÂkΓ̂kÂ⊤

k

)
.

Indeed, we made use of the following results for marginal and conditional Gaussians,
see, e.g., Bishop (2006, Eq. (2.115), page 93). Given a marginal Gaussian distribution
for x and a conditional Gaussian distribution for y given x in the form

p(x) = N
(
x | µ,Γ−1

)
,

p(y | x) = N
(
y | Ax + b,L−1

)
,

then the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) =
∫
p(y | x)p(x)dx = N

(
y | Aµ+ b,L−1 + AΓ−1A⊤

)
,

p(x | y) = N
(
x | Σ

[
A⊤L(y − b) + Γµ

]
,Σ
)
,Σ =

(
Γ + A⊤LA

)−1
.

In our situation, the desired result is obtained via using y ≡ ŷ,A ≡ Âk,b ≡ b̂k,L−1 =
Σ̂k, x ≡ x̂,µ ≡ ĉk,Γ−1 ≡ Γ̂k.

Finally, we obtain

p (x̂ | ŷ,X ,Y)

≈
K∑

k=1

Eqτ [πk (τ )] ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | ĉk, Γ̂k

)
∑K

k=1 Eqτ [πk (τ )] ND

(
ŷ | Âkĉk + b̂k, Σ̂k + ÂkΓ̂kÂ⊤

k

)
=

K∑
k=1

gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
,

where

gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
=

Eqτ [πk (τ )] ND

(
ŷ | ĉ∗

k, Γ̂
∗
k

)
∑K

k=1 Eqτ [πk (τ )] ND

(
ŷ | ĉ∗

k, Γ̂
∗
k

) .
Here, we used the fact that p(ŷ, x̂ | ẑ = k) = p(x̂ | ŷ, ẑ = k)p(ŷ | ẑ = k), namely,

ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | ĉk, Γ̂k

)
= NL

(
x̂ | Σ̂∗

k

[
Â⊤

k Σ̂−1
k (ŷ − b̂k) + Γ̂−1

k ĉk

]
, Σ̂∗

k

)
ND

(
ŷ | Âkĉk + b̂k, Σ̂k + ÂkΓ̂kÂ⊤

k

)
= NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
ND

(
ŷ | ĉ∗

k, Γ̂
∗
k

)
,

51



with

Σ̂∗
k =

(
Γ̂−1

k + Â⊤
k Σ̂−1

k Âk

)−1
,

Â∗
k = Σ̂∗

kÂ⊤
k Σ̂−1

k ,

b̂
∗
k = Σ̂∗

k

[
Γ̂−1

k ĉk − Â⊤
k Σ̂−1

k b̂k

]
,

ĉ∗
k = Âkĉk + b̂k,

Γ̂∗
k = Σ̂k + ÂkΓ̂kÂ⊤

k .

When required, it is straightforward to approximate the expectation and covariance
matrix of x̂ | ŷ,X ,Y as follows:

E [x̂ | ŷ,X ,Y ] ≈
∫

(x̂ | ŷ,X ,Y)
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
dx̂

=
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

) ∫
(x̂ | ŷ,X ,Y) NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
dx̂

=
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

) (
Â∗

kŷ + b̂
∗
k

)
,

var [x̂ | ŷ,X ,Y ] = E
[
(x̂ | ŷ,X ,Y) (x̂ | ŷ,X ,Y)⊤

]
− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤

≈
∫

(x̂ | ŷ,X ,Y) (x̂ | ŷ,X ,Y)⊤
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
dx̂

− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤

≈
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

) ∫
(x̂ | ŷ,X ,Y) (x̂ | ŷ,X ,Y)⊤ NL

(
x̂ | Â∗

kŷ + b̂
∗
k, Σ̂

∗
k

)
dx̂

− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤

≈
K∑

k=1
gDk

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

) [
Σ̂∗

k +
(
Â∗

kŷ + b̂
∗
k

) (
Â∗

kŷ + b̂
∗
k

)⊤
]

− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤ ,

where we used the following definitions

cov (X,Y) = E
(
XY⊤

)
− E (X)E (Y)⊤ , var (X) = cov (X,X) .

Appendix F. BNP-GLLiM2: a model with an hyperprior on the gating
parameters

F.1. VBEM for BNP-GLLiM2

A more general BNP-GLLiM model, referred to as BNP-GLLiM2 can be considered by
specifying a prior on the gating parameters (ck,Γk) as a normal-inverse-Wishart (NIW)
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τ zn xn

yn
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Γ

m, λ

Ψ, ν

αs1, s2

σa A,b,Σ

Figure F1. Graphical representation of BNP-GLLiM2: the plate denotes N i.i.d. observations, white-filled
circles correspond to unobserved (latent) variables and random or unknown parameters represented in red, while
grey-filled circles correspond to observed variables represented in green. Hyperparameters are represented in
blue.

distribution parameterized by ρk = (mk, λk,Ψk, νk) with a PDF

p (ck,Γk | ρk) ≡ N IW (ck,Γk | ρk) = N
(
ck | mk, λ

−1
k Γk

)
IW (Γk | Ψk, νk) .

The assumptions on the other parameters are not changed, so that hyperparameters
and parameters are now as follows:

ϕ =
(
s1, s2, a, (ρk,Ak,bk,Σk)k∈N⋆

)
, while Θ = (τ , α, σ,θ∗) ,θ∗ = (θ∗

k)k∈N⋆ ≡ (ck,Γk)k∈N⋆ .

BNP-GLLiM2 can be represented graphically as in Figure F1. The joint distribution of
the observed data X ,Y and all latent variables can be expressed hierarchically as

p(Y ,X ,Z,Θ;ϕ) =
N∏

n=1
p (yn | xn, zn,Θ;ϕ) p (xn | zn,Θ;ϕ) p(Z | Θ;ϕ)p (Θ;ϕ)

=
N∏

n=1
p (yn | xn, zn; A,b,Σ) p (xn | zn, c,Γ) p(Z | τ )∏

k∈N⋆

p (τk | α, σ) p (α, σ | s1, s2, a)
∏

k∈N⋆

p (ck,Γk;ρk) . (F1)

Following the same idea as in Section 3, we only consider the truncated variational
posterior of parameters Θ as follows

qΘ(Θ) = qα,σ(α, σ)
K−1∏
k=1

qτk
(τk)

K∏
k=1

qθ∗
k

(θ∗
k) . (F2)

These forms of qZ and qΘ lead to our four VB-E steps and three VB-M steps, summa-
rized below with details in Appendix C. Set the initial value of ϕ to ϕ(0). Then, repeat
iteratively the following steps. The iteration index is omitted in the update formulas for
simplicity.

VB-E steps
Note that the VB-E-τ , VB-E-(α, σ) steps are the same as in Section 3. We only highlight
the modified steps as follows.

We first consider the derivation of the update equation for the factor qZ(Z).
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F.1.1. VB-E-Z step
By using the mean-field approximation (9) and the truncation, see Appendix C.3 for
more details, for all n ∈ [N ] and for k ∈ [K], this step consists of computing

qzn(k) = ρnk∑K
l=1 ρnl

. (F3)

Here, given Nn represents the neighbors of n, we define log ρnk by

− 1
2

{
log
∣∣∣Σ̂k

∣∣∣+ (yn − Âkxn − b̂k)⊤Σ̂−1
k (yn − Âkxn − b̂k)

+ log
∣∣∣∣Ψ̂k

2

∣∣∣∣− L∑
l=1

ψ

(
ν̂k + (1 − l)

2

)
+ ν̂k(xn − m̂k)⊤Ψ̂−1

k (xn − m̂k) + L

λ̂k

}

+ ψ(γ̂k,1) − ψ(γ̂k,1 + γ̂k,2) +
k−1∑
l=1

[ψ(γ̂l,2) − ψ(γ̂l,1 + γ̂l,2)] .

(F4)

Note that in the above formula, symbols
(
m̂k, λ̂k, Ψ̂k, ν̂k

)
and

(
Âk, b̂k, Σ̂k

)
are the

hyperparameters Specifically defined in the following Appendix F.1.2 and Section 3.2.

Proof of (F4). With respect to the VBEM for BNP-GLLiM2 model from Ap-
pendix F.1.1, it is almost similar to the previous step in Appendix C.3, except that
we have to take into account the randomness of c and Γ. Namely, we have

qzn (zn)

∝ expEqΘ

[
log
(
p
(
yn | xn, zn; Âzn , b̂zn , Σ̂zn

)
p (xn | zn, czn ,Γzn) p(z | τ )

)]
= exp

{
log p

(
yn | xn, zn; Âzn , b̂zn , Σ̂zn

)
+ Eqθ∗

zn
[log p (xn | zn, czn ,Γzn)] + Eqτ [log πzn(τ )]

}
.

(F5)

Here, for zn = k, it holds that

Eqθ∗
zn

[
log p

(
xn | zn, ĉzn , Γ̂zn

)]
= Eqθ∗

zn

[
log NL

(
xn | ĉk, Γ̂k

)]
= −L

2 log(2π) − 1
2EqΓk

[
log
∣∣∣Γ̂k

∣∣∣]− 1
2Eqθ∗

zn

[
(xn − ĉk)⊤ Γ̂−1

k (xn − ĉk)
]
,

where we used the fact that

EqΓk

[
log
∣∣∣Γ̂k

∣∣∣] = log
∣∣∣∣Ψ̂k

2

∣∣∣∣− L∑
l=1

ψ

(
ν̂k + (1 − l)

2

)
,

Eqθ∗
zn

[
(xn − ĉk)⊤ Γ̂−1

k (xn − ĉk)
]

= ν̂k(xn − m̂k)⊤Ψ̂−1
k (xn − m̂k) + L

λ̂k

.

Plugging in all of the above expression back into (F5) yields the desired results in
(F4).
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F.1.2. VB-E-θ∗ step
This step is divided into K parts where the computation is similar to that in standard
Bayesian GMM with a choice of conjugate prior. Hence, for each k ≤ K, the variational
posterior is a Normal-inverse-Wishart density defined as

qθ∗
k
(ck,Γk) = N IW(ck,Γk | m̂k, λ̂k, Ψ̂k, ν̂k). (F6)

Here, the hyperparameters are updated as follows (see, e.g., Bishop (2006, Section
10.2.1)):

λ̂k = λk +Nk, ν̂k = νk +Nk, Nk =
N∑

n=1
qzn(k)

Ψ̂k = Ψk +NkSk + λkNk

λk +Nk
(mk − c̄k)(mk − c̄k)⊤,

m̂k = λkmk +Nkc̄k

λk +Nk
= λkmk +Nkc̄k

λ̂k

, (F7)

c̄k = 1
Nk

N∑
n=1

qzn(k)xn,

Sk = 1
Nk

N∑
n=1

qzn(k)(xn − c̄k)(xn − c̄k)⊤.

VB-M steps
The maximisation step consists of updating the hyperparameters ϕ =(
s1, s2, a, (ρk,Ak,bk,Σk)k∈[K]

)
, where ρk = (mk, λk,Ψk, νk) , k ∈ [K], by maxi-

mizing the free energy, if they are not set heuristically:

ϕ(r) = argmax
ϕ

E
q

(r)
Z q

(r)
τ q

(r)
α,σq

(r)
θ∗

[log p (Y ,X ,Z, τ , α, σ,θ∗;ϕ)] . (F8)

The VB-M-step can therefore be divided into four independent sub-steps as listed below.
From the conditional independence of (s1, s2, a,ρ) and (Y ,X ,Z) given (τ , α, σ,θ∗), the
solutions for the VB-M-(s1, s2) (in the DP case) and VB-M-ρ steps are straightforward.
Only the M-(s1, s2, a) step (in the PYP case) and (Ak,bk,Σk)k∈[K] are more involved.

Note that the VB-M-(s1, s2, a), VB-M-(A,b,Σ) steps are the same as in Section 3.
We only highlight the modified step below.

F.1.3. VB-M-ρ step
This step divides into K sub-steps that involve again cross-entropies,

ρ
(r)
k = argmax

ρ
E

q
(r)
θ∗

k

[log p(ck,Γk; ρk)] = ρ̂
(r)
k ,

where ρ̂(r)
k = (λ̂(r)

k , ν̂
(r)
k , Ψ̂(r)

k , m̂(r)
k ) is given in (F7).
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F.1.4. ELBO for BNP-GLLiM2
Proposition F.1. When σ = 0, the ELBO in BNP-GLLiM2 is determined analytically
as follows:

F
(
qZ , qΘ, ϕ̂

)
= E

[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)] − E [log q(Θ)] . (F9)

Here, we have the following update formulas:

E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
=

N∑
n=1

K∑
k=1

qzn(k) log ND

(
yn | Âkxn + b̂k, Σ̂k

)
, (F10)

E
[
log p(X | Z,Θ; ϕ̂)

]
= 1

2

K∑
k=1

Nk

[
log Γ̃k − L log(2π) − Lλ̂−1

k − ν̂kTr
(
SkΨ̂−1

k

)
− ν̂k (x̄k − m̂k) Ψ̂−1

k (x̄k − m̂k)
]
,

(F11)

E
[
log p(Z | Θ; ϕ̂)

]
=

K∑
k=1

Nk

[
ψ (γ̂k,1) − ψ (γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ (γ̂l,2) − ψ (γ̂l,1 + γ̂l,2)]
]
,

(F12)

E
[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

E [log p (τk | α)] + E [log p (α | ŝ1, ŝ2)] +
K∑

k=1
E [log p (ck,Γk; ρ̂k)] ,

(F13)

E [log p (τk | α)] = ŝ1 − ŝ2

ŝ2
[ψ (γ̂k,2) − ψ (γ̂k,1 + γ̂k,2)] + ψ (ŝ1) − log(ŝ2),

E [log p (α | ŝ1, ŝ2)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log(ŝ2) − ŝ1,

E [log p (ck,Γk; ρ̂k)] = 1
2L log

(
λ̂k

2π

)
− L

2 − L

2 ν̂k + logB
(
Ψ̂−1

k , ν̂k

)
− ν̂k − L

2 log Γ̃k,

log Γ̃k =
L∑

l=1
ψ

(
ν̂k + 1 − l

2

)
+ L log 2 + log

∣∣∣Ψ̂k

∣∣∣ ,
E [log q(Z)] =

N∑
n=1

K∑
k=1

qzn (k) log qzn (k) , (F14)

E [log q(Θ)] = E [log qα,0(α)] +
K−1∑
k=1

E [log qτk
(τk)] +

K∑
k=1

E [log qck,Γk
(ck,Γk)] , (F15)

E [log qα,0(α)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log(ŝ2) − ŝ1,

E [log qτk
(τk)] =

2∑
l=1

(γ̂k,l − 1) {ψ (γ̂k,l) − ψ (γ̂k,1 + γ̂k,2)} + log Γ (γ̂k,1 + γ̂k,2)
Γ (γ̂k,1) Γ (γ̂k,2) ,

E [log qck,Γk
(ck,Γk)] = L

2 log λ̂k

2π − L

2 + logB
(
Ψ̂−1

k , ν̂k

)
− ν̂k − L

2 log Γ̃k − ν̂kL

2 .
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F.2. Predictive conditional density for BNP-GLLiM2

F.2.1. Joint density
We first show how to compute the joint density p(ŷ, x̂,X ,Y) via Theorem F.2, which
is proved in Appendix F.4.

Theorem F.2. We approximate the joint density of BNP-GLLiM2 by a mixture of
product between Gaussian and Student’s t-distributions as follows:

p (ŷ, x̂,X ,Y) ≈
K∑

k=1
Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L) ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
.

(F16)

Here, the positive semidefinite shape matrices of Student’s t-distributions are given by

Lk = (ν̂k + 1 − L) λ̂k

1 + λ̂k

Ψ̂k. (F17)

F.2.2. Inverse conditional density
We then show how to approximate the inverse conditional density p(ŷ | x̂,X ,Y). This
predictive density in BNP-GLLiM2 is approximated by a MoE via Theorem F.3 with
the proof in Appendix F.5.

Theorem F.3. We approximate the inverse conditional density of BNP-GLLiM2 by a
MoE as follows:

p (ŷ | x̂,X ,Y) ≈
K∑

k=1
gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
.

Here, the gating posteriors are defined as

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
= Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L)∑K

l=1 Eqτ [πl (τ )] St (x̂ | m̂l,Ll, ν̂l + 1 − L)
, k ∈ [K].

Furthermore, for any k ∈ [K], it holds that

Eqτ [πk (τ )] = Eqτk
[τk]

k−1∏
l=1

Eqτl
[1 − τ l] ,

Eqτk
[τk] = γ̂k,1

γ̂k,1 + γ̂k,2
, Eqτk

[1 − τk] = 1 − Eqτk
[τk] = γ̂k,2

γ̂k,1 + γ̂k,2
,

γ̂k,1 = 1 − Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +
K∑

l=k+1
Nl, Nk =

n∑
n=1

qzn(k).
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The prediction task is carried out via the following approximation

E [ŷ | x̂,X ,Y ] ≈
K∑

k=1
gk

(
x̂ | Θ̂, ϕ̂,X ,Y

) [
Âkx̂ + b̂k

]
.

F.2.3. Forward conditional density
To deal with high-dimensional regression data, namely high-to-low regression, given the
inverse conditional density p(ŷ | x̂,X ,Y), we want to approximate the following forward
conditional density via Theorem F.4, whose proof is provided in Appendix F.6.

Theorem F.4. It holds that

p(x̂ | ŷ,X ,Y) ≈
I∑

i=1

K∑
k=1

gki

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
NL

(
x̂ | Â∗

k (ηi) ŷ + b̂
∗
k (ηi) , Σ̂

∗
k (ηi)

)
,

which is a mixture of Gaussian experts, where, for all k ∈ [K], i ∈ [I],

gki

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
=

Eqτ [πk (τ )] ND

(
ŷ | ĉ∗

k, Γ̂
∗
k (ηi)

)
Gam

(
ηi | ν̂k+1−L

2 , ν̂k+1−L
2

)
∑I

i=1
∑K

l=1 Eqτ [πl (τ )] ND

(
ŷ | ĉ∗

l , Γ̂
∗
l (ηi)

)
Gam

(
ηi | ν̂l+1−L

2 , ν̂l+1−L
2

) ,
Σ̂∗

k (ηi) =
(
ηiLk + Â⊤

k Σ̂−1
k Âk

)−1
,

Â∗
k (ηi) = Σ̂∗

k (ηi) Â⊤
k Σ̂−1

k ,

b̂
∗
k (ηi) = Σ̂∗

k (ηi)
[
ηLkm̂k − Â⊤

k Σ̂−1
k b̂k

]
,

ĉ∗
k = Âkm̂k + b̂k,

Γ̂∗
k (ηi) = Σ̂k + Âk (ηiLk)−1 Â⊤

k .

Here, ηi, i ∈ [I], are chosen via discretizing η-space, [0, Uη], into a grid, e.g., uniform.
Note that for simplicity, we evaluate the integrand as a Riemann integral with a trun-
cated value 0 < Uη < ∞ and a number of point I ∈ N⋆ for approximating the integration
but we can use any scheme to approximate such 1-dimensional integration.

F.3. Proof of Proposition F.1

Using the sum and product rules for both discrete and continuous variables, the ELBO
in BNP-GLLiM (B1) is given by

F
(
qZ , qΘ, ϕ̂

)
= EqZ qΘ

[
log p(Y ,X ,Z,Θ; ϕ̂)

q(Z)qΘ(Θ)

]
≡ E

[
log p(Y ,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]

=
∑
Z

∫ ∫ ∫
q(Z)q(Θ) log

[
p(Y ,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]
dZdΘ

= E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
(F18)

+ E
[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)] − E [log q(Θ)] .
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Note that the proofs of (F10), (F12), (F14) are the same as in the proof of Proposi-
tion 3.1.

Proof of (F11)

E
[
log p(X | Z,Θ; ϕ̂)

]
= E

[
log

N∏
n=1

p
(
xn | zn,Θ; ϕ̂

)]
= E

[
log

N∏
n=1

K∏
k=1

NL (xn | ck,Γk)znk

]

=
N∑

n=1

K∑
k=1

E [znk log NL (xn | ck,Γk)]

=
N∑

n=1

K∑
k=1

EqZ [znk]Eqck,Γk
[log NL (xn | ck,Γk)]

=
N∑

n=1

K∑
k=1

qzn(k)
[
−L

2 log(2π) − 1
2E [log |Γk|] − 1

2E
[
(xn − ck)⊤ Γ−1

k (xn − ck)
]]

=
K∑

k=1

N∑
n=1

qzn(k)
[
−L

2 log(2π) − 1
2EqΓk

[log |Γk|] − 1
2Eqck,Γk

[
(xn − ck)⊤ Γ−1

k (xn − ck)
]]

(Lemma F.5)

= 1
2

K∑
k=1

N∑
n=1

qzn(k)
[
− log Γ̃k − L log(2π) − Lλ̂−1

k − ν̂k (xn − m̂k) Ψ̂−1
k (xn − m̂k)

]

= 1
2

K∑
k=1

Nk

[
log Γ̃k − L log(2π) − Lλ̂−1

k

]
− 1

2

K∑
k=1

N∑
n=1

qzn(k)
[
ν̂k (xn − m̂k) Ψ̂−1

k (xn − m̂k)
]

= 1
2

K∑
k=1

Nk

[
log Γ̃k − L log(2π) − Lλ̂−1

k − ν̂kTr
(
SkΨ̂−1

k

)
− ν̂k (x̄k − m̂k) Ψ̂−1

k (x̄k − m̂k)
]

(using (F21) from Lemma F.5) . (F19)

To obtain (F19), we have to use the following Lemma F.5.

Lemma F.5. We can compute the expectations w.r.t. the variational distributions of
the parameters as follows:

log Γ̃k ≡ EqΓk
[log |Γk|] =

L∑
l=1

ψ

(
ν̂k + 1 − l

2

)
+ L log 2 + log

∣∣∣Ψ̂k

∣∣∣ ,
Eqck,Γk

[
(xn − ck)⊤ Γ−1

k (xn − ck)
]

= Lλ̂−1
k + ν̂k (xn − m̂k) Ψ̂−1

k (xn − m̂k) . (F20)

Furthermore, for each k ∈ [K], it holds that

N∑
n=1

qzn(k)
[
ν̂k (xn − m̂k) Ψ̂−1

k (xn − m̂k)
]

= Nk

[
ν̂kTr

(
SkΨ̂−1

k

)
+ ν̂k (x̄k − m̂k) Ψ̂−1

k (x̄k − m̂k)
]
.

(F21)
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Proof of (F13)
Given a chosen truncated value K ∈ N⋆, it holds that

EqΘ

[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

EqΘ [log p (τk | α, σ)] + EqΘ [log p (α, σ | ŝ1, ŝ2, â)]

+
K∑

k=1
EqΘ [log p (ck,Γk; ρ̂k)] .

Note that EqΘ [log p (τk | α, σ)] and EqΘ [log p (α, σ | ŝ1, ŝ2, â)] are calculated in the
same way as in Proposition 3.1.

Finally, we have to compute the remaining term

EqΘ [log p (ck,Γk; ρ̂k)]

= Eqck,Γk

[
−L

2 log(2π) − 1
2 log λ̂−L

k |Γk| − 1
2 (ck − m̂k)⊤

(
λ̂

−1
k Γk

)−1
(ck − m̂k)

]
+ EqΓk

[
log W

(
Γ−1

k | Ψ̂−1
k , ν̂k

)]
= −1

2L log(2π) + 1
2L log λ̂k − 1

2EqΓk
[log |Γk|] − 1

2 λ̂kEqck,Γk

[
(ck − m̂k)⊤ Γ−1

k (ck − m̂k)
]

+ EqΓk

[
logB

(
Ψ̂−1

k , ν̂k

)
+ ν̂k − L− 1

2 log
∣∣∣Γ−1

k

∣∣∣− 1
2Tr

(
Ψ̂kΓ−1

k

)]
= 1

2L log
(
λ̂k

2π

)
− 1

2EqΓk
[log |Γk|] − 1

2 λ̂kEqck,Γk

[
(ck − m̂k)⊤ Γ−1

k (ck − m̂k)
]

+ logB
(
Ψ̂−1

k , ν̂k

)
− ν̂k − L− 1

2 EqΓk
[log |Γk|] − 1

2Tr
(
Ψ̂kEqΓk

[
Γ−1

k

)]
= 1

2L log
(
λ̂k

2π

)
− 1

2 λ̂k

[
Lλ̂−1

k + ν̂k (m̂k − m̂k)⊤ Ψ̂−1
k (m̂k − m̂k)

]
+ logB

(
Ψ̂−1

k , ν̂k

)
− ν̂k − L

2 log Γ̃k − 1
2 ν̂kTr

(
Ψ̂kΨ̂−1

k

)
(using Lemma F.5)

= 1
2L log

(
λ̂k

2π

)
− L

2 − L

2 ν̂k + logB
(
Ψ̂−1

k , ν̂k

)
− ν̂k − L

2 log Γ̃k,

where

log Γ̃k ≡ EqΓk
[log |Γk|] =

L∑
l=1

ψ

(
ν̂k + 1 − l

2

)
+ L log 2 + log

∣∣∣Ψ̂k

∣∣∣ .
Proof of (F15)
We have

E [log q(Θ)] = E [log qα,σ(α, σ)] +
K−1∑
k=1

E [log qτk
(τk)] +

K∑
k=1

E [log qck,Γk
(ck,Γk)] .

Note that these terms involving expectations of the logs of the q distributions simply
represent the negative entropies of those distributions. In particular, the first two terms
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are calculated in the same way as in Proposition 3.1.
Similarly, we obtain

E [log qck,Γk
(ck,Γk)]

= E
[
log NL

(
ck | m̂k, λ̂

−1
k Γk

)]
+ E

[
log W

(
Γ−1

k | Ψ̂−1
k , ν̂k

)]
= −H

[
NL

(
ck | m̂k, λ̂

−1
k Γk

)]
− H

[
W
(
Γ−1

k | Ψ̂−1
k , ν̂k

)]
= L

2 log λ̂k

2π + 1
2E [log |Γk|] − L

2 + logB
(
Ψ̂−1

k , ν̂k

)
− ν̂k − L− 1

2 E [log |Γk|] − ν̂kL

2

= L

2 log λ̂k

2π − L

2 + logB
(
Ψ̂−1

k , ν̂k

)
− ν̂k − L

2 log Γ̃k − ν̂kL

2 .

F.4. Proof of Theorem F.2

Recall that we defined Θ = (τ , α, σ,θ∗), θ∗ = (θ∗
k)k∈N⋆ ≡ (ck,Γk)k∈N⋆ . Then,

p (ŷ, x̂,X ,Y) =
∑

ẑ

∫
p (ŷ | x̂, ẑ,Θ,X ,Y) p (x̂ | ẑ,Θ,X ,Y) p (ẑ | Θ,X ,Y) p (Θ | X ,Y) dΘ

=
∑

ẑ

∫
p (ŷ | x̂, ẑ;A, b,Σ) p (x̂ | ẑ, c,Γ) p (ẑ | τ ; β) p (Θ | X ,Y) dΘ ≡ T1.

(F22)

Note that in (F22), p (Θ | X ,Y) is in fact the (unknown) true posterior distribution of
the parameters given a sample (X ,Y). Because the integrations w.r.t. true posterior dis-
tribution are intractable, we approximate the predictive conditional density by replacing
the true posterior distribution p (Θ | X ,Y) with its truncated variational posterior of
parameters Θ given by

qΘ(Θ | X ,Y) = qα,σ(α, σ | X ,Y)
K−1∏
k=1

qτk
(τk | X ,Y)

K∏
k=1

qθ∗
k

(θ∗
k | X ,Y) .

Recall that the infinite state space for each zj is dealt with by choosing a truncation of
the state space to a maximum label K (Blei and Jordan, 2006). In practice, this consists
of assuming that the variational distributions qzn for n ∈ [N ], satisfy qzn(k) = 0 for k >
K and that the variational distribution on τ also factorizes as qτ (τ ) =

∏K−1
k=1 qτk

(τk)
with the additional condition that τK = 1. In particular, here we choose K = K̂, where
K̂ is estimated from some suitable procedures.
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For simplicity, we consider the case when β = 0, σ = 0. Then, we obtain

T1 ≈
∑

ẑ

∫
p (ŷ | x̂, ẑ;A, b,Σ) p (x̂ | ẑ, c,Γ) p (ẑ | τ ) qΘ(Θ | X ,Y)dΘ

=
∞∑

k=1

∫
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL (x̂ | ck,Γk)πk(τ )qΘ(Θ | X ,Y)dΘ

≈
K∑

k=1

∫
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL (x̂ | ck,Γk)

∫
πk(τ )qτ (τ | X ,Y) dτ

×
∫
qα,0(α | X ,Y)dα︸ ︷︷ ︸

=1

K∏
k=1

qθ∗
k

(ck,Γk | X ,Y) dcdΓ

=
K∑

k=1
Eqτ [πk (τ )] ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

) ∫
NL (x̂ | ck,Γk) qθ∗

k
(ck,Γk | X ,Y) dckdΓk

×
∫ K∏

j=1,j ̸=k

qθ∗
j

(cj ,Γj | X ,Y)
K∏

j=1,j ̸=k

dcjdΓj︸ ︷︷ ︸
=1

=
K∑

k=1
Eqτk

[πk (τ )] ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

) ∫
NL (x̂ | ck,Γk) qθ∗

k
(ck,Γk | X ,Y) dckdΓk︸ ︷︷ ︸

=St(x̂|m̂k,Lk ,̂νk+1−L)(Lemma F.6)

=
K∑

k=1
Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L) ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
.

Here we used the following Lemma F.6

Lemma F.6. For each k ∈ [K], it holds that∫
NL (x̂ | ck,Γk) qθ∗

k
(ck,Γk | X ,Y) dckdΓk = St (x̂ | m̂k,Lk, ν̂k + 1 − L) .

Proof of Lemma F.6
By definition, we obtain∫ ∫

NL

(
x̂ | ck,Γ−1

k

)
q(π | X )q (ck,Γk | X ) dckdΓk

=
∫ ∫

NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)

W
(
Γk | Ψ̂k, ν̂k,X

)
dckdΓk

=
∫

NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)

W
(
Γk | Ψ̂k, ν̂k,X

)
dckdΓk

=
∫ [∫

NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)
dck

]
W
(
Γk | Ψ̂k, ν̂k,X

)
dΓk

=
∫

NL

(
x̂ | m̂k,

(
1 + λ̂−1

k

)
Γ−1

k ,X
)

W
(
Γk | Ψ̂k, ν̂k,X

)
dΓk. (F23)
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When the size of the data set is large, i.e., N → ∞ , this predictive distribution
(F23) becomes a mixture of Gaussians with component means m̂k and precisions Lk. In
particular, we made use of the following results for marginal and conditional Gaussians,
see, e.g., Bishop (2006, Eq. (2.115), page 93). Given a marginal Gaussian distribution
for x and a conditional Gaussian distribution for y given x in the form

p(x) = N
(
x | µ,Γ−1

)
,

p(y | x) = N
(
y | Ax + b,L−1

)
,

then the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N
(
y | Aµ+ b,L−1 + AΓ−1A⊤

)
,

p(x | y) = N
(
x | Σ

{
A⊤L(y − b) + Γµ

}
,Σ
)
,

where

Σ =
(
Γ + A⊤LA

)−1
.

In our situation, via using y ≡ x̂,x ≡ ck,A ≡ I,b ≡ 0,L−1 = Γ−1
k ,µ ≡ m̂k,Γ−1 ≡(

λ̂kΓk

)−1
, we obtain

p
(
x̂|Γ−1

k ,X
)

=
∫

NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)
dck

= NL

(
x̂ | m̂k,Γ−1

k +
(
λ̂kΓk

)−1
,X
)

= NL

(
x̂ | m̂k,

(
1 + λ̂k

λ̂k

)
Γ−1

k ,X
)
.

Notice that the Wishart distribution is a conjugate prior for the Gaussian distribution
with known mean and unknown precision. Therefore, it holds that the product of

NL

(
x̂ | m̂k,

(
1 + λ̂−1

k

)
Γ−1

k ,X
)

W
(
Γk | Ψ̂k, ν̂k,X

)
is again a Wishart distribution without normalized. This can be verified by focusing
on the dependency on Γk. More precisely, by using the trace trick of quadratic form,
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(x̂ − m̂k)⊤ Γk (x̂ − m̂k) = Tr
(
(x̂ − m̂k) (x̂ − m̂k)⊤ Γk

)
, we obtain

NL

(
x̂ | m̂k,

(
1 + λ̂−1

k

)
Γ−1

k ,X
)

W
(
Γk | Ψ̂k, ν̂k,X

)
= B(Ψ̂k, ν̂k)(

2π
(
1 + λ̂−1

k

))L/2

︸ ︷︷ ︸
≡C
(

Ψ̂k ,̂νk ,̂λk

)
|Γk|1/2+(ν̂k−L−1)/2

× exp

− 1
2
(
1 + λ̂−1

k

) (x̂ − m̂k)⊤ Γk (x̂ − m̂k) − 1
2Tr

(
Ψ̂−1

k Γk

)
= C

(
Ψ̂k, ν̂k, λ̂k

)
|Γk|(ν̂k+1−L−1)/2 exp

{
−1

2Tr
((

1 + λ̂−1
k

)−1
(x̂ − m̂k) (x̂ − m̂k)⊤ Γk + Ψ̂−1

k Γk

)}
= C

(
Ψ̂k, ν̂k, λ̂k

)
|Γk|(ν̂k+1−L−1)/2 exp

{
−1

2Tr
{[(

1 + λ̂−1
k

)−1
(x̂ − m̂k) (x̂ − m̂k)⊤ + Ψ̂−1

k

]
Γk

}}

=
C
(
Ψ̂k, ν̂k, λ̂k

)
B
(
Ψ̂∗

k, ν̂
∗
k

) W (Γk | Ψ∗
k, ν̂

∗
k) .

Here, ν̂∗
k = ν̂k + 1, and

Ψ∗
k =

[(
1 + λ̂−1

k

)−1
(x̂ − m̂k) (x̂ − m̂k)⊤ + Ψ̂−1

k

]−1
,

∣∣∣Ψ̂∗
k

∣∣∣(ν̂k+1)/2
=
∣∣∣∣(1 + λ̂−1

k

)−1
(x̂ − m̂k) (x̂ − m̂k)⊤ + Ψ̂−1

k

∣∣∣∣−(ν̂k+1)/2

=
∣∣∣∣Ψ̂−1

k

[(
1 + λ̂−1

k

)−1
Ψ̂k (x̂ − m̂k) (x̂ − m̂k)⊤ + I

]∣∣∣∣−(ν̂k+1)/2

=
∣∣∣Ψ̂k

∣∣∣(ν̂k+1)/2
∣∣∣∣(1 + λ̂−1

k

)−1
Ψ̂k (x̂ − m̂k) (x̂ − m̂k)⊤ + I

∣∣∣∣−(ν̂k+1)/2

=
∣∣∣Ψ̂k

∣∣∣(ν̂k+1)/2
[
1 +

(
1 + λ̂−1

k

)−1
(x̂ − m̂k)⊤ Ψ̂k (x̂ − m̂k)

]−(ν̂k+1)/2
.
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Via the normalization constant we have∫
NL

(
x̂ | m̂k,

(
1 + λ̂−1

k

)
Γ−1

k ,X
)

W
(
Γk | Ψ̂k, ν̂k,X

)
dΓk

=
C
(
Ψ̂k, ν̂k, λ̂k

)
B
(
Ψ̂∗

k, ν̂
∗
k

) ∫
W (Γk | Ψ∗

k, ν̂
∗
k) dΓk︸ ︷︷ ︸

=1

=
C
(
Ψ̂k, ν̂k, λ̂k

)
B
(
Ψ̂∗

k, ν̂
∗
k

) = B(Ψ̂k, ν̂k)(
2π
(
1 + λ̂−1

k

))L/2
1

B
(
Ψ̂∗

k, ν̂
∗
k

)

= 1(
2π
(
1 + λ̂−1

k

))L/2

∣∣∣Ψ̂k

∣∣∣−ν̂k/2 (
2ν̂kL/2πL(L−1)/4∏L

l=1 Γ
(

ν̂k+1−l
2

))−1

∣∣∣Ψ̂∗
k

∣∣∣−(ν̂k+1)/2
(

2(ν̂k+1)L/2πL(L−1)/4∏L
l=1 Γ

(
(ν̂k+1)+1−l

2

))−1

= 1(
π
(
1 + λ̂−1

k

))L/2

∣∣∣Ψ̂k

∣∣∣−ν̂k/2
Γ
(

ν̂k+1
2

)
Γ
(

ν̂k

2

)
. . .Γ

(
ν̂k+2−L

2

)
∣∣∣Ψ̂∗

k

∣∣∣−(ν̂k+1)/2
Γ
(

ν̂k

2

)
Γ
(

ν̂k−1
2

)
. . .Γ

(
ν̂k+2−L

2

)
Γ
(

ν̂k+1−L
2

)

=
Γ
(

ν̂k+1
2

)
Γ
(

ν̂k+1−L
2

)
πL/2

∣∣∣Ψ̂k

∣∣∣−ν̂k/2

(
1 + λ̂−1

k

)L/2

∣∣∣Ψ̂k

∣∣∣(ν̂k+1)/2
[
1 +

(
1 + λ̂−1

k

)−1
(x̂ − m̂k)⊤ Ψ̂k (x̂ − m̂k)

]−(ν̂k+1)/2

=
Γ
(

ν̂k+1
2

)
Γ
(

ν̂k+1−L
2

)
πL/2

∣∣∣Ψ̂k

∣∣∣1/2

(
1 + λ̂−1

k

)L/2

[
1 +

(
1 + λ̂−1

k

)−1
(x̂ − m̂k)⊤ Ψ̂k (x̂ − m̂k)

]−(ν̂k+1)/2

= St (x̂ | m̂k,Lk, ν̂k + 1 − L) .

Here,

Lk = (ν̂k + 1 − L) λ̂k

1 + λ̂k

Ψ̂k,

and ∆2 is the squared Mahalanobis distance defined by

∆2 = (x̂ − m̂k)⊤ Lk (x̂ − m̂k) .
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Then, the last equality holds since we have

St (x̂ | m̂k,Lk, ν̂k + 1 − L) =
Γ
(

ν̂k+1−L
2 + L

2

)
Γ
(

ν̂k+1−L
2

)
πL/2

|Lk|1/2

(ν̂k + 1 − L)L/2

[
1 + ∆2

ν̂k + 1 − L

]−(ν̂k+1−L)/2−L/2

=
Γ
(

ν̂k+1
2

)
Γ
(

ν̂k+1−L
2

)
πL/2

(ν̂k + 1 − L)L/2
∣∣∣Ψ̂k

∣∣∣1/2

(ν̂k + 1 − L)L/2
(
1 + λ̂−1

k

)L/2

[
1 + ∆2

ν̂k + 1 − L

]−(ν̂k+1−L)/2−L/2

=
Γ
(

ν̂k+1
2

)
Γ
(

ν̂k+1−L
2

)
πL/2

∣∣∣Ψ̂k

∣∣∣1/2

(
1 + λ̂−1

k

)L/2

1 + (ν̂k + 1 − L) λ̂k(
1 + λ̂k

) (x̂ − m̂k)⊤ Ψ̂k (x̂ − m̂k)
ν̂k + 1 − L

−(ν̂k+1)/2

=
Γ
(

ν̂k+1
2

)
Γ
(

ν̂k+1−L
2

)
πL/2

∣∣∣Ψ̂k

∣∣∣1/2

(
1 + λ̂−1

k

)L/2

1 + (x̂ − m̂k)⊤ Ψ̂k (x̂ − m̂k)(
1 + λ̂−1

k

)
−(ν̂k+1)/2

.

F.5. Proof of Theorem F.3

From the product rule of probability, we see that this conditional distribution can be
evaluated from the joint and marginal distributions. Furthermore, by integrating out ẑ
and Θ, the predictive conditional density is then given by

p (ŷ | x̂,X ,Y) = p (ŷ, x̂ | X ,Y)
p (x̂ | X ,Y) =

∑
ẑ
∫
p (ŷ, x̂, ẑ,Θ | X ,Y) dẑdΘ∑

ẑ
∫
p (x̂, ẑ,Θ | X ,Y) dẑdΘ ≡ T1

T2
.

Next, with a similar step as in the proof of Theorem F.2, we also obtain

T2 =
K∑

k=1
Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L) .

Therefore

p (ŷ | x̂,X ,Y)

≈
∑K

k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L) ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
∑K

k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L)

=
K∑

k=1

Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L)∑K
k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L)

ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)

≡
K∑

k=1
gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
,

which is a mixture of Gaussian experts since we have

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
= Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L)∑K

k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L)
, k ∈ [K],

belongs to a K − 1 dimensional probability simplex.
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F.6. Proof of Theorem F.4

To deal with high-dimensional regression data, namely high-to-low regression, given the
inverse conditional density p(ŷ | x̂,X ,Y), we want to compute the following forward
conditional density

p(x̂ | ŷ,X ,Y) = p(x̂, ŷ | X ,Y)
p(ŷ | X ,Y) = p(x̂, ŷ | X ,Y)∫

x̂ p(x̂, ŷ | X ,Y)dx̂ = T1∫
x̂ T1(x̂)dx̂ ≡ T1

T3
.

Then, we have to compute or numerically approximate D3. Using Theorem F.2 and
definition of Student’s t-distribution, we obtain

T3 =
K∑

k=1
Eqτ [πk (τ )]Dk.

Then, by definition of Student’s t-distribution, it holds that

Dk =
∫

St (x̂ | m̂k,Lk, ν̂k + 1 − L) ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
dx̂

=
∫ ∫ ∞

0
NL

(
x̂ | m̂k, (ηLk)−1

)
Gam

(
η | ν̂k + 1 − L

2 ,
ν̂k + 1 − L

2

)
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
dηdx̂

=
∫ ∞

0

∫
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | m̂k, (ηLk)−1

)
dx̂Gam

(
η | ν̂k + 1 − L

2 ,
ν̂k + 1 − L

2

)
dη

=
∫ ∞

0
ND

(
ŷ | Âkm̂k + b̂k, Σ̂k + η−1ÂkL−1

k Â⊤
k

)
Gam

(
η | ν̂k + 1 − L

2 ,
ν̂k + 1 − L

2

)
dη.

Furthermore, we used the fact that∫
ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | m̂k, (ηLk)−1

)
dx̂ = ND

(
ŷ | Âkm̂k + b̂k, Σ̂k + Âk (ηLk)−1 Â⊤

k

)
.

Indeed, we made use of the following results for marginal and conditional Gaussians,
see, e.g., Bishop (2006, Eq. (2.115), page 93). Given a marginal Gaussian distribution
for x and a conditional Gaussian distribution for y given x in the form

p(x) = N
(
x | µ,Γ−1

)
,

p(y | x) = N
(
y | Ax + b,L−1

)
,

then the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) =
∫
p(y | x)p(x)dx = N

(
y | Aµ+ b,L−1 + AΓ−1A⊤

)
,

p(x | y) = N
(
x | Σ

{
A⊤L(y − b) + Γµ

}
,Σ
)
,Σ =

(
Γ + A⊤LA

)−1
.

In our situation, the desired result is obtained via using y ≡ ŷ,A ≡ Âk,b ≡ b̂k,L−1 =
Σ̂k, x ≡ x̂,µ ≡ m̂k,Γ−1 ≡ (ηLk)−1.
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Therefore, we obtain

p(x̂ | ŷ,X ,Y)

≈
K∑

k=1

Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1 − L) ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
∑K

k=1 Eqτ [πk (τ )]
∫

St (x̂ | m̂k,Lk, ν̂k + 1 − L) ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
dx̂

=
K∑

k=1

Eqτ [πk (τ )]
∫∞

0 ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | m̂k, (ηLk)−1

)
Gam

(
η | ν̂k+1−L

2 , ν̂k+1−L
2

)
dη∑K

k=1 Eqτ [πk (τ )]
∫∞

0 ND

(
ŷ | Âkm̂k + b̂k, Σ̂k + η−1ÂkL−1

k Â⊤
k

)
Gam

(
η | ν̂k+1−L

2 , ν̂k+1−L
2

)
dη

=
K∑

k=1

Eqτ [πk (τ )]
∫∞

0 ND

(
ŷ | ĉ∗

k, Γ̂
∗
k(η)

)
NL

(
x̂ | Â∗

k(η)ŷ + b̂
∗
k(η), Σ̂∗

k(η)
)

Gam
(
η | ν̂k+1−L

2 , ν̂k+1−L
2

)
dη∑K

k=1 Eqτ [πk (τ )]
∫∞

0 ND

(
ŷ | ĉ∗

k, Γ̂
∗
k(η)

)
Gam

(
η | ν̂k+1−L

2 , ν̂k+1−L
2

)
dη

≈
I∑

i=1

K∑
k=1

gki

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
NL

(
x̂ | Â∗

k (ηi) ŷ + b̂
∗
k (ηi) , Σ̂

∗
k (ηi)

)
,

where, for all k ∈ [K], i ∈ [I],

gki

(
ŷ | Θ̂∗

, ϕ̂
∗
,X ,Y

)
=

Eqτ [πk (τ )] ND

(
ŷ | ĉ∗

k, Γ̂
∗
k (ηi)

)
Gam

(
ηi | ν̂k+1−L

2 , ν̂k+1−L
2

)
∑I

i=1
∑K

k=1 Eqτ [πk (τ )] ND

(
ŷ | ĉ∗

k, Γ̂
∗
k (ηi)

)
Gam

(
ηi | ν̂k+1−L

2 , ν̂k+1−L
2

) .
Here, we used the fact that p(ŷ, x̂ | ẑ = k) = p(x̂ | ŷ, ẑ = k)p(ŷ | ẑ = k), namely,

ND

(
ŷ | Âkx̂ + b̂k, Σ̂k

)
NL

(
x̂ | m̂k, (ηLk)−1

)
= NL

(
x̂ | Σ̂∗

k

[
Â⊤

k Σ̂−1
k (ŷ − b̂k) + ηLkm̂k

]
, Σ̂∗

k

)
ND

(
ŷ | Âkm̂k + b̂k, Σ̂k + Âk (ηLk)−1 Â⊤

k

)
= NL

(
x̂ | Â∗

k(η)ŷ + b̂
∗
k(η), Σ̂∗

k(η)
)

ND

(
ŷ | ĉ∗

k, Γ̂
∗
k(η)

)
,

where

Σ̂∗
k(η) =

(
ηLk + Â⊤

k Σ̂−1
k Âk

)−1
,

Â∗
k(η) = Σ̂∗

k(η)Â⊤
k Σ̂−1

k ,

b̂
∗
k(η) = Σ̂∗

k(η)
[
ηLkm̂k − Â⊤

k Σ̂−1
k b̂k

]
,

ĉ∗
k = Âkm̂k + b̂k,

Γ̂∗
k(η) = Σ̂k + Âk (ηLk)−1 Â⊤

k .

The last approximation is deduced by using the fact that one simplistic strategy for
evaluating integration would be to discretize η-space (1-dimensional) into a uniform grid
and to evaluate the integrand as a Riemann integral with a truncated value 0 < Uη < ∞
and a number of point I ∈ N⋆ for approximating the integration.
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