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We study the dynamics of random walks hopping on homogeneous hypercubic lattices and multiplying at a
fertile site. In one and two dimensions, the total number N(t ) of walkers grows exponentially at a Malthusian
rate depending on the dimensionality and the multiplication rate μ at the fertile site. When d > dc = 2, the
number of walkers may remain finite forever for any μ; it surely remains finite when μ � μd . We determine μd

and show that 〈N(t )〉 grows exponentially if μ > μd . The distribution of the total number of walkers remains
broad when d � 2, and also when d > 2 and μ > μd . We compute 〈Nm〉 explicitly for small m, and show
how to determine higher moments. In the critical regime, 〈N〉 grows as

√
t for d = 3, t/ ln t for d = 4, and t

for d > 4. Higher moments grow anomalously, 〈Nm〉 ∼ 〈N〉2m−1, in the critical regime; the growth is normal,
〈Nm〉 ∼ 〈N〉m, in the exponential phase. The distribution of the number of walkers in the critical regime is
asymptotically stationary and universal, viz., it is independent of the spatial dimension. Interactions between
walkers may drastically change the behavior. For random walks with exclusion, if d > 2, there is again a critical
multiplication rate, above which 〈N(t )〉 grows linearly (not exponentially) in time; when d � dc = 2, the leading
behavior is independent on μ and 〈N(t )〉 exhibits a sublinear growth.

DOI: 10.1103/PhysRevE.103.022114

I. INTRODUCTION

We study noninteracting random walks (RWs) on the hy-
percubic lattice with a single fertile site where a RW may give
birth to another RW. More precisely, we assume that each RW
hops with the same unit rate to any neighboring site, so the
overall hopping rate on the d-dimensional hypercubic lattice
is 2d . When a RW occupies the fertile site, the multiplication
occurs at a rate μ; the newborn RW appears at the same fertile
site, it is fully matured, i.e., capable of reproducing right from
the moment it was born. We assume that the process begins
with a single RW at the fertile site; the extension to the general
case when the initial number of RWs and their initial locations
are arbitrary is rather straightforward.

This deceptively simple problem exhibits several counter-
intuitive behaviors, e.g., when the spatial dimension exceeds
the lower critical dimension, d > dc = 2, a phase transition
occurs at a certain critical multiplication rate μd . Many prop-
erties of critical behavior are universal (independent of the
spatial dimension). Another important feature is the lack of
self-averaging. Mathematically, it means that the distribution
PN (t ) of the total number N(t ) of RWs remains broad. This
effect is particularly pronounced at the critical multiplication
rate μ = μd where the probability distribution PN (t ) becomes
asymptotically stationary in the t → ∞ limit. We will see
that this limiting distribution has a remarkably universal form,
valid in any spatial dimension:

PN (∞) = lim
t→∞ PN (t ) = 1√

4π

�
(
N − 1

2

)
�(N + 1)

. (1)

We now give a glimpse of our findings concerning average
characteristics. The total number of RWs and the density at
any site grow exponentially with time when d = 1, 2, and
also in the supercritical regime, μ > μd , when d > 2. For
instance,

N (t ) ≡ 〈N(t )〉 ∼ eCdt . (2)

The growth rate Cd plays the role of the Malthusian parameter;
we computed Cd for hypercubic lattices Zd .

In the following we consider only hypercubic lattices Zd

and we choose the simplest initial state with a single RW at
the fertile site. In this situation, we show that the threshold
multiplication rate is given by

μd = 2

Wd
, (3)

where

Wd =
∫ ∞

0
dx [e−xI0(x)]d (4)

is the Watson integral [1]. For the critical multiplication rate,
the average density at the fertile site satisfies

n0(t ) 	 π−2 ×

⎧⎪⎨⎪⎩
μ−2

d A−1
d d > 4

μ−2
4 [ln t]−1 d = 4

μ−2
3 (4πt )−1/2 d = 3

, (5)
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while the average number of RWs grows as

N (t ) 	 π−2 ×

⎧⎪⎨⎪⎩
(Ad μd )−1 t d > 4

μ−1
4

t
ln t d = 4

μ−1
3

√
t/π d = 3

. (6)

The amplitudes Ad are given in Eq. (66).
Thus above the lower critical dimension, d > dc = 2, the

exponential growth is possible only when μ > μd . The behav-
ior at the critical multiplication rate, μ = μd , shows that the
upper critical dimension dc = 4 demarcates different growth
laws. A qualitative explanation for the value dc = 4 and the
scalings in (6) is given in Appendix C 2.

The exponential growth above the lower critical dimension
occurs only on average, the number of RWs may remain finite
forever. More precisely

Prob[N(∞) = finite] =

⎧⎪⎨⎪⎩
0 d � 2
μd

μ
d > 2, μ > μd

1 d > 2, μ � μd

. (7)

Therefore when μ > μd , the unlimited growth occurs with
probability 1 − μd/μ. When μ < μd , the number of RWs
remains finite. For instance, the average eternal number of
RWs is

〈N(∞)〉 = μd

μd − μ
. (8)

In physics literature, the problem has been examined in
Refs. [2,3]. Our results are much more detailed; e.g., only
average characteristics have been probed in those references.
Several generalizations including biased RWs, systems with a
few fertile sites, etc., have been additionally studied there. We
do not treat these systems and merely remark that some ex-
tensions are rather straightforward. For instance, since linear
equations govern the evolution of averages, the average char-
acteristics in systems with many fertile sites can be deduced
from the corresponding results with a single fertile site.

In mathematical literature, RWs on the lattice with branch-
ing at a single point have been also studied; see Refs. [4–8].
Death was included in most studies and in such situations
the extinction is always feasible. A particular attention has
been paid to the critical branching [9–12]. Random walks
performing more complicated hopping have been also investi-
gated (our RWs perform nearest-neighbor hopping); systems
with a few fertile sites have been studied in Refs. [2,3,7,8,12].
Our results agree with previous findings whenever the models
coincide. Initial conditions do not affect qualitative behaviors,
so we consider the most natural initial condition with a single
RW starting on the fertile site. In this setting, we obtain several
explicit asymptotic behaviors, e.g., the long time behaviors of
the probability distribution PN (t ) in one and two dimensions
are expressed through Catalan numbers. We briefly discuss a
general situation applicable to arbitrary graphs and birth rates.

Our analysis as well as all previous studies [2–12] rely
on the absence of interactions between random walkers. The
extension to interacting many-particle systems is an important
challenge. As a first step into this domain, we analyze the
influence of the multiplication on a fertile site on the behavior
of two interacting particle systems. One is the symmetric
exclusion process in which RWs are subjected to the exclusion

constraint. In another example, there are no direct interactions
but the birth is allowed only when the fertile site is occupied
by a single particle.

The outline of this work is as follows. In Sec. II we study
the one-dimensional model. Exact results in two dimensions
are established in Sec. III. Explicit calculations become chal-
lenging in higher dimensions (Sec. IV), but we still derive a
number of exact results like (1) and (8) and asymptotically
exact results like (6)–(8). In Sec. V we study fluctuations,
e.g., we compute the moments 〈N2〉 and 〈N3〉 for any d . The
distribution of the number of RWs is studied in Sec. VI; we
show that when d > 2, this distribution is asymptotically sta-
tionary in the critical and subcritical regimes, μ � μd , and we
determine it. In Sec. VII we show that when d � 2, the region
occupied by RWs grows ballistically with time and, apart from
a few holes, this region is a segment in one dimension and a
disk in two dimensions. In Sec. VIII we consider two interact-
ing particle systems. In one system, particles interact through
exclusion; in another, the birth is possible only when the fertile
site hosts a single particle. In both examples, the growth is
greatly suppressed compared to noninteracting RWs. A few
technical calculations are relegated to Appendices A and B. In
Appendix C we show how to adapt our approach to more gen-
eral situations (arbitrary graphs, general birth rates, etc.), and
we outline more mathematical techniques helpful in studying
these generalizations.

II. AVERAGE GROWTH IN ONE DIMENSION

In this section, we analyze the average growth in the one-
dimensional lattice model. The governing equations for the
densities are

dn j

dt
= n j−1 − 2n j + n j+1 (9a)

when j 
= 0. The density at the fertile site obeys

dn0

dt
= n−1 − 2n0 + n1 + μn0. (9b)

Making the Laplace transform with respect to time

n̂k (s) =
∫ ∞

0
dt e−st nk (t ) (10)

and the Fourier transform with respect to lattice sites

N (s, q) =
∞∑

k=−∞
n̂k (s) e−iqk, (11)

we recast (9a) and (9b) into

N (s, q) = 1 + μn̂0(s)

s + 2(1 − cos q)
. (12)

Using

n̂0(s) =
∫ 2π

0

dq

2π
N (s, q)

and the identity∫ 2π

0

dq

2π

1

s + 2(1 − cos q)
= 1√

s2 + 4s
, (13)
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we extract from (12) the Laplace transform of the density at
the fertile site

n̂0(s) = 1√
s2 + 4s − μ

. (14)

Thus

N (s, q) =
√

s2 + 4s√
s2 + 4s − μ

1

s + 2(1 − cos q)
. (15)

The Laplace transform of the average number of RWs

N̂ (s) =
∞∑

k=−∞
n̂k (s) = N (s, q = 0) (16)

is therefore given by

N̂ (s) = 1

s

√
s2 + 4s√

s2 + 4s − μ
. (17)

Inverting (14) we find the density at the fertile site

n0(t ) =
∫ s∗+i∞

s∗−i∞

ds

2π i

ets

√
s2 + 4s − μ

. (18)

An integration contour can go along any vertical line in the
complex plane satisfying the requirement that s∗ = Re(s) is
greater than the real part of singularities of the integrand.
One can also deform a contour simplifying the extraction
of asymptotic behavior. Instead, we rely on a useful general
identity for inverse Laplace transforms. Suppose we know the
inverse Laplace transform f (t ) of f̂ (s). We actually want to
determine the inverse Laplace transform of f̂ (

√
s2 − a2), and

there is an expression through f (t ) which is valid for arbitrary
f (t ). It reads [13]

f (t ) + a
∫ t

0
dτ I1(aτ ) f

(√
t2 − τ 2

)
, (19)

where I1 is the Bessel function. Turning to (18) we notice that√
s2 + 4s =

√
(s + 2)2 − 4 which coincides with

√
s2 − a2 if

we choose a = 2 and make the shift s → s + 2. Equation (18)
implies f̂ = 1/(s − μ), the corresponding inverse Laplace
transform is f = eμt . Using these relations together with (19)
we obtain

e2t n0(t ) = eμt + 2
∫ t

0
dτ I1(2τ ) eμ

√
t2−τ 2

. (20)

The integral in Eq. (20) looks simple, but apparently, it does
not admit an expression in terms of standard special functions.

The second term on the right-hand side of (20) dominates
in the long time limit. Thus

e2t n0(t ) 	 2
∫ t

0
dτ I1(2τ ) eμ

√
t2−τ 2

. (21)

Rescaling the time variable, τ = ηt , and using the well-known
asymptotic

I1(x) 	 ex

√
2πx

when x � 1, (22)

we simplify (21) to

e2t n0(t ) 	
√

t

π

∫ 1

0

dη√
η

et f (η), (23)

where f (η) = μ
√

1 − η2 + 2η. The maximum of f (η) is
reached at η∗ = (1 + μ2/4)−1/2. Expanding f (η) near η∗ and
computing the Gaussian integral we arrive at a simple expo-
nential asymptotic

n0(t ) 	 A1 etC1 (24)

with parameters

C1 =
√

μ2 + 4 − 2, A1 = (1 + 4/μ2)−1/2. (25)

Another way to establish (24) is to argue that the dominant
contribution to the integral (18) is provided by an integral
over a small contour surrounding the rightmost pole s+ = C1

of 1/[
√

s2 + 4s − μ]; another pole is at s− = −
√

μ2 + 4 − 2.
Near the pole s+ = C1 the singular part of the integrand in
(18) is A1(s − s+)−1; this leads to (24).

The average number of RWs is found from (17) to give

N (t ) = 1 + μ

∫ s∗+i∞

s∗−i∞

ds

2π i

ets

s(
√

s2 + 4s − μ)
. (26)

It is simpler to use the identity (valid for arbitrary lattice)

N (t ) = 1 + μ

∫ t

0
dτ n0(τ ). (27)

Combining Eq. (27) with the asymptotic (24) we obtain

N (t ) 	 μ2

μ2 + 4 − 2
√

μ2 + 4
etC1 . (28)

Specializing this result to small and large μ yields

N (t ) 	
{

2 eμ2t/4 μ  1

e(μ−2)t μ � 1
. (29)

When μ  1, the asymptotic behavior is the same as in the
model with particles undergoing independent Brownian mo-
tions instead of random walks, and with birth happening at
the origin and mathematically represented by μδ(x). When
μ � 1, the leading behavior is the same as in the zero-
dimensional situation.

The density normalized by the density at the fertile
site is asymptotically stationary. This remarkable property
allows one to derive the asymptotic density profile in a
simple manner. Plugging the ansatz n j (t ) = n0(t ) mj with
time-independent mj into Eq. (9a) and using the asymptotic
formula dn0

dt = C1n0 we obtain the recurrence mj−1 + mj+1 =
(2 + C1)mj which has an exponential solution mj = λ j with
λ satisfying λ−1 − 2 + λ = C1. One root of this quadratic
equation corresponds to j > 0, another to j < 0. Overall,

nj (t )

n0(t )
= λ| j|, λ =

√
μ2 + 4 − μ

2
. (30)

Inserting n±1(t ) = λn0(t ) into (9b) leads to the same result for
λ; this provides a consistency check.

A more rigorous derivation of (30) that does not rely on
factorization [i.e., on the ansatz nj (t ) = n0(t ) mj] is given in
Appendix A.

022114-3



BAUER, KRAPIVSKY, AND MALLICK PHYSICAL REVIEW E 103, 022114 (2021)

III. AVERAGE GROWTH IN TWO DIMENSIONS

On the square lattice, the governing equations read

dni, j

dt
= ∇2ni, j + μni, j δi,0δ0, j . (31)

Here ∇2 is the discrete Laplacian defined via

∇2ni, j = ni−1, j + ni, j−1 + ni+1, j + ni, j+1 − 4ni, j (32)

for the square lattice.
Applying the Laplace-Fourier transform

n̂a,b(s) =
∫ ∞

0
ds e−st na,b(t ), (33a)

N (s; p, q) =
∞∑

a=−∞

∞∑
b=−∞

n̂a,b(s) e−i(pa+qb) (33b)

to (31) we obtain

N (s; p, q) = 1 + μn̂0(s)

s + 4 − 2(cos p + cos q)
, (34)

where 0 = (0, 0) is the fertile site. The definition (33b) allows
us to express n̂0(s) through the double integral

n̂0(s) =
∫ 2π

0

d p

2π

∫ 2π

0

dq

2π
N (s; p, q).

To compute the integral we use the identity∫ 2π

0

d p

2π

∫ 2π

0

dq

2π

1

1 − z(cos p + cos q)/2
= 2

π
K (z), (35)

where

K (z) =
∫ π/2

0

dθ√
1 − z2 sin2 θ

(36)

is the complete elliptic integral of the first kind. This allows
us to fix n̂0(s) and we arrive at

n̂0(s) = 1

	2(s) − μ
, (37a)

N (s; p, q) = 	2(s) n̂0(s)

s + 4 − 2(cos p + cos q)
, (37b)

N̂ (s) = 1

s

	2(s)

	2(s) − μ
, (37c)

where we use the shorthand notation

	2(s) = 2π

z K (z)
and z = 4

s + 4
. (38)

Inverting (37a) we find the density at the fertile site

n0(t ) =
∫ s∗+i∞

s∗−i∞

ds

2π i

ets

	2(s) − μ
. (39)

In the long time limit, the leading contribution is again pro-
vided by an integral over a small circle surrounding the pole
of 1/[	2(s) − μ]. Hence

n0(t ) 	 1

	′
2(C2)

eC2t (40)

FIG. 1. The Malthusian growth C2 versus the multiplication rate
μ. Bottom curve: An implicit exact result given by Eq. (41). Top
curve: An explicit approximate result, Eq. (44), formally valid when
μ  1, but providing an excellent approximation up to μ < 1.8.

with C2 determined from 	(C2) = μ. Using (38) we get

kK (k) = 2π

μ
, k = 4

4 + C2
. (41)

The average number of RWs is asymptotically

N (t ) 	 μ

C2	
′
2(C2)

etC2 . (42)

This asymptotic behavior follows from (27) and (40).
When μ � 1, the leading behavior is again essentially the

same as in the zero-dimensional situation; an accurate analysis
of (41) yields N (t ) 	 e(μ−4)t . In the opposite limit of the small
multiplication rate, μ  1, the growth is still exponential,
although the growth rate C2 is extremely small. Using the
asymptotic formula for the complete elliptic integral of the
first kind

K (k) = ln
4√

1 − k2
+ O

[
(1 − k2) ln

4√
1 − k2

]
(43)

valid when k → 1 − 0, one finds

C2 	 32 e−4π/μ (44)

for μ  1. When μ < 1.8, the explicit formula (44) provides
an excellent approximation of the Malthusian growth rate C2

given by the implicit relation (41); see Fig. 1.
The normalized density is asymptotically stationary. Insert-

ing

ni, j (t )

n0(t )
= mi, j (45)

into (31) we obtain

C2 mi, j = ∇2mi, j + μδi,0δ0, j (46)

with ∇2 defined in Eq. (32). Combining (46) with the gener-
ating function

M(u, v) =
∞∑

i=−∞

∞∑
j=−∞

mi, ju
iv j, (47)
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we deduce

M(u, v) = μ

C2 + 4 − u − u−1 − v − v−1
. (48)

We can write ma,b as a double contour integral, each over a
unit circle in the complex plane:

ma,b = 1

(2π i)2

∫
|u|=1

du

u1+a

∫
|v|=1

dv

v1+b
M(u, v). (49)

One can express the integrals through generalized hyperge-
ometric functions; see Ref. [14]. We do not present those
cumbersome results and just remark that m0,±1 = m±1,0 can
be deduced without computations. Indeed, using (46) and
recalling that m0,0 = 1 we obtain

m0,±1 = m±1,0 = 1 + C2 − μ

4
. (50)

IV. AVERAGE GROWTH WHEN d > 2

A. Green function approach

If μ = 0, the initial value problem

dni

dt
= ∇2ni , ni(0) = δi,0

is readily solved (see, e.g., Ref. [18]):

ni(t ; μ = 0) =
d∏

a=1

e−2t Iia (2t ). (51)

Generally when μ > 0, we take into account that the gov-
erning equations are linear and that additional particles are
born with rate μn0(τ ) and express the density as a sum of
(51) and a linear combination of similar solutions caused
by particles that are born during the time interval (0, t ). In
particular, at the origin

n0(t ) = [I0(t )]d + μ

∫ t

0
dτ n0(t − τ )[I0(τ )]d , (52)

where we have used the shorthand notation

I0(t ) ≡ e−2t I0(2t ). (53)

Therefore instead of the Laplace-Fourier transform, one
can rely on the integral equation (52). Some results are easier
to derive from the integral equation (52). For instance, the
exponential growth n0(t ) ∼ eCdt is consistent with (52) when
the growth rate Cd satisfies

1 = μ

∫ ∞

0
dτ e−Cd τ [I0(τ )]d . (54)

Recalling the definition (4) of the Watson integral and
taking into account that Cd � 0 we see that the right-hand side
of (54) cannot exceed μWd/2. Thus

μWd � 2. (55)

The long time asymptotic e−2t I0(2t ) 	 (4πt )−1/2 implies that
the Watson integral (4) diverges when d � 2. This together
with the obvious fact that the right-hand side of (54) is a
decreasing function of Cd shows that (54) admits a single
solution which is positive: Cd > 0. On the other hand, the
Watson integral (4) converges when d > 2 and hence if (55)

is not obeyed, there is no solution to (54). This completes
the derivation of the announced expression (3) for the critical
multiplication strength μd .

In three dimensions, the Watson integral (4) can be ex-
pressed [1] via Euler’s gamma functions:

W3 =
√

6

96 π3
�

(
1

24

)
�

(
5

24

)
�

(
7

24

)
�

(
11

24

)
. (56)

Numerically

W3 = 0.505 462 020 374 . . . ,

W4 = 0.309 866 780 462 . . . ,

W5 = 0.231 261 630 449 . . . ,

etc. The asymptotic behavior limd→∞ dWd = 1 follows from
the definition (4) of the Watson integral. Hence the threshold
value grows according to

μd 	 2d (57)

when d → ∞.

B. Laplace-Fourier transform

To probe the behavior in the μ � μd range, we apply the
Laplace-Fourier transform:

n̂a(s) =
∫ ∞

0
ds e−st na(t ), (58a)

N (s; q) =
∑

a

n̂a(s) e−iq·a, (58b)

where a = (a1, . . . , ad ), q = (q1, . . . , qd ), and

q · a = q1a1 + · · · + qd ad ,∑
a

=
∞∑

a1=−∞
· · ·

∞∑
ad =−∞

.

We find

N (s; q) = 1 + μn̂0(s)

s + 2C(q)
, C(q) = d −

d∑
a=1

cos qa. (59)

To avoid cluttered notation we write
1

	d (s)
=
∫

dq
s + 2C(q)

, (60)

where ∫
dq =

∫ 2π

0

dq1

2π
· · ·

∫ 2π

0

dqd

2π
.

Fixing n̂0(s) as before we arrive at

n̂0(s) = 1

	d (s) − μ
, (61a)

N (s; q) = 	d (s) n̂0(s)

s + 2d − 2C(q)
, (61b)

N̂ (s) = 1

s

	d (s)

	d (s) − μ
. (61c)

Note that

	d (0) = μd (62)

remains positive when d > 2.
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1. Supercritical regime: μ > μd

The growth is exponential, n0(t ) ∼ esd t , with sd following
from

	d (sd ) = μ. (63)

It is straightforward to verify that sd = Cd , which was deter-
mined by (54).

2. Subcritical regime: μ < μd

In this range, the average number of RWs is finite:

lim
t→∞ N (t ) = Nd > 0. (64)

Hence lims→0 sN̂ (s) = Nd which is consistent with (61c)
when Nd = 	d (0)

	d (0)−μ
. Using (62) we arrive at the general for-

mula (8) for the average number of RWs.

3. Critical regime: μ = μd

Using the definition (60) one finds that

n̂0(s) 	 π−2 ×

⎧⎪⎨⎪⎩
μ−2

d A−1
d s−1 d > 4

μ−2
4 [s ln(1/s)]−1 d = 4

μ−2
3 (4s)−1/2 d = 3

(65)

when s → +0 with

Ad = (2π )−2
∫

dq
[C(q)]2

. (66)

Inverting (65) we arrive at the announced expressions (5) and
(6) for the average density at the fertile site and the average
number of RWs. We also establish the values of the amplitudes
(66). The integral in (66) converges only when d > 4, and
this explains why dc = 4 plays the role of the upper critical
dimension.

C. Density

The Laplace-Fourier transform of the density is exactly
known; Eqs. (61a) and (61b) give

N (s; q) = 	d (s)

	d (s) − μ

1

s + 2d − 2C(q)
. (67)

Inverting this expression is tedious, and since we are mostly
interested in the long time behavior it is convenient to rely on
the already established asymptotic behavior of the density at
the fertile site.

1. Supercritical regime: μ > μd

The normalized density is asymptotically stationary in this
regime

na(t )

n0(t )
= ma. (68)

The generating function

M(u) =
∑
a∈Zd

maua , ua =
d∏

p=1

u
ap
p (69)

is found as in two dimensions, and it is an obvious generaliza-
tion of (48):

M(u) = μ

Cd + 2d −∑d
p=1(up + 1/up)

. (70)

We give again the normalized density at sites neighboring the
fertile site:

m±1,0,...,0 = 1 + Cd − μ

2d
. (71)

2. Critical regime: μ = μd

In the critical regime we use the same ansatz (68) and
determine the generating function

M(u) = μd

2d −∑d
p=1(up + 1/up)

. (72)

There are no simple general expressions for ma valid for all
a ∈ Zd . The normalized density at sites neighboring the fertile
site admits a simple expression through the Watson integral

m±1,0,...,0 = 1 − μd

2d
= 1 − 1

dWd
. (73)

Noting that ma satisfies a discrete Poisson equation

∇2ma + μdδ0 = 0, (74)

we replace the discrete Laplacian by the continuous Laplacian
far from the fertile site, r = |a| � 1, and conclude that the
solution approaches the Coulomb solution far away from the
fertile site:

m(r) ∼ μd

rd−2
. (75)

The average number of RWs is therefore

N (t ) ∼ n0(t )
∫ R(t )

0
dr rd−1m(r) ∼ n0(t )R(t )2.

Random walkers spread diffusively and the cutoff length
is also expected to grow diffusively with time: R(t ) ∼ √

t .
Hence N (t ) ∼ tn0(t ). This is consistent with (5) and (6).

V. FLUCTUATIONS

We are mostly interested in N(t ), the total number of
RWs. Focusing on this global quantity allows us to suppress
spatial aspects. The evolution of N(t ) can be interpreted as a
branching process [15–17]. This change of view greatly helps
in calculations.

A. Effective branching process

The mapping onto the branching process is simple. The
primordial RW starting at the fertile site at t = 0 reproduces
at a certain “branching” time T1. The two RWs become the
seeds of two independent branching processes. The branching
times depend on the multiplication rate and on the first return
probability to the fertile site and thus on the geometry of the
lattice, but the overall procedure is universal (that is, valid for
any lattice).

Let PN (t ) = Prob[N(t ) = N] be the probability distribu-
tion of the total number of RWs. The moment-generating
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function

Z (λ, t ) =
∞∑

N=1

PN (t ) eλN (76)

satisfies an integral equation

Z (λ, t ) = eλ
(t ) +
∫ t

0
dτ ψ (τ ) Z2(λ, t − τ ). (77)

Here we shortly write

ψ (t ) = Prob(T1 = t ), (78a)


(t ) = Prob(T1 � t ) = 1 −
∫ t

0
dτ ψ (τ ). (78b)

Indeed, if there were no branching up to time t , we have N =
1 and Z (λ, t ) = eλ. This happens with probability 
(t ) =
Prob(T1 � t ) and results in the first term on the right-hand
side of (77). The first branching may also occur at time τ in the
range τ ∈ (0, t ); this happens with probability density ψ (τ ).
There are then two independent processes with moment-
generating functions Z (1)(λ, t − τ ) and Z (2)(λ, t − τ ). The
total number of RWs is the sum N = N(1)(t − τ ) + N(2)(t −
τ ). This leads to the product of the corresponding generating
functions and results in the integral on the right-hand side of
(77).

Thus, the problem reduces to solving a nonlinear integral
equation (77). The probability density Prob(T1 = τ ) encodes
all the geometric data of the problem (the structure of the
lattice and the spatial dimension).

B. Zero-dimensional case

As a warm-up, we start with zero-dimensional case. In this
situation

ψ (t ) = μ e−μt , 
(t ) = e−μt , (79)

so the integral equation (77) becomes

Z (λ, t ) = eλ−μt + μ

∫ t

0
dτ e−μτ Z2(λ, t − τ ). (80)

It is not immediately clear how to directly solve this
integral equation. Fortunately, we can determine the moment-
generating function since we know the distribution PN (t ) in
the zero-dimensional case. Indeed, the probabilities PN (t ) sat-
isfy exact rate equations

1

μ

dPN

dt
= (N − 1)PN−1 − NPN . (81)

Solving (81) subject to the initial condition PN (0) = δN,1 is
straightforward (see, e.g., Ref. [18]). The solution reads

PN (t ) = e−μt (1 − e−μt )N−1
. (82)

Hence the moment-generating function is

Z (λ, t ) = 1

1 + eμt (e−λ − 1)
(83)

in the zero-dimensional case. One can verify that (83) is
indeed the solution of (80) satisfying the initial condition

Z (λ, 0) = eλ. (84)

C. Perturbative expansion

Treating λ as a small parameter we write

Z (λ, t ) = 1 + λ〈N〉 + λ2

2!
〈N2〉 + λ3

3!
〈N3〉 + · · · (85)

and plug this expansion into the governing equation (77).
Since Z (0, t ) = 1 we find that (77) is satisfied at the zeroth

order zero we recall (78b). Equation (77) is satisfied at the first
order if the average number of particles N (t ) = 〈N(t )〉 obeys

N (t ) = 
(t ) + 2
∫ t

0
dτ ψ (τ ) N (t − τ ). (86)

This linear integral equation can be solved by the Laplace
transform if we know the value of the branching probability.
To ensure that (77) is satisfied at order 2 we must require
that the second moment M(t ) = 〈N2〉 satisfies the same linear
integral equation as (86), but with an extra source term

M(t ) = 
(t ) + 2
∫ t

0
dτ ψ (τ ) M(t − τ )

+ 2
∫ t

0
dτ ψ (τ ) N2(t − τ ). (87)

Similarly the third moment M3(t ) = 〈N3〉 satisfies

M3(t ) = 
(t ) + 2
∫ t

0
dτ ψ (τ ) M3(t − τ )

+ 6
∫ t

0
dτ ψ (τ ) N (t − τ )M(t − τ ). (88)

Performing the Laplace transform of (86) we find

N̂ (s) = 
̂(s)

1 − 2ψ̂ (s)
. (89)

The Laplace transform of (78b) gives


̂(s) = 1 − ψ̂ (s)

s
(90)

and hence (89) simplifies to

N̂ (s) = 1

s

1 − ψ̂ (s)

1 − 2ψ̂ (s)
. (91)

The consistency with (61c) allows us to fix

ψ̂ (s) = μ

μ + 	d (s)
. (92)

D. Moments in one dimension

The asymptotic behavior of the second moment can be ex-
tracted directly from (87). First, we recall the already known
asymptotic (28), which we rewrite as

N (t ) 	 ν1 eC1t (93)

with ν1 = 1 + 2/
√

μ2 + 4 and C1 =
√

μ2 + 4 − 2; see (25).
The exponential growth (93) is consistent with (86) if

2
∫ ∞

0
dτ ψ (τ ) e−C1τ = 1. (94)

Equivalently, we rewrite (94) as 2ψ̂ (C1) = 1, and using (92)
and 	1(s) = √

s2 + 4s we recover (25).
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FIG. 2. The ratios ν2/ν
2
1 (the bottom curve) and ν3/ν1ν2 (the top

curve) versus multiplication rate μ. Both ratios are maximal,
√

8 + 2
and

√
27 + 3, respectively, when μ → 0; both ratios monotonically

decrease and approach to 2 and 3, respectively, when μ → ∞.

Inserting (93) into (87) we find M ∼ e2C1t suggesting that
we seek the solution in the form

M(t ) 	 ν2 e2C1t . (95)

Inserting (95) into (87) we find

ν2 = 2(ν2 + ν2
1 )
∫ ∞

0
dτ ψ (τ ) e−2C1τ . (96)

The integral in the above equation is ψ̂ (2C1), and using (92)
we can express the ratio ν2/ν

2
1 as

ν2

ν2
1

= 2μ

	1(2C1) − μ
. (97)

Using 	1(s) = √
s2 + 4s and (25) we obtain

lim
t→∞

M(t )

[N (t )]2
= ν2

ν2
1

= 2μ

2
√

μ2 + 4 − 2
√

μ2 + 4 − μ

. (98)

This ratio decreases from
√

8 + 2 = 4.828427 . . . to 2 as μ

increases from 0 to ∞; see Fig. 2. If the number of RWs were
an asymptotically self-averaging quantity, the ratio would be
equal to unity. Therefore N(t ) is a non-self-averaging quantity
for all μ.

The third moment grows according to

M3(t ) 	 ν3 e3C1t , (99)

and after straightforward calculations one gets

ν3

ν1ν2
= 6μ

	1(3C1) − μ
, (100)

which can be rewritten similarly to (98):

ν3

ν1ν2
= 6μ√

9μ2 + 48 − 24
√

μ2 + 4 − μ

. (101)

The qualitative behavior of this ratio is similar to the behavior
of the ratio (98), namely, it monotonically decreases from√

27 + 3 = 8.19615242 . . . to 3; see Fig. 2.
Generally the nth moment grows according to

Mn(t ) 	 νn enC1t , (102)

and the same calculations as above yield

νn = μ

	1(nC1) − μ

n−1∑
a=1

(
n

a

)
νaνn−a, (103)

which should be solved for n � 2 with ν1 = 1 + 2/
√

μ2 + 4
playing the role of the initial condition. One can recursively
determine any νn. We haven’t succeeded in solving (103)
analytically, but some asymptotic behaviors can be deduced,
see Appendix B.

E. Moments in higher dimensions

The governing equations (86)–(88) are the same in any
spatial dimension; the functions 
(t ) and ψ (t ) appearing in
(86)–(88) depend on the dimensionality.

1. Supercritical regime: μ > μd

In two dimensions, and also when d > 2 in the supercriti-
cal regime, the moments exhibit formally the same asymptotic
behaviors as in one dimension:

N 	 ν1 eCdt , M 	 ν2 e2Cdt , M3 	 ν3 e3Cdt , (104)

where

	d (Cd ) = μ, ν1 = μ

Cd	
′
d (Cd )

. (105)

Equations (97), (100), and (103) remain applicable after the
obvious replacement C1 → Cd and 	1 → 	d . For instance,
the recurrence (103) becomes

νn = μ

	d (nCd ) − μ

n−1∑
a=1

(
n

a

)
νaνn−a.

These results are valid in one and two dimensions, and in the
supercritical regime μ > μd when d > 2.

2. Critical regime: μ = μd

We perform the Laplace transform of (87) and find

M̂ = 
̂ + 2ψ̂ N̂2

1 − 2ψ̂
. (106)

The s → +0 asymptotic behavior determines the large time
asymptotic. One finds 
̂  N̂2 when s → +0, so

M̂ 	 2ψ̂

1 − 2ψ̂
N̂2. (107)

Using additionally ψ̂ (s) = μd/[μd + 	d (s)], ψ̂ (0) = 1/2
and n̂0(s) = 1/[	d (s) − μd ] we simplify (107) to

M̂ 	 2μd n̂0 N̂2 (108)

when s → +0. Using (6) we compute

N̂2 	

⎧⎪⎨⎪⎩
2π−4(Ad μd )−2 s−3 d > 4

2π−4μ−2
4 s−3 [ln(1/s)]−2 d = 4

π−5 μ−2
3 s−2 d = 3

. (109)
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We insert (65) and (109) into (108) to yield

M̂ 	

⎧⎪⎨⎪⎩
4π−6(Ad μd )−3 s−4 d > 4

4π−6μ−3
4 s−4 [ln(1/s)]−3 d = 4

π−7μ−3
3 s−5/2 d = 3

from which

M 	 2

3
×

⎧⎪⎨⎪⎩
π−6(Ad μd )−3 t3 d > 4

π−6μ−3
4 t3 [ln t]−3 d = 4

2π−15/2μ−3
3 t3/2 d = 3

. (110)

In contrast to the behavior in the supercritical regime where
M ∼ N2, we have M ∼ N3 in the critical regime. More pre-
cisely,

lim
t→∞

M(t )

[N (t )]3
=
{

2
3 d � 4
4
3 d = 3

. (111)

Therefore the behavior is strongly non-self-averaging in the
critical regime.

Although the moments diverge as t → ∞, the probability
distribution PN (t ) is asymptotically stationary:

(N ) = PN (∞) = Prob[N(∞) = N]. (112)

The divergence of the average,
∑

N�1 N(N ) = ∞, is com-
patible with stationarity due to an algebraic tail of the
distribution (N ). We derive the entire distribution later. Here
we show how to establish the most interesting large N behav-
ior relying only on consistency. We postulate (N ) ∼ N−a

when N � 1 and note that a < 2 to agree with the divergence
of the average. The lower bound, a > 1, ensures the normal-
ization ∑

N�1

(N ) = 1. (113)

To match with the actual growth of the moments, we an-
ticipate that the distribution PN (t ) is stationary up to some
growing crossover. Thus

PN (t ) 	 (N ) ∼ N−a, 1 < a < 2

when 1  N � N∗, and we additionally assume that the
crossover grows algebraically with time, N∗ ∼ t ξ ; when N �
N∗, the distribution PN (t ) is nonstationary and it quickly
vanishes. Using these assumptions one can determine the ex-
ponents a and ξ . Indeed, we estimate two moments

〈N〉 ∼
t ξ∑

N�1

N

Na
∼ t ξ (2−a), 〈N2〉 ∼

t ξ∑
N�1

N2

Na
∼ t ξ (3−a)

and use M(t ) ∼ N (t )3 to get ξ (3 − a) = 3ξ (2 − a) thereby
fixing the exponent a = 3/2. Using asymptotic (6) we then
fix the second exponent, viz., ξ = 2 when d � 4 and ξ = 1
when d = 3.

There is actually a logarithmic correction at the upper
critical dimension dc = 4 and the more precise expression for
the crossover number of RWs is

N∗ ∼

⎧⎪⎨⎪⎩
t2 d > 4

(t/ ln t )2 d = 4

t d = 3

. (114)

Thus we provided heuristic evidence for the tail

(N ) ∼ N−3/2. (115)

One extra check of (115) is based on computing higher mo-
ments. Using (114) and (115) we find

〈Nm〉 ∼

⎧⎪⎨⎪⎩
t2m−1 d > 4

(t/ ln t )2m−1 d = 4

tm−1/2 d = 3

. (116)

The same time dependence characterizes the critical behavior
of the moments in the model of RWs with branching at the
origin [4].

The calculation of M3 = 〈N3〉 can be done along the same
lines as the calculation of M = 〈N2〉 described above. Instead
of (108) one finds

M̂3 	 6μd n̂0 N̂M. (117)

A long but straightforward calculation gives

M3 	 4

5
×

⎧⎪⎨⎪⎩
π−10(Ad μd )−5 t5 d > 4

π−10 μ−5
4 (t/ ln t )5 d = 4

16
3 π−25/2 μ−5

3 t5/2 d = 3

(118)

in agreement with (116). Similarly to (111) we have

lim
t→∞

M3(t )

[N (t )]5
=
{

4
5 d � 4
64
15 d = 3

. (119)

This result and Eq. (111) quantify strongly non-self-averaging
behavior in the critical regime.

Below we derive the critical stationary distribution (1),
which rigorously confirms the tail (115).

3. Subcritical regime: μ < μd

In the subcritical regime, the probability distribution is sta-
tionary. We shall derive this stationary distribution below; see
(139). Using this distribution one can compute any moment;
e.g., the variance is given by

〈N2〉 − 〈N〉2 = 2μdμ
2

(μd − μ)3
. (120)

VI. THE PROBABILITY DISTRIBUTION PN (t )

A. One dimension

In Sec. V D we have shown that in one dimension the
moments Ma(t ) = 〈Na〉 = ∑

N�1 NaPN (t ) satisfy

Ma(t ) ∼ [N (t )]a, (121)

where N (t ) = M1(t ). The growth laws (121) suggest that in
the long time limit the probability distribution PN (t ) acquires
the scaling form

PN (t ) = [N (t )]−1 P(z), z = N

N (t )
(122)

with N (t ) given by (28). More precisely, the scaling form
(122) is expected to be valid in the limit

N → ∞, t → ∞, z = N

N (t )
= finite. (123)
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1. Small N behavior

In many problems, the scaling form remains applicable
even when N = O(1) and t → ∞, but there are counterex-
amples, e.g., in submonolayer epitaxial growth [19]. In the
present case, PN (t ) also exhibits an unusual behavior for small
N . Inserting (76) into (77) we obtain

P1(t ) = 
(t ), (124a)

P2(t ) =
∫ t

0
dτ ψ (t − τ ) P2

1 (τ ), (124b)

P3(t ) = 2
∫ t

0
dτ ψ (t − τ ) P1(τ ) P2(τ ), (124c)

P4(t ) =
∫ t

0
dτ ψ (t − τ )

[
2P1(τ ) P3(τ ) + P2

2 (τ )
]
, (124d)

etc. Using (90) and (92) with 	1 = √
s2 + 4s we get

P̂1(s) = 
̂(s) = 1

s

√
s2 + 4s

μ + √
s2 + 4s

(125)

from which P̂ → (2/μ)s−1/2 as s → +0, implying that

P1(t ) 	
√

4

πμ2t
as t → ∞. (126a)

Combining (124b) and (137) we deduce the asymptotic

P2(t ) 	 4

πμ2t
as t → ∞. (126b)

Continuing one deduces the asymptotic behavior

PN (t ) 	 1

N

(
2N − 2

N − 1

)(
4

πμ2t

)N/2

(126c)

with amplitudes being Catalan numbers.
The asymptotically exact results (126a)–(126c) seemingly

disagree with the scaling form (122). However, when N =
O(1), the scaling variable z in (122) vanishes as t → ∞,
while z must be finite; see (123). Thus the scaling form is
inapplicable when N = O(1).

Let us estimate N∗ where the crossover to scaling form may
occur. Catalan numbers grow as 4N , so

PN ∝
(

64

πμ2t

)N/2

(127)

from (126c). The crossover from (127) to (122) apparently
occurs when t−N∗/2 ∝ 1/N (t ) ∝ e−C1t . Thus

N∗ ∼ C1t

ln t
. (128)

In the boundary layer, N  N∗, the distribution PN (t ) varies
according to (126c); the scaling apparently emerges when
N � N∗. Similar behaviors with a boundary layer structure at
small masses were found in models mimicking submonolayer
epitaxial growth [19].

2. Large N behavior

To probe the large z tail of the scaled distribution P(z) we
use the identity ∫ ∞

0
dz znP(z) = νn

νn
1

. (129)

The large n behavior of the amplitudes νn is established in
Appendix B. It gives∫ ∞

0
dz znP(z) 	

√
μ2 + 4 − 2

μ
n!

(
β

ν1

)n

(130)

and implies an exponential tail

P(z) 	
√

μ2 + 4 − 2

μ
e−ν1z/β when z � 1. (131)

We know ν1 = 1 + 2/
√

μ2 + 4, but β = β(μ) is unknown.

B. Two dimensions

In two dimensions, the scaling laws (121) hold and the
probability distribution PN (t ) is also expected to acquire the
scaling form (122).

For small N we again rely on Eqs. (124a)–(124d). Using
(90) and (92) with 	2 given by (38) we obtain

P̂1(s) = 
̂(s) 	 4π

μ

1

s ln(32/s)
(132)

as s → +0, implying that the probability for the primordial
random walker still being alone at time t � 1 vanishes very
slowly, viz., as the inverse logarithm:

P1(t ) 	 4π

μ

1

ln t
. (133a)

Combining (124b) and (146) we deduce the asymptotic

P2(t ) 	
(

4π

μ

1

ln t

)2

. (133b)

Similarly, using (146), (147), and (124c) we deduce

P3(t ) 	 2

(
4π

μ

1

ln t

)3

, (133c)

while from (146)–(148) and (124d) we obtain

P4(t ) 	 5

(
4π

μ

1

ln t

)4

. (133d)

Computing the following asymptotic:

P5(t ) 	 14

(
4π

μ

1

ln t

)5

, (133e)

we recognize the pattern, and the amplitudes 1,1,2,5,14 re-
mind us of the Catalan numbers. The general formula is

PN (t ) 	 1

N

(
2N − 2

N − 1

)(
4π

μ

1

ln t

)N

. (134)

The same argument as in the previous subsection shows that
(134) is valid when N  N∗ with

N∗ ∼ C2t

ln[ln t]
. (135)

The scaling form (122) emerges when N � N∗.
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C. Dimensions d > 2

When μ � μd , the probability distribution PN (t ) becomes
asymptotically stationary, PN (∞) = (N ), in the long time
limit. The moment-generating function is also asymptoti-
cally stationary, and Y (λ) = Z (λ, t = ∞) satisfies a simple
quadratic equation

Y = [1 − ψ̂ (0)]eλ + ψ̂ (0)Y 2. (136)

Recalling that ψ̂ (0) = μ/(μ + μd ) and solving (136) we ob-
tain

Y = μ + μd

2μ

{
1 −

√
1 − 4μμd

(μ + μd )2
eλ

}
, (137)

which is expanded to yield

Y = μ + μd

4μ
√

π

∑
N�1

�
(
N − 1

2

)
�(N + 1)

(4μμd )N eλN

(μ + μd )2N
. (138)

Therefore

(N ) = μ + μd

4μ
√

π

�
(
N − 1

2

)
�(N + 1)

(4μμd )N

(μ + μd )2N
. (139)

This distribution has an exponentially decaying tail and an
algebraically decaying N−3/2 prefactor.

In the critical regime, μ = μd , Eq. (139) reduces to the
announced formula (1). This remarkably universal result does
not depend on the spatial dimension; the growth of the mo-
ments does depend on the dimensionality and also on more
subtle properties of the lattice (we have considered only hy-
percubic lattices).

In the supercritical regime, μ > μd , the number of RWs
may remain finite forever, although on average it grows ex-
ponentially. This suggests that in the long time limit the
probability distribution PN (t ) has a stationary part (N ) and
an evolving part of the form (122). For λ < 0, the evolving
part (122) does not contribute to the moment-generating func-
tion when t → ∞ [since N (t ) becomes boundless], and the
following asymptotically stationary expression is obtained:

Y (λ) = Z (λ,∞) =
∞∑

N=1

(N ) eλN . (140)

Thus (137)–(139) continue to hold in the supercritical regime.
Equation (137) shows that the number of RWs remain finite
forever with probability

∞∑
N=1

(N ) = Y (0) = μd

μ
. (141)

With probability 1 − μd/μ, the number of RWs diverges
when t → ∞. Hence we write PN (t ) as a sum of the stationary
distribution and an evolving scaling distribution

PN (t ) = (N ) + [N (t )]−1 P(z), z = N

N (t )
. (142)

The scaled density satisfies∫ ∞

0
dz P(z) = 1 − μd

μ
, (143a)∫ ∞

0
dz znP(z) = νn

νn
1

, n � 1. (143b)

FIG. 3. The rescaled front velocity v/μ versus the multiplication
rate μ.

VII. SPATIAL CHARACTERISTICS

The total number of RWs grows exponentially when d = 1
and d = 2. The region containing occupied sites,

D(t ) = {j |nj(t ) > 0}, (144)

also tends to grow. The question is how. It is intuitively ob-
vious that this region has a few holes, so it is essentially a
droplet, that is effectively the region surrounded by the sea of
empty sites. Let us disregard holes and determine the size and
the shape of the droplet.

A. One dimension

Denote by r the rightmost occupied site: nr (t ) > 0 and
nj (t ) = 0 for all j > r. The front position r = r(t ) is a
random quantity. The leading behavior of this quantity is de-
terministic and can be determined using heuristic arguments.
Equations (24) and (30) yield

nj (t ) = A1eC1t λ| j|, λ =
√

μ2 + 4 − μ

2
(145)

with A1 and C1 given by (25).
The position of the front can be estimated from the criterion

nr (t ) ∼ 1, or the criterion∑
j�r

n j (t ) ∼ 1, (146)

asserting that the total average number of RWs to the right of
the front is of order one. Using (145) and any criterion we find
that the front spreads ballistically

r(t ) = vt (147)

with velocity

v = C1

ln(1/λ)
=

√
μ2 + 4 − 2

ln[(
√

μ2 + 4 + μ)/2]
. (148)

The ratio v/μ of the velocity to the multiplication rate exhibits
the following limiting behaviors (see also Fig. 3)

v

μ
=
{

1
2 − μ2

96 + · · · μ → 0
1

ln μ
− 2

μ ln μ
+ · · · μ → ∞ . (149)

This ratio vanishes very slowly in the μ → ∞ limit.
We have used (145) for j ∼ t , i.e., on distances greatly

exceeding the diffusion scale, j ∼ √
t . The derivation of (145)
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given at the end of Sec. II assumes the factorization property
n j (t ) = n0(t )mj ; a rigorous derivation is given in Appendix A.
We have also ignored fluctuations which are substantial—the
average value (25) of the amplitude A1 in (145) is known, but
different A1 arise in different realizations. Fluctuations do not
affect the leading behavior, however. Indeed, (146) gives

eC1t−r ln(1/λ) = const

with constant fluctuating from realization to realization. Thus
a more accurate form of (147) is probably

r(t ) = vt + const (150)

with constant fluctuating from realization to realization.
The droplet D(t ) = [�(t ), r(t )], where �(t ) is the position

of the leftmost particle, has a certain number of holes H (t ). It
would be interesting to understand the statistics of this random
quantity. It is not even clear whether it becomes stationary
in the long time limit. Even if it does and the probability
distribution Q(h) is well defined, the moments may diverge.

B. Two dimensions

Conjecturally, the droplet has a deterministic limiting
shape as t → ∞. More formally, this means that

lim
t→∞ t−1 D(t ) = D∞. (151)

The normalized droplet is a disk, that is, the growth is
asymptotically isotropic. The growth proceeds with a certain
velocity v which we determine below. The triviality of the
limit shape is a nontrivial statement. Indeed, limit shapes
often depend on the lattice and just a few are known even
in two dimensions. As an example of the known limit shape
different from the disk we mention an Ising droplet. This
droplet is formed in the Ising ferromagnet on the square lat-
tice endowed with zero-temperature spin-flip dynamics. More
precisely, when a large domain of one phase is inside the
sea of the opposite phase, the minority domain shrinks and
approaches to the limit shape [20,21] different from the disk.
The Eden-Richardson growth model [22–24] on the square
lattice is among the known unknowns—the unknown limit
shape is known to be different from the disk. The general
rule is that if the growth is driven by the boundary like in the
Eden-Richardson model, the lack of local isotropy results in a
nontrivial limit shape. In our model, in contrast, most of the
RWs are near the origin and the diffusion process is known to
be asymptotically isotropic (see also Fig. 4).

The average normalized density is asymptotically station-
ary [see (45)], and it satisfies (46). Far away from the fertile
site the governing equation (46) for the normalized density
can be written in a continuous form

C2 m = ∇2m. (152)

The solution of this rotationally isotropic equation also enjoys
rotational symmetry (far away from the fertile site). Thus we
can rewrite (152) as

m′′ + r−1 m′ = C2 m, (153)

FIG. 4. The evolution of the 2d droplet sampled at total popula-
tion 10n for n = 4, . . . , 9. The diffusion constant and multiplication
rate are of the same order. A few faraway isolated walkers whose
position is determined by diffusion alone are not shown. The picture
is consistent with the linear in time growth of a disk.

where prime denotes a derivative with respect to the radial
coordinate r =

√
i2 + j2. The solution to (153) is

m(r) = CC2K0(
√

C2 r). (154)

The numerical factor C = O(1) remains undetermined in the
realm of continuum framework. A linearly independent solu-
tion of Eq. (153) involving another modified Bessel function,
I0(

√
C2 r), is absent in (154) since this solution diverges when

r → ∞. The criterion (146) gives

n0(t )
∫ ∞

√
C2 R

dx xK0(x) ∼ 1, (155)

where R is the boundary of the droplet. By inserting the large
time asymptotic n0(t ) ∼ eC2t and

K0(x) 	
√

π

2x
e−x when x � 1 (156)

into (155) we obtain

R(t ) = vt, v = √
C2 (157)

in the leading order. The asymptotic behaviors are

v =
{√

32 e−2π/μ μ → 0

μ μ → ∞ . (158)

The top formula is asymptotically exact when μ → 0 but
actually works very well up to μ < 1.8.

In deriving (157) we used only the dominant exponential
factor from (156). Taking into account an algebraic x−1/2

prefactor and more carefully computing the integral in (155)
we obtain

R(t ) = vt + 1

2v
ln(C2t ), v = √

C2. (159)

022114-12



RANDOM WALK THROUGH A FERTILE SITE PHYSICAL REVIEW E 103, 022114 (2021)

A logarithmic correction to the front position is known to
occur (see Refs. [25–30] and references therein) in many
traveling wave phenomena. In the present case, a logarithmic
correction apparently arises only in two dimensions.

VIII. INTERACTING RANDOM WALKS

So far, we have investigated noninteracting particles per-
forming identical RWs and multiplying at the fertile site.
There are numerous interesting deformations of these simple
dynamical rules. In this section, we discuss two simple defor-
mations of the original model that include interactions.

A. Symmetric exclusion process

Here we consider a deformation of the original model
based on including exclusion interaction. We assume that par-
ticles undergo identical nearest-neighbor symmetric hopping
on Zd and satisfy the constraint that each lattice site is occu-
pied by at most one particle so that hopping to an occupied site
is forbidden. This interacting particle system, known as the
symmetric exclusion process (SEP), has achieved the status
of a paradigm in statistical physics (see books and reviews
[31–36]).

We should modify the birth rule as the newborn particle
must be in a different site than the parent particle. One can
postulate that the particle at the fertile site gives the birth, the
newborn particle is put into a randomly chosen neighboring
site of the fertile site, and the birth event is successful only
if the chosen site is empty. Another birth rule is defined as
follows: Whenever a particle at the fertile site hops to an
(empty) neighboring site, it leaves the daughter particle at
the fertile site with probability p. These two birth rules are
essentially equivalent. Below we use the latter slightly simpler
birth rule.

The major simplifying property of the SEP is that the
density satisfies the diffusion equation [31–36], exactly as
in the case of noninteracting RWs. This property is easy to
appreciate. In one dimension, for instance, one writes an exact
equation

d〈τ j〉
dt

= 〈τ j−1(1 − τ j )〉 + 〈τ j+1(1 − τ j )〉
− 〈τ j (1 − τ j−1)〉 − 〈τ j (1 − τ j+1)〉, (160)

following from the rules of the SEP for all j 
= 0. (Hereinafter
we use occupation numbers: τ j = 1 if site j is occupied
and τ j = 0 otherwise.) Massaging Eq. (160) one notices
that second-order correlation functions like 〈τ j−1τ j〉 cancel.
Therefore Eq. (160) simplifies indeed to the lattice diffusion
equation

dn j

dt
= ∇2n j (161)

for the densities nj = 〈τ j〉 when j 
= 0. The same equation
describes the evolution in arbitrary dimension. The diffusion
coefficient is the same as for random walkers, our convention
being that the hopping rates to neighboring sites are equal to
unity.

At the fertile site we have (again for concreteness in one
dimension)

d〈τ0〉
dt

= 〈τ−1(1 − τ0)〉 + 〈τ1(1 − τ0)〉
−(1 − p)〈τ0(1 − τ−1)〉 − (1 − p)〈τ0(1 − τ1)〉,

(162)

which becomes

dn0

dt
= n1 + n−1 − 2(1 − p)n0 − p〈τ0(τ1 + τ−1)〉. (163)

Thus the evolution of the density n0 at the fertile is cou-
pled to the second-order correlation functions 〈τ0τ1〉 and
〈τ0τ−1)〉. Exact equations for these correlation functions in-
volve third-order correlation functions. This attempt to get a
closed system of equations never ends leading to an infinite
hierarchy.

Let us first consider the extreme case of p = 1. This case is
tractable because the fertile site is always occupied. Therefore
we do not need (163), we merely have the boundary condition

n0(t ) = 1 (164)

at the fertile site for all t > 0. The initial condition is

nj(0) = 0. (165)

Thus in the extreme case we need to solve Eq. (161) sub-
ject to (164) and (165). A mathematically identical problem
arises in various contexts, e.g., it governs the evolution of the
two-body correlation function for the voter model and one
simple catalysis problem [37–39]; it also obviously describes
the SEP with an infinitely strong localized source [40–42].
Several exact and asymptotically exact behaviors are known.
For instance, the average N (t ) ≡ 〈N(t )〉 exhibits an asymp-
totic growth [41]

N (t ) 	

⎧⎪⎨⎪⎩
4
√

t/π d = 1

4πt/ ln t d = 2
d

Wd
t d > 2

. (166)

The growth becomes linear in time above the critical dimen-
sion, d > dc = 2. The amplitude of this linear growth involves
the Watson integral Wd which appeared in some previous
formulas, e.g., in Eqs. (4) and (56).

Even in the extreme case the fluctuations of the random
quantity N are essentially unknown, the only result known so
far is the variance of N in one dimension [40,41]: The ratio of
the variance to the average is asymptotically

lim
t→∞

〈N2(t )〉 − 〈N(t )〉2

〈N(t )〉 = 3 −
√

8. (167)

Let us look at nonextreme versions of the model param-
eterized by p ∈ (0, 1). The crucial feature of the SEP is the
absence of correlations in equilibrium. Hence when i 
= j, we
have 〈τiτ j〉 = 〈τi〉〈τ j〉 = nin j in equilibrium. This is inappli-
cable in systems with flux, so we cannot, e.g., replace 〈τ0τ1〉
in (163) by n0n1.

In one dimension, the flux vanishes. More precisely, the
flux decays as t−1/2 in the long time limit. This follows from
Eq. (166) in the extreme case, p = 1, and clearly occurs for
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all 0 < p � 1. Since the flux asymptotically vanishes, the
behavior approaches to the behavior of the SEP at equilibrium
when the correlators factorize [31–35]. Thus 〈τ0τ1〉 = n0n1 is
asymptotically exact, so Eq. (163) simplifies to

dn0

dt
= n1 + n−1 − 2(1 − p)n0 − pn0(n1 + n−1). (168)

Summing (168) and all Eqs. (161) for j 
= 0, and taking into
account the nj = n− j symmetry, we obtain

dN

dt
= 2pn0(1 − n1) (169)

for t � 1.
We proceed on the “physical” level of rigor by making

plausible guesses and checking consistency. The starting point
is the asymptotic behavior

1 − n j 	 Aj√
πt

(170)

valid when t � 1 and j  √
t . In the extreme case, an exact

expression for the density profile valid for all j � 0 and t � 0
is known [41]:

n j = e−2t I j (2t ) + 2e−2t
∑
k> j

Ik (2t ). (171)

Using (171) one confirms the asymptotic (170) and gets Aj =
j in the extreme case.

Generally for arbitrary p we insert (170) into Eqs. (161)
and find Aj+1 − 2Aj + Aj−1 = 0, from which

Aj = A0 + j. (172)

The amplitude in front of the linear term is fixed by the known
asymptotic, Aj 	 j when j � 1, which can be established by
using a continuum approach valid when j � 1. Substituting
(170) into (168) we deduce a relation A0 = (1 − p)A1. Com-
bining this result with (172) specialized to j = 1 we obtain
A0 = (1 − p)/p and A1 = 1/p.

We can now derive the leading behavior of N (t ). Substitut-
ing 1 − n1 	 A1/

√
πt into Eq. (169) and integrating we find

N 	 4pA1

√
t

π
= 4

√
t

π
. (173)

The leading asymptotic growth is therefore independent on
the birth probability p ∈ (0, 1]. This intriguing feature seems
present only in the leading behavior. To confirm, or disprove,
this assertion one would like to compute subleading terms. In
the extreme case, we know the exact answer [41]

N = e−2t [I0(2t ) + 4t I0(2t ) + 4t I1(2t )] (174)

from which one can obtain the entire expansion

〈N〉 = 4

√
t

π
+ 1

4

1√
πt

+ O(t−3/2).

Generally when p < 1 we anticipate

〈N〉 = 4

√
t

π
+ C1(p) + O(t−1/2) (175)

with C1(p) < 0 when p < 1. A similar expansion has been de-
rived in Ref. [41] for the SEP with a source of finite strength,
and it is probably valid in the present model when 0 < p < 1.

In two dimensions, the flux also vanishes in the long time
limit. Generalizing the above arguments one finds that the
leading asymptotic remains the same as in the extreme model.
The subleading term, however, is only logarithmically smaller
than the leading term, and it probably depends on p. In other
words, we anticipate

〈N〉 = 4πt

ln t
+ C2(p)t

(ln t )2
+ · · · (176)

with large subleading correction, so the convergence to the
leading asymptotic is extremely slow. The subleading correc-
tion in (176) is conjectural in the general case of 0 < p < 1,
but for p = 1 such correction and the exact expression for
C2(1) was established in Ref. [42].

Thus when d � dc = 2, the density at the fertile site ap-
proaches to unity and the flux vanishes in the long time limit.
This happens for all p ∈ (0, 1]. In contrast, the birth proba-
bility p affects the leading behavior when d > 2. Similarly
to noninteracting RWs, we anticipate different behaviors de-
pending on whether the birth probability p is smaller, equal, or
larger than the critical birth probability pc(d ). For any p < 1,
the total number of particles may remain finite when d > 2.
Furthermore, the total number of particles will remain surely
finite for sufficiently small p. This feature makes plausible the
existence of the critical value such that the total number of par-
ticles is surely finite when p � pc(d ). Thus for p � pc(d ) the
particle number distribution is expected to be asymptotically
stationary. The form of this stationary distribution is unknown.

In the supercritical regime, p > pd , we anticipate the same
linear in time growth as in the extreme case:

N (t ) 	 Sd (p)t (177)

when d > 2 and p > pc(d ). We know that the amplitude
Sd (p) is a strictly increasing function of the birth probability
on the interval pc(d ) < p < 1. We also know that Sd (p) = 0
when p = pc(d ) and Sd (1) = d/Wd .

Recall that for RWs in the critical regime, the density at
the fertile site vanishes as t → ∞ when d = 3 and d = 4,
and remains finite when d > 4; see (5). The SEP is essentially
identical to noninteracting RWs at small density, and hence at
least when d = 3 and d = 4 we anticipate the same qualita-
tive behaviors in the critical regime as for RWs. Thus when
p = pc(d ), the density at the fertile site is expected to decay
as

n0(t ) ∼
{

t−1/2 d = 3

[ln t]−1 d = 4
, (178)

while the average number of particles is expected to grow
according to

N (t ) ∼
{√

t d = 3

t/ ln t d = 4
. (179)

These asymptotic behaviors are consistent with the tail
(N ) ∼ N−3/2 in the critical regime, the same tail as for RWs
in the critical regime; see (115). Hence the higher moments
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(a) (b)

FIG. 5. The model with quiet birth in the situation when mul-
tiplication may occur, i.e., the fertile site is occupied by a single
RW. The birth event may occur at the moment when the particle
leaves the fertile site. The random walkers are shown as squares, the
particle at the fertile site, j = 0, has a disk indicating that it may
multiply at the moment it leaves the fertile site. (a) In the illustration,
the occupation numbers are n−1 = 3, n−2 = 4, n−3 = 4, . . . on the
left of the fertile site where n0 = 1, and n1 = 5, n2 = 7, n3 = 4, . . .

on the right of the fertile site. (b) The random walker has jumped
from the fertile site to the right, and the multiplication event has
occurred; the multiplication certainly occurs in the extreme version,
p = 1. Immediately after the jump, the fertile site is occupied by a
single particle, and hence the multiplication is feasible. If another
random walker jumps at the fertile site, the multiplication would be
temporarily impossible.

〈Nm〉 probably exhibit the same dynamical behaviors (116) as
in the case of RWs.

The behaviors (177)–(179) are conjectural. The rates Sd (p)
in (177), the amplitudes in (178) and (179), and the critical
birth probabilities pc(d ) are unknown. For RWs in the critical
regime, the final particle number distribution RWs is univer-
sal (independent of the spatial dimension). The derivation
of that property relied on the strict absence of interactions
between RWs. Furthermore, this property concerns (N ), not
its asymptotic behavior, so there is no ground for any guess
about (N ) in the case of the SEP in the critical regime.

The region of occupied sites at a given time is not a droplet,
there are numerous holes in the case of the SEP. If, however,
we consider the domain of sites visited during the time interval
(0, t ), this domain is asymptotically a growing ball. In the
extreme case of p = 1, equivalently the SEP with an infinitely
strong localized source, the radius Rd (t ) of this ball grows
according to Ref. [42]

Rd (t ) ∼
{√

t ln t d = 1, 2, 3

t2/d d � 4
. (180)

B. Quiet birth

The fertile site plays a special role. This observation sug-
gests amending the multiplication at the fertile site, while not
altering the hopping rules. Thus we return to noninteracting
RWs, but assume that the birth may occur only in a non-
crowded environment. The simplest implementation allows
birth only when a single particle occupies the fertile site
(Fig. 5). To make closer contact with the model of Sec. VIII A,
we adopt a slightly different rule. We assume that if the
fertile site is occupied by a single particle and this hops to
a neighboring site, it leaves behind the daughter particle with

probability p. A successful multiplication event is illustrated
in Fig. 5. The birth rule implies an indirect interaction between
RWs: The large concentration of particles in the proximity of
the fertile site suppresses the birth events.

Let us start again with the extreme case of p = 1. The
fertile site is therefore always occupied, but in contrast to the
extreme model studied in Sec. VIII A, the fertile site may host
many particles. This extreme model with noninteracting RWs
was studied in [42]. Intriguingly, this extreme model exhibits
more rich behaviors than the extreme model in the case of
SEP. Different behaviors again emerge depending on whether
d � 2 or d > 2. For instance, the average density at the fertile
site grows indefinitely in low dimensions and saturates when
d > 2:

n0 	

⎧⎪⎨⎪⎩
1
2 ln t d = 1

ln(ln t ) d = 2

2Wd [2Wd − 1]−1 ln(2Wd ) d � 3

. (181)

Combining (181) and (166) one finds

N (t ) 	

⎧⎪⎪⎨⎪⎪⎩
2
√

t
π

ln t d = 1

4π t ln(ln t )
ln t d = 2

2d[2Wd − 1]−1 ln(2Wd ) t d > 2

. (182)

The derivations [42] were not rigorous, but the numeri-
cal support was convincing; even at the critical dimension
dc = 2 where the behaviors are very subtle, involving a re-
peated logarithm, the agreement with numerics [42] was quite
good.

The same analysis as in [42] shows the universality of the
leading behaviors when d � 2, that is, the predictions (181)
and (182) for d � 2 remain the same for all p ∈ (0, 1]. When
d > 2, we anticipate qualitatively similar behaviors as in the
model of Sec. VIII A, i.e., the emergence of three regimes
and the validity of Eqs. (177)–(179). Finally, we mention
that in the extreme model the droplet of visited sites grows
asymptotically according to the same law (180) as in the case
of the SEP.

IX. CONCLUSIONS

In Secs. II–VII we have studied noninteracting random
walkers on homogeneous hypercubic lattices with one special
fertile site where RWs can reproduce. In particular, we have
explored the statistics of the total number of RWs. When
d > 2 and μ � μd , the distribution of the total number of
RWs is stationary and given by (139); in the critical case,
the distribution is particularly neat, Eq. (1). When the RW is
recurrent (d � 2), the distribution PN (t ) approaches a scaling
form (122) that is still unknown.

The region occupied by random walkers is asymptotically
a growing segment in one dimension and a growing disk in
two dimensions. In both cases, we have computed the growth
velocity. It would be interesting to probe the roughness of the
boundary in two dimensions.

Our process is a simple example of a random walk in
a nonhomogeneous environment with a fertile site where
random walkers can reproduce. More pronounced inhomo-
geneities in an environment characterized by spatially varying
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quenched growth rates arise in diverse settings ranging from
population dynamics to the kinetics of chemical and nuclear
reactions [43–45]. These systems tend to exhibit highly non-
self-averaging behaviors [46–53]. It would be interesting to
apply large deviation techniques to such models and search for
universal features in high dimensions, similar to one displayed
by the elementary model studied in the present work.

We have also analyzed (Sec. VIII) the influence of interac-
tions in two models. In the first model, the particles undergo
the symmetric exclusion process. In the second model, the
particles do not directly interact, but the birth allowed only
when the fertile site is occupied by a single particle; this in-
troduces subtle collective interactions. The behaviors in these
models drastically differ from the behavior of noninteracting
RWs, e.g., the growth of the number of particles cannot be
faster than linear. Some qualitative features such as the emer-
gence of the critical birth rate when d > 2 are similar to RWs,
although our arguments in d > 2 dimensions are heuristic.
The most intriguing feature of these two particular models is
the remarkable universality of the low-dimensional behavior
(d � dc = 2): The reproduction rate does not affect the lead-
ing behavior. In this respect, the behaviors are simpler than
the behaviors of noninteracting random walkers in d � dc = 2
dimensions.

Our work has started as an attempt to devise a classi-
cal analog of an open quantum system [54,55] driven by a
localized source of identical bosons. This quantum system
exhibits tricky behaviors. An exponential growth occurs when
the strength � of the source exceeds a critical value �d , while
when � � �d the growth is quadratic in time when d > 2;
some subtleties occur when d = 1 and d = 2. Intriguing be-
haviors of this open quantum system are not fully captured by
the classical analog, so it would be interesting to find a better
classical analog.

The symmetric exclusion process with multiplication re-
sembles an open quantum system driven by a localized source
of spinless lattice fermions [54,56,57]. The behavior of this
open quantum system is somewhat simpler than the behavior
of the classical system—in the quantum case, there is only
one regime, the average number of fermions always exhibits
a linear growth, N = Cd (�)t . The behavior of the amplitude
is subtle, e.g., Cd (�) → 0 as � → ∞ which a signature of
the quantum Zeno effect. The interacting classical systems we
studied almost exhibit the Zeno effect in dimensions d � 2
where the leading behaviors are independent of the birth rate.
However, the subleading behaviors seem normal, namely in-
creasing with the increase of the birth rate.
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APPENDIX A: DENSITY IN ONE DIMENSION

Equation (15) encapsulates the Laplace transforms of the
densities:

n̂ j (s) = �| j|
√

s2 + 4s − μ
(A1)

with

�(s) = s + 2 − √
s2 + 4s

2
. (A2)

The inverse Laplace transform reads

n j (t ) =
∫ s∗+i∞

s∗−i∞

ds

2π i

ets �| j|
√

s2 + 4s − μ
. (A3)

An integration contour can go along any vertical line in the
complex plane such that s∗ = Re(s) is greater than the real
part of singularities of the integrand. We are interested in
the asymptotic behavior, so we can employ the saddle point
technique. First, we rewrite (A3) as

n j (t ) =
∫ s∗+i∞

s∗−i∞

ds

2π i

et f (s)

√
s2 + 4s − μ

(A4)

with f (s) = s + J ln �(s), where J = | j|/t . The saddle point
is found from f ′(s∗) = 0 to give

s∗ = −2 +
√

4 + J2

and take the vertical contour in (A4) passing through the
saddle point. Computing the integral we obtain

n j (t ) = J

J − μ
(2πt3

√
4 + J2)−1/2 e−tD (A5)

with

D = 2 −
√

4 + J2 + J ln

√
4 + J2 + J

2
. (A6)

The asymptotic (A5) becomes erroneous when J � μ. The
reason is easy to understand: The above computation tacitly
assumed that s∗ is greater than the real part of the singularities
of the integrand in (A4). These singularities are found from√

s2 + 4s = μ, so the rightmost singularity is located at C1 =
−2 +

√
4 + μ2. Since s∗ > C1 when J > μ, the asymptotic

(A5) is applicable in this region.
When s∗ < C1, we still take a contour mostly going

through the saddle point, but deform it near the real axis.
Namely, we take the contour (s∗ − i∞, s∗ − i0), then a con-
tour (s∗,C1) just below the real axis, then a small circle around
C1, then the contour C1, s∗) just above the real axis, and finally
(s∗ + i0, s∗ + i∞). The leading contribution is provided by
the circle integral which is computed (there is a simple pole at
s = C1) to yield (145).

To justify the computations in Sec. VII A we notice that
near the front J = t−1r ≡ v < 1

2μ; see (148) and (149) and
Fig. 3. Therefore the inequality J < μ is obeyed and we can
indeed use (145).

One can verify that D given by (A6) is positive when
J > 0. Therefore the asymptotic (A5) accounts for exponen-
tially small density, i.e., the range where average quantities
like the density are not useful.

APPENDIX B: RECURRENCE (103)

When n � 1, the recurrence (103) simplifies to

nβn 	 μ√
μ2 + 4 − 2

n−1∑
a=1

βaβn−a, (B1)

022114-16



RANDOM WALK THROUGH A FERTILE SITE PHYSICAL REVIEW E 103, 022114 (2021)

where βn = νn/n!. Using the generating functions

B(z) =
∑
n�1

βnzn, z
dB

dz
=
∑
n�1

nβnzn, (B2)

we rewrite (B1) as

z
dB

dz
	 μ√

μ2 + 4 − 2
[B(z)]2. (B3)

Making a natural guess

βn 	 Cn−α βn, (B4)

we deduce the leading singular behavior of the generating
functions

B(z) 	 C
�(1 − α)

(1 − βz)1−α
, z

dB

dz
	 C

�(2 − α)

(1 − βz)2−α
(B5)

as 1 − βz → +0. By inserting (B5) into (B3) we get α = 0
and also determine the amplitude C to yield

νn 	
√

μ2 + 4 − 2

μ
n! βn when n � 1. (B6)

We emphasize that β is an unknown function of μ.
The only solvable case appears to be the μ → ∞ limit. In

this situation the recurrence (103) becomes

νn = 1

n − 1

n−1∑
a=1

(
n

a

)
νaνn−a.

Recalling βn = νn/n!, one gets β1 = 1 and

(n − 1)βn =
n−1∑
a=1

βaβn−a

for n � 2, from which βn = 1 leading to νn = n!. Thus∫ ∞

0
dz znP(z) = n!

from which

P(z) = e−z. (B7)

The μ → ∞ limit corresponds to the zero-dimensional sit-
uation where the exact solution is known, Eq. (82), whose
scaling form is indeed given by (B7).

APPENDIX C: MISCELLANIES

In this Appendix we discuss more general variants of the
models investigated in the main text and outline some other
ways to study them.

1. Other discretizations

The analysis in the main text dealt with walkers on the
hypercubic lattice Zd . The study of other lattices would be
similar. For d = 1, the problem has a well-defined limit when
the mesh goes to 0, but not so when d � 2: the naive con-
tinuum space equations are singular and one has no choice
but to discretize. This raises the question of universality. It
is expected that the existence or not of a threshold for μ

and the exponential growth of the population for instance are
universal, while the precise numerical factors are not.

As an illustration, we use the rotation invariance that is
present in the continuum with a single fertile site to discretize
only the radial part of the problem. One convenient choice is
a nearest-neighbor random walk on the semi-infinite line{

x j := d − 1

2
+ j, j = 0, 1, 2, . . .

}
(C1)

with jump rates

Dj, j+1 = 2(d − 1 + j)

d − 1 + 2 j
, Dj, j−1 = 2 j

d − 1 + 2 j
(C2)

in dimension d .
The origin of the semi-infinite line on which the walker

moves and the jumps rates are determined by the normaliza-
tion condition Dj, j+1 + Dj, j−1 = 2, and by the condition that
the position of the walker X (t ) satisfies

〈X (t )2〉 = X (0)2 + 2dt (C3)

so that X (t ) behaves like the distance to the origin for a walker
on the lattice Zd with diffusion constant D = 1.

The resulting time evolution of the average density at j � 1
is governed by

dn j

dt
= 2(d − 2 + j)

d − 3 + 2 j
n j−1 + 2( j + 1)

d + 1 + 2 j
n j+1 − 2n j . (C4a)

The density at the fertile site obeys

dn0

dt
= 2

(
−n0 + 1

d + 1
n1

)
+ μn0. (C4b)

This system reduces to (9a) and (9b) when d = 1, keeping in
mind that on the semi-infinite lattice n j , j � 1, is the sum of
the populations at site j and − j.

The continuum space limit of the right-hand side of (C4a)
under the substitution n(x) := nx/a, where a is the physical
mesh of the lattice, is

a2 ∂

∂x

(
∂

∂x
− d − 1

x

)
n(x), (C5)

and the dual of the differential operator ∂
∂x ( ∂

∂x − d−1
x ) is in-

deed ∂2

∂x2 + d−1
x

∂
∂x , i.e., the radial part of the Laplace operator

in dimension d as should be.
It is easy to solve (C4a) and (C4b) for d = 3. Making the

Laplace transform with respect to time and taking a generating
function

N (s, z) :=
∞∑
j=0

z j n̂ j (s) (C6)

leads to

N (s, z) = d

dz

[
z

1 + (μ − z−1)N (s, 0)

s − (z − 2 + z−1)

]
. (C7)

Imposing that N (s, z) be analytic in the unit disk yields

N (s, 0) = 2

s + 2 + √
s2 + 4s − 2μ

(C8)

022114-17



BAUER, KRAPIVSKY, AND MALLICK PHYSICAL REVIEW E 103, 022114 (2021)

and

N (s, z) = N (s, 0)(
1 − z s+2−√

s2+4s
2

)2 . (C9)

The average occupation numbers exhibit exponential growth
if and only if N (s, 0) has a pole at some s > 0 which oc-
curs if and only if μ > 1, and then the inverse timescale is
(μ − 1)2/μ. As expected, there is a threshold for exponential
growth just like with the d = 3 model on the cubic lattice, but
the threshold itself, as well as the inverse timescale and the
amplitudes are different.

2. An effective model for the critical case

The aim of the forthcoming discussion is to give some
intuition for the results in (5) and (6). In particular, we explain
the origin of the upper critical dimension dc = 4. This number
appears in many guises in random walk theory, but here it is
neatly explained, as well as the qualitative features of (5) and
(6), in terms of last passage times for a single random walker.

For d � 2 the last passage time at the origin is infinite,
meaning that the walker visits the origin infinitely many times.
For d > 2, the walker visits the origin only finitely many times
(and then leaves forever) with probability 1. More precisely, it
is a classical result that for d > 2 the probability that the last
passage at the origin occurs after time t decreases like t1−d/2.
The fact that the exponent decreases with d is intuitive, and
the explanation for the precise exponent is straightforward,
at least if universality is assumed. For instance, if A is a
bounded domain in Rd containing the origin, the probability
that a Brownian motion is in A at time t is immediately seen
to scale like (4πt )−d/2Volume(A) for large t (i.e., for t large
compared to the square of the linear size of A). If A is a small
ball for instance, the Brownian will exit soon afterwards, and
then never come back with a positive probability if d > 2, so
that this scaling is also the scaling for a last passage time. In
discrete time and space, this scaling is most easily recovered
on the body-centered hypercubic lattice, so that each step of
the random walk amounts to a step of independent simple
random walks along each of the d axes. The probability to
be at the origin at time t = 2l (an even integer) factors as

[2−2l (2l )!
l!2 ]

d ∼ (π l )−d/2. As expected, for d � 2 the decrease
at large l is too slow to sum over l but for d > 2, setting

Zd := ∑
l�0 [2−2l (2l )!

l!2 ]
d

we infer that Z−1
d is the probability

of no return (starting from a neighbor of the origin) and

Z−1
d [2−2l (2l )!

l!2 ]
d

is the probability that the last passage at the
origin occurs at time t = 2l . Of course the same large t be-
havior of the law of the last passage time can be computed
explicitly in our main model. Using Z−1

d to denote the no
return probability in any random walk model, the number of
passages at the origin follows a geometric distribution of pa-
rameter Z−1

d , and in particular the average number of passages
at the origin is Zd . The critical fertility rate is fixed by the
condition μd Zd = 1 [in particular, for our main model, Zd is
one half of the Watson integral (4)], ensuring that the average
offspring size is precisely 1.

The important feature of the law of the last passage time is
that is has no first moment for d ∈]2, 4] (i.e., d = 3 or 4 in the
context of the random walk on the hypercubic lattice, but the

same arguments apply for arbitrary d ∈]2, 4] for the models in
Appendix C 1, for instance), but it has a first moment for d >

4, yielding a timescale. Thus, the following intuitive picture
emerges. For d > 4 each walker has (in average) a finite time
to reproduce and then leaves forever (so that as long as he is
around, he contributes a finite density at the origin). He leaves
behind him (in average) one new walker which does the same.
So overall the number of walkers grows linearly in time (in
average) and the average density ad the origin remains finite
forever. However, for d ∈]2, 4], a walker may take an arbitrary
long time before it leaves some offspring, explaining at the
same time why the density at the origin goes to 0 at large
times and why the average growth of the number of walkers
is sublinear.

We can elaborate on this qualitative argument by intro-
ducing an effective model: instead of a fertility rate ensuring
that the average size of the offspring of a walker is 1, the
effective model assumes that at his last passage at the ori-
gin (and only then) each walker leaves a single descendant.
Though the above qualitative discussion applies more directly
to this effective model than to the original model, the de-
tailed mathematical analysis is more involved than the simple
computations in the fertile random walk model, because the
Markov property is replaced by a weaker renewal property.
For instance, the study of n0(t ) involves the renewal theorem
and the ergodic theorem. An explicit computation does not fit
here, but the results of (5) are recovered. The case of N (t ) is
simpler: the time tN at which the population reaches N + 1
is the sum of N independent random variables, each with the
law of the last passage time. Thus we can apply an appropriate
law of large numbers, the precise result depending only on the
large t behavior of the law of the last passage time recalled
above. For d > 4, there is an average and tN/N converges with
probability 1 to the average of the last passage time, the usual
strong law of large numbers. Then by inversion the number of
walkers grows like N (t ) ∝ t . On the other hand, for d ∈]2, 4],
tN receives its dominant contribution from some very large
summands, changing the scaling. For d ∈]2, 4[, N (t ) ∝ t d/2−1

while at d = 4 there is a logarithmic correction and N (t ) ∝
t/ log t . The similarity with (6) is thus complete. Heuristic
arguments indicate that the relation n0(t ) 	 Zd N (t )/t holds
at large t . The factor Zd appears as the average number of
passages of a random walker at the origin. As μd Zd = 1 the
precise relationship between n0(t ) and N (t ) exhibited in (5)
and (6) is presumably universal.

3. Other birth functions

The main text concentrates on the simplest reproduction
mechanism, when an individual gives birth to another one,
equivalently dies while giving birth to two new individuals.
A more general reproduction pattern would be to have a
jump rate μ(n) to die and leave n new individuals for n =
0, 2, 3, . . . . It is useful to recast these rates in a generating
function E (z) := ∑

n 
=1 μ(n)zn. The rate μ(0) covers the pos-
sibility to die without leaving any offspring. The rate μ(2) is
what was called μ in the main text; in the general situation we
set

μ := E ′(1) − E (1) =
∑
n 
=1

(n − 1)μ(n). (C10)
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The generalization of many results to this more general
setting is straightforward though cumbersome and less ex-
plicit: with the binary reproduction rule, many things can be
computed explicitly by solving a quadratic equation, while
in the general case one relies on the (implicit) inversion of
monotonous functions.

4. More general models

We consider a more general Markov model for multipli-
cation and diffusion. Models with several fertile sites were
studied for instance in Refs. [7,8,12], for walkers on a lat-
tice, but sometimes in a semi-Markovian context. The lattice
structure is crucial for some sharp probabilistic estimates, but
for the generalities below, the natural setting is an arbitrary
Markov process with countable state space. The sites j ∈ A
(a countable set) each come with their own offspring rate
function

Ej (z) :=
∑
n 
=1

μ j (n)zn (C11)

with walkers jumping from site j to site k with rates Kjk . To
be consistent with the main text, we set

2Dj = −Kj j :=
∑

k∈A,k 
= j

Kjk . (C12)

Thus each walker at site j carries two independent exponential
clocks, one for offspring with parameter Ej (1) and one for
diffusion with parameter 2Dj . If the offspring clock rings first
(probability Ej (1)/[Ej (1) + 2Dj]), the walker dies and leaves
n new individuals at site j (each with its new pair of inde-
pendent clocks) with probability μ j (n)/Ej (1), while if the
diffusion clock rings first (probability 2Dj/[Ej (1) + 2Dj]),
the walker jumps to site k 
= j (and starts a new pair of
independent clocks) with probability Kjk/(2Dj ).

An observable carrying the one-time information is the
generating function

Z(z•, t ) :=
〈∏

j∈A

z
Nj (t )
j

〉
. (C13)

Here z j are independent variables, Nj (t ) is the population of
the site j at time t and N (t ) := ∑

j∈A Nj (t ) denotes the total
population. From the Markov property, one infers the master
equation

∂Z

∂t
=
∑
j∈A

[
Ej (z j ) − Ej (1)z j +

∑
k∈A

Kjkzk

]
∂Z

∂z j
. (C14)

As usual, such a first-order PDE can be reduced to a family
of ODEs by the method of characteristics: if z•(t ) solves the
system of ordinary differential equations

dz j (t )

dt
= Ej[z j (t )] − Ej (1)z j (t ) +

∑
k∈A

Kjkzk (t ) (C15)

with initial conditions z•(0) = z•, the generating function is
Z(z•, t ) = Z(z•(t ), 0). Solving (C15) is a formidable task in
general. An exception is when A is a singleton and the off-
spring function is simply E (z) = μ(0) + μ(2)z2. In the even

simpler case E (z) = μz2, one retrieves formula (83) with the
substitution z = eλ.

5. Asymptotic number of walkers

If no death is possible, i.e., if μ j (0) = 0 for every j ∈ A,
the population may only increase and it is obvious that N (t )
has a (sample by sample) limit at large times N (∞), which is
possibly infinite (this may happen in the supercritical regime).
This was used in the main text. Under mild assumptions,
N (∞) remains well defined even if death is possible at some
sites: the situation when the random process N (t ) oscillates,
returning to some minimum N∗ at arbitrary large times without
ever stabilizing to this value has probability zero. The intuition
is that each time the total population returns to the value N∗,
there is some probability that the next change of population
will be a decrease because some walker may diffuse to a site
where death is possible. So the fact that the next transition is
an increase of population costs some phase space. Intuitively,
it is like playing head and tails: even if the probability to toss
head is very small, the probability that only tail shows up
forever is 0. The difference here is that the different tosses are
not independent, and also the bias of the coins may vary from
one toss to the next. But if the rates for offspring and diffusion
satisfy certain bounds, this annoyance can be controlled.

In particular, this happens when there is a single fertile site,
and we concentrate on this situation now. Let 0 ∈ A be the
label of the fertile site. Set D0 = 1 for the diffusion constant at
0 to make contact with the notations from the main text. Also
set E (z) = E0(z). If j 
= 0, let Rj denote the probability that
a walker started at j never returns to the fertile site 0. These
probabilities are characteristics of the diffusion on A and do
not involve the offspring function. For the site 0, set

R = R0 := 1

2

∑
j 
=0

RjK0 j . (C16)

The computation of the Rj is complicated in general. As an
example when the result is simple, the model with jump rates
(C2) for d = 3 leads to

R = R0 = 1/2 Rj = j/( j + 1) for j = 1, 2, . . . . (C17)

If the process starts with a single walker at 0, the Markov
property implies that the generating function 0(w) :=∑

n Prob(N (∞) = n)wn satisfies

[E (1) + 2R]0(w) = 2Rw + E [0(w)]. (C18)

The quantities E (z) and D are input data. The computation
of R may be quite involved as already mentioned, but if R
is known, (C18) determines 0(w) either locally via a formal
power series expansion or globally via the functional equation
itself. For instance, to show the uniqueness of the perturbative
expansion, it is enough to do so for the first term, which
follows from the fact that E (z) − [E (1) + 2R]z is convex on
[0,1], � 0 at 0 and � 0 at 1 (even <0 if R > 0). Of course, if
E is quadratic (the only offspring is none or twins), 0(w)
is obtained simply by taking the appropriate branch of the
solution of a quadratic equation.
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If the process starts with single walker at j ∈ A, the analo-
gous function  j (w) satisfies

 j (w) = Rjw + (1 − Rj )0(w) for j 
= 0 (C19)

by the Markov property again. Then∏
j∈A

 j (w)Nj (0) (C20)

is the generating function for an asymptotic state with a given
number of individuals for a general initial condition [with
N (0) < +∞]. Even if 0(w) and the Rjs are known explic-
itly, this infinite product is not an elementary function.

If R = R0 = 0, i.e., if a walker leaving 0 returns there with
probability 1, then any site j that has a finite probability to
be visited by the walker has Rj = 0 so if R = 0 we may as-
sume that Rj = 0 for j ∈ A. Then  j (w) = 0(w) = 0(0)
is w-independent and the study of the asymptotics reduces to
a zero-dimensional analysis: E (1)0(w) = E (0(w)) is the
familiar equation from birth-death processes.

The functional equation (C18) determines the condition for
criticality. Because N (∞) is well defined,

Prob(N (∞) = ∞) = 1 −
∏
j∈A

 j (1)Nj (0). (C21)

The supercritical regime corresponds to 0(1) < 1. If
0(1) = 1 and the derivatives of 0(w) are finite at w = 1,
the model is an a subcritical regime. In the generic case,
the boundary separating the supercritical and the subcritical
regime is 0(1) = 1 and ′

0(1) = ∞ (the divergence of a
higher derivative while ′

0(1) remains finite would indicate
a multicritical point). Taking w → 1− in the derivative of
(C18),

[E (1) + 2R]′
0(w) = 2R + E ′[0(w)]′

0(w), (C22)

and using the definition of μ in (C10) leads to the criticality
criterion

μc = E ′(1) − E (1) = 2R. (C23)

For criticality conditions when the walkers hop on a lattice;
see Refs. [9–12]. For the models studied in the main text, we
recover the well-known interpretation of the Watson integral
in d � 3 as the inverse of the return probability to the origin
(starting from the origin, or from any nearest neighbor of the
origin) on the hypercubic lattice. Finally, μc = 1 for the model
with jump rates (C2) is also recovered correctly as R = 1/2 in
that case.

The fact that N (∞) is well defined has a number of im-
portant consequences. To mention only one, (C20) can be
rephrased as

〈wN (∞)〉 =
∏
j∈A

 j (w)Nj (0). (C24)

Then the Markov property implies that the process

U (t,w) :=
∏
j∈A

 j (w)Nj (t ) (C25)

is what is called in probability theory a closed martingale (see,
e.g., Refs. [58–60]), i.e., a quantity conserved on average and

converging sample by sample at large times—not only is the
expectation time independent

U (0,w) = 〈U (t,w)〉 = 〈wN (∞)〉, (C26)

but even

lim
t→∞U (t,w) = wN (∞). (C27)

In fact,

〈U (t,w)〉 = Z(z• = •(w), t ), (C28)

and it is instructive (if tedious) to check that the time indepen-
dence of 〈U (t,w)〉 is also a consequence of (C14).

When R > 0, U (t,w) depends on w and is a generating
function for conserved quantities. But as a basic application
of such conserved quantities, we content to compute the law
of the maximal population when Rj = 0 for j ∈ A so that
there is no w-dependence. Then U (t,w) = xN (t ) where x is
the extinction probability of a walker starting at 0 (or at
any j ∈ A because Rj = 0 for j ∈ A by assumption). In the
identity

lim
t→∞ xN (t ) = wN (∞) (C29)

for w ∈ [0, 1[ the left-hand side is w-independent, and so
must be the right-hand side. Thus N (∞) is either 0 or ∞ and
wN (∞) = 1N (∞)=0. Thus (C26) implies

xN (0) = 〈xN (t )〉 = 〈1N (∞)=0〉. (C30)

The martingale property is robust: under mild assumption,
(C30) holds not only for deterministic times, but also for
random times. Thus fix a (large) time horizon T and let τn be
the minimum of T and the smallest time at which the number
of RWs reaches n (which we take to be infinite is this never
occurs). Note that

xN (τn ) = xn1τn<T + xN (T )1τn=T . (C31)

Taking the average

xN (0) = xnProb(τn < T ) + 〈
xN (T )1τn=T

〉
. (C32)

Now

lim
T →∞

1τn<T = 1supt N (t )�n, (C33)

while

lim
T →∞

xN (T )1τn=T = 1N (∞)=01supt N (t )<n, (C34)

and the right-hand side is simply 1supt N (t )<n because on the
event supt N (t ) < n, automatically N (∞) = 0. Taking the
T → ∞ limit of (C32) and rearranging gives

Prob(sup
t

N (t ) � n) = 1 − xN (0)

1 − xn
for n � N (0), (C35)

which has a scale-invariant limit in the critical limit when the
extinction probability goes to 0, namely,

Probcrit(sup
t

N (t ) � n) = N (0)

n
for n � N (0). (C36)
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