
HAL Id: hal-04014493
https://hal.science/hal-04014493v1

Submitted on 4 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SlowLLM: large language models on consumer hardware
Christophe Cerisara

To cite this version:
Christophe Cerisara. SlowLLM: large language models on consumer hardware. CNRS. 2023. �hal-
04014493�

https://hal.science/hal-04014493v1
https://hal.archives-ouvertes.fr


SlowLLM: large language models on consumer

hardware

Christophe Cerisara

March 4, 2023

1 Introduction

Important note: this is a work-in-progress report and not a publication-quality
research paper.

Democratizing large language models (LLM) involves both distributing pre-
trained models freely with open-source like licenses, and enabling these models
to run at the lowest possible cost for the end-user. We focus in this work on
the second challenge: reducing the cost for running LLMs. More precisely, we
distribute an easy-to-use pytorch code that enables to run a 176-billion param-
eters Bloom or Bloomz model on a consumer computer without any GPU and
with as few as 16GB of RAM. Of course, this comes at the cost of a much slower
inference time than what may be achieved with high-end resources. However,
there are use cases where such slow but nearly free usage of LLMs is useful, if
only for the sake of giving a wider public the possibility to try such models at
no cost.

The algorithmic principle of the proposed code is very simple and well-
known, but there are many ways to actually implement it, and we propose here
a brief review of some of them along with identified advantages and limitations,
as well as a functional code to start with. The code is open-sourced in https:

//github.com/cerisara/slowLLM.

2 Related works

Accelerate is a general-purpose and flexible library developped by Huggingface
that exploits the available hardware to run inference with large language models.
It thus first attempts to load the model’s weights onto the available GPUs, and
offload the rest of the parameteres in CPU RAM or on an NVMe hard drive.
The power of this library lies in its flexibility, making it compatible with a
large range of various hardware setups. The proposed approach in this work
is rather dedicated to a specific model family (Bloom*) and a typical low-end
consumer-grade hardware, namely a computer without GPU and with 16GB of

1



RAM. These additional restrictions enable specific optimizations, such as not
requiring disk offloading for inference, working with the vanilla pickled model
weights, simple and easy to adapt code base and enabling finetuning.

The principle of loading the layers of a transformer one by one in memory is
extremely simple and obvious, but caveats exist about how to do it efficiently.
For instance, a very good blog post 1 details in a nice and pedagocical way
how to achieve this in a few lines of codes. However, this code is not up to
date with the latest transformers library versions, and it reimplements the for-
ward pass through the transformers, which is nice for an educational purpose,
but also prevents the model from exploiting some optimizations in the trans-
formers library and makes it more difficult to extend the code for finetuning or
parameter-efficient training.

Other approaches exploit multiple computers working collaboratively, such
as developped in [1, 3, 2], or by TogetherComputer (https://www.together.
xyz) or yet Hivemind and Petalsi (https://github.com/learning-at-home/
hivemind). However, these approaches require the involvment of several peers,
which give rise to new major challenges, such as costs, efforts and time sharing,
malevolent peers, bandwidth and peer failure, data privacy... Yet, this track
of research has many potential of development, and we have also implemented
our own working proof of concept in https://github.com/cerisara/slowLLM,
which relies on a central server connected with cpu-only clients through web
sockets. But this collaborative proof-of-concept is alpha-quality and not as
mature as the cited alternatives. Conversely, our main proposed approach only
rely on a single personal computer that does not even need to be connected to
the internet.

3 Method

The proposed approach implements a simple layer-by-layer forward pass with
pipeline parallelism. Let θ(L0), θ(L1), . . . , θ(L70) be the parameters for respec-
tively Bloomz’s word embeddings (called layer 0), layer 1, and so on until layer
70. The parameters of the final language modeling head are tied to those of the
word embeddings.

Inference processes as follows:

• Load in RAM a batch of maximum 50 input sentences (x1, . . . , xn<50)
where each xi is a sequence of tokens. The maximum number of sentences
is set to 50 to be sure that the total required RAM stays below 16GB.

• let z1, . . . , zn = x1, . . . , xn

• Iterate for i in 0 . . . 70:

– Load in RAM θ(Li)

1https://nbviewer.org/urls/arteagac.github.io/blog/bloom_local.ipynb

2



– Make a forward pass with all z1, . . . , zn through Li to get the output
and replace (z1, . . . , zn) with them

– free the memory allocated to θ(Li)

• Load in RAM θ(L0) into the final language modeling head

• Make a forward pass with all z1, . . . , zn through the final LM head to get
the logits of the predicted next token and the sentences perplexity.

3.1 Specific heuristics to reduce memory requirements

Because pytorch does not support 16-bits operations on the CPU, a wrapper
around the dense linear layer is implemented that converts the input 16-bits
tensors into 32-bits, computes the matrix multiplication and then converts back
the result into 16-bits. An alternative would be to implement everything in
32-bits, but this would require too much memory.

For inference, a single activation tensor is kept in memory and is overwritten
after every layer. However, to fine-tune the model, all activation tensors shall be
kept, which does not fit within 16GB of RAM. So for training, these activations
have to be saved in disk during the forward pass, which greatly slows down the
code.

4 Benchmarks

The following benchmark is realized on the following hardware: personal com-
puter with 24GB of RAM, no gpu, with a NVMe sdd (Micron/Crucial Technol-
ogy P2 NVMe PCIe SSD (rev 01)) and an AMD Ryzen 5 3600 6-Core Processor.

We made lots of efforts to also also run the same test with the accelerate
library, but repeatly failed to make it work on our low-end hardware: we strictly
followed the Huggingface recipe (version of Feb. 2023, available at https://

huggingface.co/blog/bloom-inference-pytorch-scripts) to make inference
with the accelerate library and the Bloom model. The only difference is that we
are using Bloomz instead of Bloom. First, the accelerate library needed to con-
vert on disk the weights of the model into the ”safetensor” format, which takes
a lot of time, about two hours on our NVMe SSD drive. Then, the program
systematically crashed after some time:

• We first tried by letting accelerate exploit a Titan X 12GB GPU in our
desktop, but the program crashed with cuda out-of-memory error.

• We also tried by forcing accelerate to not use the GPU, but then the
program got killed after some time by the kernel, most likely because of
memory.

We concluded that despite being an extremely powerful library for middle or
high-range hardware, the accelerate library (v0.16.0 with transformers v4.26.1

3



and pytorch v1.13.1+cu117) is still challenging to use on low end hardware as
in our setup.

We also adapted the approach proposed in https://nbviewer.org/urls/

arteagac.github.io/blog/bloom_local.ipynb to the latest transformers li-
brary and tried it on our setup.

#utts #toks Accel. slowLLM arteagac

1 13 killed 791 4200
5 65 killed 1819 -

Table 1: Processing time (in seconds) for inference (forward pass only), including
initialization and weights loading time.

5 Discussion and limitations

The main limitation of slowLLM is the much slower speed required to perform
inference as compared to GPU-based solutions. However, the recommended
hardware to run Bloom-176b is eight A100 GPUs with 80GB of VRAM each,
which very few non-professional people can have, so when you have access to
several high-end GPUs, it is obviously much better to use them than to rely on
slowLLM. This reduced speed makes text generation a very unsuitable scenario
for slowLLM, because text generation nowadays mostly relies on autoregression,
which involves sequentially passing through the whole model for every token
generated. However, there are many other scenarios that can be achieved with
slowLLM, such as text classification, simple yes/no question answering, com-
paring the perplexity of models or sentences, computing sentence embeddings,
and text generation limited to few words only.

Finally, we believe that the type of approach promoted by the proposed
slowLLM software, i.e., running everything slowly, on ”heritage” low-end re-
sources and purely locally, is one of the most promising direction to greatly
reduce the maintenance, replacement and exploitation costs of AI deployment.

References

[1] Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier,
Quentin Lhoest, Anton Sinitsin, Dmitry Popov, Dmitry Pyrkin, Maxim
Kashirin, Alexander Borzunov, Albert Villanova del Moral, Denis Mazur,
Ilia Kobelev, Yacine Jernite, Thomas Wolf, and Gennady Pekhimenko. Dis-
tributed deep learning in open collaborations. ArXiv, abs/2106.10207, 2021.

[2] Max Ryabinin, Tim Dettmers, Michael Diskin, and Alexander Borzunov.
SWARM parallelism: Training large models can be surprisingly
communication-efficient, 2022.

4



[3] Timo Schick, Jane A. Yu, Zhengbao Jiang, Fabio Petroni, Patrick Lewis,
Gautier Izacard, Qingfei You, Christoforos Nalmpantis, Edouard Grave, and
Sebastian Riedel. PEER: A collaborative language model. In International
Conference on Learning Representations, 2023.

5


