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Thermally driven flows of superfluid 4He display unique features, often related to
the presence of quantized vortices – line singularities embedded in the liquid. Here
we focus on turbulent round jets, experimentally investigated using the flow visual-
ization and second sound attenuation techniques, at Reynolds numbers exceeding
104. These turbulent flows are driven by releasing heat into a small volume of liquid,
open to the surrounding bath through a cylindrical nozzle, 2 mm in diameter. Our
measurements reveal in unprecedented detail how the tangle of quantized vortices
associated to the jets arranges itself in space, for distances ranging from 9 to 34
nozzle diameters, at fluid temperatures between 1.64 and 2.10 K. We specifically
find that the vortex tangle spreads in the radial direction, while it dilutes away
from the nozzle. Additionally, the tangle density is found to systematically depend
on the flow forcing. Two physical interpretations of the observed behavior are pro-
posed, which could motivate further investigations of this peculiar flow. One leads
us to conjecture a self-similar functional form of the vortex tangle density across
counterflow jets. The other suggests that the position of the superfluid stagna-
tion point – a characteristic feature of counterflow jets – could depend on the flow
forcing as well.

I. INTRODUCTION

Turbulent jets are typical representatives of boundary-free shear flows that can be realized
not only in classical Newtonian fluids but also in superfluid 4He – see e.g. Refs. ? ? . A jet
flow is usually obtained by driving a fluid stream through a nozzle into a large reservoir. The
interaction between the injection flow, the nozzle and the fluid inside the reservoir results
in a distinct, spatially inhomogeneous structure that can be experimentally studied. In the
present work we focus on turbulent round jets submerged in superfluid 4He, also known as
He II. This phase of liquid 4He exists only at temperatures below approximately 2.2 K, at
the saturated vapor pressure, and its behavior is appreciably affected by the quantum order
that spontaneously develops in the fluid. Macroscopic consequences of this order are, for
example, the possible occurrence of inviscid flows and the coupling between temperature
and pressure gradients (the fountain effect) – see Refs. ? ? for reviews on this unique
liquid.

At temperatures higher than about 1 K thermal excitations cannot be neglected and the
large-scale hydrodynamics of He II is usually described by the phenomenological two-fluid
model.? ? The gas of excitations can be seen as a viscous fluid called the normal component,
while the quantum-ordered system behaves as an inviscid, superfluid component. The
two fluid components are fully miscible and their density fractions, which depend only on
temperature, are plotted in Fig. ?? for the range of temperatures relevant here – note in
passing that the He II density ρ ≈ 145 kg/m3 depends weakly on temperature.?
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FIG. 1. Left axis: temperature dependence of the density fractions of the normal (pn, dot-dashed
line) and superfluid (ps, dashed line) components of He II. Right axis: temperature dependence of
the second sound speed (solid line). Tλ ≈ 2.2 K denotes the superfluid transition at the saturated
vapor pressure. Data from Ref. ? .

Additionally, the circulation of the superfluid component is quantized.? Specifically, each
circulation quantum κ ≈ 10−7 m2/s is associated to a quantized vortex, which is a line
singularity of the quantum order parameter characterized by a narrow core (approx. 0.1 nm)
and macroscopic length. When superfluid 4He becomes turbulent, quantized vortices tend to
interact and eventually form a dynamic tangle, which is the key component of turbulence
in He II.? ? Here we employ experimental tools to study the quantized vortices’ tangle
associated to steady turbulent jets, in view of understanding in what aspects jet flows in
superfluid 4He may differ form their classical analogs. The quantized vortices’ tangle plays
an important role in this context because it provides the coupling mechanism between the
otherwise independent components of He II. At flow scales larger than the mean distance
` between quantized vortices the magnitude of this interaction – usually called mutual
friction force – is proportional to the difference between the velocities of the normal (vn)
and superfluid (vs) components.? ?

According to the just outlined model, when heat is dissipated in He II, two velocity
fields pointing in opposite directions are established, resulting in the so-called thermal
counterflow. The normal component flows away from the heat source, dispersing heat into
the 4He bath, while the superfluid component, which has zero entropy and therefore cannot
transport heat, flows in the opposite direction, to compensate for the mass flow of the
normal component. In the widely studied case of channel counterflow, a heating power P is
dissipated at the closed end of a channel with cross-section S, submerged in a liquid bath
kept at temperature T . In the steady state the normal component moves towards the open
end of the channel with the average velocity

vn =
q

ρsT
, (1)

where q = P/S is the dissipated heat flux, ρ indicates the density of He II and s is the
fluid specific entropy. In order to satisfy the null mass flow rate condition just mentioned,
the superfluid component flows towards the heater with the average velocity vs in such a
way that pnvn = −psvs holds (we assume here that vn > 0 and vs < 0). As a result,
the relative velocity of the two components is in general nonzero. We usually denote this
velocity difference as the counterflow velocity vns, which is then given as

vns = vn − vs =
q

ρssT
=

vn
1− pn

, (2)

where ρs = psρ is the density of the superfluid component.
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Here we take advantage of the just outlined flow regime because our turbulent jets are
driven thermally, by dissipating a constant heating power in a small enclosed volume open
to the He II bath via a cylindrical nozzle. The resulting flow is usually named thermal
counterflow jet – see Ref. ? for a review on early works – and in the past it was mainly
regarded as a playground system for the study of the mutual friction force in the absence
of solid boundaries, which significantly influence the development of turbulence in He II, as
recently discussed in Refs. ? ? ? ? .

Following Ref. ? we define a Reynolds number relevant for thermal counterflow jets as

Re =
ρvnd

µn
, (3)

where d indicates the nozzle diameter and µn denotes the dynamic viscosity of He II. As
detailed below, the Re values achieved in the present work are larger than the critical value
5× 103 reported in Ref. ? , on the basis of flow visualization experiments. It then follows
that our thermally driven jets are turbulent. Additionally, one expects that the mutual
friction force is significantly enhanced in the nozzle output region because a dense tangle
of quantized vortices develops within the nozzle itself, partly due to the interaction of the
flow with the inner wall of the nozzle, and partly due to the mutual interaction between
the normal and superfluid components.? Consequently, the fast-moving normal component
exits the nozzle and interacts with the vortices, which are flushed into the open volume,
where their presence can be probed in various ways, e.g. by negative ion trapping.?

Thermometric measurements carried out along the jet axis – see e.g. Refs. ? ? – reveal
that a temperature difference ∆T develops inside the nozzle, i.e. the fluid temperature
in the bath is smaller than that inside the nozzle. For example, the ∆T ∝ q3 scaling
obtained at heat fluxes higher than about 5 kW/m2 – and typical of turbulent counterflow
in channels? – confirms that a dense tangle of quantized vortices should be present inside
the nozzle in these conditions. However, the temperature gradient seems to disappear about
one diameter away from the nozzle, as reported e.g. in Ref. ? , at least for relatively high
heat flux values, i.e. within the just mentioned cubic regime. On the basis of this evidence
it was conjectured that the superfluid component might be coupled to the normal one in the
free jet flow, resulting then in a nearly zero counterflow velocity (i.e. coflow of the normal
and superfluid components) in the far field. The hypothesis was later supported by acoustic
attenuation,? velocity-sensitive phase? and laser Doppler velocimetry measurements, as
close as 0.5d above the nozzle.? ? Additionally, it was found that the fluid velocity at
the nozzle exit is apparently equal to pnvn, which can be explained by the transfer of
momentum between the normal component, which exits the nozzle with a velocity vn, and
the surrounding superfluid one, via a process similar to the turbulent entrainment known
to occur for classical turbulent jets.? ? It then follows that the flow field of the superfluid
component must have a stagnation point near the nozzle.? ? We schematically sketch this
velocity field in Fig. ??.

Additionally, following Ref. ? one can split the flow field of turbulent jets into three
regions. The near field region, extending up to 7 nozzle diameters away from the nozzle,
can be considered as the region of flow establishment. Then, some self-similar properties
of turbulent jets are expected to emerge in the intermediate field region and the flow is
said to be fully developed only in the far field region, corresponding to more than 70 nozzle
diameters away from the nozzle. Here, we focus on the intermediate field region of free
counterflow jets, where the resulting single-component flow field of He II already resembles
to some extent the Newtonian one, as shown, for example, in Ref. ? . Specifically, it was
reported that the radial profile of the flow velocity is nearly Gaussian? ? and that the
profile width grows linearly with axial distance, the latter being associated to the similarity
of the flow field.? ? The vertical component of the fluid velocity can then be written as

v(r, z) = v0(z) exp

[
−
(
r

βz

)2
]

(4)
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FIG. 2. Sketch of the two-component flow field in a thermal counterflow jet. Red (blue) arrows:
normal (superfluid) component; green point: stagnation point of the superfluid component. Dis-
played are also velocity profiles in the near field, i.e. in the close proximity of the nozzle (bottom)
and in the intermediate field (top), see Eq. (??). Adapted from Ref. ? .

in the cylindrical coordinates (r, φ, z), where v0 is the centerline velocity, along the jet axis,
and β indicates the jet growth rate. The centerline velocity was found to be constant for
the first one to four nozzle diameters away from the nozzle? and, for larger distances, the
classical v0 ∝ z−1 scaling holds.? ? Note also that in Ref. ? the flow development region
of counterflow jets was reported to be somehow shorter than that of ordinary turbulent jets.

On the other hand, there is little known about the spatial structure of the quantized
vortices’ tangle in a thermal counterflow jet. In this work we aim to fill in this knowledge
gap and we present the first spatially-resolved measurements of the vortex line density
L(r, z) in this kind of flow, where L is defined as the total length of quantized vortices per
unit volume. We specifically probe the quantized vortices’ tangle using the second sound
attenuation technique.? ? ? The latter is based on detecting temperature waves, which
can be observed in flows of superfluid 4He. Within the two-fluid framework, second sound
waves consist of anti-phase oscillations of the normal and superfluid components, while
the well-known density (pressure) waves – named first sound waves in He II – correspond
instead to in-phase oscillations of the components. The speed of second sound is temperature
dependent – it reaches a flat maximum near 1.65 K and steeply decreases near the superfluid
transition temperature, as shown in Fig. ?? (right axis).

In summary, as detailed below, we find that the quantized vortices’ tangle spreads in the
radial direction, along the jet axis, in a way similar to that observed for the fluid velocity,
while its peak density decreases away from the flow source. We then discuss, on the basis of
several assumptions, the spatial distribution and the flow forcing dependence of the tangle
density, directly obtained from the experimental data.

II. METHODS

The counterflow jets here investigated are obtained at the bottom of a standard 4He
cryostat by supplying constant heating power to a resistive heater located inside a purpose-
made enclosure, 3D-printed from copper filled PLA – see Ref. ? for a detailed description
of the apparatus and for preliminary results that are further discussed in the following. The
enclosure is terminated by a circular nozzle, with inner diameter d = 2 mm, as sketched
in Fig. ?? – the nozzle is machined from brass and is 5d high. The thermally driven jets
develop in the open volume above the nozzle – the diameter of this volume is approximately
75d and it is at least 350d high.

The vortex line density embedded in the flow is measured with a miniature second sound
sensor? ? ? consisting of two silicon plates placed δ = (2.505± 0.002) mm apart. The
plates support a heater-thermometer pair, microfabricated at their respective extremities.



5

FIG. 3. Sketch of the experimental setup (not to scale). Brown: 3D-printed heater enclosure;
blue arrows: possible motions of the mobile shaft; red: sensitive area of the second sound sensor.
Dimensions in the right panel are in millimeters.

The sensor’s cross-section in the direction of the flow at the measurement location is approx-
imately twice 1 mm × 20µm, and about 14 mm downstream this measurement location, the
sensor’s cross-section enlarges to approximately 2.5 mm × 3.5 mm. The heater is supplied
with a sine-wave voltage signal with frequency f and, in consequence, second sound waves
with frequency 2f are emitted towards the thermometer, which in turn develops weak peri-
odic oscillations of its resistance. To read out this signal, the thermometer is supplied with
a small constant current and we collect the corresponding voltage oscillations by a lock-in
amplifier.

The two plates of the sensor form an open resonance cavity and standing second sound
waves are obtained between them when the driving frequency f equals the resonance fre-
quency fn, which can be approximated as

fn =
nc2
4δ

, (5)

where n is a positive integer and c2 indicates the second sound speed, whose temperature
dependence is plotted in Fig. ?? (right axis). By driving the device across resonance in
quiescent He II, i.e. when the vortex line density is relatively small, we obtain a nearly
Lorentzian resonance curve typical of harmonic oscillators, with amplitude A0 and half-
width ∆0. In case the sensor is placed in a flow of He II containing a substantial vortex
tangle, the second sound waves are attenuated by the action of the mutual friction force
and the measured resonance amplitude A falls behind A0. The ratio A0/A > 1 can then be
related to the vortex line density L. For a homogeneous and isotropic tangle, the latter can
be approximately estimated? ? as

L =
6π∆0

Bκ

(
A0

A
− 1

)
, (6)

where B denotes the mutual friction parameter, tabulated in Ref. ? . For a polarized (pref-
erentially oriented) tangle, Eq. (??) is modified by a constant prefactor,? i.e. the relation
can be used as a qualitative estimate of L also for polarized tangles, assuming that the
polarization does not significantly change over the course of the experiment. Additionally,
in Ref. ? the uncertainty associated to Eq. (??) is reported to be of the order of 10 %. Still,
we find its use in this study adequate, because such a level of uncertainty is comparable
to the statistical uncertainty of A and to other systematic errors specific to the employed
sensor, which are discussed below.

Note also that the sensitivity of the second sound attenuation technique is further limited
by the fact that it is based on the relative measurement of two second sound amplitudes. In
practice, solely amplitudes meeting A/A0

<∼ 0.99 can be distinguished. For the typical value
∆0 = 300 Hz, we estimate from Eq. (??) that, at 1.95 K, the minimum density that can
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be faithfully detected is Lmin ≈ 6× 108 m−2. The latter corresponds to approx. 1.5 meters
of vortex lines localized between the heater-thermometer pair, i.e. to a mean distance `
between quantized vortices of approximately 40 µm – the volume where L is measured is
equal to approx. 2.5 mm3.

The crucial feature of our sensor is its ability to be displaced within the experimental
volume, thanks to a mobile shaft (see Fig. ??), without significantly altering the flow, due to
its relatively small size and cross-section along the axial direction. Two room-temperature
stepper motors control the shaft motion; one motor moves the shaft in the vertical direction
and the other rotates it about its axis. In the latter case, the sensor moves inside the
cryostat along a circle intentionally crossing the vertical axis of the setup. The angular
deflection of the shaft α can then be used to obtain the radial coordinate r relative to the
jet axis as

r = 2R sin

(
α− α0

2

)
, (7)

where R = 73 mm = 36.5d is the length of the horizontal mounting arm (see Fig. ??)
and α0 = 1.9◦ ± 0.3◦ denotes the offset between the zero position of the sensor, manually
set before the experimental campaign, and its actual value, determined from the acquired
second sound signal (see Fig. ??) – this radial coordinate is signed because the sensor is
allowed to move on both sides of the jet axis, i.e. negative values of r simply denote that the
corresponding deflection angle α < α0 (and vice versa). Additionally, the sensor is mounted
asymmetrically on the horizontal arm and the sensitive areas are located approx. 7d away
from the support (see Fig. ??). As we show below, no significant differences in the acquired
second sound signal are observed between strokes on opposite side of the jet’s axis, which
leads us to believe that possible blockage effects caused by the asymmetry in the mounting
are negligible. Note also that possible blockage effects caused by the symmetrical body of
the sensor have presumably the same strength, since both parts have comparable sizes and
positions in the flow, i.e. possible blockage effects from the sensor body are expected to be
negligible too. Finally, the vertical position z of the sensor, relative to the top of the nozzle,
is obtained directly from the corresponding stepper motor and it can be determined with
the accuracy of approx. 1 mm.

To the best of our knowledge, we report here the first use of a mobile second sound sensor
to probe a spatially inhomogeneous tangle of quantized vortices. So far, inhomogeneous
tangles were investigated by several static sensors placed along a counterflow channel –
see Ref. ? for a few examples – or by multiple sensors located in different loci of the
experimental setup, as e.g. in Ref. ? .

Before proceeding, we now mention two effects that might potentially bias the second
sound measurements. First, in regions far away from the jet axis, the mean flow encounters
the two plates of our sensor at nonzero angles of attack. The mean flow velocity at the
location of the sensor, which can be up to approximately 0.1 m/s, as shown e.g. in Fig. ??,
is significantly smaller than the velocities of the first and second sound waves – in the
investigated temperature range these velocities reach their minima at 2.10 K, and are equal
to 222 m/s and 13 m/s, respectively.? Thus, no significant supersonic effects are expected
to occur when the mean flow changes its direction due to the sensor. Nevertheless, a
velocity boundary layer is expected to develop along each plate? ? and quantum vortices
localized within these layers may contribute to additional attenuation of the measured
signal. Specifically, boundary layer effects were investigated in turbulent flows of He II
for similar sensors, at zero mean angle of attack.? ? Their contribution was found to be
negligible, partly due to the small thickness of the sensor plates, and partly due to the fact
that the velocity boundary layer is expected to be small compared to δ (see Ref. ? for a
more detailed discussion of this effect). Additionally, in comparison to Ref. ? , the effect
of the boundary layer on the measured signal might be larger, due to the nonzero angles of
attack, but, at the same time, the distance between our sensor plates δ is 2.5 times larger
than in the just cited paper, where δ ≈ 1 mm. In consequence, the contribution of boundary
layers to the total signal attenuation is, in our case, reduced by a factor of roughly 2.5, at
the cost of a lower spatial resolution.
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The second source of bias is due to the advection of second sound waves from the resonance
cavity, which also accounts for increased signal attenuation. This advection effect is present
in all types of second sound resonators to a greater or lesser degree.? Specifically, the
attenuation attributed to the vortex tangle is more significant and Eq. (??) represents an
accurate estimate of L when the second sound sensor is operated with a low-order resonant
mode. In our case, as detailed below, we use the 18th harmonic mode, which means that the
second sound beam is more focused and sensitive to advection by the mean flow than it would
be for lower order modes. From the comparison with other available sensor geometries, we
estimate this bias to be as large as a few tens of percent (a more detailed discussion of this
effect is reported in Ref. ? ). It is therefore more significant than the other bias mentioned
above and, consequently, the additional sensitivity of the employed second sound sensor to
the mean flow velocity should be kept in mind.

Aware of these drawbacks, we consolidate our second sound measurements using cryogenic
flow visualization. The technique – discussed at length in Ref. ? – is based on following
the flow-induced motions of micrometer-sized particles by a digital camera. We specifically
visualize solid deuterium particles, which are illuminated by a 1 mm thick and 10 mm
high laser sheet crossing the vertical axis of the jet. The acquired camera images are then
processed to obtain particle trajectories and velocities. These measurements are carried
out in an optical cryostat, with a 12 mm (6d) wide and 8 mm (4d) high field of view
located approx. 10 mm (5d) above the the nozzle, along the jet axis – see again Ref. ? for
experimental details.

III. EXPERIMENTAL RESULTS

Steady counterflow jets are investigated at three temperatures (approx. 1.65, 1.95 and
2.10 K) corresponding to normal component density fractions pn of 0.19, 0.48 and 0.74,
respectively. Note that the helium bath was kept at constant temperature by maintaining
the associated helium vapors at constant pressure, i.e. the temperature standard deviation
was less than 12 mK at 1.65 K, and around 1 mK at higher temperatures. Depending on
the employed experimental protocol, we split the acquired data sets into four categories,
labeled A, B, C, and D – see Table ?? for relevant experimental conditions.

Data sets A1–A3 were collected near 1.65 K because the temperature dependence of the
second sound speed has a plateau here, see Fig. ?? (right axis). The resonance condition
given by Eq. (??) then becomes insensitive to small temperature fluctuations experienced
in almost every cryogenic setup. Therefore, we continuously excite the sensor at the fixed
frequency f = 37.22 kHz, which corresponds to the 18th harmonic mode. By displacing
the sensor, we sweep the volume above the nozzle and we then collect the second sound
amplitude A for a set of positions given by (α, z). In order to increase the signal-to-noise
ratio, multiple (at least 30) sweeps across the jet axis are performed for constant z and the
resulting second sound amplitude is calculated as their average. The vortex-free resonance
amplitude A0 and the peak width ∆0 are obtained by fitting the full resonance curves,
purposely acquired far away from the jet axis, i.e. far away from the tangle.

An example of the acquired second sound signals is presented in the top panel of Fig. ??.
Here we show two sets of sweeps obtained near the extremities of the accessed axial dis-
tance, which are 9.0d and 31.5d, respectively. Individual sweeps across the jet axis (points)
as well as their ensemble averages (solid black lines) show a coherent response, with most
of the attenuation taking place in a narrow region of sensor’s angular deflections. Because
this attenuation can be related to the presence of a quantized vortices’ tangle, we use the
obtained data to calculate the corresponding vortex line density and probe its spatial struc-
ture. Additionally, as shown in the bottom panel of Fig. ??, the fluctuations of the second
sound amplitude introduce a statistical uncertainty of around 10 %, which is comparable
to the uncertainty one can associate to Eq. (??), as mentioned above – a similar level of
fluctuations is observed for other axial distances and data sets A1–A2. Finally, no system-
atic error is apparently introduced by the stepper motor that displaces the sensor back and
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FIG. 4. Top panel: two sets of 30 sweeps (points) across the jet axis, obtained at 1.65 K and 776
mW (data set A3) for z/d = 9.0 and 31.5, as indicated in the figure. Solid and dashed black lines:
ensemble-averaged data used for the calculation of the quantized vortices’ density. Dot-dashed
black line: deflection offset α0 ≈ 1.9◦, Eq. (??). Bottom panel: residuals (points) and standard
deviations (lines) corresponding to the data displayed in the top panel.

forth across the signal minimum, thanks to its positioning accuracy.
An approach similar to that used above is not possible for data sets in categories B

and C because, for the corresponding temperatures, c2 is strongly temperature dependent.
Therefore, for each sensor position, a full frequency sweep across the resonance frequency
(approx. 38.5 kHz) is measured and we estimate the corresponding resonance amplitude
from the in-phase (Ax) and quadrature (Ay) components of the acquired signal,? ? since
the plot of Ay as a function of Ax can be fitted with a circle having diameter equal to A.
As in the previous case, the values of A0 and ∆0 are taken from full fits of the resonance
curves measured far away from the jet. Following this approach, we obtain a single value of
A for each position of the second sound sensor and the statistical fluctuations of the sensor
response are therefore not available for these data sets.

While sets B1–B4 probe the jet in both radial and axial directions and can then be
directly compared to A1–A3, the set C1 only captures the vortex line density along the jet
axis, i.e. for a constant angular deflection equal to α0.

Finally, the data set D1 refers to the flow visualization study, whose bath tempera-
ture and heating power can be directly compared with sets A1 and A2. The data set
comprises approx. 1.88 million particle position-velocity pairs, within the above mentioned
two-dimensional field of view.

For the measured values of T and P , see Table ??, one can use Eqs. (??–??) to calculate
nominal values of vn, vns and Re, assuming that the heat produced in the heater enclosure
is transported towards the helium bath solely through the nozzle. In this idealized case, we
obtain normal fluid and counterflow velocities of the order of 1 m/s, corresponding to Re
values of the order of 105. These values are reported in Table ??.

However, our 3D-printed enclosure is subjected to heat leaks, through its plastic walls
and the joint between the enclosure and brass nozzle. The leaks are found to substantially
reduce the flow velocity and the Reynolds number of the jets studied below. This claim can
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TABLE I. Summary of experimental conditions. T : temperature; P : heating power; vn/η: normal
fluid velocity inside the nozzle, Eq. (??); vns/η: counterflow velocity inside the nozzle, Eq. (??);
Re/η: Reynolds number, Eq. (??). Note that the calculated values for the velocity and the Reynolds
number can be seen as maximal theoretical values, obtained by assuming no heat leaks from the
heater enclosure. In reality, the efficiency of the heat transfer through the nozzle is η <∼ 0.1, as
specified in the text.

Label T [K] P [mW] vn/η [m/s] vns/η [m/s] Re/η [103]

A1 1.65 194 0.78 0.97 175
A2 1.65 381 1.51 1.97 338
A3 1.64 776 3.24 3.98 726

B1 1.95 194 0.26 0.50 55
B2 1.95 381 0.52 0.99 108
B3 1.95 776 1.03 2.00 215
B4 2.10 776 0.65 2.40 107

C1 2.10 775 0.65 2.40 106

D1 1.66 240 0.92 1.15 206

FIG. 5. Left panel: mean axial velocity of our solid particles, visualized in five regions, 0.8d
high, crossing the jet axis (the curves are offset by 40 mm/s relative to each other). The distance
separating each region center from the nozzle is specified next to each curve. A positive velocity
indicates that the particles move, on average, away from the nozzle. Color lines: experimental
data; pale color areas: one standard deviation intervals; black lines: Gaussian fits, Eq. (??); see
also Sec. ??. Right panels: centerline velocity v0 (top panel) and jet width wv (bottom panel)
as a function of the distance z from the nozzle, obtained from the Gaussian fits. Note that the
quantities x, wv and z are normalized by the nozzle diameter d.

be directly verified via the visualization data set, shown in Fig. ??.
In the left panel, we plot the mean particle velocity in the axial direction (color lines)

as a function of the particle horizontal position in the field of view, corresponding to the
radial direction. The dependence on the axial coordinate is specifically expressed by five
offset lines, i.e. the 4d high field of view is split into 5 horizontal stripes, 0.8d high. At
first glance, we can already say that the particle motions capture a spatially constrained
flow structure. Outside the structure, the particles are practically still, while, inside it,
they reach peak velocities of the order of 0.1 m/s. This value is in sharp contrast with the
nominal values of vn reported in Table ??, which are about one order of magnitude larger
than the experimental observation. Therefore, the actual normal fluid and counterflow
velocities are at least one order of magnitude smaller than the maximum values estimated
with Eqs. (??–??).

Heat leaks can be taken into account by assuming a finite efficiency η <∼ 0.1 of the
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FIG. 6. Left panel: temperature inside the heater enclosure as a function of time. The bath tem-
perature is kept constant at 1.30 K and the heater is supplied by a constant heating power (specified
near each curve) from approximately zero time. Right panel: steady temperature difference ∆T
between the enclosure and the 4He bath as a function of the heating power P .

heat transfer through the nozzle. In particular, the heat flux through the nozzle q in
Eq. (??) should become ηq, which means that the effective heating power is reduced to
ηP in comparison to the values reported in Table ??. However, providing a clear estimate
of η based on the current data is not straightforward, also considering that the visualized
region is not directly located above the nozzle, but approximately 10 mm away from it –
note that in a previous study? it was found that, for an analogous set-up, η ≈ 1/30. We
can nevertheless use the upper limits of vn, vns and Re reported in Table ?? to compare
individual data sets, if we assume that η does not significantly change over the course of
the experiment.

In order to investigate heat leaks in more detail, we placed a small germanium thermome-
ter inside the enclosure and measured the temperature difference that develops between the
enclosure and the bath after the heater is switched on. Time traces of the recorded temper-
ature are presented in the left panel of Fig. ?? for a constant bath temperature of 1.30 K
(note that the temperature difference is more prominent at lower temperatures because the
heat capacity of He II is roughly proportional to pn in the investigated temperature range).
Specifically, for a set of rising heating powers, we observe that the heater enclosure warms
up and reaches a steady state within a few seconds after the heater is powered. Once the
heater is switched off, the enclosure quickly thermalizes with the surrounding bath.

First of all, it is apparent that the steady temperature difference ∆T between the en-
closure and the 4He bath is significant, of the order of 0.1 K. Additionally, the right panel
of Fig. ?? displays ∆T as a function of the heating power P . We observe a neat linear
dependence between these quantities, similarly to Ref. ? , where it was also reported that,
for counterflow jets, ∆T ∝ q3 for q >∼ 5 kW/m2. The latter is consistent with the data
reported in Table ?? if we take into account the above mentioned heat leaks, i.e. the results
plotted in the right panel of Fig. ?? confirm that η <∼ 0.1 in the range of investigated pa-
rameters because, otherwise, we should also see here the cubic scaling typical of turbulent
counterflow in channels.? Nevertheless, the observed temperature difference leads to the
formation of a prominent jet that features a dense tangle of quantized vortices. We now
investigate this tangle using the second sound sensor as described above.
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FIG. 7. Radial profiles of the vortex line density for P ≈ 776 mW and different temperatures. The
colors correspond to different axial positions of the sensor, from 9d above the nozzle (dark blue) to
31.5d, 29d and 34d (dark red) for the left, middle and right panels, respectively, with steps of 2.5d.
The curves are offset by 3 × 109 m−2 for the sake of clarity. Positive and negative values of the
radial coordinate r, here normalized by the nozzle diameter d, denote the corresponding angular
deflection (r/d < 0 means α < α0 and vice versa).

A. Spatial structure of the quantized vortices’ tangle

The observed decrease of the second sound amplitude, indicating the presence of quantized
vortices in the flow, depends on the radial and axial positions of the sensor, revealing the
spatial structure of the quantized vortices’ tangle associated to the counterflow jet. Fig. ??
displays the vortex line density L, also named VLD below, calculated from Eq. (??), for
data sets A3, B3 and B4. These data sets are characterized by the same heating power
(P ≈ 776 mW) and different temperatures. The individual curves correspond to different
axial distances, starting from 9d (dark blue) above the nozzle, up to 31.5d, 29d and 34d
(dark red), for sets A3, B3 and B4, respectively – the curves are vertically offset for clarity.
These radial VLD profiles map the quantized vortices’ tangle in unprecedented detail, and
we specifically observe the tangle to be spatially confined and growing in the radial direction
– considering the errors discussed above, we remind that individual L values are here given
with relative uncertainty equal to approximately 10 %.

Moreover, the highest L values are obtained for the smallest axial distances and for the
lowest temperature. A similar temperature dependence is displayed by the normal fluid
velocity vn for a constant heating power, i.e. vn increases as T decreases – see Eq. (??).
On the other hand, vns is not a monotonous function of temperature and, for the displayed
data, the smallest vns is obtained for 1.95 K – see Eq. (??) and Table ??. Specifically, this
discrepancy between the temperature dependencies of VLD and vns tells us that the physical
mechanisms resulting in the formation of counterflow jets are different from those taking
place in ordinary channel counterflow, where the scaling L ∝ v2ns was consistently observed
for a rather wide range of temperatures and counterflow velocities.? In other words, our
data support the picture that the quantized vortices’ tangle associated to the jet is not
simply generated in the nozzle, where channel counterflow takes place, and subsequently
ejected into the volume above it. In particular, as discussed below, we find the quantized
vortices’ tangle to possess properties that are usually attributed to turbulent coflow of
He II, i.e. to a configuration where the two fluid components are locked together in a single
velocity field.

The obtained VLD profiles can be fitted with a Gaussian peak of the form

L(r) = L0 exp

[
−
( r
w

)2]
, (8)
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FIG. 8. Peak vortex line density (i.e. density along the jet axis) L0 as a function of the axial
distance z, normalized by the nozzle diameter d, for data sets B4 (red crosses) and C1 (cyan
and magenta points). Color arrows denote the direction of the sensor stroke (receding from or
approaching towards the nozzle).

where the peak amplitude L0 and width w are taken as fitting parameters to match the
experimental data. The Gaussian-like shape of our VLD profiles is reminiscent of the bell-
shaped profile of the vorticity magnitude inferred in a classical round jet using the particle
imaging velocimetry technique,? and it is equally reminiscent of the bell-shaped profile of
the energy dissipation inferred from hot wire anemometry measurements in a similar flow.?

Note in passing that, under the assumption of homogeneous and isotropic turbulence, energy
dissipation and squared vorticity are proportional to each other,? but, at the same time,
one should keep in mind that quantities having similar Gaussian-like statistical distributions
are not necessarily related from a physical point of view.

It is now useful to mention that the profiles of the axial velocity, presented in the left
panel of Fig. ??, display a spatial structure similar to that of the VLD profiles. In direct
analogy with Eq. (??), we then fit individual velocity profiles using

v(x) = v0 exp

[
−
(
x

wv

)2
]
, (9)

where the fitting parameters are the centerline velocity v0 and the jet width wv. Specifi-
cally, the left panel of Fig. ?? shows the close agreement between the experimental data
(color lines) and the fitting function (black lines), and the axial dependence of both fitting
parameters is displayed in the two panels on the right.

Additionally, to highlight the effect of our sensor motion on the investigated flow, we
compare in Fig. ?? the L0 values obtained by fitting the full VLD profiles of data set B4
(red crosses) with the directly measured peak values of data set C1 (points) as a function of
z – note that data set C1 includes two axial strokes of the sensor. The L0 values detected
by the sensor that gradually moves towards the nozzle are marked by cyan points and
the magenta points denote data taken by the sensor that moves in the opposite direction.
The curves closely overlap within the full range of investigated distances and within the
accuracy of the experimental technique, which neatly illustrates that our observations are
fully reproducible.

B. Scaling of the vortex line density

We now analyze how the peak amplitude L0 and width w of individual VLD profiles scale
with the axial distance z. First of all, the relation between L0 and z is presented in Fig. ??
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FIG. 9. Peak vortex line density L0 as a function of the normalized axial distance z/d. Data set
labels are indicated to the left of each curve. Note the log-log scale.

for data sets A1–A3 and B1–B4, marked by open symbols (we also use this notation in the
following figures). Here, no artificial vertical shift is imposed and the vertical distribution
of data lines is given by different experimental conditions, listed in Table ??.

The observed L0(z) dependencies are compatible with power laws, with exponents ranging
from −2 to −3/2, as indicated by the black lines in the figure. Specifically, the former
exponent is found to match relatively small peak densities, while the latter one fits relatively
dense tangles. Since the centerline velocity v0 ∝ z−1 holds for both classical and counterflow

jets,? ? it apparently follows that L0 ∝ v
3/2
0 for the largest line densities, while the L0 ∝

v20 dependence holds for the smallest ones observed in our experiment. Two alternative
interpretations of this puzzling behavior are discussed in Sec. ??.

Note in passing that our visualization data (see the top right panel of Fig. ??) do not seem
to reproduce the expected scaling of the centerline velocity, although the latter does show the
tendency to decrease as the axial distance increases. The mismatch can be attributed to the
fact that the jet flow was visualized in the near field region, extending up to approximately
7d away from the nozzle,? where the mentioned scaling law is actually not expected to
hold.

The axial dependence of the peak width w is plotted in Fig. ??. The data points char-
acterized by a relatively large VLD amplitude display a neat linear dependence of w with
z, which is also independent of experimental parameters, see colored points in Fig. ??. We
identify these well-resolved VLD peaks by setting a threshold Lt = 2.2 × 109 m−2. This
value is chosen so that Lmin/Lt ≈ 0.05, i.e. it holds that the profiles meeting this thresh-
old density display VLD values larger than Lmin, at least within the interval [−2w, 2w],
which is required for a well-converged Gaussian fit and a reliable estimation of the fitting
parameters. Additionally, the errors associated to the w estimates, which are computed
from 95 % confidence bounds of the fit, range from 2 to 6 % for the well-resolved data, and
the similarly obtained errors of L0 are between 1 and 5 %. For the data sets that fail to
meet the threshold value Lt, the relative errors of w estimates are as high as 33 % – and
those of L0 are as high as 22 %. In the following, for the sake of brevity, the colored points
in Fig. ??, those with L0 > Lt, are named high (data) set, while the others are called low
(data) set, because, as already noted, they can be respectively associated to high and low
values of peak density – see again Fig. ??.

We fit the widths corresponding to the high set together using

w(z) = βL (z − z0) , (10)

where we find that the virtual origin z0 ≈ −0.9d and that the growth rate βL = dw/dz
of the vortex tangle is equal to approximately 0.14 (see the solid black line overlaying the
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FIG. 10. Peak width w as a function of the axial distance z (both quantities are normalized by
the nozzle diameter d). Color symbols: points with L0 > Lt, i.e. data sets A2 (in part), A3, B3,
and B4, collectively named high set; gray symbols: remaining points, with L0 ≤ Lt, i.e. data sets
A1, A2 (in part), B1 and B2, collectively named low set. Note that the symbols are as in Fig. ??,
regardless of their color; black line: linear fit, Eq. (??).

experimental data in Fig. ??). Similar values are reported for the velocity field of classical
round jets. For example, the jet virtual origin is found to be rather close to the nozzle also
in Ref. ? . Additionally, Ref. ? reports a linear growth of the velocity profile, with a rate
β = 0.11, for Re ≈ 105, and in Ref. ? a similar value is given for Re ≈ 104. For the sake
of comparison, it is also useful to estimate the full width at half maximum (FWHM) of the
VLD profile, and, for a Gaussian peak, we obtain βFWHM

L = 2
√

log 2βL ≈ 0.23, which, once
more, is a value comparable to the FWHM-based growth rate of approx. 0.21, reported in
Ref. ? . However, one should keep in mind that velocity and vortex line density profiles
are expected to be different in nature, e.g. the widths of velocity and VLD profiles are
not expected in general to grow at the same rate, and, on top of this, counterflow and
classical jets are characterized by different production mechanism, which should shift the
virtual origin. Note, finally, that the bottom right panel of Fig. ?? presents the width
of the velocity profiles versus the axial distance z, obtained from our flow visualization
measurements in He II. Here again we find an affine growth of the velocity profile width,
consistent with that of classical jets.

In summary, the emergence of approximately Gaussian profiles for the vortex line density,
alongside with the scaling laws outlined above, suggests that the quantized vortices’ tangle
develops a structure that is tightly coupled to the associated velocity field, at least within
the intermediate field region of the jet. In other words, the quantized vortices’ tangle grows
in size, while decreasing its peak density with z, similarly as the peak flow velocity that
decreases with z, due to turbulent entrainment and momentum conservation.

IV. DISCUSSION

In the following, we outline two interpretations of the just presented experimental results.
The first one, detailed in Sec. ?? and proposed by P. Švančara and P.-E. Roche, leads us
to conjecture a self-similar functional form of the vortex tangle density across counterflow
jets. The other, detailed in Sec. ?? and proposed by M. La Mantia, suggests that the
position of the superfluid stagnation point could depend on the flow forcing as well. Both
interpretations can be used to explain in part the obtained results.
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A. Self-similar jet model

It is apparent from Figs. ?? and ?? that the curves associated to the smallest peak
densities, corresponding to the low set, defined in Sec. ??, are characterized by a larger
scatter in comparison to the other curves. This can be attributed to the less accurate
fit of Eq. (??) to weakly attenuated second sound signals, i.e. to relatively low values of
L, especially in the off-axis region. In view of improving the statistical convergence, we
introduce here an alternative, dimensionless quantity, Lz, which aggregates a larger set
of measurements. Specifically, if we assume that the distribution of quantized vortices in
the jet is axially symmetric, i.e. that L is independent of the azimuthal coordinate φ, we
calculate this quantity, the cumulative length of quantized vortices per unit height, as

Lz(z) =

∞∫
0

2π∫
0

L(r, z)rdrdφ =

∞∫
0

2πrL(r, z)dr. (11)

Additionally, we note from Fig. ?? that the VLD profiles associated to the high set are
self-similar, at least in the range of investigated parameters. This self-preserving property
of jets far away from the nozzle is well-known for classical jets? and it was also invoked to
interpret previous experiments on counterflow jets.? This implies that the (high set) VLD
profiles can be modeled as

L(r, z) = G
(

r

z − z0

)
L0(z) = G(x)L0(z), (12)

where the dimensionless profile shape G(x) can be approximated, for example, by a Gaussian
peak, ensuring that G(0) = 1. Eqs. (??) and (??) then lead to the scaling relation

Lz(z) = (z − z0)2L0(z)

∞∫
0

2πxG(x)dx ∝ z2L0(z), (13)

where we assume that the integral is finite and that z0 � z. Eq. (??) shows us how Lz and
L0 are related under the self-similarity hypothesis.

The cumulative vortex length Lz can be estimated from the experimental data in two
different ways. The first one consists in using the full VLD profiles, e.g. those presented
in Fig. ??. We can then numerically estimate the right-hand side of Eq. (??) within the
limits (rmin, 0) or (0, rmax), where rmin (rmax) is the minimum (maximum) radial coordinate
probed by the sensor. Since the obtained radial profiles fully capture the region occupied
by the quantized vortices’ tangle, as shown, e.g. in Fig. ??, these integrals adequately
approximate Eq. (??) – note that, to reduce error, we take as the final estimate of Lz
for this first method the average value of the integrals with rmin and rmax. The second
approach relies on the explicit form of G introduced above to model the high set profiles.
In agreement with Eqs. (??) and (??), we set

G
(

r

z − z0

)
= exp

{
−
[

r

βL (z − z0)

]2}
= exp

[
−
( r
w

)2]
(14)

and evaluate the integral on the right-hand side of Eq. (??) as

Lz = 2πL0

∞∫
0

exp

[
−
( r
w

)2]
rdr = πL0w

2. (15)

Both estimates of Lz are presented in Fig. ?? as a function of the axial distance z. The
left panel represents the right-hand side of Eq. (??) and the right panel displays the result
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FIG. 11. Cumulative length Lz of quantized vortices per unit height as a function of the normalized
axial distance z/d. Left panel: right-hand side of Eq. (??), computed using the experimentally
obtained values of L0 and w. Right panel: result of the numerical integration of the right-hand
side of Eq. (??) as discussed in the text. Colors as in Fig. ??.

of the numerical integration of the right-hand side of Eq. (??) using the trapezoidal rule.
The two methods yield comparable results except for data set A1 (open blue circles, right
panel), where the nonphysical, negative values of Lz most likely result from the poor signal-
to-noise ratio (a negative vortex line density is obtained from Eq. (??) when A > A0). Note
again that Eq. (??) is derived assuming that the studied flows are self-similar.

It is apparent from Fig. ?? that, for a given heating power P and helium bath temperature
T , i.e. for a given data set, the cumulative length Lz does not depend on z within the
experimental uncertainty and for all data sets but one. Taking Eq. (??) into account, we
can therefore say that L0(z) ∝ z−2 in the range of investigated parameters, excluding data
set A3 (yellow triangles). In this case, Lz grows with the axial distance z, which is an
unexplained exception. Nevertheless, leaving this data set aside for the moment, it now
seems that the variations of the power-law exponents apparent in Fig. ?? are compensated
by suitable changes in the growth of the measured VLD profile width, presented in Fig. ??.
This compensation could be explained, at least in part, by stochastic fluctuations of the
jet direction. The latter could systematically decrease the measured centerline density of
quantized vortices, and simultaneously increase the measured jet width. Apparently, the
use of the cumulative vortex length allows us to largely discard the data scatter observed
in Figs. ?? and ??.

The inverse quadratic scaling of L0(z) has a straightforward interpretation using a heuris-
tic relation tested by numerical simulations and experiments in steady, nearly-homogeneous
coflow of turbulent He II.? ? These works relate Lc, the mean density of the quantized vor-
tices’ tangle in coflow, and the energy dissipation rate ε as

L2
c ∝ ε ∝

v3rms

H
, (16)

where vrms is the root mean square velocity of the coflow being investigated and H indicates
a velocity correlation distance usually called the integral length scale.

Turbulence along the axis of classical round jets can be locally approximated as homo-
geneous and isotropic,? and some local properties of turbulence can be inferred from the
local values of vrms and H, as shown, for example, in Refs. ? ? ? . Specifically, following
this reasoning one can estimate along the jet axis the vorticity magnitude and the energy
dissipation rate, appearing in the classical relation analogous to Eq. (??). In other words,
we assume here that Eq. (??) holds locally on the counterflow jet axis, with Lc ≡ L0 (note
that in Ref. ? the assumptions of local homogeneity and isotropy have been already used
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FIG. 12. Mean cumulative length 〈Lz〉z as a function of the heating power P . Colors as in Fig. ??;
error bars correspond to one standard deviation interval. Black dotted lines connect data points
collected at the same temperature of the helium bath.

to interpret measurements of second sound waves crossing a counterflow jet).
In particular, for a given data set, and taking into account the empirical scaling relations

vrms ∝ v0 and H ∝ w ∝ z, Eq. (??) becomes

L2
0 ∝

v30
w
∝ z−3

z
∝ z−4, (17)

which fully accounts for the observed inverse quadratic scaling of L0 with z. Additionally,
for a fixed temperature, we can write that

L0(z, P ) ≈ z−2F(P ), (18)

where F is an unknown function of the heating power.
Now, in view of further reducing our data scatter, we take advantage of the conjectured

invariance of Lz along the jet axis and we calculate its average value – the averaging operator
is denoted as 〈 · 〉z and the average value is therefore 〈Lz〉z. Fig. ?? shows 〈Lz〉z, computed
from the data displayed in the left panel of Fig. ??, as a function of the heating power
– the dotted lines connect points corresponding to the same bath temperature. Although
the data scatter – likely due to experimental errors and temperature dependence – is not
negligible, we find that 〈Lz〉z roughly follows a P 3/2 scaling (black line) that ought to be
interpreted. Assuming that the dimensionless VLD profile shape G is independent of P , we
find from Eqs. (??) and (??) that

〈Lz〉z ∝ 〈z2L0(z, P )〉z ≈ F(P ). (19)

What now remains is to understand why F ∝ P 3/2. At any given z, it results from
the proportionality between L2

0 and v30 in turbulent coflows,? ? which is apparent from
Eq. (??). Due to the counterflow generation mechanism, Eq. (??), the centerline velocity
v0 scales linearly with P (or ηP to account for heat losses). We therefore obtain F ∝ L0 ∝
v
3/2
0 ∝ P 3/2, consistently with the outcome of Fig. ??.
It is now useful to mention Ref. ? , where an elongated counterflow jet of He II was

investigated at a distance of approx. 10 nozzle widths from the flow source using a second
sound beam traveling across the jet. For temperature (1.6 to 2.1 K) and heat flux (3 to
50 kW/m2) ranges comparable to those of the present work, the attenuation factor, which
is proportional to the vortex line density, was reported to scale as P k with k = 1.3–1.6. The
outcome was later explained using geometrical acoustics, assuming that the counterflow jet
is turbulent and that the normal and superfluid components are locked in a single velocity
field.?
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To summarize, excluding data set A3 that remains to be understood, our results are
consistent with a self-similar spatial distribution of the quantized vortex tangle, whose
density L can be written as

L(r, z, P ) ∝ P 3/2

z2
G
(

r

z − z0

)
, (20)

where G is a Gaussian-like function. If we substitute for G the employed Gaussian fit, we
obtain an explicit functional form, i.e.

L(r, z, P ) ∝ P 3/2

z2
exp

{
−
[

r

βL (z − z0)

]2}
, (21)

where the z−2 factor accounts for the linear development of the integral scale along the jet,
far away from the nozzle. Now, for consistency with the exponential term, the jet virtual
origin can be reintroduced in this factor, to better account for smaller z, see Eq. (??).

Additionally, although the determination of the temperature dependence is not possible
on the basis of the present data, three physical arguments suggest how to make it explicit.
First of all, the spreading rate of classical jets is due to the balance between mixing and
axial entrainment, and these processes should remain equally efficient in He II when both
components are flowing together. Therefore, we expect that βL will have a weak dependence
on T and P . On the contrary, the virtual origin z0 can be associated to the crossover from
the counterflow to the coflow regime, and we then expect it to explicitly depend on T and P .
Finally, the amount of quantized vortex lines generated in a given He II coflow depends on
temperature, because the vortex dynamics depends on the normal fluid fraction,? which
is strongly temperature dependent, see again Fig. ?? – one can then embed the latter
consideration into an unknown function of temperature, T .

Following the previous reasoning, we can consequently write a generalized version of
Eq. (??), i.e.

L(r, z, P, T ) ≈ P 3/2

[z − z0(P, T )]
2 exp

{
−
[

r

βL [z − z0(P, T )]

]2}
T (T ), (22)

where z is large compared to z0, to meet the self-similarity condition, βL ≈ 0.14, and
z0 ≈ −0.9d, as reported above. We remind, however, that the numerical values might
be biased by the response of the second sound sensor to the flow velocity; that is, we
assume in this work that the contribution of the fluid velocity to second sound attenuation
is not significant. More generally, further studies are required to quantitatively validate
the proposed model, e.g. to understand why the Lz versus z scaling differs for data set A3
compared to the others.

B. Moving stagnation point interpretation

In Sec. ?? we reported that the L0(z) dependencies plotted in Fig. ?? are compatible with
power laws, with exponents ranging from −2 to −3/2. Specifically, the former exponent can
be associated to relatively small peak densities, i.e. to the low set, while the latter one is
more suitable for relatively denser tangles, i.e. for the high set. Considering that v0 ∝ z−1
is expected to hold for self-similar round jets, one can then derive L0 ∝ v3/20 for the largest
line densities, while the L0 ∝ v20 scaling is more adequate for the smallest ones.

As already mentioned, the 3/2-power scaling was reported in previous studies – see e.g.
Refs. ? ? – and can be associated to turbulent coflow of He II. More precisely, one
can derive it from Eq. (??) assuming that the integral length scale H does not depend
locally on other flow scales. This could happen in the region where the hypothesis of
locally homogeneous and isotropic flow is expected to hold, i.e. along the jet axis, where no
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information on the jet width w should be accessible, if the typical size of this region is smaller
than w – note again that H ∝ w for self-similar jets. In other words, the assumption made
in this section is that the integral length scale H is constant in the region where Eq. (??)
holds.

The 2-power scaling is instead often associated to channel counterflow, i.e. L ∝ v2ns,
as discussed e.g. in Ref. ? . However, as already noted in Sec. ??, the normal fluid and
counterflow velocities are in general not directly proportional to each other, but this is only
true at liquid temperatures higher than approximately 2 K.? It then follows that, at lower
temperatures, vn ∝ vns. Additionally, considering that, as reported in Sec. ??, v0 should
be proportional to vn, we find that L0 ∝ v20 for our more dilute tangles, i.e. for the low set,
collected at temperatures lower than 2 K.

From this discussion one can then say that, at sufficiently low values of heating power,
channel counterflow features could also be observed in counterflow jets. The physical reason
could be related to the mutual friction force, which can be seen as an energy sink. Specifi-
cally, this dissipation mechanism could become inefficient for counterflow jets at sufficiently
high values of heating power. In other words, the position of the stagnation point depicted
in Fig. ?? could be a function of the heating power and move closer to the nozzle as the
power increases.

The suggestion appears a bit less adventurous if one considers that counterflow jets at
relatively low heating power have yet to the thoroughly investigated, or at least they have
received to date less attention than those at higher heating power. Indeed, we reported in
Sec. ?? that, on the basis of Ref. ? , we expect ∆T to be linearly proportional to q in the
range of parameters probed here, while this is not the case of other studies on counterflow
jets, such as Refs. ? ? , where a neat cubic scaling was observed at larger values of heat
flux. Specifically, Refs. ? ? are apparently the only works where some attention is given
to the just mentioned linear regime and, more importantly, the claim that the superfluid
stagnation point is located in the close proximity of the nozzle is solely based on data
collected in the cubic regime, i.e. at relatively high values of heating power.

Finally, it is useful to mention that, from the right-hand side of Eq. (??) and the L0 ∝ v3/20

scaling, one can get that Lz should be proportional to z1/2, at least for the high set.
However, in Fig. ?? we observe that Lz grows with the axial distance z only for data set
A3, corresponding to the largest Reynolds number, while this is not the case for the other
data sets displaying the proportionality between w and z. Once more, further experiments
are required to assess the validity of the physical interpretations presented here.

V. CONCLUSIONS

The intermediate field region of round counterflow jets, representing a unique type of
thermally driven flow of He II, was studied in the turbulent regime, for Reynolds numbers
of the order of 104, using the second sound attenuation and flow visualization techniques.
Specifically, a miniature second sound sensor was employed to detect the vortex line density
across the jet axis, with a spatial resolution slightly larger than the nozzle diameter, at fluid
temperatures between 1.64 and 2.10 K – note, however, that the measured density is biased
by an additional sensitivity of the employed second sound sensor to the flow velocity, which
cannot be precisely quantified at the moment.

Nevertheless, within the range of investigated axial distances, from 9 to 34 nozzle diam-
eters, we observe a highly inhomogeneous tangle of quantized vortices. In particular, the
vortex line density displays a Gaussian-like profile in the radial direction and, for the highest
density values, its width w grows linearly with the axial distance z at a rate dw/dz ≈ 0.14,
which is comparable but not equal to the radial growth rate observed for the classical veloc-
ity field – similar remarks apply to the jet virtual origin. Additionally, as shown in Fig. ??,
the peak density of the quantized vortices’ tangle appears to follow, as a function of the ax-
ial distance, power laws with exponents ranging approximately between −2 and −3/2. Two
physical interpretations of the observed scaling behavior are proposed, and none of them
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account for all the measured data sets. One interpretation conjectures a general functional
form of the vortex line density in counterflow jets, which depends on spatial coordinates
and heating power. The other suggests that the position of the superfluid stagnation point
along the jet axis could depend on the heating power as well.

In summary, the present work indicates that future studies on counterflow jets should be
devoted to extend the ranges of experimental parameters accessed to date, e.g. in order to
quantitatively identify the conditions in which jet flows of superfluid 4He are appreciably
different form their classical analogs.
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