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Abstract
A large class of problems can be formulated as inverse problems, where the goal is to

find parameter values that best explain some observed measures. Typical constraints in
practice are that the relationships between parameters and observations are highly non-
linear, with high-dimensional observations and multi-dimensionally correlated parameters.
To deal with these constraints, we consider probabilistic mixtures of locally linear models
using inverse regression strategies, namely the Gaussian locally linear mapping (GLLiM)
models. These can be seen as special instances of a mixture of experts (MoE) models.
The popularity of MoE is largely due to their universal approximation properties, provided
that the number of mixture components is large enough. In this paper, we propose a gen-
eral scheme to design a tractable Bayesian nonparametric GLLiM (BNP-GLLiM) model
to avoid any commitment to an arbitrary number of components. A tractable estimation
algorithm is designed using a variational Bayesian expectation-maximization. In particu-
lar, we establish posterior consistency for the number of components in BNP-GLLiM after
the merge-truncate-merge algorithm post-processing. Illustrations on simulated data show
good results in terms of recovering the true number of clusters and the mean regression
function.

Keywords. Bayesian nonparametrics, Mixture of experts, High-dimensional statistics, Inverse
problems, Gaussian locally-linear mapping models, Linear cluster-weighted models, Variational infer-
ence, Clustering, Regression, Model selection.
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1 Introduction

1.1 Mixture of experts models

Many problems can be formulated as inverse problems, where the goal is to find parameter values
that best explain observations. Typical constraints in practice are that the relationships between
parameters and observations are highly non-linear, with high-dimensional observations and multi-
dimensionally correlated parameters. To handle these constraints, we consider probabilistic mixtures
of locally linear models using inverse regression strategies, namely the Gaussian locally linear mapping
(GLLiM) model in [1], which can be seen as special affine instances of the mixture of experts (MoE)
models [2].

Note that these MoEs are alternative neural network architectures to the original one of [3] and
[4]. These flexible models are generalizations from the classical mixture models (MM) and mixture
of regression (MoR) models [5]. Their flexibility comes from the fact that they allow the mixture
weights (or the gating functions) to depend on the explanatory variables, together with the component
densities (or the experts). In the context of regression, MoE models with Gaussian experts and
softmax or normalized Gaussian gating functions (including GLLiM) are the most popular choices,
see e.g., [6, 7, 8] for a comprehensive classification and nomenclature. They are powerful tools for
modelling more complex nonlinear relationships between outputs (responses) and inputs (predictors)
that arise from different subpopulations.

The popularity of these conditional mixture density models is largely due to their universal ap-
proximation properties as well as their good convergence rate, as studied in [9, 10, 11, 12, 13, for MoE],
and in [14, 15, for MoR]. It is worth noting that these results improve the approximation capabilities of
unconditional MMs, as discussed in [16, 17, 18, 19, 20, 21, 22]. At a high level for universal approxima-
tion theorems, given a large enough number of components, MM and MoE models can approximate a
large class of unconditional and conditional probability density functions (CPDF), respectively, to any
degree of accuracy. See, e.g., [23, 24, 25, 6], for further detailed reviews of practical and theoretical
aspects of MoE models.

1.2 Model selection in MoE

Although universal approximation allows us to conclude that, given a sufficient number of components,
a finite MoE can approximate any other CPDF to an arbitrary degree of accuracy, it is not clear how
to choose a large enough number of components for realistic problems. This motivates a careful study
of interesting and important model selection problems for MM and MoE models, which have attracted
much attention in statistics and machine learning over the last 50 years, see e.g., [26] for a recent
comprehensive review.

When selecting the best data-driven number of components for MoE models, there are several
approaches to controlling and accounting for model complexity. Typically, model selection is performed
using the Akaike information criterion (AIC; [27]), the Bayesian information criterion (BIC; [28], BIC-
GLLiM; [29, 30]) or the BIC-like approximation of integrated classification likelihood (ICL-BIC; [31]).
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1.3 Contributions

But an important limitation of these criteria is that they are only asymptotically valid. This means
that there are no finite sample guarantees when using AIC, ICL-BIC or BIC to choose between different
levels of complexity. Therefore, their use in small sample settings is an ad hoc one.

To overcome such difficulties, and to partially support a recent approach called the slope heuristic
of [32], also see [33] for a recent review, the authors of [34, 7, 35, 36, 8] established non-asymptotic
risk bounds in the form of weak oracle inequalities, provided that lower bounds on the penalties hold,
in high-dimensional regression scenarios for a variety of MoE models, including GLLiM. Another
approach is based on the closed testing principle leads to a sequential testing procedure that allows for
confidence statements to be made regarding the order of a finite mixture model from [37]. These works
lead to an optimal data-driven choice of number of components in finite-sample setting. However, all
previous approaches require that a range of models with different values be trained and compared,
which can be a computational bottleneck in a high-dimensional framework.

Recently, [38] proposed computationally efficient variational inference approaches to architecture
selection in high-dimensional deep Gaussian mixture models using overfitted mixtures, see e.g., [39,
40], where unnecessary components are dropped in the estimation. However, in this work, we are
more interested in the more general context of the Bayesian nonparametric (BNP) approach, see
e.g., [41, 42], where it is not necessary to know the upper bound of the true number of components
as in Bayesian overfitted MM. This is one motivation for the BNP priors that are under consideration
here for GLLiM.

Dirichlet process mixture models (DP-MM) and Pitman-Yor process mixture models (PYP-MM)
are among the most popular BNP models, particularly suitable for density estimation and proba-
bilistic clustering. However, the posterior of DP-MM or PYP-MM is inconsistent on the number of
components if the true number of components is finite and the concentration parameter is known and
fixed, see e.g., [43]. This is because a BNP prior such as DP or PYP places zero probability on
mixing measures with a finite number of supporting atoms. An interesting recent result in [44] is that
consistency for the number of components can be achieved if we impose some assumptions on the
prior for the concentration parameter of the DP-MM.

It appears that BNP-GLLiM tends to produce many small extraneous components around the true
clusters in our numerical experiment Section 7. This makes it difficult to use them to infer the true
number of components when this becomes a quantity of interest [45, 46]. This encourages the use of
a novel, simple MTM post-processing algorithm described in [47]. This post-processing consistently
estimates the number of components for any general Bayesian prior, even without knowing its exact
structure, as long as the posterior for that prior contracts to the true mixing distribution at a known
rate.

1.3 Contributions

To deal with high-dimensional and large-scale data, our novel contribution is to propose a general
scheme for designing a tractable BNP-GLLiM model. This scheme avoids any commitment to an
arbitrary number of components. In particular, it allows a single training run to automatically select
the optimal data-driven number of components with respect to the trade-off between model complexity
and fit to the data. Its special case, called the BNP mixture model (BNP-MM), has been well studied
in [48, 49, 50, 51] but very few results for BNP-GLLiM. This motivates us to design a tractable,
theoretically guaranteed estimation algorithm using variational Bayesian expectation maximization
(VBEM), see e.g., [52] for a recent review of variational inference.

In particular, to the best of our knowledge, we are the first to establish the consistency theoretical
properties for recovering the true number of components in BNP-GLLiM using the post-processing
merge-truncate-merge (MTM) algorithm. Finally, our illustrations on simulated data show good
results in terms of recovering the true number of clusters and mean regression functions. It is worth
emphasising that, for the first time, we provide evidence that MTM consistency holds not only for the
MM results of [47], but also in the more general context of MoE models for CPDFs.
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Notations. Throughout this paper, {1, . . . , D} is abbreviated as [D] for D ∈ N⋆, where N⋆ denotes
the positive natural numbers. Next, the notation ≡ refers to a definition. It is used to simplify the
notation or expression. For a parametric model S, dim(S) refers to its dimension, i.e., the total
number of parameters to be estimated. Furthermore, [·; ·] denotes vertical vector concatenation. A
coupling between π ≡ (πk)k∈[K] and π

0 ≡
(
π0l
)
l∈[K0]

is a joint distribution Q on [K]× [K0], which is

expressed as a matrix Q = (qkl)k∈[K],l∈[K0] ∈ [0, 1]K×K0 with marginal probabilities
K∑
k=1

qkl = π0l and

K0∑
l=1

qkl = πk for any k ∈ [K] and l ∈ [K0] . We use Q(π,π0) to denote the space of all such couplings.

Regarding the space of mixing measures, let EK ≡ EK(Θ) and OK ≡ OK(Θ) respectively denote the
space of all mixing measures with exactly and at most K support points, all in some parameter space
Θ. Additionally, denote G ≡ G(Θ) = ∪

K∈N+

EK the set of all discrete measures with finite supports on

Θ. Moreover, G(Θ) denotes the space of all discrete measures (including those with countably infinite
supports) on Θ. Finally, P(Θ) stands for the space of all probability measures on Θ.

Paper organization. The paper is organized as follows. In Section 2, we first discuss how to con-
struct high-dimensional BNP-GLLiM models. VBEM algorithms, predictive CPDFs and ELBO for
two useful BNP-GLLiM models are then described correspondingly in Sections 3 to 5. Next, Section 6
shows how we can integrate a post-processing and prove MTM consistency for BNP-GLLiM. This is
useful to perform regression, clustering and model selection simultaneously. We experimentally eval-
uate our new results in simulated datasets in Section 7. Some perspectives are provided in Section 8.
All details of VBEM for the BNP-GLLiM model and technical proofs not included in the main paper
are relegated to Appendix A and Appendix B respectively.

2 High-dimensional BNP-GLLiM model

2.1 Inverse regression framework

We are interested in estimating the law of the low-dimensional random variable X = (Xl)l∈[L] condi-
tionally on high-dimensional Y = (Yd)d∈[D], where typically D ≫ L. We follow an inverse regression
framework from [53, 1]. Therefore, in training, the low-dimensional variable X plays the role of the
regressor, while the response Y is a function of X, possibly corrupted by noise through inverse CPDF
p(Y | X;ψ), where ψ is an inverse parameter. The low dimension of the regressor X drastically re-
duces the number of parameters to be estimated. In particular, the forward parameter ψ∗ and CPDF
p(X | Y;ψ∗) are tractable after estimating the inverse parameter ψ. Therefore, this density can be
used to predict the low-dimensional response x of a high-dimensional test point y. This inverse-then-
forward regression strategy justifies the unconventional notation: Y for the high-dimensional input
and X for the low-dimensional response.

Here and subsequently, we refer to the low-dimensional data sample as X ≡ {xn}n∈[N ] ⊂
(
RL
)N

,

the high-dimensional data sample as Y ≡ {yn}n∈[N ] ⊂
(
RD
)N

. We further denote the realisations by
(x,y), which are generated from two random variables X and Y.

Throughout the paper, the following assumptions will be required for the training phase. We
assume that the covariates X are independent but not necessarily identically distributed. The as-
sumptions on the responses Y are stronger: conditional on X , the Y, are independent, and each
Y follows a law with true (but unknown) inverse CPDF s0 (Y | X = x), which is approximated via
GLLiM. In Section 2.2 we first have a more detailed recall of GLLiM model. Then in Section 2.3 we
construct the BNP-GLLiM model.

2.2 High-dimensional regression via GLLiM model

The GLLiM models, as originally introduced in [1], are used to capture the non-linear relationship
between the response and the set of covariates from a high-dimensional heterogeneous data. More
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2.2 High-dimensional regression via GLLiM model

specifically, the authors of [1] overcame the difficulty of high-to-low regression by tackling the problem
the other way round, i.e., low-to-high. This means that the roles of input and response variables
are swapped so that the low-dimensional variable X becomes the regressor as in Section 2.1. GLLiM
then relies on a piecewise linear model in the following way. The high-dimensional response Y is
approximated by the local affine mappings K:

Y =
K∑
k=1

I (Z = k) (AkX+ bk +Ek) . (2.1)

Here I is an indicator function and Z is a latent variable that captures a cluster relationship, such that
Z = k if Y comes from cluster k ∈ [K]. Matrices Ak ∈ RD×L and vectors bk ∈ RD define cluster-
specific affine transformations. In addition, Ek are error terms that capture both the reconstruction
error due to the local affine approximations as well as the observation noise in RD.

Following the usual assumption that Ek is a zero-mean Gaussian variable with a covariance matrix
Σk ∈ RD×D, it follows that

p (y | x, Z = k;ψ) = ND (y | Akx+ bk,Σk) , (2.2)

where ψ is the vector of model parameters, ND (y;Akx+ bk,Σk) is the Gaussian CPDF of dimension
D. In order to enforce the affine transformations to be local, X is defined as a mixture of K Gaussian
components as follows:

p (x | Z = k;ψ) = NL (x | ck,Γk) , p (Z = k;ψ) = πk, (2.3)

where ck ∈ RL,Γk ∈ RL×L, and π = (πk)k∈[K] ∈
{
(πk)k∈[K] ∈ (R+)

K
,
∑K

k=1 πk = 1
}

≡ ΠK−1,

which is the K − 1 dimensional probability simplex. Then, according to the formulas for conditional
multivariate Gaussian variables and the hierarchical decomposition

p (y,x;ψ) =
K∑
k=1

p (y | x, Z = k;ψ) p (x | Z = k;ψ) p (Z = k;ψ) ,

=

K∑
k=1

πkNL (x | ck,Γk)ND (y | Akx+ bk,Σk) ,

we obtain the following inverse conditional density, defined as a GLLiM model [1]:

p (y | x;ψ) =
K∑
k=1

πkNL (x | ck,Γk)∑K
j=1 πlNL (x | cl,Γl)

ND (y | Akx+ bk,Σk) , (2.4)

where ψ = (πk, ck,Γk,Ak,bk,Σk)k∈[K] ∈ Ψ.
Without assuming anything about the structure of the parameters, the dimension of GLLiM is

given by

dim (Ψ) = K

(
1 +D(L+ 1) +

D(D + 1)

2
+
L(L+ 1)

2
+ L

)
− 1.

It is worth noting that dim (Ψ) is very large compared to the sample size (see e.g., [1] for more
details in their real data sets) whenever D is large and D ≫ L. Furthermore, under the assumption
that the K transformations are affine, it is more realistic to make the assumption on the residual
covariance matrices Σk of the error vectors Ek rather than on Γk (cf., [1, Section 3]). This justifies
the use of the inverse regression trick from [1], which leads to a drastic reduction in the number of
parameters to be estimated. For instance, Ek can be modelled with equal isotropic Gaussian noise,
so we have Σk = σ2 ID,∀k ∈ [K]. The number of parameters to be estimated, ı.e. the size of ψ,
is K − 1 + K (L+ L(L+ 1)/2 +DL+D). For example, it is 30, 060 if K = 10, L = 2, D = 1000.
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2.3 Construction of BNP-GLLiM model

However, if a high-to-low regression is estimated directly instead, the size of the parameter vector will
be K − 1 +K(D + LD +D(D + 1)/2 + L), which is 5, 035, 030 in the previous example.

More specifically, in (2.2), the roles of input and response variables should be reversed so that Y
becomes the covariate and X plays the role of the multivariate response. Therefore, based on a similar
argument to the previous hierarchical Gaussian MM (GMM), its corresponding forward conditional
density from RD to RL is defined as follows

p (x | y;ψ∗) =
K∑
k=1

π∗kND (y | c∗k,Γ
∗
k)∑K

j=1 π
∗
l ND

(
y | c∗l ,Γ

∗
l

)NL (x | A∗
ky + b∗

k,Σ
∗
k) . (2.5)

A useful feature of GLLiM models is described in Lemma 2.1, which is established in [7, Lemma
2.1] and [1], elliptical distribution and multivariate extensions of Gaussian in [54], respectively.

Lemma 2.1. The parameter ψ∗ in the inverse CPDF, defined in (2.5), can then be deduced from ψ
in (2.4) via the following one-to-one correspondence:

πk
ck
Γk

Ak

bk

Σk


k∈[K]

7→



π∗k
c∗k
Γ∗
k

A∗
k

b∗
k

Σ∗
k


k∈[K]

=



πk
Akck + bk

Σk +AkΓkA
⊤
k

Σ∗
kA

⊤
k Σ

−1
k

Σ∗
k(Γ

−1
k ck −A⊤

k Σ
−1
k bk)(

Γ−1
k +A⊤

k Σ
−1
k Ak

)−1


k∈[K]

. (2.6)

2.3 Construction of BNP-GLLiM model

2.3.1 BNP prior

Stick-breaking construction of Dirichlet process. Note that the Dirichlet process (DP)
[55] is a central BNP prior and is the infinite-dimensional generalization of the Dirichlet distribution.
Therefore, for the sake of completeness, let us first recall the definition of the DP. A DP on the space G
is defined as a random process characterized by a concentration parameter α and a base distribution
G0, denoted by G ∼ DP (α,G0), such that for any finite partition {A1, . . . , Ap} of G, the random
vector (G (A1) , . . . , G (Ap)) is Dirichlet distributed:

(G (A1) , . . . , G (Ap)) ∼ Dir (αG0 (A1) , . . . , αG0 (Ap)) . (2.7)

A DP prior G can be constructed by three methods: the Blackwell-Macqueen urn scheme, the Chinese
restaurant method, and the stick-breaking construction. We will use the stick-breaking construction
of DP (SBDP):

θ0k | G0
i.i.d.∼ G0, k ∈ N⋆, (2.8)

τk | αi.i.d.∼ Beta(τk | 1, α), k ∈ N⋆, (2.9)

πk(τ ) = τk

k−1∏
l=1

(1− τl) , k ∈ N⋆, (2.10)

G =

∞∑
k=1

πk(τ )δθ0
k
∼ DP (α,G0) . (2.11)

7



2.3 Construction of BNP-GLLiM model

Pitman–Yor process. As a generalized version of SBDP, in the Pitman–Yor process (PYP) [56],

the τk’s are independent (
ind∼ ) but not identically distributed. More specially,

θ0k | G0
i.i.d.∼ G0, k ∈ N⋆, (2.12)

τk | α, σ ind∼ Beta(1− σ, α+ kσ), k ∈ N⋆, (2.13)

πk(τ ) = τk

k−1∏
l=1

(1− τl) , k ∈ N⋆, (2.14)

G =

∞∑
k=1

πk(τ )δθ0
k
∼ PYP (α, σ,G0) . (2.15)

Here σ ∈ (0, 1) is a discount parameter and α is a concentration parameter α > σ. The PYP is a
two-parameter generalisation of the DP that allows one to control the tail behaviour when modelling
data with either exponential or power-law tails [57, 56]. The PYP is reduced to a DP when σ = 0. More
general stick-breaking representations are possible, e.g., Gibbs-type priors [58, 42] or homogeneous
normalised random measures with independent increments [59]). However, in terms of the number of
clusters, the PYP provides a clear interpretation. The rich-gets-richer property of the DP is preserved,
meaning that there are a small number of large clusters, but there are also a large number of small
clusters. The parameter σ reduces the probability that observations join small clusters. The PYP has
a power-law behaviour. This can make it more suitable for a number of applications. In other words,
the number of clusters grows as O (Nσ) for PYP, while growing more slowly as O (logN) for DP.

Since the hyperparameters α and σ can have a significant effect on the growth of the number of
clusters with data sample size, it is possible to specify priors for them. For the DP case obtained with
σ = 0, it is suggested in [60] to use a gamma prior, α ∼ Gam(s1, s2), where the hyperparameters s1
and s2 can be estimated or fixed. A natural question is whether one can also find a tractable prior
for the discount parameter σ. Following the work of [48], we use the following prior that satisfies the
constraints σ ∈ (0, 1) and α > −σ,

p (α, σ | s1, s2, a) = p (α | σ; s1, s2) p(σ | a) (2.16)

where p (α | σ; s1, s2) is a shifted gamma distribution SG (α | σ; s1, s2) and p(σ, a) is a distribution
depending on some parameter a which is not specified at the moment but which can typically be
assumed to be a uniform distribution on the interval (0, 1). Such a shifted gamma distribution is
the distribution of a variable U − σ, where σ is considered fixed and U follows a gamma distribution
Gam (s1, s2). The PDF of this shifted gamma distribution is obtained from the standard gamma
distribution as SG (α | σ; s1, s2) = Gam (α+ σ | s1, s2).

8



2.3.2 Hierarchical representation of BNP-GLLiM model

We propose the following hierarchical representation to generate a data point (yn,xn) within our
BNP-GLLiM model:

1. Sample from BNP prior:

(α, σ) | s1, s2, a ∼ SG (α | σ; s1, s2) p(σ | a) ≡ Gam(α+ σ | s1, s2) p(σ | a), (2.17)

τk | α, σ ind∼ Beta (τk | 1− σ, α+ kσ) , k ∈ N⋆, (2.18)

πk(τ ) = τk

k−1∏
l=1

(1− τl) , k ∈ N⋆, (2.19)

θ⋆k | G0
i.i.d.∼ G0, θ⋆k ≡ (ck,Γk,Ak,bk,Σk) , k ∈ N⋆, (2.20)

G =

∞∑
k=1

πk(τ )δθ⋆
k
∼ BNP (α, σ,G0) , (2.21)

Sample from BNP-GLLiM model: for each n ∈ [N ],

θn | Gi.i.d.∼ G, (2.22)

zn = k if θn = θ⋆k with probability πk(τ ), (2.23)

xn | zn, c,Γ
i.i.d.∼ NL (xn | czn ,Γzn) , (c,Γ) ≡ (ck,Γk)k∈N⋆ , (2.24)

yn | xn, zn,A,b,Σ
i.i.d.∼ ND (yn | Aznxn + bzn ,Σzn) , (A,b,Σ) ≡ (Ak,bk,Σk)k∈N⋆ . (2.25)

Hierarchical representation of BNP-MM. BNP-MM, including DP-MM and PYP-MM, see
e.g., [48, 51], has the following hierarchical representation to generate a data point xn as a special
case of BNP-GLLiM:

1. Sample from BNP prior: (2.26)

G =
∞∑
k=1

πk(τ )δθ⋆
k
∼ BNP (α, σ,G0) , θ⋆k = (µk,Vk) , (2.27)

2. Sample from BNP-MM: for each n ∈ [N ],

θn | Gi.i.d.∼ G, (2.28)

zn = k if θn = θ⋆k with probability πk(τ ), (2.29)

xn | zn,θ⋆
i.i.d.∼ NL

(
xn | θ⋆zn

)
, θ⋆ ≡ (θ⋆k)k∈[K] . (2.30)

It is worth noting that the explicit use of the labels Z = (z1, . . . , zn) in the above BNP-GLLiM
construction brings it closer to clustering generative models and opens the way to an HMRF extension,
see e.g., [48, 51].

3 Variational inference

We will briefly recall the variational principle in Section 3.1.

3.1 Variational Bayesian expectation-maximization principle

The clustering task consists mainly of estimating the unknown labels Z = (zn)n∈[N ] from the observed
data (Y,X ) = (yn,xn)n∈[N ], whose joint distribution p (Y,X ,Z | Θ;ϕ) is determined by a set of
parameters denoted by Θ and often by additional hyperparameters ϕ.

The expectation-maximization (EM) algorithm [61, 62] is a generative technique for maximum
likelihood estimation (MLE) in the presence of unobserved latent variables or missing data. An EM
iteration consists of two steps usually referred to as the E-step in which the expectation of the so-
called complete log-likelihood is computed and the M-step in which this expectation is maximized
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3.1 Variational Bayesian expectation-maximization principle

over Θ. An equivalent way to define EM is the following. As discussed in [63], EM can be viewed as
an alternating maximization procedure of a function F0 defined, for any probability distribution qZ
over labels Z, by

F0 (qZ ,Θ,ϕ) =
∑
Z
qZ(Z) log p (Y,X ,Z | Θ,ϕ)− EqZ [log qZ(Z)] (3.1)

= EqZ

[
log

p (Y,X ,Z | Θ,ϕ)
qZ(Z)

]
(3.2)

where −EqZ [log qZ(Z)] is the entropy of qZ and Eq [·] is the expectation with respect to q. The
function F0 depends on the observations (Y,X ), which are fixed throughout and are therefore omitted
from the notation.

When prior knowledge on the parameters is available, an alternative approach consists of replacing
the MLE by a maximum a posteriori (MAP) estimation of Θ using the prior knowledge encoded in
a distribution p(Θ). More precisely, the MLE of Θ is then replaced by a point estimation Θ̂ =
argmaxΘ∈Θ p(Θ | Y,X ). In this paper, instead of considering only point estimation of Θ, we carry
out a fully Bayesian approach. In this case, we have to compute

p(Z | Y,X ) =

∫
Θ
p(Z | Y,X ,Θ)p(Θ | Y,X )dΘ. (3.3)

Integrating out Θ in this way requires the computation of the marginal point distribution p(Θ | Y,X )
which is usually not available in closed-form. As an alternative to costly simulation-based methods
(e.g., Markov Chain Monte Carlo (MCMC)), an EM-like procedure using variational approximation
(VA) can provide approximations of the marginal posterior distributions p(Θ | Y,X ) and p(Z | Y,X ).
This approach is referred to as VBEM for variational Bayesian EM, was introduced by [64].

To deal with the BNP-GLLiM model, we need to use the VBEM with hyperparameter optimiza-
tion of [65, Figure 2.5 and Algorithm 5.3]. Let qZ and qΘ denote the distributions over Z and
Θ respectively, which will serve as approximations to the true posteriors. More specifically, in the
Bayesian setting, the intractable posterior p(Z,Θ | Y,X ;ϕ) is approximated by the variational pos-
terior q(Z,Θ) = qZ(Z)qΘ(Θ).

Similar to standard EM, VBEM maximizes the following evidence lower bound (often abbreviated
ELBO, sometimes called the variational lower bound or negative variational free energy), defined for
arbitrary qZ and qΘ distributions by

F (qZ , qΘ,ϕ) = EqZqΘ

[
log

p(Y,X ,Z,Θ;ϕ)

qZ(Z)qΘ(Θ)

]
(3.4)

= log p(Y,X | ϕ)−KL (qZqΘ∥p(Z,Θ | Y,X ,ϕ)) ≤ log p(Y,X | ϕ),

alternatively over qZ , qΘ and ϕ. Here, KL stands for Kullback-Leibler divergence. It is worth noting
that adding a prior on Θ is formally equivalent to considering Θ as missing variables, while the
hyperparameters ϕ play the role of the parameters of interest in MLE.

The alternate maximization over F leads to the VBEM algorithm, which can be decomposed into
three steps. It is easy to show, using the KL divergence properties, that the maximization over qZ and
qΘ leads to the following E-steps, see e.g., [66, Appendix A], [65, Theorem 2.1] and [67, Section 10.1.1],
which is essentially coordinate ascent in the function space of variational distributions. Furthermore,
the following update rules for E-steps converge to a local maximum of F (qZ , qΘ,ϕ). At the rth

iteration, using current values ϕ(r−1) and q
(r−1)
Θ , we get the following updating,

VB-E-Z: q
(r)
Z (Z) ∝ expE

q
(r−1)
Θ

[
log p(Y,X ,Z,Θ;ϕ(r−1))

]
, (3.5)

VB-E-Θ: q
(r)
Θ (Θ) ∝ expE

q
(r)
Z

[
log p(Y,X ,Z,Θ;ϕ(r−1))

]
, (3.6)

VB-M-ϕ: ϕ(r) ∝ argmax
ϕ

E
q
(r)
Z q

(r)
Θ

[log p(Y,X ,Z,Θ;ϕ)] . (3.7)
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3.2 VBEM for a simple BNP-GLLiM model

τ zn xn

yn

N

c,Γαs1, s2

σa A,b,Σ

Figure 1: Graphical representation of BNP-GLLiM1: the plate denotes N i.i.d. observations,
white filled circles correspond to unobserved (latent) variables while grey filled circles corre-
spond to observed variables.

In practice, we can decide which parameters to treat as genuine parameters Θ or as hyperparameters
ϕ, depending on whether some prior knowledge is available for only a subset of the parameters, or
whether the model has hyperparameters ϕ for which no prior information is available. Furthermore,
for complex models, qΘ and qZ may need to be further restricted to simpler forms, such as factorised
forms, to ensure tractable VB-E steps. This is illustrated in the next Section 3.3 for the BNP-GLLiM
inference.

3.2 VBEM for a simple BNP-GLLiM model

In a simple BNP-GLLiM model, or just BNP-GLLiM1 for short, we focus only on the tractable
BNP-GLLiM model without any commitment to an arbitrary number of experts. That is why we
decide to consider as hyperparameters the set ϕ = (s1, s2, a,θ

⋆) while Θ = (τ , α, σ) are specific
to the BNP part, namely stick-breaking construction of PYP. Recall that θ⋆ = (c,Γ,A,b,Σ) ≡
(ck,Γk,Ak,bk,Σk)k∈N⋆ .

In Section 2.3.2, the base distribution is given in this case as

G0 =
∞∑
k=1

π0k(τ )δθ0
k
≡

∞∑
k=1

π0k(τ )δ(c0k,Γ
0
k,A

0
k,b

0
k,Σ

0
k)
. (3.8)

As in [68, 69], BNP-GLLiM1 can be viewed as a hierarchical PYP. See [70] for a review on hierarchical
nonparametric priors. For better illustration, we present the following graphical representation for
BNP-GLLiM1 in Figure 1.

It then follows that the joint distribution of the observed data X ,Y and of all the latent variables
can be expressed in a hierarchical manner as follows

p(Y,X ,Z,Θ;ϕ) =

N∏
n=1

p (yn | xn, zn,Θ;ϕ) p (xn | zn,Θ;ϕ) p(Z | Θ;ϕ)p (Θ;ϕ)

=

N∏
n=1

p (yn | xn, zn;A,b,Σ) p (xn | zn, c,Γ) p(Z | τ ;β)∏
k∈N⋆

p (τk | α, σ) p (α, σ | s1, s2, a) . (3.9)

Here the notation
∏

k∈N⋆ is a distributional notation.
In most VA, the posterior for the stick-breaking variables is approximated in a factorized form

(mean-field approximation). Following the same approach, by factorizing between the latent variables
and the parameters, we obtain the following variational distribution

q(Z,Θ;ϕ) = qZ(Z;ϕ)qΘ(Θ;ϕ) ≡ qZ(Z)qΘ(Θ).
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3.2 VBEM for a simple BNP-GLLiM model

In particular, the intractable posterior on Z is approximated as qZ(Z) that factorizes so as to
handle intractability, namely

qZ(Z) =
N∏

n=1

qzn (zn) . (3.10)

Then the infinite state space for each zj is dealt with by choosing a truncation of the state space to a
maximum label K ∈ N⋆, see e.g., [60, 71]. In practice, this consists of assuming that the variational
distributions qzn for n ∈ [N ], satisfy qzn(k) = 0 for k > K and that the variational distribution
on τ also factorizes as qτ (τ ) =

∏K−1
k=1 qτk (τk) with the additional condition that τK = 1. Thus the

truncated variational posterior of parameters Θ is given by

qΘ(Θ) = qα,σ(α, σ)
K−1∏
k=1

qτk (τk) . (3.11)

These forms of qZ and qΘ lead to our three VB-E steps and four VB-M steps, summarized below
and with more detail in Appendix A. Set the initial value of ϕ to ϕ(0). Then repeat the following
steps iteratively. The iteration index is omitted in the update formulas for simplicity.

VB-E steps

3.2.1 VB-E-τ step

The VB-E-τ step corresponds to a VA in the exponential family case and results in a posterior from
the same family as the prior, see e.g., [67, Section 10.4].

More precisely, to achieve this, we use (2.18), (2.23), (3.26), and are only interested in the functional
dependence of the right-hand side of (3.6) on the variable τk. Thus, any terms that do not depend
on τk can be included in the additive normalization constant. Then, given for k ∈ [K − 1] that
Nk =

∑N
n=1 qzn(k) corresponds to the weight of the cluster k, see more details in Appendix A.1, it

holds that

qτk (τk) = Beta (τk | γ̂k,1, γ̂k,2) , where, (3.12)

γ̂k,1 = 1− Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +

K∑
l=k+1

Nl. (3.13)

3.2.2 VB-E-(α, σ) step

The (α, σ) variational posterior is more complex, but has a simple form in the DP case (σ = 0).
Specifically, we have to compute

ŝ1 = s1 +K − 1, ŝ2 = s2 −
K−1∑
k=1

ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2) , (3.14)

where ψ(·) is the digamma function defined by ψ(γ) = d
dγ log Γ(γ) = Γ′(γ)

Γ(γ) .

When σ = 0 then qα,σ ≡ qα,0 is a gamma distribution Gam (ŝ1, ŝ2) with Eqα,σ [α] =
ŝ1
ŝ2
. Otherwise

(PYP case), qα,σ is only identified up to a normalizing constant but the required Eqα,σ [α] and Eqα,σ [σ]
can be computed by importance sampling, see Appendix A.2 for more details.

We next consider the derivation of the update equation for the factor qZ(Z).

3.2.3 VB-E-Z step

By using the mean-field approximation (3.10) and the truncation, for more details refer to Ap-
pendix A.3, for all n ∈ [N ] and for all k ∈ [K], this step consists in computing,

qzn(k) =
ρnk∑K
l=1 ρnl

. (3.15)
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3.2 VBEM for a simple BNP-GLLiM model

Here, we define log ρnk by

− 1

2

{
D log(2π) + log

∣∣∣Σ̂k

∣∣∣+ (yn − Âkxn − b̂k)
⊤Σ̂

−1

k (yn − Âkxn − b̂k)

+ L log(2π) + log
∣∣∣Γ̂k

∣∣∣+ (xn − ĉk)
⊤ Γ̂

−1

k (xn − ĉk)

}
+ ψ(γ̂k,1)− ψ(γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ(γ̂l,2)− ψ(γ̂l,1 + γ̂l,2)] . (3.16)

Note that in the above formula, symbols
(
ĉk, Γ̂k, Âk, b̂k, Σ̂k

)
are the hyperparameters more specifi-

cally defined in the following Sections 3.2.5 and 3.2.6.
It is important to note that (3.15) provides assignment probabilities qzn(k) rather than intermediate

commitments to hard assignments of zn. However, the hard assignments can be postponed to the end
if desired to obtain a segmentation by the following MAP estimation:

ẑn = argmax
k∈[K]

qzn(k). (3.17)

VB-M steps

The maximization step consists of updating the hyperparameters ϕ =
(
s1, s2, a,θ

⋆
[K]

)
, where θ⋆[K] =

(ck,Γk,Ak,bk,Σk)k∈[K], by maximizing the free energy, if they are not set heuristically:

ϕ(r) = argmax
ϕ

E
q
(r)
Z q

(r)
τ q

(r)
α,σ

[log p (Y,X ,Z, τ , α, σ;ϕ)] . (3.18)

The VB-M-step can therefore be divided into 4 independent sub-steps as listed below. From the
conditional independence of (s1, s2, a) and (Y,X ,Z) given (τ , α, σ), the solution for the VB-M-(s1, s2)
(in the DP case) step is straightforward. Only the M-β, M-(s1, s2, a) (in the PYP case) and M-θ⋆[K]

steps are more involved.

3.2.4 VB-M-(s1, s2, a) step

This step is straightforward in the DP case (σ = 0). It can be expressed easily using the fact that
both the prior and the variational posterior are Gamma distributions, and using the cross-entropy
properties,

(s1, s2)
(r) = argmax

(s1,s2)
E
q
(r)
α,0

[log p(α | s1, s2)] = (ŝ
(r)
1 , ŝ

(r)
2 ), (3.19)

where (ŝ
(r)
1 , ŝ

(r)
2 ) is given in (3.14). We can also solve this step numerically using importance sampling

in the more general case of PYP. For more details, see [48, Appendix A.7].

3.2.5 VB-M-(c,Γ) step

This step divides into K sub-steps that involve the following optimizations(
ĉk, Γ̂k

)
≡
(
ĉ
(r)
k , Γ̂

(r)

k

)
= argmax

(ck,Γk)
E
q
(r)
Z

[log p (X | Z; ck,Γk)] . (3.20)

We can then update the Gaussian gating parameters as follows:

ĉk =
1

Nk

N∑
n=1

qzn(k)xn, (3.21)

Γ̂k =
1

Nk

N∑
n=1

qzn(k) (xn − ĉk) (xn − ĉk)
⊤ . (3.22)

The technical details will be left to the Appendix A.4.
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3.3 VBEM for a general and tractable BNP-GLLiM model

3.2.6 VB-M-(A,b,Σ) step

Using the same idea, this step is divided into K sub-steps, which include the following optimization
problems(

Âk, b̂k, Σ̂k

)
≡
(
Â

(r)
k , b̂

(r)
k , Σ̂

(r)

k

)
= argmax

(Ak,bk,Σk)
E
q
(r)
Z

[log p (Y | X ,Z;Ak,bk,Σk)] . (3.23)

It requires to define the following quantities,

x̄k =
1

Nk

N∑
n=1

qzn(k) xn,

ȳk =
1

Nk

N∑
n=1

qzn(k) yn,

Xk =
1√
Nk

(√
qz1(k)(x1 − x̄k), . . . ,

√
qzN (k)(xN − x̄k)

)
,

Yk =
1√
Nk

(√
qz1(k)(y1 − ȳk), . . . ,

√
qzN (k)(yN − ȳk)

)
.

Then we can update the parameters for the Gaussian experts, see Appendix A.5, for more details, as
follows:

Âk = YkX
⊤
k (XkX

⊤
k )−1,

b̂k =
1

Nk

N∑
n=1

qzn(k) (yn − Âkxn),

Σ̂k =
1

Nk

N∑
n=1

qzn(k) (yn − Âkxn − b̂k)(yn − Âkxn − b̂k)
⊤.

3.3 VBEM for a general and tractable BNP-GLLiM model

To obtain a general and tractable BNP-GLLiM model, or simply BNP-GLLiM2 for simplicity, for
variational inverse conditional estimation, we specify the prior on the gating parameters (ck,Γk) as a
normal-inverse-Wishart (NIW) distribution parameterized by ρk = (mk, λk,Ψk, νk) with a PDF

p (ck,Γk | ρk) ≡ NIW (ck,Γk | ρk) = N
(
ck | mk, λ

−1
k Γk

)
IW (Γk | Ψk, νk) . (3.24)

Then we decide to take into account as hyperparameters and parameters, respectively, as follows

ϕ =
(
s1, s2, a, β, (ρk,Ak,bk,Σk)k∈N⋆

)
, while Θ = (τ , α, σ,θ∗) ,θ∗ = (θ∗k)k∈N⋆ ≡ (ck,Γk)k∈N⋆ .

In Section 2.3.2, the base distribution is given in this case as

G0 =

∞∑
k=1

π0k(τ )
(
δ(A0

k,b
0
k,Σ

0
k)
,NIW

(
·, · | ρ0k

))
. (3.25)

As in [68, 69], BNP-GLLiM2 can also be viewed as a hierarchical PYP. For better illustration, we
present the following graphical representation for BNP-GLLiM2 in Figure 2.

In BNP-GLLiM2, it follows that the joint distribution of the observed data X ,Y and all latent
variable can be expressed hierarchically as

p(Y,X ,Z,Θ;ϕ) =

N∏
n=1

p (yn | xn, zn,Θ;ϕ) p (xn | zn,Θ;ϕ) p(Z | Θ;ϕ)p (Θ;ϕ)

=

N∏
n=1

p (yn | xn, zn;A,b,Σ) p (xn | zn, c,Γ) p(Z | τ )∏
k∈N⋆

p (τk | α, σ) p (α, σ | s1, s2, a)
∏
k∈N⋆

p (ck,Γk;ρk) . (3.26)
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3.3 VBEM for a general and tractable BNP-GLLiM model

τ zn xn

yn

N

c

Γ

m, λ

Ψ, ν

αs1, s2

σa A,b,Σ

Figure 2: Graphical representation of BNP-GLLiM2: the plate denotes N i.i.d. observations,
white filled circles correspond to unobserved (latent) variables while grey filled circles corre-
spond to observed variables.

Following the same idea as in Section 3.2, we only consider the truncated variational posterior of
parameters Θ as follows

qΘ(Θ) = qα,σ(α, σ)

K−1∏
k=1

qτk (τk)

K∏
k=1

qθ∗
k
(θ∗k) . (3.27)

These forms of qZ and qΘ lead to our four VB-E steps and three VB-M steps, summarized below
with details in Appendix A. Set the initial value of ϕ to ϕ(0). Then, repeat iteratively the following
steps. The iteration index is omitted in the update formulas for simplicity.

VB-E steps

Note that the VB-E-τ , VB-E-(α, σ) steps are the same as in Section 3.2. We only highlight the
modified steps as follows.

We first consider the derivation of the update equation for the factor qZ(Z).

3.3.1 VB-E-Z step

By using the mean-field approximation (3.10) and the truncation, see Appendix A.3 for more details,
for all n ∈ [N ] and for k ∈ [K], this step consists in computing,

qzn(k) =
ρnk∑K
l=1 ρnl

. (3.28)

Here, given Nn represents the neighbors of n, we define log ρnk by

− 1

2

{
log
∣∣∣Σ̂k

∣∣∣+ (yn − Âkxn − b̂k)
⊤Σ̂

−1

k (yn − Âkxn − b̂k)

+ log

∣∣∣∣Ψ̂k

2

∣∣∣∣− L∑
l=1

ψ

(
ν̂k + (1− l)

2

)
+ ν̂k(xn − m̂k)

⊤Ψ̂
−1

k (xn − m̂k) +
L

λ̂k

}

+ ψ(γ̂k,1)− ψ(γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ(γ̂l,2)− ψ(γ̂l,1 + γ̂l,2)] .

Note that in the above formula, symbols
(
m̂k, λ̂k, Ψ̂k, ν̂k

)
and

(
Âk, b̂k, Σ̂k

)
are the hyperparameters

more specifically defined in the following Sections 3.2.6 and 3.3.2.

3.3.2 VB-E-θ∗ step

This step is divided into K parts where the computation is similar to that in standard Bayesian GMM
with a choice of conjugate prior. Hence, for each k ≤ K, the variational posterior is a Normal-inverse-
Wishart distribution defined as

qθ∗
k
(ck,Γk) = NIW(ck,Γk | m̂k, λ̂k, Ψ̂k, ν̂k). (3.29)
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Here, the hyperparameters are updated as follows (see, e.g., [67, Section 10.2.1]):

λ̂k = λk +Nk, ν̂k = νk +Nk, Nk =
N∑

n=1

qzn(k) (3.30)

Ψ̂k = Ψk +NkSk +
λkNk

λk +Nk
(mk − c̄k)(mk − c̄k)⊤, (3.31)

m̂k =
λkmk +Nkc̄k
λk +Nk

=
λkmk +Nkc̄k

λ̂k
, (3.32)

c̄k =
1

Nk

N∑
n=1

qzn(k)xn, (3.33)

Sk =
1

Nk

N∑
n=1

qzn(k)(xn − c̄k)(xn − c̄k)⊤. (3.34)

VB-M steps

The maximization step consists of updating the hyperparameters ϕ =
(
s1, s2, a, (ρk,Ak,bk,Σk)k∈[K]

)
,

where ρk = (mk, λk,Ψk, νk) , k ∈ [K], by maximizing the free energy, if they are not set heuristically:

ϕ(r) = argmax
ϕ

E
q
(r)
Z q

(r)
τ q

(r)
α,σq

(r)
θ∗

[log p (Y,X ,Z, τ , α, σ,θ∗;ϕ)] . (3.35)

The VB-M-step can therefore be divided into four independent sub-steps as listed below. From the
conditional independence of (s1, s2, a,ρ) and (Y,X ,Z) given (τ , α, σ,θ∗), the solutions for the VB-
M-(s1, s2) (in the DP case) and VB-M-ρ steps are straightforward. Only the M-(s1, s2, a) step (in the
PYP case) and (Ak,bk,Σk)k∈[K] are more involved.

Note that the VB-M-(s1, s2, a), VB-M-(A,b,Σ) steps are the same as in Section 3.2. We only
highlight the modified step below.

3.3.3 VB-M-ρ step

This step divides into K sub-steps that involve again cross-entropies,

ρ
(r)
k = argmax

ρ
E
q
(r)

θ∗
k

[log p(ck,Γk; ρk)] = ρ̂
(r)
k (3.36)

where ρ̂
(r)
k = (λ̂

(r)
k , ν̂

(r)
k , Ψ̂

(r)

k , m̂
(r)
k ) is given in (3.30).

4 Predictive conditional density

The most popular uses of BNP-GLLiM with discrete random probability measures, such as the one
displayed in (2.25), relate to conditional density estimation and data clustering. More precisely, we
will be interested in the predictive conditional density for a new value (ŷ, x̂) of the observed variables.
Note that associated with these observations will be a corresponding latent variable ẑ.

If σ ̸= 0, we can use the following remark. Suppose there is enough training data. Then the
posterior distribution of all parameters is usually highly peaked. This leads to the second approxima-
tion, where the integral reduces to a point evaluation at the posterior mean of each parameter, see
e.g., [72, 73, 74, 75, 76].

When σ = 0, we can analytically approximate the such densities via several following lemmas. In
the following Theorems 4.1 to 4.6, the notation “≈” means that we approximate the desired densities
of the BNP-GLLiM1 by a mixture of Gaussians using factorized VA posteriors and a truncation of
the number of components.
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4.1 BNP-GLLiM1

4.1 BNP-GLLiM1

4.1.1 Joint density

We first show how to compute the joint density p(ŷ, x̂,X ,Y) via Theorem 4.1, which is proved in
Appendix B.2.

Theorem 4.1. Via defining ŵ ≡ [x̂; ŷ], we obtain

µk ≡ E [ŵ] =

(
ĉk

Âkĉk + b̂k

)
, Vk = cov [ŵ] =

(
Γ̂k Γ̂kÂ

⊤
k

ÂkΓ̂k Σ̂k + ÂkΓ̂kÂ
⊤
k

)
, (4.1)

and

p (ŷ, x̂,X ,Y) ≈
K∑
k=1

Eqτ [πk(τ )]NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
≡

K∑
k=1

Eqτ [πk (τ )]NL+D (ŵ | µk,Vk) . (4.2)

Furthermore, it holds that

Eqτ [πk (τ )] = Eqτk
[τk]

k−1∏
l=1

Eqτl
[1− τl] . (4.3)

Here, we have for any k ∈ [K],

Eqτk
[τk] =

γ̂k,1
γ̂k,1 + γ̂k,2

, Eqτk
[1− τk] = 1− Eqτk

[τk] =
γ̂k,2

γ̂k,1 + γ̂k,2
,

γ̂k,1 = 1− Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +
K∑

l=k+1

Nl, Nk =
N∑

n=1

qzn(k).

4.1.2 Inverse conditional density

We then show how to approximate the inverse conditional density p(ŷ | x̂,X ,Y). This predictive
density in BNP-GLLiM1 is approximated by a GLLiM via Theorem 4.2 with the proof in Appendix B.3.

Theorem 4.2. We approximate the inverse conditional density of the BNP-GLLiM1 as follows:

p (ŷ | x̂,X ,Y) ≈
K∑
k=1

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
. (4.4)

Here, the gating posteriors belong to a K − 1 dimensional probability simplex and are given by

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
=

Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)
∑K

l=1 Eqτ [πl (τ )]NL

(
x̂ | ĉl, Γ̂l

) , k ∈ [K], (4.5)

For prediction, we also have

E [ŷ | x̂,X ,Y] ≈
K∑
k=1

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

) [
Âkx̂+ b̂k

]
. (4.6)
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4.2 BNP-GLLiM2

4.1.3 Forward conditional density

To deal with high-dimensional regression data, namely high-to-low regression, given the inverse con-
ditional density p(ŷ | x̂,X ,Y), we want to approximate the following forward conditional density via
Theorem 4.3, whose proof is provided in Appendix B.4.

Theorem 4.3. We approximate the forward conditional density of the BNP-GLLiM1 by

p (x̂ | ŷ,X ,Y) ≈
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
, (4.7)

which is again a GLLiM. Here, we defined

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
=

Eqτ [πk (τ )]ND

(
ŷ | ĉ∗k, Γ̂

∗
k

)
∑K

l=1 Eqτ [πl (τ )]ND

(
ŷ | ĉ∗l , Γ̂

∗
l

) ,
Σ̂

∗
k =

(
Γ̂
−1

k + Â⊤
k Σ̂

−1

k Âk

)−1
,

Â∗
k = Σ̂

∗
kÂ

⊤
k Σ̂

−1

k ,

b̂∗
k = Σ̂

∗
k

[
Γ̂
−1

k ĉk − Â⊤
k Σ̂

−1

k b̂k

]
,

ĉ∗k = Âkĉk + b̂k,

Γ̂
∗
k = Σ̂k + ÂkΓ̂kÂ

⊤
k . (4.8)

Furthermore, we approximate the expectation and covariance matrix of x̂ | ŷ,X ,Y as follows:

E [x̂ | ŷ,X ,Y] ≈
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)(
Â∗

kŷ + b̂∗
k

)
,

var [x̂ | ŷ,X ,Y] ≈
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)[
Σ̂

∗
k +

(
Â∗

kŷ + b̂∗
k

)(
Â∗

kŷ + b̂∗
k

)⊤]
− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤ . (4.9)

4.2 BNP-GLLiM2

4.2.1 Joint density

We first show how to compute the joint density p(ŷ, x̂,X ,Y) via Theorem 4.4, which is proved in
Appendix B.5.

Theorem 4.4. We approximate the joint density of BNP-GLLiM2 by a mixture of product between
Gaussian and Student’s t-distributions as follows:

p (ŷ, x̂,X ,Y) ≈
K∑
k=1

Eqτ [πk (τ )]St (x̂ | m̂k,Lk, ν̂k + 1− L)ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
. (4.10)

Here, the positive semidefinite shape matrices of Student’s t-distributions are given by

Lk =
(ν̂k + 1− L) λ̂k

1 + λ̂k
Ψ̂k. (4.11)
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4.2 BNP-GLLiM2

4.2.2 Inverse conditional density

We then show how to approximate the inverse conditional density p(ŷ | x̂,X ,Y). This predictive
density in BNP-GLLiM2 is approximated by a MoE via Theorem 4.5 with the proof in Appendix B.6.

Theorem 4.5. We approximate the inverse conditional density of BNP-GLLiM2 by a MoE as follows:

p (ŷ | x̂,X ,Y) ≈
K∑
k=1

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
. (4.12)

Here, the gating posteriors are defined as

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
=

Eqτ [πk (τ )]St (x̂ | m̂k,Lk, ν̂k + 1− L)∑K
l=1 Eqτ [πl (τ )]St (x̂ | m̂l,Ll, ν̂l + 1− L)

, k ∈ [K]. (4.13)

Furthermore, for any k ∈ [K], it holds that

Eqτ [πk (τ )] = Eqτk
[τk]

k−1∏
l=1

Eqτl
[1− τl] ,

Eqτk
[τk] =

γ̂k,1
γ̂k,1 + γ̂k,2

, Eqτk
[1− τk] = 1− Eqτk

[τk] =
γ̂k,2

γ̂k,1 + γ̂k,2
,

γ̂k,1 = 1− Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +

K∑
l=k+1

Nl, Nk =

n∑
n=1

qzn(k).

The prediction task is carried out via the following approximation

E [ŷ | x̂,X ,Y] ≈
K∑
k=1

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

) [
Âkx̂+ b̂k

]
. (4.14)

4.2.3 Forward conditional density

To deal with high-dimensional regression data, namely high-to-low regression, given the inverse con-
ditional density p(ŷ | x̂,X ,Y), we want to approximate the following forward conditional density via
Theorem 4.6, whose proof is provided in Appendix B.7.

Theorem 4.6. It holds that

p(x̂ | ŷ,X ,Y) ≈
I∑

i=1

K∑
k=1

gki

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
NL

(
x̂ | Â∗

k (ηi) ŷ + b̂∗
k (ηi) , Σ̂

∗
k (ηi)

)
,

which is a mixture of Gaussian experts, where, for all k ∈ [K], i ∈ [I],

gki

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
=

Eqτ [πk (τ )]ND

(
ŷ | ĉ∗k, Γ̂

∗
k (ηi)

)
Gam

(
ηi | ν̂k+1−L

2 , ν̂k+1−L
2

)
∑I

i=1

∑K
l=1 Eqτ [πl (τ )]ND

(
ŷ | ĉ∗l , Γ̂

∗
l (ηi)

)
Gam

(
ηi | ν̂l+1−L

2 , ν̂l+1−L
2

) ,
Σ̂

∗
k (ηi) =

(
ηiLk + Â⊤

k Σ̂
−1

k Âk

)−1
,

Â∗
k (ηi) = Σ̂

∗
k (ηi) Â

⊤
k Σ̂

−1

k ,

b̂∗
k (ηi) = Σ̂

∗
k (ηi)

[
ηLkm̂k − Â⊤

k Σ̂
−1

k b̂k

]
,

ĉ∗k = Âkm̂k + b̂k,

Γ̂
∗
k (ηi) = Σ̂k + Âk (ηiLk)

−1 Â⊤
k . (4.15)

Here, ηi, i ∈ [I], are chosen via discretizing η-space, [0, Uη], into a grid, e.g., uniform. Note that for
simplicity, we evaluate the integrand as a Riemann integral with a truncated value 0 < Uη <∞ and a
number of point I ∈ N⋆ for approximating the integration but we can use any scheme to approximate
such 1-dimensional integration.
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5 ELBO

Evaluating the ELBO in (3.4) allows us not only to monitor the bound during the re-estimation
to test for convergence, but also to check both the mathematical expressions for the solutions and
their software implementation. Indeed, the value of this bound (3.4) at each step of the iterative re-
estimation procedure should not decrease [77], in particular recent results for Bayesian nonparametric
mixture models in [51, Appendix A].

Recall that ϕ̂ =
(
ŝ1, ŝ2, â,

(
ρ̂k, Âk, b̂k, Σ̂k

)
k∈N⋆

)
. Here, in order to keep the notation unclut-

tered, we will sometimes omit the subscripts on the expectation operators because each expectation
is taken with respect to all of the random variables in its argument, and the hat superscript ·̂ on the
hyperparameters ϕ̂ of q distribution.

When σ = 0, we can analytically compute the ELBO in the BNP-GLLiM via Theorems 5.1 and 5.2,
which are proved in Appendices B.8 and B.9, respectively.

5.1 BNP-GLLiM1

Theorem 5.1. When σ = 0, the ELBO in the BNP-GLLiM1 is analytically derived as follows:

F
(
qZ , qΘ, ϕ̂

)
= E

[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)]− E [log q(Θ)] . (5.1)

Here, we have the following update formulas:

E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
=

N∑
n=1

K∑
k=1

qzn(k) logND

(
yn | Âkxn + b̂k, Σ̂k

)
(5.2)

E
[
log p(X | Z,Θ; ϕ̂)

]
=

N∑
n=1

K∑
k=1

qzn(k) logNL

(
xn | ĉk, Γ̂k

)
, (5.3)

E
[
log p(Z | Θ; ϕ̂)

]
=

K∑
k=1

Nk

[
ψ (γ̂k,1)− ψ (γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ (γ̂l,2)− ψ (γ̂l,1 + γ̂l,2)]

]
, (5.4)

E
[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

E [log p (τk | α)] + E [log p (α | ŝ1, ŝ2)] , (5.5)

E [log p (τk | α)] = ŝ1 − ŝ2
ŝ2

[ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2)] + ψ (ŝ1)− log ŝ2,

E [log p (α | ŝ1, ŝ2)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log (ŝ2)− ŝ1,

E [log q(Z)] =

N∑
n=1

K∑
k=1

qzn (k) log qzn (k) , (5.6)

E [log q(Θ)] = E [log qα,0(α)] +
K−1∑
k=1

E [log qτk (τk)] , (5.7)

E [log qα,0(α)]− log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log ŝ2 − ŝ1, (5.8)

E [log qτk (τk)] =

2∑
l=1

(γ̂k,l − 1) {ψ (γ̂k,l)− ψ (γ̂k,1 + γ̂k,2)}+ log
Γ (γ̂k,1 + γ̂k,2)

Γ (γ̂k,1) Γ (γ̂k,2)
. (5.9)

Note that if the free energy is computed at the end of each VBEM iteration, as in Section 3.2.4,
we have E [log qα,0(α)] = E [log p (α | ŝ1, ŝ2)].
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5.2 BNP-GLLiM2

5.2 BNP-GLLiM2

Theorem 5.2. When σ = 0, the ELBO in BNP-GLLiM2 is determined analytically as follows:

F
(
qZ , qΘ, ϕ̂

)
= E

[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)]− E [log q(Θ)] . (5.10)

Here, we have the following update formulas:

E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
=

N∑
n=1

K∑
k=1

qzn(k) logND

(
yn | Âkxn + b̂k, Σ̂k

)
, (5.11)

E
[
log p(X | Z,Θ; ϕ̂)

]
=

1

2

K∑
k=1

Nk

[
log Γ̃k − L log(2π)− Lλ̂−1

k − ν̂kTr
(
SkΨ̂

−1

k

)
− ν̂k (x̄k − m̂k) Ψ̂

−1

k (x̄k − m̂k)
]
, (5.12)

E
[
log p(Z | Θ; ϕ̂)

]
=

K∑
k=1

Nk

[
ψ (γ̂k,1)− ψ (γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ (γ̂l,2)− ψ (γ̂l,1 + γ̂l,2)]

]
, (5.13)

E
[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

E [log p (τk | α)] + E [log p (α | ŝ1, ŝ2)] +
K∑
k=1

E [log p (ck,Γk; ρ̂k)] , (5.14)

E [log p (τk | α)] = ŝ1 − ŝ2
ŝ2

[ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2)] + ψ (ŝ1)− log ŝ2,

E [log p (α | ŝ1, ŝ2)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log ŝ2 − ŝ1,

E [log p (ck,Γk; ρ̂k)] =
1

2
L log

(
λ̂k
2π

)
− L

2
− L

2
ν̂k + logB

(
Ψ̂

−1

k , ν̂k

)
− ν̂k − L

2
log Γ̃k,

log Γ̃k =
L∑
l=1

ψ

(
ν̂k + 1− l

2

)
+ L log 2 + log

∣∣∣Ψ̂k

∣∣∣ ,
E [log q(Z)] =

N∑
n=1

K∑
k=1

qzn (k) log qzn (k) , (5.15)

E [log q(Θ)] = E [log qα,0(α)] +

K−1∑
k=1

E [log qτk (τk)] +

K∑
k=1

E [log qck,Γk
(ck,Γk)] , (5.16)

E [log qα,0(α)] = − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log ŝ2 − ŝ1,

E [log qτk (τk)] =
2∑

l=1

(γ̂k,l − 1) {ψ (γ̂k,l)− ψ (γ̂k,1 + γ̂k,2)}+ log
Γ (γ̂k,1 + γ̂k,2)

Γ (γ̂k,1) Γ (γ̂k,2)
,

E [log qck,Γk
(ck,Γk)] =

L

2
log

λ̂k
2π

− L

2
+ logB

(
Ψ̂

−1

k , ν̂k

)
− ν̂k − L

2
log Γ̃k −

ν̂kL

2
. (5.17)

6 Nonparametric Bayesian model selection

6.1 Posterior contraction rate in Bayesian infinite mixtures

6.1.1 Problem setup

We first recall the GMM where we have i.i.d. samples (Wn)n∈[N ] ≡ W coming from a true but unknown
distribution PG0 with given PDF

pG0 ≡
∫

N (w | θ)dG0(θ) =

K0∑
k=1

π0kN (w | θ0k), θ0k ≡
(
µ0
k,V

0
k

)
, (6.1)
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6.2 MTM post-processing consistency for BNP-GLLiM

where G0 =
K0∑
k=1

π0kδθ0
k
is a true but unknown mixing distribution with exactly K0 number of support

points, for some unknown K0. Furthermore, Θ is a chosen parameter space, where we empirically
believe that the true parameters belong to. In a well-specified setting, all support points of G0 reside
in Θ, but this may not be the case in a misspecified setting. In this section, we assume that the GMM
is well-specified, i.e., the data are i.i.d. samples from the mixture density pG0 , where mixing measure
G0 has K0 support atoms in compact parameter space Θ.

A Bayesian modeler places a prior distribution Π on a suitable subspace of G(Θ). Then, the
posterior distribution over G is given by:

Π (G ∈ B | W) ≡
∫
B

∏N
n=1 pG (Wn) dΠ(G)∫

G(Θ)

∏N
n=1 pG (Wn) dΠ(G)

(6.2)

Here, the GMM pG is defined in (6.1) with K ≤ ∞ unknown number of support points. We are
interested in the posterior contraction behavior of G toward G0, in addition to recovering the true
number of components K0.

We next recall the notion of Wasserstein distance for mixing measures that prove useful in the
next sections.

6.1.2 Wasserstein distance for MM

It is useful to analyze the identifiability and convergence of parameter estimation in mixture models
using the notion of Wasserstein distance, as in [18, 20]. This distance can be defined as the optimal
cost of moving masses in the transformation from one probability measure to another [78, 79].

Definition 6.1. Suppose Θ is equipped with a metric d. TheWr Wasserstein distance for two discrete

measures G =
K∑
k=1

πkδθk
and G0 =

K0∑
k=1

π0kδθ0
k
is

Wr (G,G0) = inf
Q∈Q(π,π0)

∑
i,j

qijd
r
(
θi,θ

0
i

)1/r

. (6.3)

It should be emphasized that if a sequence of probability measures GN ∈ OK0 converges to
G0 ∈ EK0 under the Wr metric at a rate ωN = o(1) for some r ≥ 1, then there exists a subsequence
of GN such that the set of atoms of GN converges to the K0 atoms of G0, up to a permutation of the
atoms, at the same rate ωN .

6.1.3 Posterior contraction rate in infinite mixtures

With the similar idea as in [47], our starting point is the availability of a mixing measure sample G that
is drawn from the posterior distribution Π (G | W), where W are i.i.d. samples of the mixing density
pG0 . Under certain conditions on the kernel density, it can be established that for some Wasserstein
metric Wr,

Π
(
G ∈ G(Θ) :Wr(G,G0) ≤ δωN | W

) N→∞−−−−→ 1 in PG0-probability. (6.4)

for all constant δ > 0, while ωN = o(1) is a vanishing rate. Thus ωN can be assumed to be (slightly)
slower than the actual rate of posterior contraction of the mixture measure. We can also write that ωN

is a rate such that, under the posterior distribution Π (G | W),Wr(G,G0) = oPG0
(ωN ). See [18, 80, 20]

for concrete examples of posterior contraction rates in infinite and (overfitted) finite mixtures.

6.2 MTM post-processing consistency for BNP-GLLiM

It is worth noting that we can prove a GLLiM model on (X,Y), see (2.4), with unconstrained pa-
rameters ψ = (πk, ck,Γk,Ak,bk,Σk)k∈[K], is equivalent to a GMM on the joint variable [X;Y] with
unrestricted parameters, via Lemma 6.2.
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6.2 MTM post-processing consistency for BNP-GLLiM

6.2.1 Link between GLLiM and joint GMM

We establish a link between GLLiM and joint GMM in Lemma 6.2, which is briefly proved in Ap-
pendix B.1.

Lemma 6.2. A GLLiM model on (X,Y) with unconstrained parameters ψ = (πk, ck,Γk,Ak,bk,Σk)k∈[K],
defined in (2.4), is equivalent to a GMM on the joint variable [X;Y] ≡ W with unconstrained param-
eters ν = {µk,Vk, ρk}Kk=1, i.e.,

p (w | ψ) =
K∑
k=1

ρkNL+D (w | µk,Vk) . (6.5)

The parameter ψ can be expressed as a function of ν by:

πk = ρk,

ck = µx
k ,

Γk = Vxx
k ,

Ak = Vxy⊤
k (Vxx

k )−1 ,

bk = µy
k −Vxy⊤

k (Vxx
k )−1µx

k ,

Σk = Vyy
k −Vxy⊤

k (Vxx
k )−1Vxy

k . (6.6)

Here, we have defined

µk =

[
µx
k

µy
k

]
,

Vk =

[
Vxx

k Vxy
k

Vyx
k Vyy

k

]
.

Note that the symmetry V⊤
k = Vk of the covariance matrix implies that Vxx

k and Vyy
k are symmetric,

while Vxy⊤
k = Vyx

k . The parameter vector ν can be expressed as a function of ψ by:

ρk = πk,

µk =

[
ck

Akck + bk

]
,

Vk =

[
Γk (AkΓk)

⊤

AkΓk Σk +AkΓkA
⊤
k

]
. (6.7)

Lemma 6.2 implies that BNP joint GMM and BNP-GLLiM are considered equivalent with respect
to number of components in the model selection problem. Therefore, using the results from [47,
Theorem 3.2] and Lemma 6.2, it holds that the result of the MTM Algorithm 1 for BNP joint GMM
is a consistent estimate of both the number of components and the mixing measure. The latter also
admits the upper bound of the posterior contraction rate ωN . The detailed and main idea of the
pseudocode of the MTM Algorithm 1 for BNP joint GMM follows the novel MTM algorithm for
BNP-MM of [47, Algorithm 1]. Broadly speaking, there are two main phases. The first stage is a
probabilistic procedure for the merging of atoms that may be in close proximity. The second stage
consists of a deterministic procedure for the truncation of extraneous atoms and their appropriate
merging with the remaining atoms in a systematic way. More details can be found in [47].

We aim to provide the theoretical guarantee, Theorem 6.3, for the outcome of Algorithm 1.

Theorem 6.3 (MTM consistency for BNP joint GMM). Let G be a posterior sample from posterior
distribution of any Bayesian procedure, namely, Π(G | W) according to which the upper bound (6.4)
holds for all δ > 0. Let G̃ and K̃ be the outcome of Algorithm 1 applied to G, for an arbitrary constant
c > 0. Then the following hold
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6.2 MTM post-processing consistency for BNP-GLLiM

Algorithm 1 MTM Algorithm for BNP joint GMM

Require: Posterior sample G =
K∑
k=1

πkδθk
, posterior contraction rate ωN from from (6.4), and

a tunning parameter c.
Ensure: Discrete measure G̃ and its number of supporting atoms K̃.

Stage 1: Merge procedure:
1: Reorder atoms {θk}k∈[K] by simple random sampling without replacement with correspond-

ing weights {π1, π2, . . . }.
let τ1, τ2, . . . denote the new indices, and set E = {τj}j as the existing set of atoms.

2: Sequentially for each index τj ∈ E , if there exists an index τi < τj such that d
(
θτi ,θτj

)
≤

ωN , then:

update πτi = πτi + πτj , and remove τj from E .
3: Collect G′ =

∑
j: τj∈E πτjδθτj

.

write G′ as
∑K

k=1 qkδϕk
so that q1 ≥ q2 ≥ . . . .

Stage 2: Truncate-Merge procedure:
4: Set A = {i : qi > (cωN)

r}, N = {i : qi ≤ (cωN)
r}.

5: For each index i ∈ A, if there is j ∈ A such that j < i and qi∥ϕi − ϕj∥r ≤ (cωN)
r, then

remove i from A and add it to N .

6: For each i ∈ N , find atom ϕj among j ∈ A that is nearest to ϕi

update qj = qj + qi.

7: Return G̃ =
∑

j∈A qjδϕj
and K̃ = |A|.

(a) Π
(
K̃ = K0 | W

)
N→∞−−−−→ 1 in PG0-probability.

(b) For all δ > 0, Π
(
G ∈ G(Θ) :Wr(G̃,G0) ≤ δωN | W

)
N→∞−−−−→ 1 in PG0-probability.

Remark 6.4. To this theorem we add some comments on posterior consistency for the number of
components in BNP-GLLiM after the MTM algorithm post-processing.

(i) As a complementary result to [47], the aim of this paper is to study the practical viability of
MTM Algorithm 1 and Theorem 6.3 in the context of high-dimensional BNP-GLLiM. In order
to do this, we first need to specify the metric d in Θ, e.g., .

d
(
θτi ,θτj

)
= ∥µτi − µτj∥+

∥∥Vτi −Vτj

∥∥ . (6.8)

Here ∥·∥ denotes either the l2 norm elements in RL+D or the entrywise l2 norm for matrices in
R(L+D)×(L+D).

(ii) In practice, one may not have a mixing measure G sampled from the posterior Π (· | W), but
rather a sample of G itself. In particular, to deal with large data sets, we need to use VBEM.
Therefore, for example in BNP-GLLiM1, instead, we only obtain a sample FN from the vari-

ational posterior GV =
K∑
k=1

Eqµ [πk(µ)] δθk
. Here Eqτ [πk(τ )] and θk = (µk,Vk) are defined in

(4.3) and (4.1) respectively. However, as long as FN is sufficiently close to G in the sense that
Wr(FN , G) ≲ Wr(G,G0), we can still apply the MTM algorithm to FN instead. This requires
an extension of the above Theorem 6.3 to cover this scenario and verify this approximation
condition, which we leave for future work.
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7 Numerical experiments

7.1 Data generation

We illustrate our theoretical results on simulated datasets in a more general setting for the BNP
approach compared to those considered by [81, 82, 7]. More specifically, we consider the following true
inverse CPDF from GLLiM model as follows

s0
(
y | x;ψ0

)
=

K0∑
k=1

π0kNL

(
x | c0k,Γ

0
k

)∑K
j=1 π

0
lNL

(
x | c0l ,Γ

0
l

)ND

(
y | A0

kx+ b0
k,Σ

0
k

)
.

Here K0 = 3, L = D = 1, and ψ0 =
(
π0, c0,Γ0,A0,b0,Σ0

)
, where

π0 = (0.3, 0.4, 0.3), c0 = (1, 0.05,−1), Γ0 = (0.1, 0.2, 0.1),

A0 = (−15, 3, 15), b0 = (−2, 1,−2), Σ0 = (0.5, 0.3, 0.5).

Figure 3a shows typical N = 1000 realizations of the true inverse CPDF from GLLiM, representing a
π-shape simulation with three clusters without labels.
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(a) Typical realizations without labels.
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(b) True conditional expectations with labels.

Figure 3: Typical 1000 realizations of GLLiM’s true inverse CPDF with its true conditional
expectations.

7.2 Model selection, clustering and regression tasks via MTM-BNP-
GLLiM1

Our goal is to evaluate the inverse and forward CPDF, as well as the conditional means, to investigate
the empirical performance of our MTM-BNP-GLLiM1 in the previous simulation. In Figure 4 it is clear
that with the help of MTM Algorithm 1, MTM-BNP-GLLiM1 can perform regression, clustering and
model selection well simultaneously. Without the MTM procedure, BNP-GLLiM1 performs poorly
in model selection, clustering and CPDF estimation, except for conditional expectations as shown in
Figure 5.

Next, we illustrate the performance of the MTM algorithm when applied to the variational pos-
terior from BNP-GLLiM1. More specifically, the samples in our 100 trials are drawn from GV =
K∑
k=1

Eqµ [πk(µ)] δθk
, wherere Eqτ [πk(τ )] and θk = (µk,Vk) are defined in (4.3) and (4.1) respectively.

We know that for some constant C̃, which depends on the covariance matrix V0
k, the location

parameters µ0
k and the weights π0k, the contraction rate of mixing measures under the location Gaussian

DP-MM is C̃ (log(N))−1/2 with respect to the W2-norm. Similar to [47], our first attempt to choose

25



7.2 Model selection, clustering and regression tasks via MTM-BNP-GLLiM1
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(a) True and estimated inverse means.
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(b) True and estimated forward means.
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(c) Contour of estimated inverse CPDF.
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(d) Contour of estimated forward CPDF.
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(e) Contour of true inverse CPDF.
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Figure 4: True and estimated inverse and forward CPDF of GLLiM with a good number of
components (KMTM = 3) using MTM algorithm for post-processing in MTM-BNP-GLLiM1.
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7.2 Model selection, clustering and regression tasks via MTM-BNP-GLLiM1

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
X

−30

−25

−20

−15

−10

−5

0

5

Y

True and estimated inverse expectation N = 1000

Realization
True
Estimation

(a) True and estimated inverse means.
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(b) True and estimated forward means.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
X

−30

−25

−20

−15

−10

−5

0

5

Y

Contour of estimated inverse density N = 1000 + K_est = 15

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

p(
y_

ha
t|x

_h
at

,X
,Y

)

(c) Contour of estimated inverse CPDF.
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(d) Contour of estimated forward CPDF.

Figure 5: True and estimated inverse and forward means and CPDFs of GLLiM without MTM
algorithm for post-processing in BNP-GLLiM with truncated number of components K = 20.
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Figure 6: Histogram of KMTM using variational posterior sample with 100 trials and c = 0.45.

wN to satisfy (6.4) is wN =
(
log(log(N))

log(N)

)1/2
. In fact, we can choose any wN , as long as wN

log(N)−1/2 → ∞,

in order for wN to satisfy (6.4).
Since we only work with finite sample N , it is not expected that the posterior probability for

KMTM = K0 is close to 1 and the input c to Algorithm 1 should be chosen so that C̃

(log(log(N)))1/2
≤ c.

Furthermore, based on [47, Equation (26)] with a useful lower bound on the posterior mass the mode,

for any 1 > ϵ > 0, (1 − ϵ)

(
1−

∑3
k=1

c
r/2
0

π0
k

)
, we hope to identify K0 via the posterior mode with a

reasonable estimate. To guarantee K = K0 consistently using the posterior mode safety, we have to
choose c < c0, with c0 satisfying

(1− ϵ)

(
1−

3∑
k=1

c
r/2
0

π0k

)
>

1

2
⇔ 1− 2ϵ

2(1− ϵ)

(
3∑

k=1

1

π0k

)−1

> c
r/2
0 > cr/2. (7.1)

Therefore, we can choose 1− 2ϵ

4(1− ϵ)

(
3∑

k=1

1

π0k

)−1
2/r

= c0 > c, for all
1

2
> ϵ > 0. (7.2)

In particular, it is unrealistic to obtain the exact computation of the upper bound c0 and the lower

bound C̃

(log(log(N)))1/2
. However, a reasonable estimate may be possible. To this end, we followed the

same setting as in [47] to simplify such a complicated procedure by considering a large range of c,
and show that there is a range where we can robustly identify the true number of components via the
posterior mode. Here, c = 0.45 leads to a quite good posterior mode in our numerical experiments,
see more in Figure 6.

Although we do not have a theoretical result for the convergence rate of the variational posterior of
BNP-GLLiM to the true data generating process, Figure 6 seems to suggest that MTM-BNP-GLLiM1
gave a comparable good result to the location Gaussian DP-MM in the simulation studies in [47].

8 Perspectives

As indicated in Remark 6.4, there is a crucial need to formally establish general conditions on the
prior, the likelihood and the variational class to characterize the convergence rate of the variational
posterior of BNP-GLLiM to the true data generating process. Using the very similar “prior mass and
testing” conditions as in [83], we believe that an interesting but challenging extension from the work
of [84, variational posterior unconditional distributions for MM models] and [85, 86, 87, an adaptive
Bayesian estimation for MM and MoE but for true posterior distribution] can help shed some light
and answer this important question.
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Furthermore, it is important to establish an extensional convergence property of our VBEM algo-
rithm for BNP-GLLiM. This property is only known for GMM from [88]. A potential improvement
of the VBEM algorithm developed for BNP-GLLiM can be achieved by combining it with MCMC,
taking advantage of both inference approaches as in [89]. Then, it is also of interest to investigate
the performance of BNP-GLLiM on high-dimensional real-world datasets. Finally, as mentioned in
Section 7.2, the selection of a good data-driven tuning parameter c as the same idea from the slope
heuristic of [32] is crucial for the success of the MTM procedure for any BNP model. We leave these
interesting but challenging questions for future studies.

Appendix A Details of VBEM for BNP-GLLiM model

A.1 VB-E-τ step from Section 3.2.1

To achieve results from Section 3.2.1, we make use of (2.18), (2.23), (3.26), and are only interested in
the functional dependence of the right-hand side of (3.6) on the variable τk. Thus any terms that do
not depend on τk can be absorbed into the additive normalization constant, giving

qτk (τk) = exp

{
Eqα,σ [log p (τk | α, σ)] +

N∑
n=1

Eqznqτ\{k}
[log πzn (τ )]

}
+ constant

∝ exp

{
− Eqα,σ [σ] log τk +

[
Eqα,σ [α] + kEqα,σ [σ]− 1

]
log (1− τk)

+
N∑

n=1

qzn (k) log τk +
N∑

n=1

K∑
j=k+1

qzn(j) log (1− τk)

}
= Beta (τk | γ̂k,1, γ̂k,2) . (A.1)

Here,

γ̂k,1 = 1− Eqα,σ [σ] +

N∑
n=1

qzn (k) = 1− Eqσ [σ] +

N∑
n=1

qzn (k) , (A.2)

γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +

N∑
n=1

K∑
j=k+1

qzn(j) = Eqα,σ [α] + kEqα,σ [σ] +

K∑
j=k+1

N∑
n=1

qzn(j). (A.3)

Furthermore, we used the fact that

log p (τk | α, σ) = log [Beta (τk | 1− σ, α+ kσ)] = log

[
Γ(1− σ + kσ)

Γ(1− σ)Γ(α+ kσ)
τ1−σ−1
k (1− τk)

α+kσ−1

]
,

log πzn (τ ) = log

[
τzn

zn−1∏
l=1

(1− τl)

]
= log τzn +

zn−1∑
l=1

log (1− τl) ,

qτ\{k} (τl) =
K−1∏

i=1,i ̸=k

qτi (τl) , dτ\{k} =
K−1∏

i=1,i ̸=k

dτi. (A.4)

Finally, we have for k ∈ [K], let Nk =
∑N

n=1 qzn(k) correspond to the weight of cluster k, then

qτk (τk) = Beta (τk | γ̂k,1, γ̂k,2) , (A.5)

γ̂k,1 = 1− Eqα,σ [σ] +Nk, γ̂k,2 = Eqα,σ [α] + kEqα,σ [σ] +
K∑

l=k+1

Nl. (A.6)
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A.2 VB-E-(α, σ) step from Section 3.2.2

A.2 VB-E-(α, σ) step from Section 3.2.2

In the PY case, to achieve results from Section 3.2.2, we make use of (2.18), (2.17), (3.26), (3.27), and
are only interested in the functional dependence of the right-hand side of (3.6) to the variables (α, σ).
Thus, any terms that do not depend on (α, σ) can be included in the additive normalization constant.
This results in qα,σ(α, σ) being proportional to

q̃α,σ(α, σ) = p(α, σ | s1, s2, a) exp

{
E∏K−1

k=1 qτk

[
log

K−1∏
k=1

p (τk | α, σ)

]}

= p(α, σ | s1, s2, a)
K−1∏
k=1

Γ(1− σ + α+ kσ)

Γ(1− σ)Γ(α+ kσ)
exp

{
K−1∑
k=1

Eqτk
[−σ log τk + (α− 1 + kσ) log (1− τk)]

}

= p(α, σ | s1, s2, a)
1

Γ(1− σ)K−1

K−1∏
k=1

[α+ (k − 1)σ] Γ(α+ (k − 1)σ)

Γ(α+ kσ)

× exp

{
K−1∑
k=1

Eqτk
[−σ (log τk − k log (1− τk)) + (α− 1) log (1− τk)]

}

= p(α, σ | s1, s2, a)
1

Γ(1− σ)K−1

K−1∏
k=1

[α+ (k − 1)σ]

∏K−2
l=0 Γ(α+ lσ)∏K−1
k=1 Γ(α+ kσ)

× exp

{
K−1∑
k=1

Eqτk
[−σ (log τk − k log (1− τk)) + (α− 1) log (1− τk)]

}

= p(α, σ | s1, s2, a)
Γ(α)

Γ(1− σ)K−1Γ(α+ (K − 1)σ)

K−1∏
k=1

[α+ (k − 1)σ]

× exp

{
−σ

[
K−1∑
k=1

Eqτk
[log τk]−

K−1∑
k=1

kEqτk
[log (1− τk)]

]
+ (α− 1)

K−1∑
k=1

Eqτk
[log (1− τk)]

}
,

(A.7)

where we used the fact that Γ(x + 1) = xΓ(x). Except in the DP-GLLiM case, i.e., σ = 0, the

normalizing constant,
(∫
q̃α,σ(α, σ)d(α, σ)

)−1
, for q̃α,σ is not tractable. However, to perform VBEM

in Section 3.3, we do not need the full qα,σ distribution, but only the means Eqα,σ [α] and Eqα,σ [σ].
One solution, therefore, is to use importance sampling or MCMC to compute these expectations by
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A.2 VB-E-(α, σ) step from Section 3.2.2

means of Monte Carlo sums. Via utilizing the prior on (α, σ) given in (2.17), it holds that

q̃α,σ(α, σ) =
1

Γ(s1)
ss12 (α+ σ)s1−1 exp {−s2(α+ σ)} Γ(α)p(σ | a)

Γ(1− σ)K−1Γ(α+ (K − 1)σ)

K−1∏
k=1

[α+ (k − 1)σ]

× exp

{
−σ

[
K−1∑
k=1

Eqτk
[log τk]−

K−1∑
k=1

kEqτk
[log (1− τk)]

]
+ (α− 1)

K−1∑
k=1

Eqτk
[log (1− τk)]

}

=
1

Γ(s1)
ss12 (α+ σ)s1−1 exp

{
−

[
s2 −

K−1∑
k=1

Eqτk
[log (1− τk)]

]
(α+ σ)

}

× e−σξ exp

{
−

K−1∑
k=1

Eqτk
[log (1− τk)]

}
Γ(α)p(σ | a)

Γ(1− σ)K−1Γ(α+ (K − 1)σ)

K−1∏
k=1

[α+ (k − 1)σ]

=
1

Γ(s1)
(α+ σ)s1−1 exp

{
−

[
s2 −

K−1∑
k=1

Eqτk
[log (1− τk)]

]
(α+ σ)

}[
s2 −

K−1∑
k=1

Eqτk
[log (1− τk)]

]s1−s1

× e−σξ exp

{
−

K−1∑
k=1

Eqτk
[log (1− τk)]

}
Γ(α)p(σ | a)

Γ(1− σ)K−1Γ(α+ (K − 1)σ)

K−1∏
k=1

[α+ (k − 1)σ] ss12

∝ Gam(α+ σ | ŝ1, ŝ2) e−σξ Γ(α)p(σ | a)
Γ(1− σ)K−1Γ(α+ (K − 1)σ)

K−1∏
k=1

α+ (k − 1)σ

α+ σ
. (A.8)

Here, given that ψ(·) is the digamma function defined by ψ(z) = d
dz log Γ(z) =

Γ′(z)
Γ(z) , we have

ξ =
K−1∑
k=1

Eqτk
[log τk]−

K−1∑
k=1

(k − 1)Eqτk
[log (1− τk)] , (A.9)

Eqτk
[log τk] = ψ (γ̂k,1)− ψ (γ̂k,1 + γ̂k,2) , (A.10)

Eqτk
[log (1− τk)] = ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2) , (A.11)

ŝ1 = s1 +K − 1, ŝ2 = s2 −
K−1∑
k=1

[ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2)] . (A.12)

We propose to use the following important distribution ν(α, σ) = Gam (α+ σ | ŝ1, ŝ2) p(σ | a)
where p(σ | a) is the uniform distribution on [0, 1], denoted as U[0,1](σ). Then we obtain an expression
for the importance weights,

W (α, σ) =
q̃α,σ(α, σ)

ν(α, σ)
= e−σξ Γ(α)

Γ(1− σ)K−1Γ(α+ (K − 1)σ)

K−1∏
k=1

α+ (k − 1)σ

α+ σ
. (A.13)

The importance sampling scheme then consists of

• For m ∈ [M ], first simulate independently σm from U[0,1](σ) and then simulate conditionally αm

with the σm-shifted gamma G (σm, ŝ1, ŝ2). This later simulation is easily obtained by simulating
a standard γ (α′

m | ŝ1, ŝ2) and then subtracting σm from the result.

• Compute the importance weights wm =W (αm, αm).

• Approximate the means

Eqα,σ [α] ≃
M∑

m=1

wm∑M
i=1wi

αm, Eqα,σ [σ] ≃
M∑

m=1

wm∑M
i=1wi

σm. (A.14)
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A.3 VB-E-Z step from Sections 3.2.3 and 3.3.1

Note that this complication is due to the PY. In the DP-GLLiM case, by substituting σ = 0 in (A.8),
the E step is much simpler, as it reduces to computing the approximate posterior expectation of α,
namely

Eqα,0 [α] =
ŝ1
ŝ2
, qα,0 = Gam(α | ŝ1, ŝ2) . (A.15)

A.3 VB-E-Z step from Sections 3.2.3 and 3.3.1

In some situations, it is useful to use a 1-of-K binary vector zn to represent the latent variable zn
for each observation (yn,xn). To be more precise, we introduce a K-dimensional binary random
variable zn = (znk)k∈[K] ,K ≤ ∞, with a 1-of-K representation in which a particular element znk
is equal to 1, i.e., zn = k, and all other elements are equal to 0. The values of znk thus satisfy
znk ∈ {0, 1} and

∑
k∈[K] znk = 1, ∀n ∈ N⋆. If there is no confusion, we also denote Z as the latent

matrix Z = (znk)n∈[N ],k∈[K]. It is worth to mentioning that when using a 1-of-K representation of
zn, we can also write down marginal the conditional distributions of X and Y | X , corresponding to
(2.24) and (2.25), respectively, in the form

p (X | Z, c,Γ) =
N∏

n=1

K∏
k=1

NL (xn | ck,Γk)
znk , (A.16)

p (xn | c,Γ) =
K∑
k=1

pzn(k)NL (xn | ck,Γk) , pzn(k) ≡ p(zn = k) = πk(τ ), (A.17)

p (Y | X ,Z;A,b,Σ) =
N∏

n=1

K∏
k=1

ND (yn | Akxn + bk,Σk)
znk , (A.18)

p (yn | xn;A,b,Σ) =
K∑
k=1

pzn(k)NL (xn | ck,Γk)∑K
l=1 pzn(l)NL (xn | cl,Γl)

ND (yn | Akxn + bk,Σk) . (A.19)

The observations X and Y are therefore i.i.d. and generated from the same GMM (A.17) and infinite
GLLiM (A.18), respectively. Similarly, (2.23) can be written down in the form

p (Z | τ ) =
N∏

n=1

K∏
k=1

πk (τ )
znk . (A.20)

By using the decomposition (3.9), the representation (A.16), (A.18) and absorbing any terms that
are independent on Z into the additive normalization constant, we obtain

log qZ(Z) ≡ log q
(r)
Z (Z) = EqΘ

[
log p

(
Y | X ,Z; Â, b̂, Σ̂

)
p
(
X | Z; ĉ, Γ̂

)
p (Z | τ )

]
+ constant

∝ EqΘ

[
log p

(
Y | X ,Z; Â, b̂, Σ̂

)]
+ EqΘ

[
log p

(
X | Z; ĉ, Γ̂

)]
+ EqΘ [log p (Z | τ )]

=
N∑

n=1

K∑
k=1

znkEqΘ

[
logND

(
yn | Âkxn + b̂k, Σ̂k

)]
+

N∑
n=1

K∑
k=1

znkEqΘ

[
logNL

(
xn | ĉk, Γ̂k

)]
+ EqΘ

[
N∑

n=1

log (πzn (τ ))

]

=

N∑
n=1

K∑
k=1

znk logND

(
yn | Âkxn + b̂k, Σ̂k

)
+

N∑
n=1

K∑
k=1

znk logNL

(
xn | ĉk, Γ̂k

)
+

N∑
n=1

K∑
k=1

znkEqτ [log (πk (τ ))] =
N∑

n=1

K∑
k=1

znk log ρnk. (A.21)
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A.3 VB-E-Z step from Sections 3.2.3 and 3.3.1

Here, we used the fact that

log ρnk = logND

(
yn | Âkxn + b̂k, Σ̂k

)
+ logNL

(
xn | ĉk, Γ̂k

)
+ Eqτ [log (πk (τ ))]

= −D
2
log(2π)− 1

2
log
∣∣∣Σ̂k

∣∣∣− 1

2

(
yn − Âkxn − b̂k

)⊤
Σ̂

−1

k

(
yn − Âkxn − b̂k

)
− L

2
log(2π)− 1

2
log
∣∣∣Γ̂k

∣∣∣− 1

2
(xn − ĉk)

⊤ Γ̂
−1

k (xn − ĉk)

+ ψ(γ̂k,1)− ψ(γ̂k,1 + γ̂k,2) +

k−1∑
l=1

ψ(γ̂l,2)− ψ(γ̂l,1 + γ̂l,2). (A.22)

By taking exponential of both sides and taking into account the normalized constant, it holds that

qZ(Z) =
1∑K

l=1 ρnl

N∏
n=1

K∏
k=1

ρznk
nk =

N∏
n=1

K∏
k=1

rznk
nk , rnk =

ρnk∑K
l=1 ρnl

. (A.23)

Note also that zn = k if and only if the latent matrix Z reduces to a sparse matrix Znk which has
only one position different from 0, namely znk = 1. This leads to the following simplified notation:

log qzn (k) ≡ log qzn (zn = k) ≡ log qZ (Znk) = rnk. (A.24)

With respect to the VBEM for GT-BNP-GLLiM model from Section 3.3.1, it is almost similar to
the previous step, except that we have to take into account the randomness of c and Γ. Namely, we
have

qzn (zn) ∝ expEqΘ

[
log
(
p
(
yn | xn, zn; Âzn , b̂zn , Σ̂zn

)
p (xn | zn, czn ,Γzn) p(z | τ )

)]
= exp

{
log p

(
yn | xn, zn; Âzn , b̂zn , Σ̂zn

)
+ Eqθ∗zn

[log p (xn | zn, czn ,Γzn)] + Eqτ [log πzn(τ )]
}
.

(A.25)

Here, for zn = k, it holds that

Eqθ∗zn

[
log p

(
xn | zn, ĉzn , Γ̂zn

)]
= Eqθ∗zn

[
logNL

(
xn | ĉk, Γ̂k

)]
= −L

2
log(2π)− 1

2
EqΓk

[
log
∣∣∣Γ̂k

∣∣∣]− 1

2
Eqθ∗zn

[
(xn − ĉk)

⊤ Γ̂
−1

k (xn − ĉk)
]
,

where we used the fact that

EqΓk

[
log
∣∣∣Γ̂k

∣∣∣] = log

∣∣∣∣Ψ̂k

2

∣∣∣∣− L∑
l=1

ψ

(
ν̂k + (1− l)

2

)
,

Eqθ∗zn

[
(xn − ĉk)

⊤ Γ̂
−1

k (xn − ĉk)
]
= ν̂k(xn − m̂k)

⊤Ψ̂
−1

k (xn − m̂k) +
L

λ̂k
.

Plugging in all of the above expression back into (A.25) yields the desired results in Section 3.3.1.

A.3.1 Updating Σk

By using matrix derivatives, the derivative of the log likelihood with respect to Σ−1
k is given by

∂

∂Σ−1
k

f1

(
Âk,bk,Σ

−1
k

)
= −1

2

N∑
n=1

qzn(k)
∂

∂Σ−1
k

[
− log

∣∣Σ−1
k

∣∣+Tr
[
Σ−1⊤

k (yn −Akxn − bk) (yn −Akxn − bk)
⊤
]]

= −1

2

N∑
n=1

qzn(k)
[
−Σk + (yn −Akxn − bk) (yn −Akxn − bk)

⊤
]

=
Nk

2
Σk −

1

2

N∑
n=1

qzn(k) (yn −Akxn − bk) (yn −Akxn − bk)
⊤ . (A.26)
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A.4 VB-M-(c,Γ) step from Section 3.2.5

Finally, setting to zero yields

Σ̂k =
1

Nk

N∑
n=1

qzn(k)
(
yn − Âkxn − b̂k

)(
yn − Âkxn − b̂k

)⊤
. (A.27)

A.4 VB-M-(c,Γ) step from Section 3.2.5

This step divides into K sub-steps that involve the following optimizations(
ĉk, Γ̂k

)
≡
(
ĉ
(r)
k , Γ̂

(r)

k

)
= argmax

(ck,Γk)
E
q
(r)
Z

[log p (X | Z; ck,Γk)] . (A.28)

By definition, we have

E
q
(r)
Z

[log (p (X | Z; ck,Γk))]

= E
q
(r)
Z

[
log

N∏
n=1

NL (xn | ck,Γk)
znk

]

=
N∑

n=1

E
q
(r)
Z

[znk logNL (xn | ck,Γk)]

=
N∑

n=1

E
q
(r)
Z

[znk] logNL (xn | ck,Γk)

=
N∑

n=1

qzn(k) logNL (xn | ck,Γk)

=
N∑

n=1

qzn(k)

[
−L
2
log(2π)− 1

2
log |Γk| −

1

2
(xn − ck)

⊤ Γ−1
k (xn − ck)

]
≡ f2 (ck,Γk) . (A.29)

We aim to solve the following optimization(
ĉk, Γ̂k

)
= argmax

(ck,Γkk)
f2 (ck,Γk) . (A.30)

Similarly with Appendices A.3.1 and A.5.1, we obtain the following update:

ĉk =
1

Nk

N∑
n=1

qzn(k)xn,

Γ̂k =
1

Nk

N∑
n=1

qzn(k) (xn − ĉk) (xn − ĉk)
⊤ . (A.31)
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A.5 VB-M-(A,b,Σ) step from Section 3.2.6

A.5 VB-M-(A,b,Σ) step from Section 3.2.6

By definition, we have

E
q
(r)
Z

[log p (Y | X ,Z;Ak,bk,Σk)]

= E
q
(r)
Z

[
log

N∏
n=1

ND (yn | Akxn + bk,Σk)
znk

]

=
N∑

n=1

E
q
(r)
Z

[znk logND (yn | Akxn + bk,Σk)]

=
N∑

n=1

E
q
(r)
Z

[znk] logND (yn | Akxn + bk,Σk)

=
N∑

n=1

qzn(k) logND (yn | Akxn + bk,Σk)

=
N∑

n=1

qzn(k)

[
−D

2
log(2π)− 1

2
log |Σk| −

1

2
(yn −Akxn − bk)

⊤Σ−1
k (yn −Akxn − bk)

]
≡ f1 (Ak,bk,Σk) . (A.32)

We aim to solve the following optimization(
Âk, b̂k, Σ̂k

)
= argmax

(Ak,bk,Σk)
f1 (Ak,bk,Σk) . (A.33)

A.5.1 Updating bk

The derivative of the log likelihood with respect to bk is given by

∂

∂bk
f1 (Ak,bk,Σk) = −1

2

N∑
n=1

qzn(k)
∂

∂bk

[
(yn −Akxn − bk)

⊤Σ−1
k (yn −Akxn − bk)

]
= −

N∑
n=1

qzn(k)Σ
−1
k (yn −Akxn − bk)

∂

∂bk
(yn −Akxn − bk)

=

N∑
n=1

qzn(k)Σ
−1
k (yn −Akxn − bk) .

Setting this derivative to zero, we obtain the solution for VB-M-b step given by

N∑
n=1

qzn(k)Σ
−1
k (yn −Akxn − bk) = 0

⇔
N∑

n=1

qzn(k)Σ
−1
k (yn −Akxn)−

N∑
n=1

qzn(k)Σ
−1
k bk = 0

⇔
N∑

n=1

qzn(k) (yn −Akxn)−
N∑

n=1

qzn(k)bk = 0 (left multiplying by Σk)

⇔ bk =
1∑N

n=1 qzn(k)

N∑
n=1

qzn(k) (yn −Akxn) ≡
1

Nk

N∑
n=1

qzn(k) (yn −Akxn) . (A.34)
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A.5 VB-M-(A,b,Σ) step from Section 3.2.6

A.5.2 Updating Ak

The derivative of the log likelihood with respect to Ak is given by

∂

∂Ak
f1 (Ak,bk,Σk) = −1

2

N∑
n=1

qzn(k)
∂

∂Ak

[
(yn −Akxn − bk)

⊤Σ−1
k (yn −Akxn − bk)

]
= −

N∑
n=1

qzn(k)Σ
−1
k (yn −Akxn − bk)

∂

∂Ak
(yn −Akxn − bk)

=
N∑

n=1

qzn(k)Σ
−1
k (yn −Akxn − bk)x

⊤
n .

Then, we set this derivative w.r.t. Ak equal to zero, giving

N∑
n=1

qzn(k)Σ
−1
k (yn −Akxn − bk)x

⊤
n = 0

⇔
N∑

n=1

qzn(k) (yn −Akxn − bk)x
⊤
n = 0 (left multiplying by Σk)

⇔
N∑

n=1

qzn(k)ynx
⊤
n −

N∑
n=1

qzn(k)Akxnx
⊤
n −

N∑
n=1

qzn(k)bkx
⊤
n = 0

⇔
N∑

n=1

qzn(k)ynx
⊤
n −Ak

N∑
n=1

qzn(k)xnx
⊤
n − bk

N∑
n=1

qzn(k)x
⊤
n = 0

⇔ Ak

N∑
n=1

qzn(k)xnx
⊤
n =

N∑
n=1

qzn(k)ynx
⊤
n − 1

Nk

N∑
n=1

qzn(k) (yn −Akxn)

N∑
n=1

qzn(k)x
⊤
n (using (A.34) for bk)

⇔ Ak

N∑
n=1

qzn(k)xnx
⊤
n =

N∑
n=1

qzn(k)ynx
⊤
n − 1

Nk

N∑
n=1

qzn(k)yn

N∑
n=1

qzn(k)x
⊤
n +Ak

1

Nk

N∑
n=1

qzn(k)xn

N∑
n=1

qzn(k)x
⊤
n

⇔ Ak

N∑
n=1

qzn(k)xn

(
x⊤
n − 1

Nk

N∑
n=1

qzn(k)x
⊤
n

)
=

N∑
n=1

qzn(k)

(
yn − 1

Nk

N∑
n=1

qzn(k)yn

)
x⊤
n

⇔ NkAkXkX
⊤
k = NkYkX

⊤
k ⇔ Ak = YkX

⊤
k

(
XkX

⊤
k

)−1
.

Here, the last equality is obtained by firstly define the following quantities,

x̄k =
1

Nk

N∑
n=1

qzn(k)xn,

ȳk =
1

Nk

N∑
n=1

qzn(k)yn,

Xk =
1√
Nk

(√
qz1(k)(x1 − x̄k), . . . ,

√
qzN (k)(xN − x̄k)

)
L×N

,

Yk =
1√
Nk

(√
qz1(k)(y1 − ȳk), . . . ,

√
qzN (k)(yN − ȳk)

)
D×N

.
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Then, we used the fact that

N∑
n=1

qzn(k)xn

(
x⊤
n − 1

Nk

N∑
n=1

qzn(k)x
⊤
n

)
=

N∑
n=1

qzn(k)xn

(
x⊤
n − x̄⊤

k

)
=

N∑
n=1

qzn(k) (xn − x̄k) (xn − x̄k)
⊤ +

N∑
n=1

qzn(k)x̄k (xn − x̄k)
⊤

=
N∑

n=1

qzn(k) (xn − x̄k) (xn − x̄k)
⊤

= NkXkX
⊤
k , (A.35)

and

N∑
n=1

qzn(k)

(
yn − 1

Nk

N∑
n=1

qzn(k)yn

)
x⊤
n =

N∑
n=1

qzn(k) (yn − ȳk)x
⊤
n

=

N∑
n=1

qzn(k) (yn − ȳk) (xn − x̄k)
⊤ +

N∑
n=1

qzn(k) (yn − ȳk) x̄
⊤
k

=

N∑
n=1

qzn(k) (yn − ȳk) (xn − x̄k)
⊤

= NkYkX
⊤
k . (A.36)

Here, we used the fact that

N∑
n=1

qzn(k)x̄k (xn − x̄k)
⊤ =

N∑
n=1

qzn(k)x̄kx
⊤
n − x̄kNkx̄

⊤
k =

N∑
n=1

qzn(k)x̄kx
⊤
n −

N∑
n=1

qzn(k)x̄kx
⊤
n = 0,

N∑
n=1

qzn(k) (yn − ȳk) x̄
⊤
k =

N∑
n=1

qzn(k)ynx̄
⊤
k −Nkȳkx̄

⊤
k =

N∑
n=1

qzn(k)ynx̄
⊤
k −

N∑
n=1

qzn(k)ynx̄
⊤
k = 0,

(A.37)

and for each i, j ∈ [L], it holds that[
N∑

n=1

qzn(k) (xn − x̄k) (xn − x̄k)
⊤

]
ij

=
N∑

n=1

qzn(k)
[
(xn − x̄k) (xn − x̄k)

⊤
]
ij

=
N∑

n=1

qzn(k) [(xn − x̄k)]i1

[
(xn − x̄k)

⊤
]
1j

≡
N∑

n=1

qzn(k) [(xn − x̄k)]i [(xn − x̄k)]j

=

[(√
qz1(k)(x1 − x̄k), . . . ,

√
qzN (k)(xN − x̄k)

)]
i·

[(√
qz1(k)(x1 − x̄k), . . . ,

√
qzN (k)(xN − x̄k)

)]⊤
·j

= Nk

[
XkX

⊤
k

]
ij
. (A.38)

Appendix B Technical proofs

B.1 Proof of Lemma 6.2

For the sake of completeness, we highlighted the main techniques using for the proof of Lemma 6.2 in
this paper, see [1, Proposition 1] for more details. We first want to prove (6.6). Using the partition of
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B.2 Proof of Theorem 4.1

a joint Gaussian with xb ≡ x,µb = µ
x
k ,Σbb ≡ Vxx

k ,xa ≡ y,µa ≡ µy
k ,Σaa ≡ Vyy

k , we obtain

p (xa | xb) = N
(
xa | µa|b,Γ

−1
aa

)
, µa|b = µa − Γ−1

aa Γab (xb − µb) = µa −ΣabΣ
−1
bb (xb − µb) ,

p (xb) = N (xb | µb,Σbb) . (B.1)

Recall that

p (y | x, Z = k;ψ) = ND (y | Akx+ bk,Σk) ,

p (x | Z = k;ψ) = NL (x | ck,Γk) , p (Z = k;ψ) = πk. (B.2)

By identifying the parameters of (B.1) and (B.2), it holds that

πk = ρk

ck = µx
k ,

Γk = Vxx
k ,

Ak = −Γ−1
aa Γab = Vxy⊤

k (Vxx
k )−1 ,

bk = µa + Γ−1
aa Γabµb = µ

y
k −Vxy⊤

k (Vxx
k )−1µx

k , (B.3)

Σk = Γ−1
aa = Σaa −ΣabΣ

−1
bb Σba = Vyy

k −Vxy⊤
k (Vxx

k )−1Vxy
k . (B.4)

The following decomposition of the joint probability distribution will be used:

p (w | ψ) =
K∑
k=1

p (y | x, Z = k;ψ) p (X = x | Z = k;ψ) p (Z = k;ψ)

=
K∑
k=1

πkND (y | Akx+ bk,Σk)NL (x | ck,Γk)

≡
K∑
k=1

ρkNL+D (w | µk,Vk) . (B.5)

By using result for the joint Gaussian, see e.g., (B.11), we obtain the desired result (6.7).
Finally, Lemma 6.2 is proved via using the following two statements [1, Lemmas 1 and 2]:

(i) For any ρk ∈ R,µk ∈ RL+D, and Vk ∈ SL+D
+ , there is a set of parameters ck ∈ RL,Λk ∈ SL

+, πk ∈
R,Ak ∈ RD×L,bk ∈ RD,Σk ∈ SD

+ such that (6.6) holds.

(ii) Reciprocally, for any ck ∈ RL,Λk ∈ SL
+, πk ∈ R,Ak ∈ RD×L,bk ∈ RD,Σk ∈ SD

+ , there is a set of

parameters ρk ∈ R,µk ∈ RL+D and Vk ∈ SL+D
+ such that (6.7) holds.

B.2 Proof of Theorem 4.1

Recall that we defined Θ = (τ , α, σ). Then,

p (ŷ, x̂,X ,Y) =
∑
ẑ

∫
p (ŷ | x̂, ẑ,Θ,X ,Y) p (x̂ | ẑ,Θ,X ,Y) p (ẑ | Θ,X ,Y) p (Θ | X ,Y) dΘ

=
∑
ẑ

∫
p (ŷ | x̂, ẑ;A, b,Σ) p (x̂ | ẑ, c,Γ) p (ẑ | τ ;β) p (Θ | X ,Y) dΘ ≡ D1. (B.6)

Note that in (B.6), p (Θ | X ,Y) is in fact the (unknown) true posterior distribution of the parameters
given a sample (X ,Y). Because the integrations w.r.t. true posterior distribution are intractable, we
approximate the predictive conditional density by replacing the true posterior distribution p (Θ | X ,Y)
with its truncated variational posterior of parameters Θ given by

qΘ(Θ | X ,Y) = qα,σ(α, σ | X ,Y)

K−1∏
k=1

qτk (τk | X ,Y) . (B.7)
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B.2 Proof of Theorem 4.1

Recall that the infinite state space for each zj is dealt with by choosing a truncation of the state space
to a maximum label K [60]. In practice, this consists of assuming that the variational distributions
qzn for n ∈ [N ], satisfy qzn(k) = 0 for k > K and that the variational distribution on τ also factorizes
as qτ (τ ) =

∏K−1
k=1 qτk (τk) with the additional condition that τK = 1. In particular, here we choose

K = K̂ where K̂ is estimated from some suitable procedures.
For simplicity, we consider the case when β = 0, σ = 0. Then we have

D1 ≈
∑
ẑ

∫
p
(
ŷ | x̂, ẑ; Â, b̂, Σ̂

)
p
(
x̂ | ẑ, ĉ, Γ̂

)
p (ẑ | τ ) qΘ(Θ | X ,Y)dΘ

=
∞∑
k=1

∫
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
NL

(
x̂ | ĉk, Γ̂k

)
πk(τ )qΘ(Θ | X ,Y)dΘ

≈
K∑
k=1

NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)∫
πk(τ )qΘ(Θ | X ,Y)dΘ

=
K∑
k=1

NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)∫
πk(τ )qτ (τ | X ,Y)dτ

∫
qα,0(α | X ,Y)dα︸ ︷︷ ︸

=1

=

K∑
k=1

Eqτ [πk(τ )]NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
≡

K∑
k=1

Eqτ [πk (τ )]NL+D (ŵ | E [w] , cov [w])

=

K∑
k=1

Eqτk
[τk]

k−1∏
l=1

Eqτl
[1− τl]NL+D (ŵ | E [w] , cov [w]) .

Here, by defining ŵ ≡ [x̂; ŷ], we used the fact that,

E [w] =

(
ĉk

Âkĉk + b̂k

)
, cov [w] =

(
Γ̂k Γ̂kÂ

⊤
k

ÂkΓ̂k Σ̂k + ÂkΓ̂kÂ
⊤
k

)
. (B.8)

Indeed, we made use of the following result for the joint Gaussian, see, e.g., [67, Eq. (2.115), page
93]. Given a marginal Gaussian distribution for x and a conditional Gaussian distribution for y given
x in the form

p(x) = N
(
x | µ,Γ−1

)
, (B.9)

p(y | x) = N
(
y | Ax+ b,L−1

)
, (B.10)

then the joint distribution of w ≡ [x;y] is given by

p(w) = N (w | E [w] , cov [w]) , where

cov [w] =

(
Γ−1 Γ−1A⊤

AΓ−1 L−1 +AΓ−1A⊤

)
, E [w] =

(
µ

Aµ+ b

)
. (B.11)

In our situation, the desired result is obtained via using y ≡ ŷ,A ≡ Âk,b ≡ b̂k,L
−1 = Σ̂k, x ≡

x̂,µ ≡ ĉk,Γ
−1 ≡ Γ̂k.
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B.3 Proof of Theorem 4.2

Furthermore, we also used the fact that

Eqτ [πk (τ )] =

∫
τkqτk (τk | X ,Y) dτk

∫ k−1∏
l=1

(1− τl)
K−1∏

j=1,j ̸=k

qτj (τj | X ,Y)
K∏

j=1,j ̸=k

dτj

= Eqτk
[τk]

∫ k−1∏
l=1

(1− τl)
k−1∏
j=1

qτj (τj | X ,Y)

∫ K−1∏
j=k+1

qτj (τj | X ,Y)
K−1∏
j=k+1

dτj︸ ︷︷ ︸
=1

k−1∏
j=1

dτj

= Eqτk
[τk]

k−1∏
l=1

∫
(1− τl) qτl (τl | X ,Y) dτl

= Eqτk
[τk]

k−1∏
l=1

Eqτl
[1− τl] . (B.12)

Next, we aim to prove that

K∑
k=1

Eqτ [πk (τ )] = 1. (B.13)

Indeed, recall that we have defined

τk | α, σ ind∼ Beta (τk | 1− σ, α+ kσ) , k ∈ N⋆, (B.14)

πk(τ ) = τk

k−1∏
l=1

(1− τl) , k ∈ N⋆, (B.15)

p (Z | τ ;β) ∝

(
N∏

n=1

πzn (τ )

)
exp

(
β
∑
m∼n

δ(zm=zn)

)
, (B.16)

and to deal with the infinite state space for each zj , we considered a truncation of the state space to a
maximum label K ≡ Kmax,Kmax ∈ N⋆ [60]. In practice, this consists of assuming that the variational
distributions qzn for n ∈ [N ], satisfy qzn(k) = 0 for k > K and that the variational distribution on
τ also factorizes as qτ (τ ) =

∏K−1
k=1 qτk (τk) with the additional condition that τK = 1. Based on the

proof from [42, Lemma 3.4], it holds that a necessary and sufficient condition to guarantee that these
πk’s sum to 1 almost surely, i.e.,

∞∑
k=1

πk(τ ) =

∞∑
k=1

τk

k−1∏
l=1

(1− τl) = 1, (B.17)

is that the expectation E
[∏k−1

l=1 (1− τl)
]
tends to 0 as k tends to ∞. In particular, if τ1, τ2, . . . are

i.i.d., e.g., when σ = 0, it suffices that p (τ1 > 0) > 0. Then

1 = Eqτ

[ ∞∑
k=1

πk(τ )

]
=

∞∑
k=1

Eqτ [πk(τ )] =
K∑
k=1

Eqτ [πk(τ )] .

B.3 Proof of Theorem 4.2

From the product rule of probability, we see that this conditional distribution can be evaluated from the
joint and marginal distributions. Furthermore, by integrating out ẑ and Θ, the predictive conditional
density is then given by

p (ŷ | x̂,X ,Y) =
p (ŷ, x̂ | X ,Y)

p (x̂ | X ,Y)
=

∑
ẑ

∫
p (ŷ, x̂, ẑ,Θ | X ,Y) dẑdΘ∑

ẑ

∫
p (x̂, ẑ,Θ | X ,Y) dẑdΘ

≡ D1

D2
. (B.18)
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B.4 Proof of Theorem 4.3

Next, with a similar step as in the proof of Theorem 4.1, we also obtain

D2 ≈
K∑
k=1

Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)
. (B.19)

Therefore, we obtain

p (ŷ | x̂,X ,Y)

≈

∑K
k=1 Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
∑K

k=1 Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)
=

K∑
k=1

Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)
∑K

k=1 Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)

≡
K∑
k=1

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
, (B.20)

which is a mixture of Gaussian experts since we have

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
=

Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

)
∑K

k=1 Eqτ [πk (τ )]NL

(
x̂ | ĉk, Γ̂k

) , k ∈ [K], (B.21)

belongs to a K − 1 dimensional probability simplex.

B.4 Proof of Theorem 4.3

To deal with high-dimensional regression data, namely high-to-low regression, given the inverse con-
ditional density p(ŷ | x̂,X ,Y), we want to compute the following forward conditional density

p(x̂ | ŷ,X ,Y) =
p(x̂, ŷ | X ,Y)

p(ŷ | X ,Y)
=

p(x̂, ŷ | X ,Y)∫
x̂ p(x̂, ŷ | X ,Y)dx̂

=
D1∫

x̂D1(x̂)dx̂
≡ D1

D3
. (B.22)

Then, we have to compute or approximate D3. Using Theorem 4.1, we obtain

D3 ≈
K∑
k=1

Eqτ [πk (τ )]

∫
NL

(
x̂ | ĉk, Γ̂k

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
dx̂

=
K∑
k=1

Eqτ [πk (τ )]ND

(
ŷ | Âkĉk + b̂k, Σ̂k + ÂkΓ̂kÂ

⊤
k

)
.

Indeed, we made use of the following results for marginal and conditional Gaussians, see, e.g., [67,
Eq. (2.115), page 93]. Given a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N
(
x | µ,Γ−1

)
, (B.23)

p(y | x) = N
(
y | Ax+ b,L−1

)
, (B.24)

then the marginal distribution of y and the conditional distribution of x given y are given by

p(y) =

∫
p(y | x)p(x)dx = N

(
y | Aµ+ b,L−1 +AΓ−1A⊤

)
, (B.25)

p(x | y) = N
(
x | Σ

[
A⊤L(y − b) + Γµ

]
,Σ
)
,Σ =

(
Γ+A⊤LA

)−1
. (B.26)
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B.4 Proof of Theorem 4.3

In our situation, the desired result is obtained via using y ≡ ŷ,A ≡ Âk,b ≡ b̂k,L
−1 = Σ̂k, x ≡

x̂,µ ≡ ĉk,Γ
−1 ≡ Γ̂k.

Finally, we obtain

p (x̂ | ŷ,X ,Y)

≈
K∑
k=1

Eqτ [πk (τ )]ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
NL

(
x̂ | ĉk, Γ̂k

)
∑K

k=1 Eqτ [πk (τ )]ND

(
ŷ | Âkĉk + b̂k, Σ̂k + ÂkΓ̂kÂ

⊤
k

)
=

K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
, (B.27)

where

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
=

Eqτ [πk (τ )]ND

(
ŷ | ĉ∗k, Γ̂

∗
k

)
∑K

k=1 Eqτ [πk (τ )]ND

(
ŷ | ĉ∗k, Γ̂

∗
k

) . (B.28)

Here, we used the fact that p(ŷ, x̂ | ẑ = k) = p(x̂ | ŷ, ẑ = k)p(ŷ | ẑ = k), namely,

ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
NL

(
x̂ | ĉk, Γ̂k

)
= NL

(
x̂ | Σ̂

∗
k

[
Â⊤

k Σ̂
−1

k (ŷ − b̂k) + Γ̂
−1

k ĉk

]
, Σ̂

∗
k

)
ND

(
ŷ | Âkĉk + b̂k, Σ̂k + ÂkΓ̂kÂ

⊤
k

)
= NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
ND

(
ŷ | ĉ∗k, Γ̂

∗
k

)
,

with

Σ̂
∗
k =

(
Γ̂
−1

k + Â⊤
k Σ̂

−1

k Âk

)−1
,

Â∗
k = Σ̂

∗
kÂ

⊤
k Σ̂

−1

k ,

b̂∗
k = Σ̂

∗
k

[
Γ̂
−1

k ĉk − Â⊤
k Σ̂

−1

k b̂k

]
,

ĉ∗k = Âkĉk + b̂k,

Γ̂
∗
k = Σ̂k + ÂkΓ̂kÂ

⊤
k . (B.29)

When required, it is straightforward to approximate the expectation and covariance matrix of x̂ |
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B.5 Proof of Theorem 4.4

ŷ,X ,Y as follows:

E [x̂ | ŷ,X ,Y] ≈
∫

(x̂ | ŷ,X ,Y)
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
dx̂

=

K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)∫
(x̂ | ŷ,X ,Y)NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
dx̂

=
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)(
Â∗

kŷ + b̂∗
k

)
,

var [x̂ | ŷ,X ,Y] = E
[
(x̂ | ŷ,X ,Y) (x̂ | ŷ,X ,Y)⊤

]
− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤

≈
∫

(x̂ | ŷ,X ,Y) (x̂ | ŷ,X ,Y)⊤
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
dx̂

− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤

≈
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)∫
(x̂ | ŷ,X ,Y) (x̂ | ŷ,X ,Y)⊤NL

(
x̂ | Â∗

kŷ + b̂∗
k, Σ̂

∗
k

)
dx̂

− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤

≈
K∑
k=1

gk

(
ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)[
Σ̂

∗
k +

(
Â∗

kŷ + b̂∗
k

)(
Â∗

kŷ + b̂∗
k

)⊤]
− E (x̂ | ŷ,X ,Y)E (x̂ | ŷ,X ,Y)⊤ ,

where we used the following definitions

cov (X,Y) = E
(
XY⊤

)
− E (X)E (Y)⊤ , var (X) = cov (X,X) .

B.5 Proof of Theorem 4.4

Recall that we defined Θ = (τ , α, σ,θ∗), θ∗ = (θ∗k)k∈N⋆ := (ck,Γk)k∈N⋆ . Then,

p (ŷ, x̂,X ,Y) =
∑
ẑ

∫
p (ŷ | x̂, ẑ,Θ,X ,Y) p (x̂ | ẑ,Θ,X ,Y) p (ẑ | Θ,X ,Y) p (Θ | X ,Y) dΘ

=
∑
ẑ

∫
p (ŷ | x̂, ẑ;A, b,Σ) p (x̂ | ẑ, c,Γ) p (ẑ | τ ;β) p (Θ | X ,Y) dΘ ≡ T1. (B.30)

Note that in (B.30), p (Θ | X ,Y) is in fact the (unknown) true posterior distribution of the parameters
given a sample (X ,Y). Because the integrations w.r.t. true posterior distribution are intractable, we
approximate the predictive conditional density by replacing the true posterior distribution p (Θ | X ,Y)
with its truncated variational posterior of parameters Θ given by

qΘ(Θ | X ,Y) = qα,σ(α, σ | X ,Y)
K−1∏
k=1

qτk (τk | X ,Y)
K∏
k=1

qθ∗
k
(θ∗k | X ,Y) . (B.31)

Recall that the infinite state space for each zj is dealt with by choosing a truncation of the state space
to a maximum label K [60]. In practice, this consists of assuming that the variational distributions
qzn for n ∈ [N ], satisfy qzn(k) = 0 for k > K and that the variational distribution on τ also factorizes
as qτ (τ ) =

∏K−1
k=1 qτk (τk) with the additional condition that τK = 1. In particular, here we choose

K = K̂ where K̂ is estimated from some suitable procedures.
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B.5 Proof of Theorem 4.4

For simplicity, we consider the case when β = 0, σ = 0. Then, we obtain

T1 ≈
∑
ẑ

∫
p (ŷ | x̂, ẑ;A, b,Σ) p (x̂ | ẑ, c,Γ) p (ẑ | τ ) qΘ(Θ | X ,Y)dΘ

=

∞∑
k=1

∫
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
NL (x̂ | ck,Γk)πk(τ )qΘ(Θ | X ,Y)dΘ

≈
K∑
k=1

∫
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
NL (x̂ | ck,Γk)

∫
πk(τ )qτ (τ | X ,Y) dτ

×
∫
qα,0(α | X ,Y)dα︸ ︷︷ ︸

=1

K∏
k=1

qθ∗
k
(ck,Γk | X ,Y) dcdΓ

=
K∑
k=1

Eqτ [πk (τ )]ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)∫
NL (x̂ | ck,Γk) qθ∗

k
(ck,Γk | X ,Y) dckdΓk

×
∫ K∏

j=1,j ̸=k

qθ∗
j
(cj ,Γj | X ,Y)

K∏
j=1,j ̸=k

dcjdΓj︸ ︷︷ ︸
=1

=
K∑
k=1

Eqτk
[πk (τ )]ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)∫
NL (x̂ | ck,Γk) qθ∗

k
(ck,Γk | X ,Y) dckdΓk︸ ︷︷ ︸

=St(x̂|m̂k,Lk,ν̂k+1−L)(Lemma B.1)

=
K∑
k=1

Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
. (B.32)

Here we used the following Lemma B.1

Lemma B.1. For each k ∈ [K], it holds that∫
NL (x̂ | ck,Γk) qθ∗

k
(ck,Γk | X ,Y) dckdΓk = St (x̂ | m̂k,Lk, ν̂k + 1− L) . (B.33)

B.5.1 Proof of Theorem B.1

By definition, we obtain∫ ∫
NL

(
x̂ | ck,Γ−1

k

)
q(π | X )q (ck,Γk | X ) dckdΓk

=

∫ ∫
NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)
W
(
Γk | Ψ̂k, ν̂k,X

)
dckdΓk

=

∫
NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)
W
(
Γk | Ψ̂k, ν̂k,X

)
dckdΓk

=

∫ [∫
NL

(
x̂ | ck,Γ−1

k

)
NL

(
ck | m̂k,

(
λ̂kΓk

)−1
,X
)
dck

]
W
(
Γk | Ψ̂k, ν̂k,X

)
dΓk

=

∫
NL

(
x̂ | m̂k,

(
1 + λ̂−1

k

)
Γ−1
k ,X

)
W
(
Γk | Ψ̂k, ν̂k,X

)
dΓk. (B.34)

When the size of the data set is large, i.e., N → ∞ , this predictive distribution (B.34) becomes a
mixture of Gaussians with component means m̂k and precisions Lk. In particular, we made use of the
following results for marginal and conditional Gaussians, see, e.g., [67, Eq. (2.115), page 93]. Given
a marginal Gaussian distribution for x and a conditional Gaussian distribution for y given x in the
form

p(x) = N
(
x | µ,Γ−1

)
, (B.35)

p(y | x) = N
(
y | Ax+ b,L−1

)
, (B.36)
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B.5 Proof of Theorem 4.4

then the marginal distribution of y and the conditional distribution of x given y are given by

p(y) = N
(
y | Aµ+ b,L−1 +AΓ−1A⊤

)
, (B.37)

p(x | y) = N
(
x | Σ

{
A⊤L(y − b) + Γµ

}
,Σ
)
, (B.38)

where

Σ =
(
Γ+A⊤LA

)−1
. (B.39)

In our situation, via using y ≡ x̂,x ≡ ck,A ≡ I,b ≡ 0,L−1 = Γ−1
k ,µ ≡ m̂k,Γ

−1 ≡
(
λ̂kΓk

)−1
, we

obtain

p
(
x̂|Γ−1

k ,X
)
=

∫
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(
x̂ | ck,Γ−1
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)
NL

(
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(
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)
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(
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−1
k +

(
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)−1
,X
)
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(
x̂ | m̂k,

(
1 + λ̂k

λ̂k

)
Γ−1
k ,X

)
. (B.40)

Notice that the Wishart distribution is a conjugate prior for the Gaussian distribution with known
mean and unknown precision. Therefore, it holds that the product of

NL

(
x̂ | m̂k,

(
1 + λ̂−1

k

)
Γ−1
k ,X

)
W
(
Γk | Ψ̂k, ν̂k,X

)
is again a Wishart distribution without normalized. This can be verified by focusing on the depen-
dency on Γk. More precisely, by using the trace trick of quadratic form, (x̂− m̂k)

⊤ Γk (x̂− m̂k) =

Tr
(
(x̂− m̂k) (x̂− m̂k)

⊤ Γk

)
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k

)−1
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⊤ + Ψ̂
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Ψ̂k, ν̂k, λ̂k
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∗
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∗
k) . (B.41)
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B.5 Proof of Theorem 4.4

Here, ν̂∗k = ν̂k + 1, and

Ψ∗
k =

[(
1 + λ̂−1

k

)−1
(x̂− m̂k) (x̂− m̂k)

⊤ + Ψ̂
−1
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∣∣∣∣Ψ̂−1

k

[(
1 + λ̂−1

k

)−1
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. (B.42)

Via using the normalization constant we have∫
NL

(
x̂ | m̂k,
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k
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k ,X

)
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Here,

Lk =
(ν̂k + 1− L) λ̂k

1 + λ̂k
Ψ̂k, (B.44)

and ∆2 is the squared Mahalanobis distance defined by

∆2 = (x̂− m̂k)
⊤ Lk (x̂− m̂k) . (B.45)
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B.6 Proof of Theorem 4.5

Then, the last equality holds since we have

St (x̂ | m̂k,Lk, ν̂k + 1− L) =
Γ
(
ν̂k+1−L

2 + L
2

)
Γ
(
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k
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⊤ Ψ̂k (x̂− m̂k)(
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. (B.46)

B.6 Proof of Theorem 4.5

From the product rule of probability, we see that this conditional distribution can be evaluated from the
joint and marginal distributions. Furthermore, by integrating out ẑ and Θ, the predictive conditional
density is then given by

p (ŷ | x̂,X ,Y) =
p (ŷ, x̂ | X ,Y)

p (x̂ | X ,Y)
=

∑
ẑ

∫
p (ŷ, x̂, ẑ,Θ | X ,Y) dẑdΘ∑

ẑ

∫
p (x̂, ẑ,Θ | X ,Y) dẑdΘ

≡ T1
T2
. (B.47)

Next, with a similar step as in the proof of Theorem 4.4, we also obtain

T2 =
K∑
k=1

Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L) . (B.48)

Therefore, we obtain

p (ŷ | x̂,X ,Y)

≈

∑K
k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
∑K

k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)

=
K∑
k=1

Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)∑K
k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)

ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
≡

K∑
k=1

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
ND

(
ŷ | Âkx̂+ b̂k, Σ̂k

)
, (B.49)

which is a mixture of Gaussian experts since we have

gk

(
x̂ | Θ̂, ϕ̂,X ,Y

)
=

Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)∑K
k=1 Eqτ [πk (τ )] St (x̂ | m̂k,Lk, ν̂k + 1− L)

, k ∈ [K], (B.50)

belongs to a K − 1 dimensional probability simplex.

B.7 Proof of Theorem 4.6

To deal with high-dimensional regression data, namely high-to-low regression, given the inverse con-
ditional density p(ŷ | x̂,X ,Y), we want to compute the following forward conditional density

p(x̂ | ŷ,X ,Y) =
p(x̂, ŷ | X ,Y)

p(ŷ | X ,Y)
=

p(x̂, ŷ | X ,Y)∫
x̂ p(x̂, ŷ | X ,Y)dx̂

=
T1∫

x̂ T1(x̂)dx̂
≡ T1
T3
. (B.51)
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B.7 Proof of Theorem 4.6

Then, we have to compute or numerically approximate D3. Using Theorem 4.4 and definition of
Student’s t-distribution, we obtain

T3 =
K∑
k=1

Eqτ [πk (τ )]Dk. (B.52)

Then, by definition of Student’s t-distribution, it holds that

Dk =

∫
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−1
k Â⊤
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2
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dη.

Furthermore, we used the fact that∫
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(
ŷ | Âkx̂+ b̂k, Σ̂k

)
NL

(
x̂ | m̂k, (ηLk)

−1
)
dx̂ = ND

(
ŷ | Âkm̂k + b̂k, Σ̂k + Âk (ηLk)

−1 Â⊤
k

)
.

Indeed, we made use of the following results for marginal and conditional Gaussians, see, e.g., [67,
Eq. (2.115), page 93]. Given a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N
(
x | µ,Γ−1

)
, (B.53)

p(y | x) = N
(
y | Ax+ b,L−1

)
, (B.54)

then the marginal distribution of y and the conditional distribution of x given y are given by

p(y) =

∫
p(y | x)p(x)dx = N

(
y | Aµ+ b,L−1 +AΓ−1A⊤

)
, (B.55)

p(x | y) = N
(
x | Σ

{
A⊤L(y − b) + Γµ

}
,Σ
)
,Σ =

(
Γ+A⊤LA

)−1
. (B.56)

In our situation, the desired result is obtained via using y ≡ ŷ,A ≡ Âk,b ≡ b̂k,L
−1 = Σ̂k, x ≡

x̂,µ ≡ m̂k,Γ
−1 ≡ (ηLk)

−1.
Therefore, we obtain
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k(η)ŷ + b̂∗
k(η), Σ̂

∗
k(η)

)
Gam

(
η | ν̂k+1−L

2 , ν̂k+1−L
2

)
dη∑K

k=1 Eqτ [πk (τ )]
∫∞
0 ND

(
ŷ | ĉ∗k, Γ̂
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B.8 Proof of Theorem 5.1

where, for all k ∈ [K], i ∈ [I],

gki
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ŷ | Θ̂

∗
, ϕ̂

∗
,X ,Y

)
=

Eqτ [πk (τ )]ND

(
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Here, we used the fact that p(ŷ, x̂ | ẑ = k) = p(x̂ | ŷ, ẑ = k)p(ŷ | ẑ = k), namely,
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k (ŷ − b̂k) + ηLkm̂k

]
, Σ̂

∗
k

)
ND

(
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[
ηLkm̂k − Â⊤

k Σ̂
−1

k b̂k

]
,

ĉ∗k = Âkm̂k + b̂k,

Γ̂
∗
k(η) = Σ̂k + Âk (ηLk)

−1 Â⊤
k .

The last approximation is deduced by using the fact that one simplistic strategy for evaluating integra-
tion would be to discretize η-space (1-dimensional) into a uniform grid and to evaluate the integrand
as a Riemann integral with a truncated value 0 < Uη < ∞ and a number of point I ∈ N⋆ for
approximating the integration.

B.8 Proof of Theorem 5.1

Using the sum and product rules for both discrete and continuous variables, the ELBO in BNP-GLLiM
(3.4) is given by

F
(
qZ , qΘ, ϕ̂

)
= EqZqΘ

[
log

p(Y,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]
≡ E

[
log

p(Y,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]

=
∑
Z

∫ ∫ ∫
q(Z)q(Θ) log

[
p(Y,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]
dZdΘ

= E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)]− E [log q(Θ)] . (B.57)

Next, we evaluate the various terms in the ELBO (B.57).
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Proof of (5.2)

Via the mean field approximation and the truncation, we have the following computations.

E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
= E

[
log

N∏
n=1

p
(
yn | xn, zn,Θ; ϕ̂

)]

= E

[
log

N∏
n=1

K∏
k=1

ND

(
yn | Âkxn + b̂k, Σ̂k

)znk

]

=

N∑
n=1

K∑
k=1

E
[
znk logND

(
yn | Âkxn + b̂k, Σ̂k

)]
=

N∑
n=1

K∑
k=1

EqZ [znk] logND

(
yn | Âkxn + b̂k, Σ̂k

)
=

N∑
n=1

K∑
k=1

qzn(k) logND

(
yn | Âkxn + b̂k, Σ̂k

)
, (B.58)

where

logND

(
yn | Âkxn + b̂k, Σ̂k

)
= −D

2
log(2π)− 1

2
log
∣∣∣Σ̂k

∣∣∣− (yn − Âkxn − b̂k)
⊤Σ̂

−1

k (yn − Âkxn − b̂k).

(B.59)

Proof of (5.3)

Similarly, we obtain

E
[
log p(X | Z,Θ; ϕ̂)

]
= E

[
log

N∏
n=1

p
(
xn | zn,Θ; ϕ̂

)]

= E

[
log

N∏
n=1

K∏
k=1

NL

(
xn | ĉk, Γ̂k

)znk

]

=

N∑
n=1

K∑
k=1

E
[
znk logNL

(
xn | ĉk, Γ̂k

)]
=

N∑
n=1

K∑
k=1

EqZ [znk] logNL

(
xn | ĉk, Γ̂k

)
=

N∑
n=1

K∑
k=1

qzn(k) logNL

(
xn | ĉk, Γ̂k

)
, (B.60)

where

logNL

(
xn | ĉk, Γ̂k

)
= −L

2
log(2π)− 1

2
log
∣∣∣Γ̂k

∣∣∣− 1

2
(xn − ĉk)⊤ Γ̂

−1

k (xn − ĉk) . (B.61)

Proof of (5.4)

Via calculation, it follows the expressions of the following quantities,

Eqτk
[log (τk)] = ψ (γ̂k,1)− ψ (γ̂k,1 + γ̂k,2) ,

Eqτk
[log (1− τk)] = ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2) . (B.62)
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When β = 0, via using (B.62), it holds that

E
[
log p(Z | Θ; ϕ̂)

]
= E

[
log

N∏
n=1

K∏
k=1

[πk(τ )]
znk

]

=
N∑

n=1

K∑
k=1

EqZ [znk]EqΘ

[
log

[
τk

k−1∏
l=1

(1− τl)

]]

=

K∑
k=1

N∑
n=1

qznk

[
Eqτk

[log τk] +

k−1∑
l=1

Eqτl
[log (1− τl)]

]

=

K∑
k=1

Nk

[
Eqτk

[log τk] +

k−1∑
l=1

Eqτl
[log (1− τl)]

]
(B.63)

=
K∑
k=1

Nk

[
ψ (γ̂k,1)− ψ (γ̂k,1 + γ̂k,2) +

k−1∑
l=1

[ψ (γ̂l,2)− ψ (γ̂l,1 + γ̂l,2)]

]
.

When β ̸= 0, it holds that

p(Z; β̂,π) = C(τ , β̂)

(
N∏

n=1

πzn

)
exp

(
β̂
∑
m∼n

δ(zm=zn)

)
, (B.64)

where C denotes the normalizing constant that depends on τ and β̂. Unfortunately, due to the
intractable normalizing constant C, it is necessary to evaluate the terms involving p(Z; β̂,π) in ap-
proximate manner.

Proof of (5.5)

Given a chosen truncated value K ∈ N⋆, it holds that

EqΘ

[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

EqΘ [log p (τk | α, σ)] + EqΘ [log p (α, σ | ŝ1, ŝ2, â)] .

Here, we have

EqΘ [log p (τk | α, σ)] = EqΘ [log Beta (τk | 1− σ, α+ kσ)]

= EqΘ

[
log τ−σ

k (1− τk)
α+kσ−1 + logC(α, σ)

]
,

= −Eqα,σ [σ]Eqτk
[log τk] + Eqα,σ [α+ kσ − 1]Eqτk

[log(1− τk)] + Eqα,σ [logC(α, σ)] .

where we have defined

C(α, σ) =
Γ(1− σ + α+ kσ)

Γ(1− σ)Γ(α+ kσ)
.

Next, for the sake of simplicity, we use for σ a uniform prior U[0,1](σ) so that parameter a does
not have to be taken into account. Then it holds that

EqΘ [log p (α, σ | ŝ1, ŝ2)] = Eqα,σ [logGam (α+ σ | ŝ1, ŝ2)] + Eqα,σ

[
logU[0,1](σ)

]
= log

[
1

Γ (ŝ1)
ŝŝ12

]
+ (ŝ1 − 1)Eqα,σ [log (α+ σ)]− ŝ2Eqα,σ [α+ σ]

= log

[
1

Γ (ŝ1)
ŝŝ12

]
+ (ŝ1 − 1)Eqα,σ [log (α+ σ)]− ŝ2Eqα,σ [α+ σ] .

When σ ̸= 0, the normalizing constant for qα,σ(α, σ) is not tractable. Nevertheless, to compute
the ELBO, we do not need the full qα,σ distribution but only the means Eqα,σ [σ], Eqα,σ [α+ kσ − 1],
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Eqα,σ [logC(α, σ)], Eqα,σ [log (α+ σ)] and Eqα,σ [α+ σ]. One solution is therefore to use importance
sampling or MCMC to compute these expectations via Monte Carlo sums.

When σ = 0, using integration by parts, it holds that Γ(α + 1) = αΓ(α) and hence C(α, σ) ≡
C(α) = α. Furthermore, the posterior qα,σ ≡ qα is again a gamma distribution Gam (α | ŝ1, ŝ2) with
Eqα,σ [α] ≡ Eqα [α] = ŝ1

ŝ2
and Eqα,σ [logα] ≡ Eqα [logα] = ψ (ŝ1) − log (ŝ2). Therefore, we have the

following tractable formulas:

EqΘ [log p (τk | α, σ)] ≡ EqΘ [log p (τk | α)]
=
[
Eqα,0 [α]− 1

]
Eqτk

[log(1− τk)] + Eqα,0 [logα] ,

=
ŝ1 − ŝ2
ŝ2

[ψ (γ̂k,2)− ψ (γ̂k,1 + γ̂k,2)] + ψ (ŝ1)− log ŝ2, (B.65)

EqΘ [log p (α, σ | ŝ1, ŝ2)] ≡ EqΘ [log p (α | ŝ1, ŝ2)]

= log

[
1

Γ (ŝ1)
ŝŝ12

]
+ (ŝ1 − 1) [ψ (ŝ1)− log (ŝ2)]− ŝ1. (B.66)

Proof of (5.6)

Due to the mean-field approximation (3.10) and truncation, this step is analytically computed as
follows:

EqZ [log q(Z)] = EqZ

[
log

N∏
n=1

qzn (zn)

]
= EqZ

[
log

N∏
n=1

K∏
k=1

qzn (k)
znk

]

=

N∑
n=1

K∑
k=1

log qzn (k)EqZ [znk] =

N∑
n=1

K∑
k=1

qzn (k) log qzn (k) . (B.67)

Proof of (5.7)

We have

E [log q(Θ)] = E [log qα,σ(α, σ)] +

K−1∑
k=1

E [log qτk (τk)] . (B.68)

Note that these terms involving expectations of the logs of the q distributions simply represent the
negative entropies of those distributions.

Since qα,σ(α, σ) is not tractable, when σ ̸= 0, we cannot calculate analytically E [log qα,σ(α, σ)].
Furthermore, it is also difficult to approximate it using MCMC or importance sampling.

When σ = 0, the posterior qα,σ ≡ qα is again a gamma distribution Gam (α | ŝ1, ŝ2) with

E [log qα,0(α)] ≡ E [logGam (α | ŝ1, ŝ2)]
= −H [Gam (α | ŝ1, ŝ2)]
= − log Γ (ŝ1) + (ŝ1 − 1)ψ (ŝ1) + log ŝ2 − ŝ1. (B.69)

Since we had qτk (τk) = Beta (τk | γ̂k,1, γ̂k,2), its differential entropy is given by

E [log qτk (τk)] = −H [Beta (τk | γ̂k,1, γ̂k,2)]

=

2∑
l=1

(γ̂k,l − 1) {ψ (γ̂k,l)− ψ (γ̂k,1 + γ̂k,2)}+ log
Γ (γ̂k,1 + γ̂k,2)

Γ (γ̂k,1) Γ (γ̂k,2)
. (B.70)
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B.9 Proof of Theorem 5.2

Using the sum and product rules for both discrete and continuous variables, the ELBO in BNP-GLLiM
(3.4) is given by

F
(
qZ , qΘ, ϕ̂

)
= EqZqΘ

[
log

p(Y,X ,Z,Θ; ϕ̂)

q(Z)qΘ(Θ)

]
≡ E

[
log

p(Y,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]

=
∑
Z

∫ ∫ ∫
q(Z)q(Θ) log

[
p(Y,X ,Z,Θ; ϕ̂)

q(Z)q(Θ)

]
dZdΘ

= E
[
log p(Y | X ,Z,Θ; ϕ̂)

]
+ E

[
log p(X | Z,Θ; ϕ̂)

]
+ E

[
log p(Z | Θ; ϕ̂)

]
+ E

[
log p(Θ; ϕ̂)

]
− E [log q(Z)]− E [log q(Θ)] . (B.71)

Note that the proof of (5.11), (5.13), (5.15) are the same as in the proof of Theorem 5.1.

Proof of (5.12)

E
[
log p(X | Z,Θ; ϕ̂)

]
= E

[
log

N∏
n=1

p
(
xn | zn,Θ; ϕ̂

)]
= E

[
log

N∏
n=1

K∏
k=1

NL (xn | ck,Γk)
znk

]

=
N∑

n=1

K∑
k=1

E [znk logNL (xn | ck,Γk)]

=

N∑
n=1

K∑
k=1

EqZ [znk]Eqck,Γk
[logNL (xn | ck,Γk)]

=
N∑

n=1

K∑
k=1

qzn(k)

[
−L
2
log(2π)− 1

2
E [log |Γk|]−

1

2
E
[
(xn − ck)⊤ Γ−1

k (xn − ck)
]]

=
K∑
k=1

N∑
n=1

qzn(k)

[
−L
2
log(2π)− 1

2
EqΓk

[log |Γk|]−
1

2
Eqck,Γk

[
(xn − ck)⊤ Γ−1

k (xn − ck)
]]

(Lemma B.2)

=
1

2

K∑
k=1

N∑
n=1

qzn(k)
[
− log Γ̃k − L log(2π)− Lλ̂−1

k − ν̂k (xn − m̂k) Ψ̂
−1

k (xn − m̂k)
]

=
1

2

K∑
k=1

Nk

[
log Γ̃k − L log(2π)− Lλ̂−1

k

]
− 1

2

K∑
k=1

N∑
n=1

qzn(k)
[
ν̂k (xn − m̂k) Ψ̂

−1

k (xn − m̂k)
]

=
1

2

K∑
k=1

Nk

[
log Γ̃k − L log(2π)− Lλ̂−1

k − ν̂kTr
(
SkΨ̂

−1

k

)
− ν̂k (x̄k − m̂k) Ψ̂

−1

k (x̄k − m̂k)
]

(using (B.75) from Lemma B.2) . (B.72)

To obtain (B.72), we have to use the following Lemma B.2.

Lemma B.2. We can compute the expectations w.r.t. the variational distributions of the parameters
as follows:-re

log Γ̃k ≡ EqΓk
[log |Γk|] =

L∑
l=1

ψ

(
ν̂k + 1− l

2

)
+ L log 2 + log

∣∣∣Ψ̂k

∣∣∣ , (B.73)

Eqck,Γk

[
(xn − ck)⊤ Γ−1

k (xn − ck)
]
= Lλ̂−1

k + ν̂k (xn − m̂k) Ψ̂
−1

k (xn − m̂k) . (B.74)
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Furthermore, for each k ∈ [K], it holds that

N∑
n=1

qzn(k)
[
ν̂k (xn − m̂k) Ψ̂

−1

k (xn − m̂k)
]
= Nk

[
ν̂kTr

(
SkΨ̂

−1

k

)
+ ν̂k (x̄k − m̂k) Ψ̂

−1

k (x̄k − m̂k)
]
.

(B.75)

Proof of (5.14)

Given a chosen truncated value K ∈ N⋆, it holds that

EqΘ

[
log p(Θ; ϕ̂)

]
=

K−1∑
k=1

EqΘ [log p (τk | α, σ)] + EqΘ [log p (α, σ | ŝ1, ŝ2, â)] +
K∑
k=1

EqΘ [log p (ck,Γk; ρ̂k)] .

Note that EqΘ [log p (τk | α, σ)] and EqΘ [log p (α, σ | ŝ1, ŝ2, â)] are calculated in the same way as in
Theorem 5.1.

Finally, we have to compute the remaining term

EqΘ [log p (ck,Γk; ρ̂k)] = Eqck,Γk
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−L
2
log(2π)− 1

2
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2
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=

1

2
L log

(
λ̂k
2π

)
− 1

2
EqΓk

[log |Γk|]−
1

2
λ̂kEqck,Γk

[
(ck − m̂k)

⊤ Γ−1
k (ck − m̂k)

]
+ logB

(
Ψ̂

−1

k , ν̂k

)
− ν̂k − L− 1

2
EqΓk

[log |Γk|]−
1

2
Tr
(
Ψ̂kEqΓk

[
Γ−1
k

)]
=

1

2
L log

(
λ̂k
2π

)
− 1

2
λ̂k

[
Lλ̂−1

k + ν̂k (m̂k − m̂k)
⊤ Ψ̂

−1

k (m̂k − m̂k)
]

+ logB
(
Ψ̂

−1

k , ν̂k

)
− ν̂k − L

2
log Γ̃k −

1

2
ν̂kTr

(
Ψ̂kΨ̂

−1

k

)
(using Lemma B.2)

=
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where

log Γ̃k ≡ EqΓk
[log |Γk|] =

L∑
l=1

ψ

(
ν̂k + 1− l

2

)
+ L log 2 + log
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∣∣∣ . (B.76)

Proof of (5.16)

We have

E [log q(Θ)] = E [log qα,σ(α, σ)] +

K−1∑
k=1

E [log qτk (τk)] +

K∑
k=1

E [log qck,Γk
(ck,Γk)] . (B.77)

Note that these terms involving expectations of the logs of the q distributions simply represent the
negative entropies of those distributions. In particular, the first two terms are calculated in the same
way as in Theorem 5.1.
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Similarly, we obtain

E [log qck,Γk
(ck,Γk)]

= E
[
logNL
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+
1
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L
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)
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2
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2
log
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2
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k , ν̂k
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2
log Γ̃k −
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2
. (B.78)
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