
HAL Id: hal-04014966
https://hal.science/hal-04014966v2

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the Untapped Potential of Text Fields in
Creative Software

Maëva Calmettes, Jean-Baptiste Joatton, Nolwenn Maudet, Joëlle Thollot

To cite this version:
Maëva Calmettes, Jean-Baptiste Joatton, Nolwenn Maudet, Joëlle Thollot. Exploring the Un-
tapped Potential of Text Fields in Creative Software. IHM ’23: 34th International Franco-
phone Conference on Human-Computer Interaction, AFIHM, Apr 2023, Troyes, France. pp.1–16,
�10.1145/3583961.3583971�. �hal-04014966v2�

https://hal.science/hal-04014966v2
https://hal.archives-ouvertes.fr

Exploring the Untapped Potential of Text Fields
in Creative Software

Explorer le potentiel des champs-texte dans les logiciels de création

Maëva Calmettes
Jean-Baptiste Joatton
École supérieure de design

Villefontaine, France

Nolwenn Maudet

Université de Strasbourg
Strasbourg, France

Joëlle Thollot
Laboratoire Jean Kuntzmann

UGA, CNRS, Inria, Grenoble INP
Grenoble, France

ABSTRACT
After the rise of direct manipulation, textual interactions have been
progressively devalued in creative software. Text fields within cre-
ative software currently support limited use cases such as fine tun-
ing of numerical values or layer naming. Following the increased
popularity of programming in art and design, we believe that text
field based interaction can be enhanced so as to combine the unique
strengths of GUI with those of text. Based on the anatomy of the
text field: both an interactive interface element and a writing space,
we propose a design space that explores its interactive capabilities
to facilitate both reading and comprehension as well as to support
writing. To explore its potential, we apply this design space to Vec-
torPattern, a pattern creation tool that focuses on complex pattern
repetition based on explicit mathematical expressions written in
text fields. With this work, we call for reevaluating the place of text
fields within creative software.

CCS CONCEPTS
• Human-centered computing→ Interaction design theory,
concepts and paradigms;

KEYWORDS
Text Fields, GUI, Creative Software, Creativity Support Tools, De-
sign Space

RÉSUMÉ
Après l’essor de la manipulation directe, les interactions textuelles
ont été progressivement dévaluées dans les logiciels de création.
Les champs-texte ne sont utilisés qu’à des fins limitées, comme le
réglage fin des valeurs numériques ou la désignation des calques.
Nous pensons que les interactions autour des champs-texte peuvent
être améliorées afin de combiner les forces de l’interface graphique
avec celles du texte. En nous basant sur l’anatomie du champ-texte :
à la fois un élément d’interface interactif et un espace d’écriture,
nous proposons un design space qui explore ses capacités pour
faciliter la lecture et la compréhension de l’écrit, ainsi que pour

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IHM ’23, April 03–07, 2023, Troyes, France
© 2023 Association for Computing Machinery.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX. . . $15.00
https://doi.org/10.1145/XXXXXXXXX.XXXXXXXX

soutenir l’écriture. Nous appliquons ce design space à VectorPattern,
un outil de création de motifs qui se concentre sur les répétitions
complexes à l’aide d’expressions mathématiques saisies dans des
champs-texte. À travers cette recherche, nous appelons à réévaluer
la place des champs de texte dans les logiciels de création.

MOTS-CLÉS
Champs-texte, GUI, Logiciels de création, Support à la création,
Design Space

ACM Reference Format:
Maëva Calmettes, Jean-Baptiste Joatton, Nolwenn Maudet, and Joëlle Thol-
lot. 2023. Exploring the Untapped Potential of Text Fields in Creative Soft-
ware. In IHM ’23 : 34e conférence Francophone sur l’Interaction Humain-
Machine, April 03–07, 2023, Troyes, France. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/XXXXXXXXX.XXXXXXXX

1 INTRODUCTION
Textual interaction, through the use of a keyboard to input char-
acters, have historically been the primary means for interacting
with computers. In this paper, we define a textual interaction as
an interaction that happens through the interpretation of text by
the software. Whether the typed text is an instruction, a calcula-
tion, a numerical value or a keyword, all can be considered textual
interactions if they are meant to be interpreted. Additionally, the
language used for interacting with the software does not have to be
a formal language, i.e. a programming, query or markup language.
Interacting through text can effectively be achieved using natural
language, whose interpretation can be done via a semantic analysis
of words or by using special symbols or keywords. As an example
we consider a search engine input field to be a textual interaction,
even though users generally use natural language. The entered
text not only constitutes keywords for the algorithm, but can also
contain additional symbols for an advanced query. Users can input
brackets, a hash or arithmetic symbols to imply specific meanings
or functions.

However, since the advent of direct manipulation interfaces, as
described in Ben Shneiderman’s seminal article [44], textual inter-
actions have progressively been devalued in HCI. Indeed, textual
interactions proved to be more complex to apprehend than interface
controllers based on direct manipulation. They are prone to syntax
errors as they require extensive knowledge, and slow due to the
typing process and sometimes the required additional compiling
time.

In recent years however, as stated by Norman[35] textual in-
teraction, especially through programming, has seen a revival in

https://doi.org/10.1145/XXXXXXXXX.XXXXXXXX
https://doi.org/10.1145/XXXXXXXXX.XXXXXXXX

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

arts and design because it provides advanced capabilities and an
access to complexity which is difficult to emulate via direct ma-
nipulation tools [15]. Textual interaction supports a lot of creative
practices and many of the new creativity support tools make use of
its strengths [43] .

However, to harness its power as a creative tool, designers need
to learn full programming languages and use complex IDE inter-
faces, both having a steep learning curve [27]. Moreover, they gen-
erally require that designers move away from traditional Graphical
User Interfaces (GUI) and direct manipulation interfaces.

One solution to this set of issues has been node programming
which provides means for designers to access most of the capabili-
ties of programming without requiring them to interact via writing.
Node-based programming is a widely spread visual programming
method where the program is designed in the form of rectangular
shapes connected by wires. Each shape usually corresponds to a
simple function with exposed parameters. It allows the creation of
complex algorithms without the need of learning a full program-
ming language but it can become hard to read when the number
of nodes increases. Still, writing provides certain specific bene-
fits that are hard to emulate within the node paradigm, e.g., more
modularity and malleability as well as the ability to copy and paste
across software. Writing is also an entry door to more complex
programming languages.

Whether it is to search for a term or command, to enter a numer-
ical value or to program a script, textual interactions are discreetly
omnipresent in creative software and beyond. In most mainstream
software, textual interaction still exists, but in the form of text fields,
that is standardized text-input widgets embedded within larger GUI.
Command line prompts, code editors and text fields represent dif-
ferent modalities for users to interact using textual interactions. In
this paper, we chose to focus on single-line GUI textual interaction,
i.e. text fields, because they can be more easily combined with other
GUI components. Textual interaction via text fields can be used, not
only to input values or display text but also to input expressions
that produce effects.

In creative software, text fields are already used for various but
relatively limited use cases. The first one is to precisely manipulate
numerical values. For example to edit the typeface size, or to change
an element’s width. The second widespread use is to name objects,
files or layers in the software. Text fields also appear to be useful
to search in a list, e.g. through a list of commands or to find a
specific object in a whole 3D scene. A less obvious practice is to use
text fields to transfer data across software via copy-pasting. The
extensive use of color hexadecimal code is a great example of a
text value that will be rarely directly edited character by character
and often copy-pasted. Lastly text fields are also used to enter
scripts or expressions or other kind of code for an advanced used
of the software. A well-know example is After Effects’s expressions
that let users control animations programmatically. Based on these
observations, a revival of programming in arts and design on the
one side and the lack of interesting use cases for text fields in
current creative software on the other side, we posit that, within
GUI, textual interactions through text fields have an untapped
potential and provide a promising avenue for research. We think
that text fields are under-exploited and we propose to explore their
power as an interaction tool for creative software. Text fields have

the potential of combining the strengths of GUI, such as direct
manipulation and ease of learning, with those of text, including
expressive power and modularity.

We focused our exploration of text fields in creative software, i.e.
software used within the creative process to create and manipulate
digital content, such as images, vector shapes, 3D models, videos
and audio. In this paper, our research and proposed concepts are
primarily centered around graphic design tools, i.e. software used
to generate and manipulate 2D or 3D shapes, still and animated
images. But we posit that most of our findings would be applicable
to a wide range of creative software outside graphic design tools.We
believe that developing textual interactions is also a way to support
creativity inside creative software, thus falling within the scope of
Creativity Support Tools (CST) features. CST are software meant
to assist users in the creative process (e.g. to generate new ideas or
organize their thoughts), and include brainstorming tools, as well as
support to non-digital activities like choreography. Therefore, while
our research scope and references include CST and CST features,
our proposed concepts and findings may apply to creative software
specifically.

As a first step, we chose to concentrate on single line text fields,
because of their prevalence upon multi-lines ones in creative soft-
ware. As a standardised GUI element, text fields are available in
a lot of graphical environments and GUI toolkits. Based on the
anatomy of the text field, both an interactive interface element and
a writing space, our first contribution is a design space that explores
its interactive capabilities to facilitate both reading and comprehen-
sion as well as to support writing. Our design space is about the
combination of direct manipulation and textual interaction

As a second contribution we demonstrate the use of the design
space as a generative tool. We apply it to generate ideas for a
graphics application, VectorPattern, a very simple prototype that we
developed for this experiment. VectorPattern focuses on repetitive
pattern creation using a unique text field to write mathematical
expressions. We show that our text field design space supports the
creation of original ideas to assist the user in math writing tasks.

2 RELATEDWORK
Text-based interaction supports a lot of creative practices and re-
searchers have long tried to develop and enhance features that
support these practices. In this section we review the different
strategies created to support writing practices.

We divided these initiatives in five categories that represent
the five goals for supporting writing we identified while studying
existing work: (1) understanding the returned value and its resulting
effect, (2) understanding the basis of the language, (3) discovering
and exploring the language, (4) helping with writing organization
and (5) making the writing process more usable.

In this paper, we focus on text fields. However, compared with
text fields as single line GUI components, IDE, understood as mul-
tiple line writing spaces, have implemented a lot of innovative
features to support textual interaction, especially those related to
programming. We thus decided to include IDE in our related work
sampling but we still focus on GUI based strategies, especially those
trying to be as close as possible to the writing space and the writing
time.

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

2.1 Understanding the returned value and its
resulting effect

Textual interaction via text fields can be used to input mathemat-
ical or keyword based expressions that produce effects and may
return values. In creative software they can for example be used to
manipulate the object properties such as its size. In this case, the
returned value would be the computed size and the produced effect
would be the object resizing.

In his 2012 article "Learnable Programming" [45], Victor pro-
poses several innovative paths to support programming languages
learning as close as possible from the writing space. His proposal to
reveal all the states is a way to close the Gulf of Evaluation that was
identified by Norman as: "the amount of effort that the person must
make to interpret the physical state of the device and to determine
how well the expectations and intentions have been met" [34]

Some of his ideas such as directly evaluating variables in the
code and displaying its result on demand have been implemented,
for example, in the Light Table [17] code editor.

Victor also proposed interaction principles to visualize differ-
ently the execution process of a program. Building on the idea,
well-known in the context of animation software, of the timeline
and its key frame, he lets users control the code execution, pro-
viding a better connection between each line of the program and
its visual output. The idea of slowing down execution to better
understand how the program works was also implemented in the
pythonTutor [19] project. They introduced, inside the IDE, the idea
of movement deconstruction as it is practiced in sports.

Adding some visual help is another way to facilitate understand-
ing and writing. For example, Jacobs et al. [31] designed a visual
code inspector that offers to artists the possibility to directly ma-
nipulate the execution process, while Hoffswell et al. [24] propose
to integrate graphics within data files so as to circulate between
different levels of languages.

Another option is to favor back and forth between the writing
space and the results. For example, Sketch-n-Sketch [22] uses the
notion of bi-directional and output-directed programming: the in-
terface allows the user to manipulate the output (a vector drawing
in svg format) as a way to visualize and modify the code. Glisp [21]
also develops the idea of software offering hybrid modes of inter-
action, between code writing, direct manipulation and interface
components. Glisp supports writing by simultaneously showing
multiple views of the same object and allowing to seamlessly change
between different modes of interactions. Selecting a line of code
in the IDE section of the interface opens a control panel that lets
users modify different values with their cursor, and the resulting
graphical output can also be modified through direct manipulation.

2.2 Understanding the basis of the language
Understanding a language generally happens through reading a
more or less accessible, complete and pedagogical documentation.
A full documentation is often found on a dedicated web page, while
some software include a limited embedded help in a separate edi-
tor’s section. Various projects seek to better integrate documenta-
tion’s access. Accessing documentation easily has been theorized in
the context of Information foraging theory [38]: providing a better
cost–benefit ratio by reducing the effort needed to find information

(path) and improving the relevance of results (content). The toolkit
Processing [41] offers the possibility to access offline documenta-
tion by right-clicking on a function name in the IDE. Some projects
such as The Barista [29] emphasize access to language documen-
tation by integrating it inside the text body. Codelets [37] goes
even further and transforms the documentation into a graphical
control interface allowing users to manipulate their code from the
documentation.

Alternatively, Graphtoy [40] provides another type of hybrid
documentation that relies directly on clickable terms. It lets users
select functions, operators, numbers and variables in a button panel
so as to write mathematical expressions. The permanent visibility
of these functions encourages experimentation and serves both as
a knowledge base and as a simplification of the writing process.

2.3 Discovering and Exploring the language
Learning a language can also be done by experimenting. In such a
case, the user progressively understands the language inner logic
through trial and error. This learning process is what Draper and
Barton [12] called learning by exploration (LBE) in their 1993 study
detailing this process in highly visual GUI. They introduced three
kinds of affordance a GUI command must express to support LBE,
which can be applied to text-based interactions alike. Several
projects have been designed so as to encourage this exploratory
learning approach. The (t,i,x,y) [28] project proposes a step by step
onboarding into the logic of the program and lets users, through the
use of examples, understand the basics. The minimalist interface
made of a writing zone and a display zone uses comments as a way
to explicit the program in an efficient way. Added comments invite
users to modify the code through advises such as "multiply the time
to change the speed". Sliderland [5] uses a similar principle and
focuses on a progressive learning process that lets users discover all
the possibilities. Such a strategy is typically found in video games,
where the user progressively learns the interaction mechanisms
during a first phase of the game. In a less guided approach, the live
coding application Hydra [25] has two features that help users get-
ting started: a random sketch button that loads a random example
and a make random change button that randomly modifies variable
or parameter values.

These recent projects use different strategies to overcome the
apprehension of white page (or the white text area), and make the
users enter in an undemanding way in the manipulation of the code

2.4 Making the writing process more usable
Research and commercial projects have proposed many different
ways to support a more usable writing process. Generally, this
usability is meant to accelerate writing.

A good example is Google Sheets that offers a large number of
interactions to support the writing of formulae: functions sugges-
tions via drop-down menus, help panel for each function, syntax
coloring, dynamic result computation, but also automatic sugges-
tions to apply the formula to a different row. To go further, the
NLyze project even try to use automatic translation techniques
applied to spreadsheets [18]. Still in Google Sheets, textual interac-
tions are favored through subtle suggestions (the use of tabulation,

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

arrows keys, etc.). Supporting keyboard shortcuts and textual inter-
actions is also a way to avoid breaking the user’s flow and switching
between several interaction modes.

Since their widespread use, Word processing software have been
offering automatic correction features such as orthographic verifica-
tion. Commonly represented by a red underline under an uncertain
word spelling, it lets the user choose to validate or not the sug-
gestion. Messaging software, such as iMessage, even automatically
replaces misspelled words (often typographical mistakes) without
validation.

Queries writing happens most of the time in text fields, generally
single line ones. The most common support for requests is proba-
bly automatic suggestion by drop-down list and auto-completion.
Search engines also offer a lot of operators that lets users access spe-
cific and advanced functions instead of having to navigate through
the advanced research menu.

Specialised search engines require users to know a query lan-
guage such as SQL or SPARQL, or to be familiar with regular ex-
pressions (RegEX). Sparklis [13] offers a SPARQL query builder that
lets user construct a request using natural language to specify its
parameters. AutoRegex [1], automates translating back and forth
between English and RegEx. Lately, many projects have emerged
to try to use machine learning to automate corrections or even
translate from a language to another.

Beside programming-oriented software, other types of software
have developed interesting uses of text fields. Discord [36], Notion,
Overleaf or Minecraft, all have integrated keyboard shortcuts or
commands that give access to some functions through the use
of specific characters ("/" ou "@" for example). In these software,
commands act like shortcuts, quicker than their direct manipulation
equivalent as they permits the user to stay in a textual interaction
mode.

Existing assistance techniques range from text field enrichment
to writing automation. These methods tend to keep the user ex-
clusively in one mode of interaction: either they replace writing
completely or they help to manipulate the software without leaving
the keyboard.

2.5 Helping with writing organization
We also identified a last category, albeit a lesser developed one:
features that support writing organization. Within note-taking and
productivity tools, such as Notion, textual interaction is favored
and provides ways to navigate within text and across documents by
using: any words can be associated with another page and serve as a
navigation shortcut. Many CLIs implement an history of previously
used commands and offer a way to navigate through it with the help
of up and down arrows keys. Some CLIs also allow users to copy
text by selecting the targeted text with the mouse cursor and double-
clicking on it. Once copied, a simple right or middle click in the
terminal permits to paste it. The (t,i,x,y) project integrates a quick
way to share and store projects by their unique URL. By a simple
tap on the enter key, users can generate a URL that contains the
mathematical expression used, which acts has a readable hyperlink.

All these examples show that textual interactions are generally
supported through other interaction modalities (direct manipula-
tion, etc.). In that sense, writing happens in a highly hybrid and

interactive environment. In contrast with IDEs that provide many
features that support textual interaction, relatively few examples ex-
ist within traditional creative software GUI even if a few do support
scripting modes such as Adobe After Effects.

The discrepancy between the wealth of writing support strate-
gies developed mainly within IDEs and the relatively few ones
used in text fields supports the observation that text fields have an
untapped potential that remains to be explored.

3 A TEXT FIELD DESIGN SPACE
To demonstrate and explore the potential of text fields as a GUI
component in creative software, our first contribution is to build a
text field design space.

3.1 Design Spaces in HCI
A design space is a conceptual space [4] that can be used to under-
stand, analyze and explore the potential of technologies. They can
be developed around devices e.g. smartphones [2], or interaction
techniques e.g body-centric multi-surface interaction [46]. Design
Spaces often take the form of a "multidimensional matrix that con-
tains all possible combinations of parameters that are relevant to a
specific problem"[4].

A design space is both a descriptive and a generative tool. First,
Design Spaces can provide a richer and systematized understanding
of an interaction technique, such as text fields, by mapping out its
different properties. In that sense, design spaces help to "organize
knowledge in a way that is meaningful to designers" [3]. Design
spaces supports researchers and designers in their understanding
of the state of the art of a specific interaction technique, by showing
dimensions that are already well populated and explored. Design
spaces can also, by contrast, help us uncover potential unexplored
areas or properties. Furthermore, they provide inspiration for de-
signers by showing them promising or underexplored possibilities
for interaction design [23].

3.2 Text Field
The versatility of text fields makes them appropriate in many con-
texts. If we refer to Alan Cooper’s controls classification [11], text
fields can be considered as an intermediate between the 4 categories:
imperative controls, selection controls, entry controls and display
controls. Mainly described as an entry control, they can be bounded
or not, depending on the level of textual input validation. Text fields
can also be used to display content as a text container, in the way of
an interactive dialog box. Some features such as auto-completion,
or drop-down menu can turn it into a kind of selection control. It
would also be the case if the text field only accepts a restricted list
of keywords. And if the expected text is a command, it could also
be considered as an adjustable imperative control.

The text field is therefore both an interactive interface element
and a writing space that can be enhanced to facilitate both reading
and comprehension as well as to support writing. By designing a
text field design space our aim is to provide a way to systematize
improvement opportunities of a given text field, from a blank text
field starting point.

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

GOAL CHARACTERISTIC(S) STATE

Understanding the returned value and
its resulting effect

Understanding the basis of the language
Discovering and exploring the language
Helping with organisation
Making the writing process more usable

Visual characteristics
color, shape, visibility...

Layout characteristics
position, size, orientation, spacing...

Additional assistive element
icon, box, list, specific cursor shape...

Text-manipulation & interpretation
autocompletion, dorking, commands...

Rested
Highlighted
Focalised
Edited
Selected
Locked

Table 1: Text field design space dimensions.

3.3 The Text Field Design Space
Our design space is composed of three dimensions (see Table 1):
the goal of the concept generated by the design space, the text
field characteristics used to achieve the goal, the text field state
during the interaction. We developed the design space goal dimen-
sion using our classification, presented in the related work section,
of existing strategies used to support text-based interaction. The
two other dimensions were developed through a careful analysis
of existing examples of text fields in existing creativity software
as well as in research literature. We also took into consideration
their characterisation in popular UI Design systems such as Google
Material UI [16] and GUI toolkits and libraries such as Tailwind
CSS [48] or QT Designer [9]. This allowed us to assess a wide set
of properties that are standard enough to be implemented in a
production context.

3.3.1 Text Field Goals. We propose 5 main goals for the text field
enhancement. They can be instantiated for each specific contexts.

Understanding the returned value and its resulting effect. The goal
here is to help the user to understand the link between the typed
text and the resulting behavior of the application. For example, in
a spreadsheet, one may want to help the user to understand the
result of a formula and its underlying operations, such as a sum
or a mean exact computations. Another sub-goal could be to help
the user to comprehend which property or action their input is
changing and its units. For example understanding that the number
next to the typeface name will indeed change the typeface size and
that "pt" means that the value corresponds to a number measured
in points.

Understanding the basis of the language. As soon as the text field
accepts more complex inputs than a number, the user has to under-
stand what is a valid input. Following the spreadsheet example, the
user should understand that a formula starts with = symbol. The
input text can be a formula, but also a list of keywords or a piece
of code. Thus, this goal aims to help the user to discover the main
syntax features of the textual input. It can be a support to learn the
syntax (from a complete language or simply the correct format), or
to understand the vocabulary (which keywords can be used, what
a specific keyword means, what are the valid abbreviations).

Discovering and exploring the language. Once the user knows
how to write valid inputs, he still needs to understand the pos-
sibilities offered by the language. This is especially useful as a
creativity support feature as a mean to empower the user creativity.

Sub-objectives for this goal include knowing the extent of the lan-
guage (which functions and operators can be used), encouraging
divergence (using different structures and clever expressions or
algorithms), making expressions more complex (using nested func-
tions and operators), or avoiding the "white field" effect (reduce the
wandering time before writing anything in the field).

Helping with organisation. Here we propose to leverage the
power of text as a way to organize ideas, store successive experi-
ments, encompass copy-pasting and try and error approaches. This
goal is about producing a situated documentation for a project
(keeping important phases and insightful history), making it easier
to share and reuse work (remixing a project, show-casting it), and
generally keeping everything organised.

Making the writing process more usable. This last goal focuses
on the user comfort. When inventing new text field based interac-
tions, we must keep in mind their usability. It does not necessarily
mean that the interaction should be faster, but more that it should
be easier or more natural, what we call usable here. Thus com-
monly applicable sub-goals are speeding-up the writing process
(helping to write faster, creating shortcuts or removing writing
all-together), simplifying the writing (using an simpler language
or an intermediate) or helping with typing mistakes (correcting
mistakes, preserving a working state, suggesting).

3.3.2 Text Field Graphical Characteristics. One of the text field
main interests lies in its numerous graphical characteristics which
makes it a rather complete interface element. As shown in Figure 1,
we divide this dimension in 4 main characteristics groups: visual
characteristics; layout characteristics; the use of an additional as-
sistive element; and text manipulation and interpretation features.

Visual characteristics gather all graphical properties of the field
and its text content. It includes characters and text field colors, text
field shape and border style, text legibility... All these attributes are
commonly found in graphical libraries.

In layout characteristics we consider all properties that relate to
positioning and size. They differ from visual characteristics in that
they impact the whole interface and may have to be designed at
the same time as the rest of the GUI.

Additional assistive element groups all the text field external
elements. We chose here to consider the most commonly used ele-
ments, such as icons, drop-down lists or cursor shape modification.
This category can be easily extended as there is no strict limitation

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

Figure 1: Characteristics of the text field.

to genuine assistive elements, and it can also be a combination of
multiple nested elements.

The last characteristics relate to text manipulation and inter-
pretation features. Theses characteristics include all features that
directly edit the text or make use of a specific semantics. We also
considered features such as dorking, i.e. the capability to input
advanced queries that goes beyond used language scope thanks to
keywords or special characters. 1 They are commonly embodied by
conventional graphical forms or hints. For example an error hint
resulting from a spelling verification is usually displayed by a red
wavy underline under the misspelled word. As a system computa-
tion, they may impact any other characteristics group. For example,
the text field border turns red when the content is invalid, or the
text field itself is hidden and only shown when a keyboard shortcut
is pressed to open a search bar or set a precise value.

Figure 2: States of the text field.

3.3.3 Text Field Interaction State. The third dimension of the de-
sign space describes the state of the text field during the interaction
(see Figure 2). When we take a look at design systems and UI guide-
lines, like Google’s Material, we often see that text fields graphical
1"Dorking" comes from a practice also called "Google hacking" consisting of using
advanced queries to search hardly reachable information of the web. We use it here as
a more general concept that can still be compared to a hacker’s logic.

variations are described by their state. Even if they can be named
slightly differently, text field state names are mainly standardized
across design systems. This dimension takes into account active
states of the field rather than the events that occur around or in
it. It allows to diversify interactions with the text field, which can
happen before or after the editing of the field content. The first state
is the rested state, which is the initial state of the text field. When
users do not interact with the text field in any way, the field is con-
sidered in a rested state. This state implies that the field is listening
to events and its content can be edited, but does not necessarily
mean that the field is visible or in its main graphical form.

The highlighted state, a commonly used state in direct manipu-
lation GUI, is closely linked to the use of a pointing device. Often
described as the hovered state, this appellation has the flaw of not
applying to other means of interaction and navigation such as key-
board shortcuts or touch interactions. The highlighted appellation
is intended to be more generic and depicts a highlight in the field,
whatever its trigger.

The focalised state is triggered when the user effectively enters
in the text field edition mode. We consider this state to last until
the user starts typing or editing the text content. It can used as an
in-between a highlight and an edition, when more information can
be shown before the actual input.

The edited state groups everything that relate to text manipu-
lation. It includes typing new values but also selecting, moving,
coping, pasting or erasing text or characters from the field.

The selected state is a less common state, often named mouse or
touch expanded. While it can be close from the highlighted state,
this state asks for a deliberate or specific action from the user that
is not typing, such as clicking on an option in a list. It is often
triggered by a drag or a click on the field border, an icon or an
arrow.

Finally the disabled state characterized a lock in the text field
edition feature. It can be used as a way to display information or
to wait for a specific action from the user or computation from the
program.

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

Figure 3: VectorPattern interface. The drawn pattern is computed based on formulae written in a text field. The application
starts with an empty field and a default pattern (red squares). We show here successive formulae written by the user. First a
formula function of 𝑢 (horizontal coordinate) is applied to the scale, using the @scale keyword. Then a formula function of 𝑣
(vertical coordinate) is applied to the fillHue property. And finally a simple constant is applied to the strokeWidth.

4 EXPLORING THE GENERATIVE POWER OF
THE TEXT FIELD DESIGN SPACE

As the authors backgrounds are in graphics design and image syn-
thesis, we have chosen to explore a simple graphics application in
which text input would be the focus of the tool. Such an example
could have been taken outside the graphics creation, like in music
or movies support tools, as long as the text would be the main
interaction. Following discussions with digital artists and textile de-
signers who are curious about creative coding but not familiar with
math concepts, we have chosen visual pattern creation through
mathematical formula writing as our test application.

4.1 VectorPattern: our experimental setup
There is a long tradition of creating patterns in visual arts. They are
based on a repetition principle that can go from regular to random,
producing unity within the artwork. Artists and graphic designers
currently produce most of their patterns using creative software,
such as Illustrator, Inkscape or specialized applets, where they
can find dedicated plugins offering standard repetitive procedures.
However, if they want to depart from these predefined layouts, they
have to manually arrange their motives, making the task laborious
for complex repetitions such as using different repetition rules for
each property of the motif. For that reason, the complexity of a
pattern generally relies more on the complexity of the repeated
pattern, than on the repetition itself.

As the repetitive nature of a pattern is intrinsically algorithmic,
using a programming tool, like Processing, is a viable alternative to
produce complex repetitions as can be seen in the creative coding
community. Several attempts have been made to ease the pattern
creation process either in the computer graphics research com-
munity via the definition of shape grammars [42], dedicated API
[32]; or by commercial companies via node-based systems such as
Patternnodes [20].

Following this line of work, we propose to apply our text field
design space as a means to explore a new compromise between
programming and GUI via the use of a unique text field. For that,
we have designed a simple applet, called VectorPattern, in which a
pattern is created by repetitively placing a basic shape on a simple
regular grid parameterized by 𝑢, 𝑣 coordinates. The user can write
mathematical expressions, function of 𝑢 and 𝑣 , that will apply to
a given property such as the motif transforms or style attributes,
using the @ symbol. The expressions are written in a unique text
field displayed on top of the resulting pattern as shown Figure 3.

Our goal here is not to evaluate Vectorpattern itself, but to show
that our design space supports the creation of diverse original ideas
so as to help a naive user to write meaningful formulae. This is
why we have chosen a very strong constraint: in VectorPattern, the
text field is the only tool available to generate and manipulate the
pattern.

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

Figure 4: Various ideas we obtained by applying the design space to our use case VectorPattern, trying to cover multiple
combinations.Implemented ideas in the following section have a colored background. See Appendix A for a short description.

4.2 Applying the text field design space to
VectorPattern

In order to use our design space to produce interactions that will
help naive users understand VectorPattern concepts, the first step
is to adapt the design space goals to our context:

(1) The first goal, understanding the returned value and its re-
sulting effect, comes down to making the link between the
written values of the properties and the pattern. First users
have to understand the returned values of the math expres-
sion, and then comprehend that it will impact the graphical
properties of each element of the pattern. For that the user
has to discover the properties he can play with, identify the
unit used and the range of values that are making sense, ...

(2) Understanding the basis of the language corresponds to learn-
ing the basis of writing mathematical expressions. It means
knowing the basis syntax and functions of the language and
respecting mathematical rules to write computable expres-
sions. This goal also includes the understanding of the two
variables 𝑢 and 𝑣 usage and that @ allows to choose the
property on which the expression applies.

(3) Discovering and exploring the languagewill help the user play
with the full range of available math functions and apply
them to all the available graphical properties.

(4) Helping with organisation is similar to the definition of design
space: help to organize theworkspace, save expressions, have
an effortless workflow in the software...

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

(5) Making the writing process more usable is also similar to its
definition in the design space: simplify, speed up or person-
alize writing to each user need.

Based on the text field characteristics dimension, we organized
three working sessions in order to generate ideas for each of these
goals. The three sessions lasted one hour each and have been car-
ried out by the authors (an interaction design graduate student
with graphic design background, a computer science researcher,
two interaction design researchers) using a constraint-guided brain-
storming approach. We chose to combine specific dimensions of the
design space that are currently under-explored in current software
as we thought this would lead to original and non trivial ideas.

Ultimately, we obtained around 20 ideas (see Figure 4) among
themwe chose to select themost original ones, that is not commonly
found in creative software in terms of type of help given in the text
field; type of interaction; or the used text field characteristics.

In order to demonstrate these solutions, we have chosen to im-
plement each concept separately. This allowed us to develop rich
and novel interactions without being limited by the incompatibility
of certain interactions with each other. We therefore do not tar-
get a complete version of VectorPattern but a set of independent
interaction techniques that could each be applied to VectorPattern.

4.3 Resulting ideas
To describe each generated idea and explain how it could be useful,
we will follow Elsa, a fictional user who discovers VectorPattern for
the first time. She is a graphic designer with no particular knowl-
edge of programming and a vague memory of high school math.
More used to mouse-based vector software such as Adobe illustra-
tor than traditional IDEs, she is looking to create an interesting
pattern that features complex repetitions for a project.

We start with the basic VectorPattern interface that does not pro-
vide any help and then for each design space goal, we present one
concept that uses one or combines several characteristics from the
text field design space and uses them to achieve the goal. Resulting
ideas are showed in the figure 5, and described in the following
paragraphs. The following examples are meant to demonstrate the
potential breadth of novel interaction techniques involving text
fields that can be generated.

Standard scenario with classical text field

Elsa meets the VectorPattern interface for the first time. On the
screen there is only a pattern in full screen and a text field filled
with amathematical expression. Accustomed to direct manipulation
software, Elsa’s first instinct is to hover over the pattern and click
on the elements to see if it has any effect. As nothing happens, she
turns to the text field and its unknown expression. She changes a
term in the expression, a number, and validates to see what happens.
The pattern changes a little, but she does not really understand
what’s going on. She tries to erase all the content of the text field,
and type things in. Nothing happens then, lost, she closes vector
pattern and never opens it again.

Goal 1 Understanding the returned value and the effects
Charac. Embedded icon, Tooltip, Dropdown list
State Highlighted

Elsa meets the VectorPattern interface for the first time. After
hovering the pattern to no effect, she notices that the only text field
of the UI has a small icon next to its text content. Used to seeing
information tooltips inside text fields in forms, Elsa hovers over the
icon with her mouse cursor. A tooltip box opens right next to her
cursor with some information about the field: its name, unit, range,
default value and a short description. Elsa then understands the
link between the "@scale" that’s written in the field and the icon:
the text content of the field has something to do with the scale of
the pattern. She thinks that there must surely be other properties.
To find out, she deletes the "@scale" from the expression. As soon
as she has deleted a letter from the expression, a drop-down menu
opens below the field, offering various values starting with "@". She
scrolls through the list with the arrows on her keyboard, effectively
changing the pattern in real time. In just a few taps on her keyboard,
Elsa nowhas had a preview of all existing properties, with additional
information if needed thanks to the property tooltip.

Goal 2 Understanding the language and its syntax
Charac. Text field position
State Selected

In this scenario, the text field has now a small handle indicating
that the field can be moved. When Elsa grabs the handle, an outline
appears over the pattern in the interface. She then moves the field
above the pattern by dragging the text field by its handle. As she
moves the field, the pattern elements are highlighted in green one
by one, indicating that she can actually drop the field right over
them. When she drops the field a copy of itself is snapped on top of
the element she was overing. The content of the field has changed:
instead of the variables U and V there is now a numerical value.
In addition, a small box has appeared in the field indicating the
result of the expression : "=14.1". Intrigued by this behavior she
selects the handle again and moves the field to another element.
The value of the field changes again, as well as the indicated result.
She then understands that the result indicated in the box seems to
indicate the value of each element, in her case the scale of the overed
element. By trial and error she moves the field above the pattern
elements multiple times until she understands that the values of U
and V correspond to the coordinates of each element of the pattern.

Goal 3 Understanding and exploring the language
Charac. Character visibility, Text field color
State Edited

After trying a few patterns, Elsa would like to know more about
the language used to create more diverse patterns. Not used to
reading language documentations, she would rather learn on the
fly by experimenting. She decides to activate the "masked characters"
mode, a feature that proposes random patterns with pre-written
expressions to be guessed by hiding one or more characters. As
soon as the masked mode is activated, the content of the active
field changes, showing an expression with a character grayed out,
replaced by a box character. The text field is also highlighted in
red, suggesting an error in the content. When reading the text field
content, Elsa realizes that it is the "a" in "scale" that seems to have
been replaced. She then decides to replace the box with the missing
letter. As soon as she made the change, the text field turns green

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

Figure 5: Implemented ideas from the design space to our use case software VectorPattern.
Goal 1. Using icons and tooltip to explicit the selected property and its unit, range and default value.
Goal 2. A movable field which serves as an inspector tool to get more information about applied values.
Goal 3. A special "Masked Mode" providing incomplete expressions, a challenging way to learn the syntax.
Goal 4. Having multiple movable fields in the GUI for a better workflow.
Goal 5. Using custom or generic aliases to speed up typing or to help to remember key words.

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

indicating that her change was correct. After a few seconds the
content of the text field changes again automatically, proposing a
new hidden expression. Elsa tries again to complete it, looking for
the missing characters reading carefully the functions and getting
progressively more used to the syntax of the language.

Goal 4 Helping with organisation
Charac. Text field position, Icons
State Selected, disabled

Now that she is more familiar with the mathematical language
and the different properties of Vector Pattern, Elsa is starting to
refine her creation workflow in the software. After trying out a few
formulas, Elsa comes up with a rendering she likes. In order to put
the expression aside, she duplicates her expression by grabbing the
field by the handle and dropping it right next to her expression.
As soon as she changes the field she just created, the other field is
disabled and grayed out, because the same property is also on the
new field. Elsa continues to modify her expression until she reaches
another rendering that suits her. To compare the two patterns, she
switches between the two fields by clicking on one after the other,
thus activating the rendering of the focused field. She decides that
she prefers the second expression, but she would like to keep the
first one aside for later. So she removes the designator @ from the
"@scale" property, which makes the field inactive. She then moves
it to a corner of the screen to put it aside in case she would like to
reuse it later without it getting in the way of the pattern.

Goal 5 Making the writing process more usable
Charac. Drop-down list, Text manipulation: aliases
State Edited

Elsa wants to write an expression but never remembers if it is "u"
or "v" that designates the columns of the pattern. After checking,
she decides to add a "horizontal" alias for the variable u, so as not
to make any more mistakes. She focuses on the only text field of
the interface, deletes all its content and activates the alias mode by
entering "::" in the field. As soon as the alias mode is activated, a
drop down list of created aliases opens. With the keyboard arrows
Elsa scrolls through the list to see the pre-defined aliases, such as
"sinus" to replace "sin", or the symbol "𝜋", not supported by the
language, which is replaced by the word "pi". She adds her new alias
by typing "horizontal = u" and validates with enter. The property
is now added to the list of aliases. She also adds "vertical = v" and
exits the alias mode by deleting the "::" in the field. She then tests
her new alias by entering "horizontal*10" in the text field. When
the alias is detected, a list opens under the field, describing the
corresponding alias: "horizontal = u". She presses "shift+enter" to
apply it and sees that the alias has been correctly replaced.

5 DISCUSSION AND CONCLUSION
Our design space proved to be usable and useful to produce original
ideas for our use case. A next immediate validation step will be
to test our design space generative power with professional HCI
designers. We also would like to apply it to other use cases, like
procedural 3D scenes generation or music creation which are close
to our pattern design test application. While we demonstrated
that the design space supports the generation of novel ideas for

enriching text fields, we did not evaluate the intrinsic quality of
these ideas. Despite these current limitations, thinking, developing
and testing the design space gave us the opportunity to reflect more
broadly on text fields and the role they play today in our current
interfaces.

5.1 Textual interactions and direct
manipulation

In creative software, a large part of the interactions are done via
direct manipulation with the mouse. Yet, textual interactions persist,
in the form of shortcuts or enclosed in the small writing zones of
the text fields. But whatever the size and the presence of the writing
zone, the power of the text remains the same. In the restricted and
discrete space of the text field, users could have access to a large
number of useful functionalities in the creation process. A single
text field can thus become a notepad, a message area to be shared, a
command line or a configuration area. These functionalities, main or
complementary to the creation workflow, are accessible to different
users, whether they are neophytes or more experienced.

However, developing text-based interactions does not mean re-
verting to command-line interfaces, or putting aside the direct
manipulation habits that many people have acquired. On the con-
trary, we believe that we can, and should, mix the two types of
manipulation, direct and indirect, in order to get the best out of
both worlds[33]. Leveraging direct manipulation habits can also be
a way to benefit from the Assimilation bias [8], i.e. habits user have
kept from other software, and only partially accommodate it. In this
respect, the text field element represents a very good opportunity
to develop this kind of practice, because of its standardization and
its wide implementation across environments and languages. Text
fields could be a significant element for an hybrid interface revival,
which are GUI that mix textual coding and direct manipulation.
Since the late 90’s there has been works and software that imple-
ment this kind of interface, including the work of Jürg Lehni on
Scriptographer [30], an Adobe Illustrator plug-in to manipulate
graphical objects with JS scripts. The advent of Flash in the 2000’s
had demonstrated the enthusiasm from the creative community
for theses interfaces. Despite its proven value as a middle ground
between the power of programming and the accessibility of direct
manipulation, most of these projects have been discontinued. Some
hybrid interface’s remains can be found in the scripting part of
widely used creative software such as Adobe After Effects, but it’s
development and popularity has not reach what was common in
the Flash interface. Yet in recent years, hybrid interface has seen
a renewed interest as shown by Baku Hashimoto’s work on Glisp
[21]. Developing text field based interactions could be another way
to renew this approach.

More familiar to people used to direct manipulation, text fields
are present in many software and web sites. It shares many graph-
ical and interactive conventions with other widgets such as its
different states and their associated representations. It can easily
be augmented with other elements such as handles, toolboxes or
icons, without representing a significant change in its affordance.
In that matter, text fields used for entering numerical values are
already augmented with a pointer interaction to increase the speed
of manipulation (dragging to increase or decrease the value). Its

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

simplicity also makes it more accessible than IDEs, which can seems
complex or intimidating to new users.

5.2 Writing’s friction and user experience
When discussing the use of text in a creative context, the first bar-
rier to be overcome is the complexity of writing and the friction
it represents. Writing is indeed more sensitive to errors and has a
higher learning curve than other forms of interaction. Regarding
"Principles for Successful Guessing", extracted from Polson and
Lewis’s CE+ model [39], software based on textual interactions can
hardly apply 1 or 2 principles. The repertoire of available actions is
obscure, feedback can be barely visible, multiple analogous alterna-
tives are offered... Thus the development of interactions in CST has
followed an ideal of user experience described as fluid, immediate
and natural, in the replication of the movements of creation in the
tangible world. Yet in a creative context friction can be interesting,
even desirable. When creating patterns in VectorPattern, replicating
a previously imagined or drawn pattern is very difficult. It would
require a lot of projection skills, in addition to a good knowledge
of math and software operations. In fact, creating patterns with
VectorPattern is more a matter of trial and error, testing and then
refining the mathematical expression. This way of creating, through
attempts, trial and error, happens to works particularly well with
the sensitivity of writing, which gives user the ability to propose
significant changes quickly. This performativity of writing allows
for quick and relatively simple changes of an expression, dramati-
cally transforming the output and allowing for increased creative
mobility. Moreover the use of mathematical expressions fits well
with certain purposes such as describing a complex repetition. Even
if it is indeed replaceable by other ways of generative creation like
node-based systems, the efficiency and polymorphism (the ability
to copy and paste text in different context and across software) of
writing still is a great advantage.

Designing a GUI for direct manipulation requires abstraction of
the software’s operation so that it is understandable by users and
limits errors. A slider, for example, has a minimum and a maximum,
which prevents the user from going outside the range of expected
values. However, the values or options provided do not necessarily
coincide with all possible values, but rather with a logical choice
from the programmers. Thus this graphical overlay tends to cir-
cumscribe the possibilities of control of the program on behalf of
simplicity of use or learning. The textual form allows greater free-
dom in the user’s choices, which are not reduced to a set of buttons,
list items or nodes. The use of textual form permits a direct and
free control with the operations of the program, in exchange for
more frequent errors.

The error-proneness of writing can cause frustration, as it re-
quires precise knowledge of the language and the program. It in-
volves a certain amount of learning and mastery to get greater
control over the software. At the same time, the rigour imposed by
the textual approach helps to qualify users, by encouraging them
to really understand and master what they are doing. Program
operations become more explicit and intelligible to the user, who
can then exploit it to its full potential. The use of text can be a
means of regaining the control and experimentation power, both

essential in the creative process. Despite this potential benefit, sup-
porting creativity through text fields should involve mechanisms
that alleviate or mitigate this error-proneness. We think that this
can happen through several mechanisms: trying to show results as
much as possible; reorienting users towards possible alternatives
in case of error and guiding during the typing process to avoid
errors altogether. In this last case, this can be done automatically,
via auto-completion methods, but also in interactive ways through
multiple options which would provide users with different choices.

5.3 Design space as a creative generation
method

Text fields as design components have a certain number of character-
istics that we identified and organized. However, the characteristics
dimension may not be comprehensive and this is one of the possible
shortcomings of our current design space. It has the positive effect
of showing another avenue for exploring the potential of text fields:
developing other text fields characteristics, beyond the ones we are
used to see in current software. Through this lens, the text field
design space can be generative in itself by welcoming the devel-
opment of other characteristics. We also think that design spaces
have a real potential as a method for UI or interaction design. This
can help us examine and question the use of fixed and standardized
components. Being able to dissect existing GUI component as a
starting point to develop novel interaction could become an alter-
native to existing fixed component libraries that are being used in
the industry.

5.4 Extending the design space - An interaction
dimension

As we mentioned earlier, the design space can be extended to other
dimensions, especially to a more interaction-centered dimension.
We have classified 5 types of interactions allowing to transition
between the states of the text field, deriving from Buxton’s three-
state model for graphical input [6]. These types of interactions are
characterized according to their temporality (transient, durative and
continuous) and the granularity of control they allow (predefined,
rough or precise control). They can be associated with several
types of controllers, including the most recent ones. Depending
on the controller used and design choices some transitions may be
nonexistent or one-way only. These basic interaction types can be
combined together to form richer interactions abeit more complex
(click and drag, or a keyboard modifier key and another keyboard
key...).

(1) Command-based interaction : mouse clicking, tapping on
a touchscreen, using keyboard shortcut, using voice com-
mand... Command-based interactions only allow a prede-
fined action to happens. We consider them to be transient,
i.e. to not last for a significant duration and to give immedi-
ate feedback. Thus we consider both "up" and "down" events
rather than "pressed" events for a mouse click, a tap and
a keystroke. If the action is hold and last in time we con-
sider it whether as a repeated command-based interaction,
as another delayed command-based interaction, or as the
beginning of another type of interaction as described bellow.

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

Figure 6: Two synthetic examples of common text field in-
teractions: with a mouse and keyboard setup, and with a
touch-enabled smartphone.

(2) Pointer-based interaction : pointing at something with a cur-
sor, dragging the pointer... Commonly used to select the text,
to hover above the text field, or to move it around in the GUI.
Pointer-based interactions are continuous and allow a rough
but direct control over the field.

(3) Text entry : using a physical or digital keyboard, dictating text,
writing using a tablet pen. Any form of text, traditionally
a keyboard but can be extended to more original forms of
text input such as hand writing recognition or a data-entry
interface such as Dasher[47]. Text entry is dedicated to it’s
eponymous action and can be seen as a suite of transient
actions of character typing.

(4) Uni-dimensional interaction (1D) : using 2 arrow keys, us-
ing the mouse wheel, using a gamepad triggers... A uni-
dimensional interaction consist of any set of binary actions
such as plus/minus or forward/backward attached to a spe-
cific set of controls. Controls can be common such as key-
board arrows but also more subjective or original like tempo-
rally bounding the 2 mouse triggers to a specific 1D action.

(5) Multi-dimension interaction (2D, 3D) : using 4 arrow keys,
using a joystick, using a gyroscope sensor Following the
uni-dimensional interaction, a multi-dimension interaction
can allow a finer control by introducing more parameters.
We include gesture-based interactions as a form of multi-
dimension interaction.

We did not implemented this dimension in the proposed design
space as we are unsure about its generative power. We found that
these parameters are not mutually exclusive, i.e. they are often
used together as alternative ways to interact with the text field.

However, they seem to be useful for describing interactions in an an-
alytical perspective, to highlight limited or redundant interactions
possibilities.

5.5 Conclusion
In this paper, we have shown that, following the increased popular-
ity of programming within the arts and design fields, there is an
untapped potential for the creation and development of richer text
fields, especially in the context of creative software. However, the
language is not always known from users and if we are to really
unleash the potential of text fields, we need to rework text fields so
as to support writing.

As a first step in this direction, we have developed a text field
design space based on the anatomy of the text field as well as writing
support oriented objectives. We also demonstrated the generative
power of this design space through the generation of novel ideas
for extending interactive power of text fields.

With the advance and development of broadly accessible text-to-
imagemachine learning technique, text fields and more broadly text
as an input technique is making a comeback. Different examples
of text-to-anything (image, sound, 3D model, etc.) modules, being
integrated into design and mainstream software such as Photoshop
[7] or Blender [26], show that textual interaction will most probably
be integrated with other interaction modes.

Writing plain language prompts may seem easier to learn at first
sight, but appears to be a codified practice that requires users to
follow rules to make it effective. These unstated guidelines are
becoming apparent through the still limited recommendations of
various platforms [10] and the emergence of prompt-helpers [14].
The prompt text field could clearly constitute an important HCI
problem space to which our design space can be used to generate
effective supporting principles for this new type of writing.

In the case of prompts, writing support tools could help to sup-
port the explicability of such systems, including questioning its use.
In that case, we could for example add a new objective to the design
space: how writing support tools within text fields can support
reflexive practices, especially for tools such as machine learning
based ones, that are known to be prone to specific issues such as
datasets that reproduce existing bias for example.

ACKNOWLEDGMENTS
We want to thank Vincent Tavernier. He has been our git and
JavaScript guru during VectorPattern development. We also thank
the reviewers for their precious help in making this paper better.

REFERENCES
[1] Aarya. 2022. AutoRegex: Convert from English to RegEx with Natural Language

Processing. https://www.autoregex.xyz. [Online; accessed 19-January-2023].
[2] R. Ballagas, J. Borchers, M. Rohs, and J.G. Sheridan. 2006. The smart phone: a

ubiquitous input device. IEEE Pervasive Computing 5, 1 (Jan. 2006), 70–77. https:
//doi.org/10.1109/MPRV.2006.18 Conference Name: IEEE Pervasive Computing.

[3] Rafael Ballagas, Sarthak Ghosh, and James Landay. 2018. The Design Space of 3D
Printable Interactivity. Proceedings of the ACM on Interactive, Mobile,Wearable and
Ubiquitous Technologies 2, 2 (July 2018), 1–21. https://doi.org/10.1145/3214264

[4] Michael Mose Biskjaer, Peter Dalsgaard, and Kim Halskov. 2014. A Constraint-
Based Understanding of Design Spaces. (2014), 10.

[5] blinry. 2022. Sliderland. https://sliderland.blinry.org. [Online; accessed 19-
January-2023].

https://www.autoregex.xyz
https://doi.org/10.1109/MPRV.2006.18
https://doi.org/10.1109/MPRV.2006.18
https://doi.org/10.1145/3214264
https://sliderland.blinry.org

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

[6] William Buxton. 1990. A Three-State Model of Graphical Input. In Proceedings
of the IFIP TC13 Third Interational Conference on Human-Computer Interaction
(INTERACT ’90). North-Holland Publishing Co., NLD, 449–456.

[7] Christian Cantrell. 2022. The Stability Photoshop plugin. https://christiancantrell.
com/#ai-ml. [Online; accessed 21-January-2023].

[8] John Carroll andMary Beth Rosson. 1987. Paradox of the active user. In Interfacing
Thought : Cognitive Aspects of Human-Computer Interaction. The MIT press, 80–
111.

[9] The Qt Company. 2022. Qt Documentation: TextField QML Type. https://doc.qt.
io/qt-5/qml-qtquick-controls-textfield.html. [Online; accessed 21-January-2023].

[10] LMUMunich CompVis, Stability AI, and Runway ML. 2022. DreamStudio Prompt
Guide. https://beta.dreamstudio.ai/prompt-guide. [Online; accessed 21-January-
2023].

[11] Alan Cooper, Robert Reimann, David Cronin, and Christopher Noessel. 2014.
About face: the essentials of interaction design. John Wiley & Sons.

[12] Stephen W. Draper and Stephen B. Barton. 1993. Learning by Exploration and
Affordance Bugs. In INTERACT ’93 and CHI ’93 Conference Companion on Hu-
man Factors in Computing Systems (Amsterdam, The Netherlands) (CHI ’93).
Association for Computing Machinery, New York, NY, USA, 75–76. https:
//doi.org/10.1145/259964.260084

[13] Sébastien Ferré. 2017. SPARKLIS: An Expressive Query Builder for SPARQL
Endpoints with Guidance in Natural Language. Open Journal Of Semantic Web 0
(2017). https://hal.inria.fr/hal-01485093

[14] Claudio Fuentes. 2022. Prompt Tool for MidJourney. https://prompt.noonshot.
com/midjourney. [Online; accessed 21-January-2023].

[15] Don Gentner and Jakob Nielsen. 1996. The Anti-Mac Interface. Commun. ACM
39, 8 (aug 1996), 70–82. https://doi.org/10.1145/232014.232032

[16] Google. 2021. Material Design. https://m3.material.io. [Online; accessed 21-
January-2023].

[17] Chris Granger. 2014. Light Table. http://lighttable.com. [Online; accessed
19-January-2023].

[18] Sumit Gulwani and Mark Marron. 2014. NLyze: Interactive Programming by
Natural Language for Spreadsheet Data Analysis and Manipulation. In Proceed-
ings of the 2014 ACM SIGMOD International Conference on Management of Data
(Snowbird, Utah, USA) (SIGMOD ’14). Association for Computing Machinery,
New York, NY, USA, 803–814. https://doi.org/10.1145/2588555.2612177

[19] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program
Visualization for Cs Education. In Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).
Association for Computing Machinery, New York, NY, USA, 579–584. https:
//doi.org/10.1145/2445196.2445368

[20] Mars Gäfvert. 2022. Lost Minds Patternodes 3 - Parametric design and animation.
https://lostminds.com/patternodes3/. [Online; accessed 21-January-2023].

[21] Baku Hashimoto. 2020. Glisp. A Lisp-based Design Tool Bridging Graphic Design
and Computational Arts. https://github.com/baku89/glisp. [Online; accessed
19-January-2023].

[22] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 281–292.
https://doi.org/10.1145/3332165.3347925

[23] Teresa Hirzle, Jan Gugenheimer, Florian Geiselhart, Andreas Bulling, and Enrico
Rukzio. 2019. A Design Space for Gaze Interaction on Head-mounted Displays. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, Glasgow Scotland Uk, 1–12. https://doi.org/10.1145/3290605.3300855

[24] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3173574.3174106

[25] Olivia Jack. 2018. Hydra. https://hydra.ojack.xyz. [Online; accessed 19-January-
2023].

[26] Carson Katri. 2022. Dream Textures. Stable Diffusion built-in to Blender. https:
//github.com/carson-katri/dream-textures. [Online; accessed 21-January-2023].

[27] Caitlin Kelleher and Randy Pausch. 2005. Lowering the Barriers to Program-
ming: A Taxonomy of Programming Environments and Languages for Novice
Programmers. ACM Comput. Surv. 37, 2 (jun 2005), 83–137. https://doi.org/10.
1145/1089733.1089734

[28] Martin Kleppe. 2020. (t,i,x,y) => "creative code golfing". https://tixy.land. [Online;
accessed 19-January-2023].

[29] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework
for Enabling New Tools, Interaction Techniques and Views in Code Editors. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Montréal, Québec, Canada) (CHI ’06). Association for Computing Machinery,
New York, NY, USA, 387–396. https://doi.org/10.1145/1124772.1124831

[30] Jürg Lehni. 2006. Scriptographer. https://scriptographer.org/. [Online; accessed
23-January-2023].

[31] Jingyi Li, Joel Brandt, Radomír Mech, Maneesh Agrawala, and Jennifer Jacobs.
2020. Supporting Visual Artists in Programming through Direct Inspection and
Control of Program Execution. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3313831.3376765

[32] Hugo Loi, Thomas Hurtut, Romain Vergne, and Joelle Thollot. 2017. Pro-
grammable 2D Arrangements for Element Texture Design. ACM Trans. Graph.
36, 3, Article 27 (may 2017), 17 pages. https://doi.org/10.1145/2983617

[33] Nolwenn Maudet. 2018. Reinventing Graphic Design Software by Bridging the
Gap Between Graphical User Interfaces and Programming. https://doi.org/10.
21606/drs.2018.611

[34] Donald A Norman. 1988. The psychology of everyday things. Basic books.
[35] Donald A Norman. 2007. The next UI breakthrough: command lines. Interactions

14, 3 (2007), 44–45.
[36] Notion Labs Inc. 2016. Keyboard shortcuts - Notion help center. https://www.

notion.so/help/keyboard-shortcuts. [Online; accessed 21-January-2023].
[37] StephenOney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation

and Example Code in the Editor. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for
Computing Machinery, New York, NY, USA, 2697–2706. https://doi.org/10.1145/
2207676.2208664

[38] Peter Pirolli and Stuart Card. 1999. Information foraging. Psychological review
106, 4 (1999), 643.

[39] Peter G. Polson and Clayton H. Lewis. 1990. Theory-Based Design for Easily
Learned Interfaces. Hum. Comput. Interact. 5 (1990), 191–220.

[40] Inigo Quilez. 2020. Graphtoy. https://graphtoy.com [Online; accessed 19-
January-2023].

[41] Casey Reas and Ben Fry. 2006. Processing: programming for the media arts. Ai
& Society 20, 4 (2006), 526–538.

[42] Christian Santoni and Fabio Pellacini. 2016. gTangle: A Grammar for the Pro-
cedural Generation of Tangle Patterns. ACM Trans. Graph. 35, 6 (Nov. 2016),
182:1–182:11. https://doi.org/10.1145/2980179.2982417

[43] Martin Schneider and Moritz Wallawitsch. 2020. RemNote. https://www.remnote.
com. [Online; accessed 19-January-2023].

[44] Ben Shneiderman. 1983. Direct Manipulation: A Step Beyond Programming
Languages. Computer 16, 8 (Aug. 1983), 57–69. https://doi.org/10.1109/MC.1983.
1654471

[45] Bret Victor. 2012. Learnable Programming. Designing a programming system
for understanding programs. http://worrydream.com/#!/LearnableProgramming.
[Online; accessed 19-January-2023].

[46] Julie Wagner, Mathieu Nancel, Sean G. Gustafson, Stephane Huot, and Wendy E.
Mackay. 2013. Body-centric design space for multi-surface interaction. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’13). Association for Computing Machinery, New York, NY, USA, 1299–1308.
https://doi.org/10.1145/2470654.2466170

[47] David Ward, Alan Blackwell, and David Mackay. 2000. Dasher—a data entry
interface using continuous gestures and language models. 129–137. https://doi.
org/10.1145/354401.354427

[48] Adam Wathan, Jonathan Reinink, David Hemphill, and Steve Schoger. 2019.
Tailwind CSS. https://tailwindcss.com. [Online; accessed 21-January-2023].

A APPENDIX: IDEAS GENERATED USING THE
DESIGN SPACE

We give here a short description of each idea presented Figure 4.
A.1 Understanding the returned value and its

resulting effect

(1) 1.A - When the user presses the space bar inside the text
field, the field is transformed to the same proportions as the
pattern. Its background color is set to a color gradient that
represent the normalized variation of the pattern.

https://christiancantrell.com/#ai-ml
https://christiancantrell.com/#ai-ml
https://doc.qt.io/qt-5/qml-qtquick-controls-textfield.html
https://doc.qt.io/qt-5/qml-qtquick-controls-textfield.html
https://beta.dreamstudio.ai/prompt-guide
https://doi.org/10.1145/259964.260084
https://doi.org/10.1145/259964.260084
https://hal.inria.fr/hal-01485093
https://prompt.noonshot.com/midjourney
https://prompt.noonshot.com/midjourney
https://doi.org/10.1145/232014.232032
https://m3.material.io
http://lighttable.com
https://doi.org/10.1145/2588555.2612177
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://lostminds.com/patternodes3/
https://github.com/baku89/glisp
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3290605.3300855
https://doi.org/10.1145/3173574.3174106
https://hydra.ojack.xyz
https://github.com/carson-katri/dream-textures
https://github.com/carson-katri/dream-textures
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1089733.1089734
https://tixy.land
https://doi.org/10.1145/1124772.1124831
https://scriptographer.org/
https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/2983617
https://doi.org/10.21606/drs.2018.611
https://doi.org/10.21606/drs.2018.611
https://www.notion.so/help/keyboard-shortcuts
https://www.notion.so/help/keyboard-shortcuts
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
https://graphtoy.com
https://doi.org/10.1145/2980179.2982417
https://www.remnote.com
https://www.remnote.com
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
http://worrydream.com/#!/LearnableProgramming
https://doi.org/10.1145/2470654.2466170
https://doi.org/10.1145/354401.354427
https://doi.org/10.1145/354401.354427
https://tailwindcss.com

Potential of Text Fields IHM ’23, April 03–07, 2023, Troyes, France

(2) 1.B - When the user presses the space bar inside the text field,
expression’s blocks are grouped according to their evalua-
tion priority. One by one following the evaluation order, the
blocks are animated back to their original spacing.

(3) 1.C - The text field is accompanied by an icon that visually
indicate the selected pattern property. When the user hovers
over the icon, a tooltip opens with additional information
such as the range of possible values and the unit used.

(4) 1.D - The text field is resizable and its height serves as a
multiplier for the expression.When the user grabs the handle
in the bottom-right corner, a multiplier value is added to the
expression and the pattern changes dynamically.

A.2 Understanding the basis of the language

(1) 2.A - When the expression is not correctly written, users
can debug quickly by isolating a part of the expression to
evaluate. When selecting text, if the selected part has no
syntax error the selection color will turn to green otherwise
it will turn to red.

(2) 2.B - The text field is draggable over the pattern as a way
to inspect any pattern element individually. When the user
drags the field and drops it over a pattern element, a duplicate
field is created, changing pattern variables names to their
real values and showing the computed value.

(3) 2.C - When hovering over an expression term, the cursor
icon changes to indicate the type of the hovered element (a
variable, a function, an operator...).

(4) 2.D - Inline documentation is inserted inside the text field and
appears while typing. This minimal documentation serves
as a quick translation between English and mathematical
symbols, as well as a reminder for variables. Users can edit
the documentation by adding their own comments, that will
also appear when hovering a block of expression.

A.3 Discovering and Exploring the language

(1) 3.A - A special "masked mode" is available for users to try to
find the missing character in a given expression. This mode
serves as a way to discover new expressions and to train to
remember the syntax.

(2) 3.B - Changing quickly between functions or increasing num-
bers can be done by pressing up and down arrows on the
keyboard. The selected word is set depending on the cursor

position in the expression. When pressing an arrow, a similar
terms list will appear, allowing users to test quickly.

(3) 3.C - Whenever a variable is selected in the expression, a
"random function" tooltip will appear. When pressing en-
ter, a random function will be inserted around the selected
variable.

(4) 3.D - The text field is "shakeable" to permute all the expres-
sion blocks between each others. When grabbing the field
with the pointer and wobbling it around, the desired action
is triggered. This interaction could also be used to erase text
field content.

A.4 Helping with writing organization

(1) 4.A - Whenever the user has multiple fields in the page, the
background color of the field is used to indicate the last
modified field.

(2) 4.B - Text fields can be set as inactive in the page, used as a
note taking zone rather than an expression zone. The activa-
tion is set by focusing the field, permitting users to quickly
test multiples expressions by focusing different fields.

(3) 4.C - Text fields are accompanied by a drop-down menu
that serves as a shared history panel. Whenever a pattern is
shared, the new user has a trace of saved expressions from
the original user, allowing a detailed re-appropriation of the
pattern.

(4) 4.D - Expressions can be tagged using a hash symbol fol-
lowed to any other characters. Once tagged, expressions can
be searched using the hash as a trigger for the search list
opening. Users can now organise their expressions to quickly
use their favorites.

A.5 Making the writing process more usable

(1) 5.A - Bits of expressions can be moved around freely in the
page, resulting in a kind of text field puzzle. Users can then
drag fields together to create a complex expression from
simpler parts.

(2) 5.B - When faced with a long and complex expression, users
can activate a multi-line decomposition of it. The expression
is then vertically indented using parenthesis as a delimiter.

(3) 5.C - The text field is accompanied with a drop-down list
with an auto-completion function. The list also includes an
English term for functions.

IHM ’23, April 03–07, 2023, Troyes, France Calmettes et al.

(4) 5.D - Users can edit aliases for any expression terms or blocks.
When activating the alias mode, users can set an English
word such as "wave" to a "sin" function for example. They
can also link a short term to a full expression, e.g. using "f1"

as an alias for "sin(v)*15". When writing in the field, when
the correct alias is detected, a prompt appears asking for a
potential replacement.

	Abstract
	Résumé
	1 Introduction
	2 Related work
	2.1 Understanding the returned value and its resulting effect
	2.2 Understanding the basis of the language
	2.3 Discovering and Exploring the language
	2.4 Making the writing process more usable
	2.5 Helping with writing organization

	3 A text field design space
	3.1 Design Spaces in HCI
	3.2 Text Field
	3.3 The Text Field Design Space

	4 Exploring the generative power of the text field design space
	4.1 VectorPattern: our experimental setup
	4.2 Applying the text field design space to VectorPattern
	4.3 Resulting ideas

	5 Discussion and conclusion
	5.1 Textual interactions and direct manipulation
	5.2 Writing's friction and user experience
	5.3 Design space as a creative generation method
	5.4 Extending the design space - An interaction dimension
	5.5 Conclusion

	Acknowledgments
	References
	A Appendix: Ideas generated using the design space
	A.1 Understanding the returned value and its resulting effect
	A.2 Understanding the basis of the language
	A.3 Discovering and Exploring the language
	A.4 Helping with writing organization
	A.5 Making the writing process more usable

