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Measurement plays a quintessential role in the control of quantum systems. Beyond initialization and readout
which pertain to projective measurements, weak measurements, in particular through their back action on the
system, may enable various levels of coherent control. The latter ranges from observing quantum trajectories
to state dragging and steering. Furthermore, just like the adiabatic evolution of quantum states that is known
to induce the Berry phase, sequential weak measurements may lead to path-dependent geometric phases.
Here we measure the geometric phases induced by sequences of weak measurements and demonstrate a
topological transition in the geometric phase controlled by measurement strength. This connection between
weak measurement-induced quantum dynamics and topological transitions reveals subtle topological features
in measurement-based manipulation of quantum systems. Our protocol could be implemented for classes
of operations (e.g., braiding) that are topological in nature. Furthermore, our results open new horizons for
measurement-enabled quantum control of many-body topological states.

DOI: 10.1103/PhysRevResearch.4.023179

I. INTRODUCTION

The geometric phase is a part of the global phase gained by
a cyclic path of a quantum state, which only depends on the
trajectory enclosed by the motion in parameter space and not
on the traversal time [1,2]. A frequently mentioned example
is the Pancharatnam-Berry phase that emerges from adiabatic
evolution of the system Hamiltonian [3,4]. It was suggested
that the Pancharatnam phase can be viewed in the framework
of strong quantum measurement back action [5]. The latter
[6–11] is the inevitable disturbance brought by measurement
on a certain quantum system. One example thereof is the
projection of a quantum state onto an eigenstate of a strongly
measured observable. More generally, weak measurements
only partially modify the quantum state. In either case, strong
or weak, the accumulated disturbance due to a sequence of
measurements can result in closed path motion of the quantum
state. For a spin 1/2 system the resulting geometric phase is
half the solid angle subtended by the path in parameter space
[4,12]. While such measurement-induced geometric phases
have been observed in optical systems [5,13], a recent theo-
retical study [14] has pushed this insight to a new qualitative
perspective: The emergence of geometrical phases is accom-
panied by a topological transition [15,16]. In this article we
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utilize a superconducting transmon circuit to demonstrate and
characterize this measurement-induced topological transition.

II. WEAK-MEASUREMENT-INDUCED
GEOMETRIC PHASES

We consider a series of variable strength measurements on
a pseudospin half system. For the spin initialized in a state
|θ, φ = 0〉, given by polar and azimuthal angles θ and φ of
the Bloch sphere, a series of measurements along axes with
fixed θ and with φ ranging from 0 to −2π [Fig. 1(a)] has
the potential to drag the state along the geodesic lines be-
tween the axes of consecutive measurements (these geodesic
lines, in general, do not retain fixed θ ). This trajectory results
in a geometric phase χ related to the enclosed solid angle
[17–19]. In the limit of continuous strong measurements,
χ = 1

2 × 2π (1 − cos θ ). However, for weak measurements,
the state lags behind the advancing measurement axis and only
partially moves along the geodesic line [Fig. 1(a)]. With an
additional final projective measurement used to close the path,
the surface formed by the set of trajectories along different
latitudes either “wraps” [Fig. 1(a)] or does not “wrap” the
Bloch sphere [Fig. 1(b)]. This property of wrapping or not
wrapping cannot be changed by continuous deformations of
the set of all trajectories and is linked to the respective topo-
logical invariant—the Chern number, which is the equivalent
of the winding number for two-dimensional (2D) surfaces.
The transition between these two regimes is controlled by the
measurement strength and can be represented by a jump in
the Chern number [14]. In Fig. 1(c), we display the predicted
geometric phase χ versus the polar angle θ for the extremal
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FIG. 1. Measurement-induced topological transition. (a) A se-
quence of measurements along a fixed latitude drags the state on
a trajectory displayed on the surface of the Bloch sphere [arrows
indicate the back action of the measurements for the first two and
last (of six) measurements for one latitude]. When an additional,
final projective measurement closes the path (green arrow), the state
acquires a geometric phase (χ ). Considering all latitudes, these tra-
jectories form a closed surface winding around the Bloch sphere.
(b) Weaker measurements result in smaller back action on the state;
as a result, the trajectories form a closed surface that does not wrap
around the Bloch sphere. (c) Dependence of the geometric phase
on the polar angle θ for the measurement sequences with measure-
ment strengths slightly below (blue dashed line) and above (black
dashed line) the critical value. The black solid line shows the case
of infinitely strong measurements, the blue solid line represents zero
measurement strength, and faint lines indicate intermediate measure-
ment strengths. The values of χ for θ = 0 and θ = π must differ by
a multiple of 2π . This difference cannot be changed by continuous
deformation of the dependence of χ on θ . Thus the behaviors above
and below the transition are topologically distinct. The insets illus-
trate the origin of the transition. For sufficiently strong measurements
the equatorial trajectory circumnavigates the Bloch sphere while for
weak measurements it does not.

cases of strong measurement, zero-strength measurement, and
near the topological transition.

III. SELECTIVE MEASUREMENTS

In order to probe the predicted topological transition,
we choose the first three energy levels of a superconduct-
ing Transmon circuit [20] embedded in a 3D aluminium
cavity [21] as our experiment platform [Fig. 2(a)]. In the
dispersive limit [22,23], where the cavity frequency ωr is far
detuned from the qutrit transition frequencies ω j , the Jaynes-
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FIG. 2. Experiment setup. (a) A superconducting Transmon
qutrit is dispersively coupled to a high quality factor microwave
cavity. (b) A coherent state probe acquires a qutrit-state (|g〉 , |e〉 ,

or | f 〉)-dependent displacement on the I/Q plane. (c) The dispersive
interaction results in a state-dependent cavity transmission, allowing
for measurements that resolve one state while leaving the other two
unresolved. (d) The measurement is quantified via the frequency-
dependent dephasing rates of each two-level subspace of Transmon
states. The green arrow indicates the operating probe frequency,
which corresponds to a selective measurement of the | f 〉 state, which
preserves the coherence in the {|g〉 , |e〉} subspace. A typical Ramsey
measurement is shown in the inset.

Cummings Hamiltonian becomes

Hm = h̄ωra
†a +

∑
j

h̄ω j | j〉〈 j| +
∑

j

h̄ξ j | j〉〈 j|a†a, (1)

where a†a is the cavity photon number operator, | j〉 are the
energy eigenstates of the Transmon with energies h̄ω j , and h̄ξ j

are the interaction energies between the cavity eigenstates and
Transmon energy levels | j〉, and we consider the lowest three
energy levels, j ∈ {g, e, f }. The effect brought by such inter-
action energies h̄ξ j can be viewed as a qutrit-state-dependent
shift on the cavity frequency, enabling quantum nondemoli-
tion weak measurements of the circuit energy states.

As is shown in Fig. 2(b), when the cavity is probed with a
coherent state, the output signal distributes on the quadrature
space of the electromagnetic field (I, Q) depending on the
cavity transmission at the measurement frequency. The setup
is operated in the strong dispersive regime where the cavity
linewidth κ � ξ j . Figure 2(c) illustrates that a weak probe
of the cavity near the | f 〉 resonance will be transmitted only
if the circuit is in the | f 〉 state. Therefore the measurement
distinguishes the state | f 〉 from both |e〉 and |g〉 but does not
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FIG. 3. Experimental sequence (a) Measurements along an arbitrary axis (solid arrows) are composed of rotations before and after
measurement along the z axis (dashed arrows). Partial (projective) measurements are indicated in blue (red). (b) The full experiment consists of
a sequence of six measurements in the qubit manifold at decreasing azimuthal angles φ. (c) The geometric phase, χ , and interference contrast,
c, are determined from the final interference pattern between |g〉 and |e〉, where P(g) is the probability of obtaining outcome g from the final
projective measurement, 	g.

distinguish |e〉 from |g〉. The selective nature of this measure-
ment architecture allows us to reserve one energy level (e.g.,
|g〉) as a quantum phase reference in order to determine the
global phase accumulated by a state in the {|e〉 , | f 〉} manifold.

In the limit χ f � κ the Kraus operators [9] associated with
a probe near the | f 〉 resonance are given by

M (r)
z =

√
1

2π

1

2σ

⎛
⎝e−(r−r0 )2/2σ 2

0 0
0 e−r2/2σ 2

0
0 0 e−r2/2σ 2

⎞
⎠ (2)

in the {| f 〉 , |e〉 , |g〉} energy eigenstate basis. Here r represents
the output signal’s location on the I/Q plane, r0 is the mean
output signal when the transmon is in the energy eigenstate
| f 〉, and σ is the variance of the output signal. A Kraus oper-
ator both gives the probability distribution of a measurement
outcome (P(r) = |M (r)

z |ψ〉 |2) and characterizes the measure-
ment back action on the state (|ψ〉 → M (r)

z |ψ〉). Applying
such a measurement pulse of duration τ reduces coherences
between pairs of states characterized by dephasing factors
exp(−γe f τ ) = exp(−γgf τ ) = exp(− r0

2

4σ 2 ) and exp(−γgeτ ) =
1 [24].

We characterize the strength and selectivity of the mea-
surement by examining the dephasing rates of each pair of
states. We drive the cavity with a weak probe and perform
Ramsey measurements on each pair of levels to determine
the dephasing rates γge, γe f , γgf ,in each of the two-level sub-
spaces. In Fig. 2(d) we display these measured dephasing rates
versus probe frequency. The data show enhanced dephasing
at each qutrit-state-dressed cavity resonance, as expected. We
further observe larger background dephasing related to the | f 〉
state which is due to the reduced charge noise insensitivity
of the higher transmon levels [20]. A cavity probe at fre-
quency ωp/2π = 5.6715 GHz, therefore, allows us to realize
measurements on the {|e〉 , | f 〉} manifold while preserving
coherence within the {|g〉 , |e〉} manifold. The measurement
strength (γe f τ ) can be tuned via the duration of a single
measurement.

IV. GEOMETRIC PHASES

We now focus on the quantum dynamics of the qubit
formed by the {|e〉 , | f 〉} manifold, reserving the state |g〉 as
a phase reference. Since the dispersive measurements merely
provide measurement in the energy basis of the qubit, cor-

responding to the z axis of the Bloch sphere, we utilize
additional rotations to perform measurement along any arbi-
trary axis of the qubit [25]. One example of these rotations
is shown in Figure 3(a) for cases of projective and partial
measurements.

Figure 3(b) displays the experimental sequence. To form
closed path measurement-induced trajectories, we first ini-
tialize the qutrit in the state ∝ |g〉 + |θ, φ = 0〉, where |θ, φ〉
specifies the qubit state in the {|e〉, | f 〉} manifold in terms
of polar and azimuthal angles. We then apply a sequence of
six measurements at fixed θ and with decreasing φ chosen to
wrap the Bloch sphere. Finally, we use rotations and a projec-
tive measurement (which closes the path along the shortest
geodesic [26,27]) and determine the geometric phase. This
final stage of the protocol involves the following steps: (i) The
first rotation is applied such that the state |θ, φ = −2π〉 is ro-
tated into |e〉. (ii) We then apply a π/2 rotation to interfere |g〉
(the reference state) and |e〉 (which acquired a measurement-
induced phase) followed by (iii) projective measurement of
|g〉 [28]. The resulting geometric phase, χ , and interference
contrast, c, are determined by the phase and amplitude of the
interference in the {|g〉 , |e〉} manifold [Fig. 3(c)] [29].

The closed paths that acquire a specific geometric phase are
associated with specific trajectories, resulting from specific
sequences of measurement readouts, implying the need for
postselection. This postselction is implicitly enforced via the
measurement architecture that preserves the coherence in the
subspace {|g〉 , |e〉} while destroying coherences with | f 〉. As
an example, consider the regime of a very strong measurement
where |r0| � σ . Here there are effectively two measurement
outcomes, r 	 r0 and r 	 0, with back action projecting onto
| f 〉 or the {|g〉 , |e〉} manifold, respectively. When the outcome
is “null,” r 	 0, the population in the {|g〉 , |e〉} manifold is
preserved, ultimately contributing to the interference used to
infer the geometric phase. In this case, there is back action
on the {|e〉 , | f 〉} subspace corresponding to a segment of
the closed trajectory. However, when the outcome is r 	 r0,
the population in the {|g〉 , |e〉} manifold is eliminated, so
that no contribution of the trajectory to the off-diagonal term
between |g〉 and {|e〉 , | f 〉} remains. Thus, only with a series
of measurement outcomes r 	 0 (null-outcome path) can the
resulting geometric phase be observed while the other paths
are naturally excluded from interference, which brings the
present protocol in agreement with that of Ref. [14]. The
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FIG. 4. (a) The geometric phase under varying measurement
strength (γe f τ ) gained with sequential measurements along different
latitudes of the Bloch sphere for polar angle 0 → π . The black
(blue) arrows mark measurement strengths above (below) the tran-
sition. (b) The corresponding contrast of the interference vanishes
at the transition. (c) The geometric phase along fixed measurement
strengths before the transition (blue lines), where the set of trajecto-
ries does not wrap the Bloch sphere, and after the transition (black
lines) where the set of trajectories wraps the Bloch sphere.

postselection probability in Ref. [14] is mapped onto the
interference contrast c. As discussed in the Appendix, such
selection occurs for any measurement strength, effectively
giving the null-outcome path geometric phase without any
postselection on specific sequences of measurement readouts.

In order to probe the topological transition we record
the geometric phase χ and interference contrast c for dif-
ferent trajectory latitudes and measurement strengths. The
results are displayed in Fig. 4 and show good agreement
with the simulation results shown in Fig. 1(c) at measurement
strengths above, below, and near the topological transition. In
the limit of strong measurement, exp(−γe f τ ) → 0, the mea-
surement back action is sufficient to allow the quantum state
to follow the measurement axis leading to a monotonically
increasing geometric phase with a polar angle [as sketched in
Figs. 1(a) and 1(c)]. In the infinitely weak measurement limit,
exp(−γe f τ ) → 1, there is no measurement back action; hence
there is no observed dependence of the geometric phase on the
polar angle. Between these two limits we encounter the topo-
logical transition, which appears as a 2π phase winding about
a singularity point. In particular, we observe that, as a func-
tion of the measurement strength, the phase along θ = π/2
exhibits an abrupt jump of size π [cf. Fig. 4(c)] right at the
singularity point, in agreement with the theory predictions [cf.

Fig. 1(c)]. Exactly at this point the phase is ill-defined, which
can only happen if the contrast vanishes, which we indeed
observe [cf. Fig. 4(b)]. This jump corresponds to the critical
measurement strength that drags the state halfway around the
Bloch sphere [cf. the insets of Fig. 1(c)]. Near the transition,
the state after the final projection involves averaging over
trajectories that either encircled the Bloch sphere, acquiring
a geometric phase of π , or those that did not, acquiring zero
geometric phase. This leads to the observed vanishing con-
trast.

V. CONCLUSION

We have investigated measurement enabled quantum dy-
namics where the dynamics carry a topological character.
Despite the stochastic nature of these weak measurement
dynamics, the resulting geometric phases feature a robust
and sharp transition which is immune to nonuniversal de-
tails of the platform. A salient feature of our protocol is
that right at the transition point, coherent features of the
measurement-induced phase are washed out, underscoring
the role of fluctuations at the critical transition point. While
our single qubit experiment has simple topology, our work
advances the possibility that many body systems with non-
trivial topology might also exhibit such robust topological
transitions. Such investigations would reveal the interplay be-
tween the topological nature of many-body phases and the
measurement-induced dynamics. This suggests the possibil-
ity to utilize such topological effects for protected quantum
information processing.
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APPENDIX

1. Stabilizing higher Transmon states against charge noise

Although a superconducting Transmon circuit is designed
to reduce the charge noise sensitivity of the |e〉 state exponen-
tially in the ratio between EJ/h = 13.015 GHz and EC/h =
285 MHz [20], the third energy level | f 〉 may still be affected
by charge noise. We observe both increased dephasing asso-
ciated with the | f 〉 state [Fig. 2(c)] and abrupt transitions in
the | f 〉 energy and associated fluctuations. We stabilize the
experiment against these fluctuations by tracking the Ramsey
pattern in the {|e〉 , | f 〉} manifold and sorting the acquired data
in a postprocessing step.
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2. Calibrating dynamical phase accumulation

The quantum evolution in our experiment that takes place
over ∼μs of evolution is associated with the accumulation of
large dynamical phases (on the order of 104 radians). This
dynamical phase is measured in a rotating frame associated
with microwave generator used to perform Transmon rota-
tions. This results in an effective cancellation of the dynamical
phase. To confirm this cancellation, we perform a reference
experiment at each data point using rotation sequences with
fixed φ = 0 instead of the sequential φ = [0,−2π ]. The ref-
erence experiment makes use of the same number and strength
of sequential measurements at one point on the latitude in-
stead of winding around the z axis. Figure 5 shows that this
relative dynamical phase is smooth and a fraction of one
radian, confirming that the dynamical phase does not appre-
ciably contribute to our observed topological transition. The
premise is that, while no geometric phase is accumulated,
the dynamic phase gained is the same as in the actual ex-
perimental protocol. The phase singularity lying at θ = π/2
(cf. Fig. 4) further confirms that the dynamic phases do not
affect the measurement-induced dynamics in our protocol, cf.
Refs. [30,31]. The observed stripe features in the reference
phase and contrast are likely due to residual dynamical phase
associated with the anharmonicity of the Transmon.

3. Selective averaging theory

The Kraus operator of the selective measurement as a
function of the output signal’s position on the IQ plane r is
given by

M (r)
z =

⎛
⎝ �̃(r) 0 0

0 �(r) 0
0 0 �(r)

⎞
⎠, (3)

written in the {| f 〉 , |e〉 , |g〉} basis, assuming unit quantum

efficiency. Where �̃(r) =
√

1
2π

1
2σ

e−(r−r0 )2/2σ 2
and �(r) =√

1
2π

1
2σ

e−(r)2/2σ 2
with as defined in the main text. Starting

from an initial qutrit state |φi〉 = a(e)
i |e〉 + a(g)

i |g〉, an initial
rotation R†

0 produces a target initial state at a chosen latitude
in the {|e〉 , | f 〉} manifold while maintaining the |g〉 state as a
phase reference. Subsequently a sequence of measurements is
performed at axes R†

k |e〉 with the last measurement Pge being
projective onto the {|g〉 , |e〉} manifold, leaving us with the
final system state

|φ f 〉 = PgeR0

∏
k

(
R†

kM (rk )
z Rk

)
R†

0 |φi〉 (4)

for a certain series of measurement outcomes
{r1, r2, ..., rk, ...}.

Eventually, the geometric phase χ and its contrast c are
extracted from the ensemble through the interference between
state |g〉 and state |e〉, with operator A = �x − i�y = 2 |g〉 〈e|,
where

�x =
⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠, �y =

⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠, (5)

and

ceiχ =
∫

�

〈φ f | A |φ f 〉 . (6)

Here � represents all the combinations for values of {rk}.
Since the operator A already projects |φ f 〉 onto the {|g〉 , |e〉}
manifold, we note that the final projective measurement Pge

can be skipped in actual experiment.
Given the initial state |φi〉 = a(e)

i |e〉 + a(g)
i |g〉, after a se-

quence of measurements with outcomes {rk}, the system is
still in pure state |φ f 〉 = a(e)

f ({rk}) |e〉 + a(g)
f ({rk}) |g〉. Since

all the rotation operators Rk are in the {|e〉 , | f 〉} manifold, the
coefficient of the reference state |g〉 becomes

a(g)
f ({rk}) =

∏
k

�(rk )a(g)
i . (7)

Using Eqs. (4) and (6), the extracted geometric phase becomes

ceiχ = 2
∫

�

〈φ f | g〉〈e |φ f 〉 = 2
∫

�

a(g)∗
f ({rk})〈e |φ f 〉

= 2 〈e|
∫

�

∏
k

�∗(rk )a(g)∗
i |φ f 〉

= 2a(g)∗
i 〈e|

∫
�

∏
k

�∗(rk )PgeR0

∏
k

(
R†

kM (rk )
z Rk

)
R†

0 |φi〉

= 2a(g)∗
i 〈e|

∫
�

R0

∏
k

(
R†

k�
∗(rk )M (rk )

z Rk
)
R†

0 |φi〉 . (8)

Here we note that the whole ensemble is a weighted average
over various measurement outcome sequences {rk}. For weak
measurements, a null outcome corresponds to a certain proba-
bility distribution of measurement readouts rk . The weighting
with �(rk ) enforces the correct distribution among the states
that contribute to the interference.

Finally we have

ceiχ = 2a(g)∗
i 〈e| R0

∏
k

(
R†

kM̃zRk
)
R†

0 |φi〉 , (9)
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with the integrated effective Kraus operator

M̃z =
∫

�

�∗(r)

⎛
⎝ �̃(r) 0 0

0 �(r) 0
0 0 �(r)

⎞
⎠

=
⎛
⎝

∫
�

�∗(r)�̃(r) 0 0
0

∫
�

�∗(r)�(r) 0
0 0

∫
�

�∗(r)�(r)

⎞
⎠

=
⎛
⎝

∫
�

�∗(r)�̃(r) 0 0
0 1 0
0 0 1

⎞
⎠ = M̃{|e〉,| f 〉}

z ⊕ Î {|g〉},

(10)

where M̃{|e〉,| f 〉}
z is the null outcome path partial measurement

operator on the {|e〉 , | f 〉} manifold (just as the one consid-
ered in Refs. [14,30,31]), and Î {|g〉} is the identity operator on
state |g〉.

Hence even though the measurement readouts in our
setup are continuously distributed, the effective back action
of the measurements corresponds to null outcome partial
measurements in the {|e〉, | f 〉} manifold. Thence no explicit
postselection of measurement readouts is required.

4. Experimental setup

The experiment comprises a superconducting Transmon
circuit embedded in a three-dimensional aluminum mi-
crowave cavity. The Transmon energies EJ/h = 13.015 GHz
and EC/h = 285 MHz produce transition frequencies
ωge/2π = 5.12487 GHz and ωe f /2π = 4.80788 GHz.
The cavity linewidth κ/2π = 0.841 MHz. The dispersive
interaction between the Transmon and the cavity shifts
the cavity frequency from its bare resonance frequency
ωbare/2π = 5.6724 GHz to a state-dependent frequency,
ωg/2π = 5.6861 GHz, ωe/2π = 5.6743 GHz, and ω f /2π =
5.6715 GHz. Three microwave generators are employed to
control and measure the system; one generator addresses the
Transmon transitions through single sideband modulation,
another contributes the measurement at frequency ω f , and
a final generator operates at ωbare to produce a state readout
through the Jaynes-Cummings nonlinearity technique [28].
The qubit/cavity is embedded in copper and magnetic
shielding and cooled to a base temperature of 10 mK in
a dilution refrigerator. The input line is subject to 70 dB
of attenuation and lossy low-pass microwave filtering. The
output stage is filtered and passes through three cryogenic
circulators before amplification with a HEMT amplifier.

[1] Y. Aharonov and J. Anandan, Phase Change During a Cyclic
Quantum Evolution, Phys. Rev. Lett. 58, 1593 (1987).

[2] E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen,
and E. Karimi, Geometric phase from Aharonov–Bohm to
Pancharatnam–Berry and beyond, Nat. Rev. Phys. 1, 437
(2019).

[3] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London 392, 45 (1984).

[4] S. Pancharatnam, Generalized theory of interference, and its
applications, Proc. Indian Acad. Sci. 44, 247 (1956).

[5] M. V. Berry and S. Klein, Geometric phases from stacks of
crystal plates, J. Mod. Opt. 43, 165 (1996).

[6] N. Katz, M. Ansmann, R. C. Bialczak, Erik Lucero, R.
McDermott, Matthew Neeley, Matthias Steffen, E. M. Weig,
A. N. Cleland, John M. Martinis, and A. N. Korotkov, Coherent
State Evolution in a Superconducting Qubit from Partial-
Collapse Measurement, Science 312, 1498 (2006).

[7] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S.
Kuhr, M. Brune, J. Raimond, and S. Haroche, Progressive field-
state collapse and quantum non-demolition photon counting,
Nature (London) 448, 889 (2007).

[8] A. N. Korotkov, Quantum Bayesian approach to circuit QED
measurement, arXiv:1111.4016, (2011).

[9] K. Jacobs, Quantum Measurement Theory and its Applications
(Cambridge University Press, 2014).

[10] M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K.
Geerlings, T. Brecht, K. M. Sliwa, B. Abdo, L. Frunzio,
S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret, Quantum
Back-Action of an Individual Variable-Strength Measurement,
Science 339, 178 (2013).

[11] K. W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi, Observing
single quantum trajectories of a superconducting qubit, Nature
502, 211 (2013).

[12] P. Facchi, A. G. Klein, S. Pascazio, and L. S. Schulman, Berry
phase from a quantum Zeno effect, Phys. Lett. A 257, 232
(1999).

[13] Y.-W. Cho, Y. Kim, Y.-H. Choi, Y.-S. Kim, S.-W. Han, S.-Y.
Lee, S. Moon, and Y.-H. Kim, Emergence of the geometric
phase from quantum measurement back-action, Nat. Phys. 15,
665 (2019).

[14] V. Gebhart, K. Snizhko, T. Wellens, A. Buchleitner, A. Romito,
and Y. Gefen, Topological transition in measurement-induced
geometric phases, Proc. Natl. Acad. Sci. USA 117, 5706 (2020).

[15] P. Roushan, C. Neill, Yu Chen, M. Kolodrubetz, C. Quintana, N.
Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro,
A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J. J.
O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A.
Polkovnikov, A. N. Cleland, and J. M. Martinis, Observation of
topological transitions in interacting quantum circuits, Nature
(London) 515, 241 (2014).

[16] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg,
J. Gao, M. R. Vissers, D. P. Pappas, Anatoli Polkovnikov,
and K. W. Lehnert, Measuring a Topological Transition in
an Artificial Spin-1/2 System, Phys. Rev. Lett. 113, 050402
(2014).

[17] P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M.
Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A.
Wallraff, Observation of Berry’s Phase in a Solid-State Qubit,
Science, 318, 1889 (2007).

[18] A. A. Abdumalikov Jr, J. M. Fink, K. Juliusson, M. Pechal, S.
Berger, A. Wallraff, and S. Filipp, Experimental realization of
non-Abelian non-adiabatic geometric gates, Nature (London)
496, 482 (2013).

[19] C. G. Yale, F. J. Heremans, B. B. Zhou, A. Auer, G. Burkard,
and D. D. Awschalom, Optical manipulation of the Berry phase
in a solid-state spin qubit, Nat. Photonics 10, 184 (2016).

023179-6

https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1038/s42254-019-0071-1
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1007/BF03046050
https://doi.org/10.1080/09500349608232731
https://doi.org/10.1126/science.1126475
https://doi.org/10.1038/nature06057
http://arxiv.org/abs/arXiv:1111.4016
https://doi.org/10.1126/science.1226897
https://doi.org/10.1038/nature12539
https://doi.org/10.1016/S0375-9601(99)00323-0
https://doi.org/10.1038/s41567-019-0482-z
https://doi.org/10.1073/pnas.1911620117
https://doi.org/10.1038/nature13891
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1126/science.1149858
https://doi.org/10.1038/nature12010
https://doi.org/10.1038/nphoton.2015.278


OBSERVING A TOPOLOGICAL TRANSITION IN … PHYSICAL REVIEW RESEARCH 4, 023179 (2022)

[20] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[21] H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani,
A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I.
Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf,
Observation of High Coherence in Josephson Junction Qubits
Measured in a Three-Dimensional Circuit QED Architecture,
Phys. Rev. Lett. 107, 240501 (2011).

[22] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Cavity quantum electrodynamics for su-
perconducting electrical circuits: An architecture for quantum
computation, Phys. Rev. A 69, 062320 (2004).

[23] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong
coupling of a single photon to a superconducting qubit using
circuit quantum electrodynamics, Nature 431, 162 (2004).

[24] C. C. Bultink, B. Tarasinski, N. Haandbæk, S. Poletto, N.
Haider, D. J. Michalak, A. Bruno, and L. DiCarlo, General
method for extracting the quantum efficiency of dispersive qubit
readout in circuit QED, Appl. Phys. Lett. 112, 092601 (2018).

[25] P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin,
M. Mirrahimi, M. H. Devoret, F. Mallet, and B. Huard, Per-

sistent Control of a Superconducting Qubit by Stroboscopic
Measurement Feedback, Phys. Rev. X 3, 021008 (2013).

[26] E. Sjöqvist, A. K. Pati, A. Ekert, J. S. Anandan, M. Ericsson,
D. K. L. Oi, and V. Vedral, Geometric Phases for Mixed States
in Interferometry, Phys. Rev. Lett. 85, 2845 (2000).
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