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Fractional quantum Hall quasiparticles are generally characterized by two quantum numbers: electric charge
QO and scaling dimension A. For the simplest states (such as the Laughlin series), the scaling dimension
determines the anyonic statistics of the quasiparticle (the statistical phase 6§ = 2w A). For more complicated
states (featuring counterpropagating modes or non-Abelian statistics), knowing the scaling dimension is not
enough to extract the quasiparticle statistics. Nevertheless, even in those cases, knowing the scaling dimension
facilitates distinguishing different candidate theories for describing the quantum Hall state at a particular filling
(such as PH-Pfaffian and anti-Pfaffian at v = %). Here, we propose a scheme for extracting the scaling dimension
of quantum Hall quasiparticles from thermal tunneling noise produced at a quantum point contact. Our scheme
makes only minimal assumptions about the edge structure and features the level of robustness, simplicity, and
model independence comparable with extracting the quasiparticle charge from tunneling shot noise.

DOI: 10.1103/PhysRevB.105.165150

I. INTRODUCTION

The fractional quantum Hall (FQH) effect is renowned as
a showcase example of strongly correlated quantum states.
Electron-electron interactions result in the emergence of frac-
tional quasiparticles that are predicted to possess fractional
charge and fractional statistics [1-8]. For some filling factors,
the fractional statistics are expected to be non-Abelian, which
can be instrumental for topologically protected quantum
computation [9].

The fractional charge of FQH quasiparticles has numerous
confirmations obtained with a number of methods [10-20].
The most used method for extracting the quasiparticle charge
is based on measuring the shot noise at a quantum point
contact (QPC) where two FQH edges meet and quasiparticle
tunneling processes take place [11-14,16,17], cf. Fig. 1. Atthe
same time, the first promising measurements of the fractional
statistics have been obtained only recently [21,22], despite a
large number of distinct theoretical proposals [23-33].

With statistics measurements not readily available, an
important problem in the field is discriminating between dif-
ferent candidate theories that can describe the same filling
factor. For example, a number of theories can describe v = %,
some host non-Abelian quasiparticles, while others do not
[34,35]. A basic approach to discriminating between different
theories relies on extracting two key properties of the fun-
damental quasiparticle: its electric charge Q and its scaling
dimension A [36-38]. The charge alone does not always allow
one to discriminate different theories. For example, in most
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candidate theories for v = %, the fundamental quasiparticle
has charge Q = e/4.

A series of theoretical works, based on gauge invariance
and the topological nature of the bulk states, has come to the
following conclusions [39,40]: The scaling dimension of the
quasiparticle, closely related to the parameter K of nonchiral
Luttinger liquids [41], characterizes its dynamics at a FQH
edge. In the simplest cases, when only modes of a single
chirality are present on the edge, the scaling dimension is
directly related to the quasiparticle braiding statistics. The
statistical phase is then given by 6 = 2w A. In the case of
non-Abelian statistics of quasiparticles, the scaling dimension
may only capture its Abelian part. For more complicated edge
structures featuring counterpropagating modes [42-45], the
scaling dimension may not correspond to the quasiparticle
statistics at all. Nevertheless, even then, the scaling dimen-
sion is an important property characterizing the quasiparticle
behavior and allowing one to discriminate different candidate
theories.

The most promising attempts to measure the scaling di-
mension concerned the dependence of the tunneling current at
a QPC on the voltage bias between the two edges [36,38].
The scheme should simultaneously extract both Q and A.
Some experiments produce data that are congruent with the
theoretically predicted curves [36,38]. However, the extracted
values of Q and A vary greatly between different experimental
configurations. Furthermore, in none of the configurations
do both the fitted charge and the scaling dimension agree
with those predicted by expected candidate theories [38].
Other experiments of the same type report that the tunnel-
ing current dependence on voltage significantly deviates from
theoretically predicted curves [14,46-48]. One possible expla-
nation for such behavior is that changes in the bias voltage,

©2022 American Physical Society
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FIG. 1. The standard setups for investigating (a) quasiparticle
(gp) and (b) electron (e) tunneling in quantum Hall systems. Ohmic
contacts 1 and 2, having voltages V; and V,, respectively, are used
to inject electric current to the edges. Two fractional quantum Hall
(FQH) edges meet in the middle of the device, giving rise to the tun-
neling current /7 and noise S, which are inferred from measurements
at contacts 3 and 4. The dependence of S and I on V; — V, enables
a reliable extraction of the charge of the tunneling particle (gp or e).
Here, we propose to extract the scaling dimension of the tunneling
particle A, which governs the edge dynamics, using the temperatures
Ty and T, of the injected edge modes as additional experimental
knobs. In the simple Abelian cases, the exchange statistics of the
tunneling particle is related to A.

V =V —V,, cf. Fig. 1, affect the electrostatic balance at the
QPC, changing its shape and the tunneling matrix element; the
dependence of the tunneling amplitude on the voltage in turn
alters the behavior of the tunneling current in a nonuniversal
way.

This nonuniversality can be excluded by considering the
ratio F = §/(2elr) (also called the Fano factor) of the excess
noise S appearing due to tunneling (the noise measured at
contact 3 in the setups of Fig. 1 minus the Johnson-Nyquist
noise 2ve’kg T /h) to the tunneling current I. When the tun-
neling amplitude 7 is small, both are o|7|?, so that the ratio
F does not depend on 7. In fact, this is the very trick that
enables reliable determination of the quasiparticle charge in
such setups [11-14,16,17]. It has been theoretically shown
that, considering the dependence of F on bias voltage at
nonzero temperatures, in principle, allows for extracting not
only charge but also the scaling dimension [49]. However,
the term involving the scaling dimension turns out to be
only a small correction to the main charge-dependent term
and, therefore, cannot be reliably extracted from the standard
experiments.

Considering temperature dependence instead of the voltage
dependence is a promising direction that emerged in the last
years. On one hand, recent experiments developed a way of
changing the edge temperature in a quick and electrically
controllable manner [50-56]. On the other hand, a number
of theoretical works considered the QPC physics when the
two edges are at different temperatures [57-60]. In particular,
an intriguing effect of the excess noise dropping when the
temperature imbalance between the edges is increased has
been predicted [60].

In this paper, we study the dependence of the Fano factor F
at the QPC on the temperatures of the two edges. We show that
the scaling dimension can be extracted from the temperature
dependence of the Fano factor. The paper is organized as
follows. We briefly describe our key results in Sec. II. We then
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FIG. 2. Dependence of the Fano factor on temperature 7 = 7} =
T, (cf. Fig. 1) as a tool for extracting the scaling dimensions of
fractional quantum Hall (FQH) quasiparticles and electrons. (a) The
dependence of the Fano factor, F = S/(2ely) in Eq. (1), on T/V
forv = % Laughlin quasiparticles (Q = ¢/3, A = é). The curve for
each temperature corresponds to V e [0, 100] uV. The curves col-
lapse on top of each other, showing the universal behavior of the Fano
factor. The thin black line corresponds to the asymptotic behavior in
Eq. (2). The dot on the vertical axis corresponds to F = Q/e. Inset:
The same data plotted in the way experiments are conventionally
analyzed. The curves for different temperatures appear unrelated.
(b) Fano factor vs. T/V for quasiparticles that appear in various
candidate theories of v = % FQH effect: O = e/4 (in all theories),
A= 117) (K = 8 theory), é (Pfaffian and PH-Pfaffian), and 1% (331
state) or % (anti-Pfaffian) [61]. (c) Fano factor vs T/V for v = %
Laughlin quasiparticle (Q = ¢/3, A = é), one of the quasiparticles
in the Kane-Fisher-Polchinski (KFP) v = % fixed-point theory (Q =
e/3, A = %), noninteracting integer quantum Hall (IQH) electrons
(Q=e A =1), and electrons in the v =1 Laughlin state (Q =
e, A =2)[54243].

describe in Sec. III the model used to obtain these results for
the noise in the setups of Fig. 1. In Sec. IV, we analyze our
predictions for some experimentally relevant scenarios. A dis-
cussion of the factors that may render the scaling dimension
nonuniversal and of other experimental subtleties that may
restrict the applicability of the proposed method is provided
in Sec. V. We conclude with Sec. VI. For completeness, we
provide a brief overview of the basics of the quantum Hall
edge theory and of the meaning of the scaling dimensions
of the quasiparticle in Appendix A. Technical details of the
derivation of our results are relegated to Appendix B.

II. MAIN RESULTS

We first consider the case of equal temperatures of the
two edges: Ty = T, = T. In the inset of Fig. 2(a), we present
the dependence of noise on the bias voltage for several
temperatures T. Notice that we plot (ve?V/h)[S/(2I;)] =
(veZV/ h)(eF) so that the dependence of the tunneling ampli-
tude on the bias voltage or the temperature cancels out. The
slope at large V' corresponds to the charge of the tunneling
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quasiparticle. However, otherwise, the curves do not appear
to exhibit universality. In Appendix B 4 a, we show that, in the
regime of weak tunneling of quasiparticles or electrons across
the QPC (cf. Fig. 1), the Fano factor is a universal function of
T /V, namely,

_20 oV
F = Mm{w(m +12ﬂkBT)}, (1)

where Q and A are, respectively, the charge and the scaling
dimension of the quasiparticle that tunnels, kg is the Boltz-
mann constant, the digamma function ¥ (x) = I''(x)/I'(x) is
the logarithmic derivative of the gamma function, and Im
stands for the imaginary part. This universality is illustrated in
Fig. 2(a), where the curves of the inset of Fig. 2(a) are plotted
as a function of T /V. Fitting experimental data to this curve
should enable reliable extraction of the charge and the scaling
dimension.

Further, consider the limit eV >> kgT, which corresponds
to a typical regime investigated experimentally. Then

ks T ksT\>
Floysipr = ¢ +2:_V(1 —AA+ 0[(:_V) :| @

e

The first term of the expression represents the well-known
result that the shot-noise Fano factor corresponds to the charge
of the tunneling quasiparticle. The scaling dimension enters
the second, subleading term. This subleading correction is a
linear function of 7'/V and can be quite sizable, cf. Fig. 2(a).

In Figs. 2(b) and 2(c), we give several examples of the
Fano factor behavior for quasiparticles corresponding to var-
ious quantum Hall states. Notice that quasiparticles of the
same charge but different scaling dimensions produce notably
different curves. In addition, we emphasize that the strongly
interacting nature of FQH states is manifest not only in the
existence of fractional quasiparticles but also in the electron
scaling dimension, which can be inferred by the proposed
method, cf. Figs. 2(c) and 1(b).

The origin of the above correction term can be roughly
related to the quasiparticle exclusion statistics. Consider as
an example noninteracting edges of v = 1 integer quantum
Hall states. At T = 0, each edge is a Fermi sea of electrons
occupied up to the Fermi level of each edge. Only the win-
dow of energies eV, where the electrons on one edge are
not balanced by the electrons of the other edge, is important.
The electrons of different energies within this window tunnel
independently, so the Pauli exclusion principle does not affect
the observable quantities. At 7 > 0, the edges of the Fermi
seas become smeared. An electron within the eV window can
be hindered from tunneling to the other edge if this energy
level is occupied (which happens with a T-dependent proba-
bility). This reduces the fluctuations of the occupation of this
level and thus reduces the noise and the Fano factor. This
intuitive picture agrees with the prediction of Eq. (2) as for
noninteracting electrons A = %

Had the electrons attracted each other or tended to bunch
(as bosons do), the presence of an electron at an energy level
before the QPC would increase the probability of tunneling
of another electron from the opposite edge and would in-
crease the noise. This is the case, e.g., when dealing with
V= % Laughlin quasiparticles (that can bunch up to three in
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FIG. 3. The Fano factor for the case of 7} > T, (cf. Fig. 1).
(a) Plot of the universal function given in Eq. (3) illustrated for
the Laughlin quasiparticle (Q = ¢/3, A = %). Lines denote the cuts
corresponding to 7y/7, =1, 3, and 7. (b) Cuts corresponding to
T,/T, = 1, 3, and 7 plotted as a function of 7, /V. At small 71 /V, the
behavior of the Fano factor is described by Eq. (4) (solid black line).
At large T;/V, Eq. (5) gives the asymptotic behavior (dashed black
line); the slope of the curves at 71 /7, = 3 and 7 is quite close to the
expected behavior, while the offset C only converges to zero when
T,/T, — oo. Inset: The slope f(A) entering Eq. (5) as a function of
the quasiparticle scaling dimension.

one quantum state and have A = é). It is remarkable that

quasiparticles with A = i, (for example, semions) which for
sufficiently simple edges are halfway between bosons and
fermions in terms of the statistical phase 6 = 27 A, would
produce no correction to the Fano factor in this regime.

It is important to emphasize two things. First, while the
above consideration is qualitative and appeals to the intuition
of noninteracting systems, we have derived Eqgs. (1) and (2)
using proper quantum Hall edge theory that incorporates the
interacting nature of the FQH effect states. Second, the rela-
tion between the scaling dimension and quasiparticle statistics
is not universal and holds only for sufficiently simple Abelian
quantum Hall edges, when only modes of a single chirality are
present on the edge. Therefore, it is correct to characterize the
noise in terms of the scaling dimension A and not in terms of
the quasiparticle statistics.

We next consider the situation of general temperatures,
assuming without loss of generality 7; > T;. In this case, the
Fano factor can be expressed as a universal function of 77/V
and 71 /T5:

3

where the detailed expression is presented in Sec. III, Eq. (23).
The universality is manifest in the function being determined
only by the charge Q and the scaling dimension A of the
tunneling quasiparticle. All data for the Fano factor depen-
dence on the bias voltage V and the two temperatures 7; and
T, should collapse on a two-dimensional (2D) surface, which
is determined only by the values of O and A. We illustrate
the behavior of this function for Laughlin quasiparticles in
Fig. 3(a).

The expression in Eq. (3) simplifies in some limiting cases.
First, we show in Appendix B4a that, for Ty, =T, =T,
Eq. (3) reduces to Eq. (1). Second, we show in Appendix B4 c
that, in the regime eV > kgT; > kgT>, Eq. (3) simplifies
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to [62]

0 ksTi ksTio\>
Floysiyn, = - + 2%(1 —any+ol(Z22) | @

eV

Third, we show in Appendix B 4b that, in the regime domi-
nated by the temperature imbalance, kg7 > €V, kgTh:

Fl - kBT1 f(A) + 0 eV kBTl Tz 2 (5)
ksTi>eV, kgD, — eV . kBT] ) eV 7.,1 )

where f(A) is a function of the scaling dimension, whose be-
havior is presented in the inset of Fig. 3(b). Notice that the bias
voltage enters the expression of Eq. (5), but the quasiparticle
charge Q does not. We illustrate the asymptotic behaviors of
Egs. (4) and (5) in Fig. 3(b).

Note that the Fano factor can become negative when 7} #
Ty, cf. Fig. 3. This is due to the excess noise becoming neg-
ative in the presence of temperature imbalance between the
edges, similarly to the effect predicted recently in Ref. [60].
We emphasize the nontriviality of this result: while raising the
temperature of one edge is expected to affect the intensity
of the tunneling processes, the behavior of the Fano factor
shows that the noise and the current are affected in different
ways. The total noise at contact 3 (cf. Fig. 1) comprises
the excess noise S, as well as the Johnson-Nyquist noise
of the FQH edge (which is typically subtracted in experi-
ments). The latter, of course, grows as 7Tj is increased, as
does the total noise at contact 3. However, the excess noise S
involving the contribution of the tunneling processes becomes
negative [63]. Knowing the extent of its negativity enables
one to extract the scaling dimension of the quasiparticle A,
cf. Eq. (5) and Fig. 3(b), inset.

The negative excess noise (and thus the negative Fano
factor) can be understood by comparing the noise at contact
3 in the presence and in the absence of the tunneling contact.
In the absence of tunneling at the QPC, the noise measured at
contact 3 is the Johnson-Nyquist noise corresponding to 7. In
the presence of tunneling, part of the Johnson-Nyquist noise
from the upper edge leaks to the lower edge. Similarly, the
noise from the lower edge leaks to the upper edge. The shot
noise generated by tunneling can be, to a good approxima-
tion, ignored since the temperature imbalance dominates the
system. As the upper edge has a higher temperature, overall,
the noise at contact 3 is reduced. The extent of this reduction
is controlled by the intensity of the tunneling processes, i.e.,
by the scaling dimension A. The lower the scaling dimension,
the more intense the tunneling is, which correlates with the
behavior of f(A) in the inset of Fig. 3(b).

We warn the reader against hastily interpreting the above
behaviors in terms of particle statistics or identifying a spe-
cific behavior with that of classical particles. As is discussed
above and in Appendix A, the scaling dimension is not always
simply related to the quasiparticle statistics. Further, even in
the cases when this relation is valid, predictions based on
naive models of particles with corresponding statistics can
be misleading. For example, the results of Ref. [64] show
that the predictions for the noise in the presence of small
temperature imbalance are different for the model of free
bosons and the model of chiral Luttinger liquid with integer
scaling dimensions (that translate into the bosonic statistics

of quasiparticles through 6 = 27 A). Therefore, the dynamics
of the system cannot be described in terms of noninteracting
quasiparticles of the respective statistics.

Overall, we argue that the Fano factor is a powerful instru-
ment for extracting not only the charge but also the scaling
dimension of FQH quasiparticles. In particular, if investigated
as a function of the edge temperatures.

III. GENERAL RESULTS FOR THERMAL NOISE AT A QPC

We now proceed to describe our theoretical approach and
the obtained results. Our calculations are valid for any FQH
edge theory for which the FQH edges on either side of the
QPC can be assigned a well-defined voltage and tempera-
ture. For simplicity, however, we focus in this section on the
Abelian theories. The generalization to non-Abelian theories
is straightforward and is discussed in Appendix A.

The action of the general Abelian FQH edge is given in
terms of N bosonic fields, ¢;, i =1,..., N [65]:

1
S = P / dxdt Z[:[_Xlax¢l3t¢l — v @)1, (6)

where x; = 1 and v; > 0 are the chirality and velocity of the
Ith mode, respectively. These fields satisfy the commutation
relations:

[p1(x, 1), dp(x', 1] = iz xysgn(& — §)é1, 7

where & = x — x;v;t. Density and current operators along the
edge are given by

1 1
= — 8x , | — —— a s 8
P= Ez G101, J o Ez q10: 9 (8)

where as explained in Appendix A, ¢; are numbers that define
the charge-carrying properties of the edge modes. They are
constrained via the relationship:

> g =v,
l

where v is the filling factor.
The edge supports quasiparticles of the form

Valx, 1) oc e P, ©

where @(x, 1) = (g1 (x,1),...,¢oy(x, 1)) and a=(a,
..., ay) are vectors composed of the bosonic fields and real
numbers, respectively. The vector a, while being real valued,
can only take a discrete set of values reflecting the set of
possible quasiparticles. Such quasiparticles are characterized
by two important quantum numbers: the electric charge:

Qu=e  xiqua, (10)
!
and the scaling dimension:
1 2
A= zl: a. (11)

The set of allowed quasiparticles must include electrons with

O=ce.
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We model the QPC by a term in the Hamiltonian which
describes tunneling of quasiparticles between the edges,

= Z "yl + He.

= Z(naA + mAD, =y,

with superscripts u/d denoting the upper/lower edge, respec-
tively. The current operator at the upper/lower drain (labeled
3 and 4 in Fig. 1) will be given by [66]

Ly = j" £ Ir, (12)

where j/4) is the current operator of the unperturbed edge at
the QPC location, cf. Eq. (8), and /7 is the tunneling current
(i.e., the current that leaves the upper edge and enters the
lower edge). In the operator form, this is given by

Ir=i)" Qu(naAa — njAD). (13)

We wish to calculate the average tunneling current Iy =
(Ir), the autocorrelations at each of the drains, and the
cross-correlations between them. We define the DC noise
correlations between drains i, j as

Si.jlw=0) = /dt(Aii(O)Aij(t) + ALOALO),  (14)

where Al =1 — (I). The autocorrelations and cross-
correlations are not independent but satisfy the relation S3 3 +
Saa+2834 = Zv%kB(Tl + T5) that links their sum to the
Johnson-Nyquist noise, cf. Appendix B 2. It is, therefore, suf-
ficient to investigate only the autocorrelations S3 3 and S4 4.

Without loss of generality, we focus in what follows on
the excess noise measured at drain 3, S = S33 — 2§kaT1.
Defining A = T1/T,, we find

S =871 + 287, (15)
1
Srr —4ZQ <nkBTl 2Aa), (16)
.V l
SOT—__X:Q2 a 2< kBT] 2Aa>
1
- 2ZQ G.I 1( T 2Aa), (17)

Ir _2lZQaG 13( Qv 1 2Aa>, (18)

where we have defined the integrals [67]:

Ti(a.b, C)E/OO dy COS,[.a( —3)] _.(19)
—0  {cosh(y)isinh [b(y — Z)]}
0 yeos[a(y — F)]
T b = d i ’ 20
2(a, b, ¢) /m y{cosh(y)isinh[b(y—%)]}c e

snfolb-5)] 0

Ii(a,bc)= | d
3(@, b, ¢) /_oo y{cosh(y)iSinh[b( -

and

_ _ —2a?
Ga = InalP(rksT)* > 24 o, (2
1

is the effective tunneling constant for each quasiparticle. The
derivation of these expressions is given in Appendix B 2.

The term S7r arises from self-correlations of the tunnel-
ing current, while Sy represents cross-correlations between
the current j®/4) flowing along the unperturbed edge and
the tunneling current. The physical mechanism giving rise to
these cross-correlations and its rough relation to the exclusion
statistics were described in Sec. II.

Typically, a single quasiparticle possessing the smallest
scaling dimension A, = A is assumed to dominate the tun-
neling processes at the QPC. Denoting its charge Q, as O, we
find the Fano factor:

T
o S __200GhT 7.28) o3
delp e I%(nkBTl’ % 24)

Note that F' does not feature the nonuniversal tunneling am-
plitude [1,]>.

IV. EXPERIMENTALLY RELEVANT SCENARIOS

In this section, we explore several regimes of parame-
ters, demonstrating how the expression for the Fano factor in
Eq. (23) enables discrimination between different values of A.
These regimes correspond to different cuts of the 2D surface
presented in Fig. 3 and illustrate how the three experimental
knobs (V, Ti, and T5) affect the Fano factor. We choose the
parameters of these regimes to be compatible with modern
experiments [17-20,68].

A. Equal temperatures

The case of equal temperatures was discussed at length in
Sec.Il. For T} = T, = T, Eq. (23) simplifies to Eq. (1), where
the Fano factor is equal to the imaginary part of the digamma
function whose argument depends solely on the parameters Q
and A and the ratio eV /kgT . At the high-voltage limit, eV >
kT, the expression further simplifies to a linear function of
kT /eV, see Eq. (2).

As shown in Fig. 2, this universal function enables easy
extraction of the quantum numbers of interest by plotting the
Fano factor as a function of the ratio kg7 /eV. The quasipar-
ticle charge will be given by the intersection of the plot with
the y axis and the scaling dimension by the slope of the curve
atlow kgT /eV.

B. Different temperatures (small V)

In this regime, the bias voltage V' is kept constant and small
compared with both edge temperatures 77 and 75. One of these
temperatures is then swept over a substantial range, which in
an experimental setup will be restricted from above by the
bulk gap. The behavior of the Fano factor in this regime is
demonstrated in Fig. 4(a) for candidate theories of the poten-
tially non-Abelian v = 2 and in Fig. 4(b) for characteristic

2
quasiparticles at v = 1, 2, and 1.
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FIG. 4. The Fano factor vs temperature ratio 77/7, for small
voltage (eV = 0.1mkgT;). Remark the large A-dependent negative
values of the Fano factor and its very weak dependence on the
charge Q, cf. Eq. (5). (a) Quasiparticles that appear in various
candidate theories of v = % fractional quantum Hall (FQH) effect:
Q = e/4 (in all theories), A = 1]? (K = 8 theory), é (Pfaffian and
PH-Pfaffian), and < (331 state) or ; (anti-Pfaffian) [61]. (b) v = }
Laughlin quasiparticle (Q = ¢/3, A = %), one of the quasiparticles
in the Kane-Fisher-Polchinski (KFP) v = % fixed-point theory (Q =
e/3, A = %), noninteracting integer quanfurn Hall (IQH) electrons
(Q=e A= %), and electrons in the v = % Laughlin state (Q =
e, A =3)[54243].

The Fano factor when 7} = 7> can be obtained from
Eq. (1); note that, at V = 0, this will be zero. As Tj is in-
creased (decreased), the Fano factor decreases (increases),
becoming strongly negative (positive). This is consistent with
the results of Ref. [60], in which a temperature imbalance
leads to noise reduction on the hot edge and a noise increase
on the cold edge. This regime exhibits a particularly instruc-
tive asymptote where the dominant energy scale of the system
is the temperature of the hot edge, i.e., A = T1/T5 > 1. In this
limit, the Fano factor becomes a linear function of the ratio
kgTi/eV, cf. Eq. (5). The scaling dimension alone determines
the slope via a negative, monotonously increasing function
f(A), cf. the inset of Fig. 3(b). The cold edge temperature
T drops out entirely from the description. Note the values of
|F| > 1, which appear due to kgT; > eV.

For physical intuition, we once again appeal to the more
familiar case of Fermi-Dirac distributions. When k7] >
kgT, eV, the Fermi sea at the hot edge is so dramatically
smeared that any deformations of the cold edge are compar-
atively negligible. As such, the noise will depend solely on
Ti. The tunneling current, meanwhile, is in the Ohmic limit
Ir « T14A’2V, which leads to F o« V~!. We note that, had we

Lo, (b)

0.8f *,
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0.6 *e Laughlin electron
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FIG. 5. The Fano factor vs temperature ratio 7;/7, for a large
voltage (e¢V = 10mkgT>). Measuring this dependence, cf. Eq. (23),
one can extract both the charge Q (which is obtained at 7, /7, — 0)
and the scaling dimension A of the tunneling particle (which dictates
the form of the curve). (a) Quasiparticles that appear in various
candidate theories of v = % fractional quantum Hall (FQH) effect:
O = e/4 (in all theories), A = = (K = 8 theory), § (Pfaffian and
PH-Pfaffian), and < (331 state) or ; (anti-Pfaffian) [61]. (b) v = 1
Laughlin quasiparticles (Q = e/3, A = %), one of the quasiparti-
cles in the Kane-Fisher-Polchinski (KFP) v = % fixed-point theory
(Q=¢e/3, A= %), and noninteracting integer quantum Hall (IQH)
electrons (Q =e¢, A = %), electrons in the v = % Laughlin state
(Q=e A=3)[54243].

been interested in the noise measured at contact 4 (cf. Fig. 1),
belonging to the colder edge, the respective Fano factor would
retain a term proportional to 75 /7.

The monotonicity of the function f(A) makes this regime
useful to differentiate between similar theories with different
scaling dimensions. However, the nonlinear form of f(A)
means that, in this regime, F is highly sensitive for A < 1

E,
less sensitive for & < A < 2, and can hardly discriminate
2 2
different A > %

C. Different temperatures (large voltage)

Another useful regime exists when eV > kgT;, while kgT;
takes any value between them. We present the data for candi-
date theories at v = % and for characteristic quasiparticles at
V= %, %, and 1 in Figs. 5(a) and 5(b), respectively.

If kgT1 < eV, the Fano factor obeys Eq. (4), giving the
charge Q at the limit 7; — 0. The dependence on A in this
regime is linear, which guarantees the same sensitivity over
the whole range of A.
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For kgTy < €V, the analytical understanding of the behav-
ior is lacking. However, Fig. 5 shows that this regime has its
own distinctive features. Note that ' can become negative. We
find that it always becomes negative at kg7; =~ eV, with the
exact location of the crossover point determined by the scaling
dimension. This agrees with the intuition of the kg7; > eV
regime, cf. Sec. IV B.

V. DISCUSSION

In the above sections, we have described a method for
determining the scaling dimension of quantum Hall quasipar-
ticles and analyzed some experimentally relevant regimes. At
the same time, it is important to understand what information
is encoded in the scaling dimension. It is also important to
be aware of the experimental subtleties that may affect the
applicability of the above considerations. We discuss these
issues below.

In the fully chiral edges (both Abelian and non-
Abelian), the scaling dimension is universal, as it is related
to the quasiparticle statistics, cf. Appendix A. Nonchiral
edges do not feature this robustness: interactions between
counterpropagating edge modes can lead to a change in
the scaling dimension [42-45]. Further, edge reconstruc-
tion can add counterpropagating modes to chiral edges
[44,69] and thus facilitate a change in the scaling di-
mension. However, even under these circumstances, the
scaling dimension remains an important quantity to mea-
sure. First, the scaling dimension reflects the properties
of the edge including the reconstructions and intermode
interactions. Second, the scaling dimension of the quasi-
particle that dominates tunneling is typically larger in the
reconstructed theory. Therefore, measuring a specific scal-
ing dimension excludes underlying nonreconstructed theories,
where the scaling dimension is bigger than the one measured.

Another mechanism undermining the universality of the
scaling dimension is the electrostatic (screened Coulomb)
interactions in the vicinity of the QPC [61,70]. These may
renormalize the scaling dimension in the vicinity of the QPC
so that it does not reflect the properties of the quasiparticles
away from the QPC. One can minimize these interaction
effects by designing the device such that counterpropagating
modes are close to each other only at short length /;;; near the
QPC. At low energies such that v/E > [ (v is the charac-
teristic edge velocity), the Coulomb interaction will not affect
the scaling dimension. The results of Ref. [21] suggest that it
is indeed possible to have experiments where the electrostatic
interactions in the vicinity of the QPC do not play a major
role.

The above nonuniversalities may affect the interpretation
of the extracted scaling dimension. However, they do not
affect the validity of our method. Below, we discuss subtleties
that may be present in realistic experimental setups and may
require modifications to the proposed method.

The considerations of this paper assume that each edge is
at equilibrium. However, edges featuring counterpropagating
modes may not be at equilibrium [71-77]. Some types of
nonequilibrium may be tolerated. For example, the v = %
edge can have temperature gradients along the edge while
locally all the modes have the same temperature [71,73,74].

This type of nonequilibrium can be incorporated into the
consideration trivially: the physics at the QPC is described
by the local temperature. If the temperature at the QPC can
be estimated independently, the scaling dimension can be
extracted.

On the other hand, if counterpropagating modes interact
very weakly, they can be out of equilibrium even locally, in-
validating the assumptions of this paper. Such nonequilibrium
will, however, lead to a nonquantized Hall conductance for
charged counterpropagating modes [42,43]. The equilibration
properties of counterpropagating neutral modes can be inves-
tigated by measuring the excess noise of a single edge (with
no tunneling at a QPC) [55,56,71,73,74,78,79].

Finally, one could expect complications due to interfaces
between the Ohmic contacts and the quantum Hall edges.
Indeed, the transport properties (e.g., conductance) of the
Luttinger liquid depend crucially on the nature of its interface
with external leads (see, e.g., Refs. [80,81]). Quantum Hall
edges may also experience such nonuniversal effects [82-84],
implying the need to employ other methods for probing the
noise generated at a QPC, e.g., that of Ref. [85]. However, we
expect this to be unnecessary. Such nonuniversalities should
have no influence on the observations as long as the charge
transport along the edge channels is fully chiral (i.e., for the
edges where all modes have the same chirality, as well as
for generic edges with modes of different chiralities in the
regime of strong equilibration [71]). All the current and noise
generated at the QPC must then reach the respective Ohmic
contact, as they cannot be reflected back at the interface.

VI. CONCLUSIONS

In this paper, we have proposed a method for determining
the scaling dimension of quantum Hall quasiparticles based
on the measurements of the noise generated at a QPC. The
method relies on analyzing the dependence of the Fano factor
on the bias voltage and the temperatures of the quantum Hall
edges. We expect the extraction of the scaling dimension via
the proposed method to be as robust as the extraction of the
quasiparticle charge from the Fano factor.

While our method is expected to enable reliable extraction
of the scaling dimension and excludes some nonuniversal
effects, it is important to realize that the scaling dimension
itself may not be universal. However, even when the scaling
dimension is nonuniversal, it remains an important quantity
that characterizes the dynamics of the system. For fully chiral
edges (both Abelian and non-Abelian), the scaling dimension
is universal, as it is related to the quasiparticle statistics.
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APPENDIX A: BACKGROUND ON QUANTUM
HALL EDGE THEORY

In this section, we remind the reader of some well-known
theoretical results which apply to all existing quantum Hall
edge models (integer and fractional, Abelian and non-Abelian,
fully chiral or featuring counterpropagating modes). We only
focus here on the aspects relevant for this paper, particularly
the role of the scaling dimension in describing the edge prop-
erties. For a more comprehensive summary of the theory in
the notation that is close to the notation used in this paper, see
Ref. [86, sec. III] or Ref. [58, sec. IV]. Among other details,
these references explain the relation between the standard K-
matrix-based notation for Abelian theories [8] and the present
notation.

1. The structure of a general edge model

The behavior of quantum Hall edges is theoretically
described by the chiral Luttinger liquid theory and its non-
Abelian generalizations [5,6,8,87]. A quantum Hall edge may
consist of an arbitrary number N of edge modes. Each mode
has a direction of propagation (chirality) that we denote y; =
+1, /=1, ...,N, cf. Fig. 6. Some modes contribute to the
electric transport by carrying charged excitations, while others
may carry only neutral excitations. The size of the contri-
bution of a mode to the electric transport can be encoded
in numbers g; > 0. When a mode does not carry charged
excitations, g; = 0. If the edge mode is at equilibrium and

. . . . . . 2
its electrostatic potential is V, it carries current /; = %qlz xV.

The sign of I; reflects the current direction, i.e., the chirality
of the mode. Fixing the Hall conductance to ve?/h, therefore,
requires ), ql2 x; = v. Each mode has a velocity v; > 0 with
which its excitations propagate [88].

The bulk and the edge of a quantum Hall sample can
host local quasiparticles. At the edge, for each quasiparticle,
one can define the second-quantized quasiparticle operator
Ygp(x, 1), where x is the position along the edge, and ¢ is the
time. The quasiparticle might be associated with one mode
only. However, in general, a quasiparticle is distributed over
several modes: Vg (x, 1) = [1, Oi(x, 1), where Oy is an oper-
ator belonging to mode /. The distribution can be quantified
by a set of numbers /; > 0, reflecting the scaling properties
of operators O;. For the modes contributing to the electric
transport, one defines a; = +/h;. The electric charge of the
quasiparticle can then be expressed as

Q=eqoa=c) qua,

l

(AD)

where e is the electron charge. It is also convenient to define
the scaling dimension:

1
A= — h A2
221, (A2)

and the conformal spin [89]:

1
s= = xih.
Ly

When the edge is at equilibrium, characterized by elec-
trostatic potential V and temperature 7', one can write the
self-correlation function of a quasiparticle on the edge as

. JTkBT g
(T (e g0, 0)) = | [(ihvz sinh nkBTtl/h>

1

i
X exp <E€CI1X1£11V1‘1)], (A4)

(A3)
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and

. wkgT g
(Tap(x, 1), (0, 0)) = l_[ |:<ihvl Sil’lhf[kBTtl/h>
1

i
X exp ( - ﬁeCIleathl)], (AS)

where t; =t — y;x/v; — i0Tsgnt with 0T being the infinites-
imally small positive number, and 7 stands for the time
ordering of the operators.

Note how the above correlation functions reflect the quasi-
particle distribution over several edge modes. The correlation
function in Eq. (AS5) represents the quantum amplitude of
putting a quasiparticle on the edge at + = 0 and extracting
it from a different location at a later time ¢ > 0. The size
of this amplitude decays exponentially for 7 # 0 (power law
when T — 0) with the distance from the expected quasipar-

ticle location on each edge mode: xé{;z}ecled = x,vit. However,
)

the expected location X, ... is different for different modes
I. This reflects that, once the quasiparticle is put onto the
FQH edge, different parts of it propagate independently.
This is reminiscent of spin-charge separation in Luttinger
liquids: once an electron is injected into a Luttinger lig-
uid, its spin and charge propagate with different velocities
[90].

This concludes the minimalistic introduction into the struc-
ture of a general quantum Hall edge model. Next, in Sec. A 2,
we focus on discussing the main properties of the quasiparti-
cles, namely, the charge Q, the conformal spin s, the scaling
dimension A, and their connection to the quasiparticle statis-
tics and to the setup of Fig. 1.

2. Properties of the FQH quasiparticles and their
connection to the setup in Fig. 1

To explain the meaning of the quasiparticle scaling di-
mension A in Eq. (A2) and conformal spin s in Eq. (A3),
as well as their connection to the statistics, we will an-
alyze the quasiparticle correlation functions in Egs. (A4)
and (AS5). Consider first the same-position correlation
function:

exp (—57)

(Wgp(0, 1 > 0)1 (0, 0)) ox Em (A6)
h

The oscillating exponential confirms the meaning of the
quasiparticle charge Q defined in Eq. (Al): creating a
quasiparticle adds energy QV to the edge. The scaling
dimension A controls the decay of self-correlations with
time.

Consider now the correlation of quasiparticles at the same
time but different positions. These can be obtained from
Egs. (A4) and (AS) by taking the limit + — O while keeping
t > 0 and using the translational invariance of the correlation
functions:

(W (x, 0)¥p (0, 0))

.. 7Tk3T(iO+ + Xu;,x) —n
S H |:—l sinh e ’ A

(Yap(0, 0)¥, (x, 0)

.. 7Tk]3T(i0+ _ Xu;,x) —ny
& U |:—l sinh e ' )

Ignoring the infinitesimal imaginary part, one sees that the
two expressions are connected by a factor of [ [,(—1 y~h. The
infinitesimal imaginary part prescribes what root of unity one
should take in each factor depending on the chirality y;, so
that

(Yap(0, 0)¢s 5, (x, 0)
= exp(—2ims sgn x)(Y (x, 0)1gp(0, 0)).

This suggests that exchanging two quasiparticles produces the
statistical factor ¢ with @ = 427 s. Therefore, the conformal
spin in Eq. (A3) reflects the statistics of the quasiparticles. The
last statement is accurate only for Abelian quasiparticles. If
the quasiparticles possess non-Abelian statistics, this requires
at least four quasiparticles to be manifest and cannot be seen
via two-point correlation functions. Therefore, the conformal
spin s only captures the Abelian part of the statistics.

When the edge contains modes of one chirality only (all
X1 = x), then s = x A, as can be seen from Eqgs. (A2) and
(A3). In this sense, measuring the scaling dimension allows
one to infer the quasiparticle statistics. We emphasize once
more that this statement is only exactly valid for edges that
are fully chiral edges and feature no non-Abelian quasipar-
ticles. However, even when the correspondence between the
statistics and the scaling dimension does not hold, the scaling
dimensions of different quasiparticles in the theory are an
important property of the edge theory and are valuable to
measure.

Tunneling experiments as in Fig. 1 enable access to the
scaling dimension. Since the tunneling happens only at one
point on each edge, such experiments can be described in
terms of the same-position correlation functions such as in
Eq. (A6). In fact, when the tunneling is weak, only two-
point correlation functions, containing one creation and one
annihilation operator for a quasiparticle, appear in the calcula-
tion, cf. Appendix B. Therefore, nothing but the quasiparticle
charge and scaling dimension can be extracted from such
experiments (at least at weak tunneling) [91].

It is important to point out that a quantum Hall edge hosts
many types of quasiparticles, all of which can contribute to
tunneling [92]. It can be argued (and confirmed numerically
[93]) that, at sufficiently low energies, the quasiparticle with
the smallest scaling dimension [whose correlations decay
the slowest in time, cf. Eq. (A6)] dominates the tunneling
processes. In the setup of Fig. 1(a), therefore, one expects to
measure the charge and the scaling dimension of the fractional
quasiparticle whose scaling dimension is the smallest. This
quasiparticle is also called the most relevant quasiparticle.
There are theories in which several quasiparticles possess
the smallest scaling dimension, cf. Refs. [42,58,94,95]. In
this case, the contribution of all such quasiparticles must be
considered.

In the setup of Fig. 1(b), fractional quasiparticles cannot
tunnel; only electrons and agglomerates of electrons can.
Therefore, the setup of Fig. 1(b) enables measuring the scaling

(A9)
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dimension of the electron. We stress that this is a nontrivial
measurement, also characterizing the FQH edge and the inter-
acting nature of the state. On an infeger quantum Hall edge,
the electron is expected to have the scaling dimension of A =
%. Since the integer quantum Hall edge is fully chiral, this is
related to the fermionic statistics of the electron: 6 = 2ws =

the electron is expected to have A = % The Laughlin edge
is also chiral, so the statistics are still manifestly fermionic:
0 =2ms =2m A =3m, Y = —1. However, the dynamical
behavior of electrons is altered due to the strongly correlated
nature of the state, which results in a different scaling dimen-
sion.

2n A =7, e = —1.By contrast, in the Laughlin v = % state,
J
APPENDIX B: THEORY DERIVATIONS

1. Required correlation functions

Now we want to calculate various two-point functions. From the action in Eq. (6), we obtain

sinh [—2Z0L (5 — &) +ix,5)]
sinh (”kBTS) '

(¢1(x, )i (x', 1)) = log (BI)

where & = x — x;u;t, § is a short distance cutoff, and we are working in units where 7 = 1. This leads to

[nk T ] a,

8712 n

0D . & —&)

’ . €xp —166]101‘/1/27[1)1 : (B2)
gl - lX[(S)] v;

(YO, P ) = Saar [ ]

. xitkg T
; sinh [ — ’v(u]?d)]m & -
1

where u/d denotes a quasiparticle operator for the upper/lower edge, and V), and T;,, are the electrostatic potentials and the
temperatures of the edges, respectively. Subsequently,
2

[”kBTl ﬂk]gTz] Ay
W

sinh [kgT|(t — ig)] sinh [wkgT>(t — ig)]

(ALA0) = 8ua [ |

1

expliexiqaVe), (B3)

where V = V| — V5 is the bias drop between the edges, and ¢ is a short time cutoff. Furthermore, using the definition of j*(0)
in Eq. (8), we obtain

1\°  (wkeTip)?
iw/d) oy i@y = (—) v / ) B4
GO (271) sinh? (ks T ot ) G
The final correlation function we need is
-(u ’or "o =y an T 2 X1
(AJ D0 DYIOEW 0) = B (W Wl 1) B
ks T kT,
x {coth[ 1T FE R -8 im)} —coth[ 1T R s;’—ixm“,
(B5)
which recreates Eq. (A4) in Ref. [58].
2. Noise
We define the DC noise correlations between drains i, j as
Sijl@=0) = / dit (ALO)AT; (1) + Al (t)AL(0)), (B6)

where AL =T — (fi) [cf. Eq. (B6) of the main text]. From Eqs. (12) and (13), we obtain to the leading order in the tunneling
amplitude 7:

(dOD) = (U0 F Ir) = (),
AFG/A — Aj(u/d) ¥ jT’

where A j#/d = jw/d) _ (ju/dy - Autocorrelations and cross-correlations will hence be given by

S3jas = So P+ S + 87D + Srrs (B7)
S34ja3 = —Srp — SWD — gdin (B8)
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where we define

St = / dt ({7 0), Fr (),
S = s = £ / dr (A 0), B (1)),

Soe " = / dr({AjD(0), Aj D)), (B9)
and we used

(j(0)j“(t)) = 0. (B10)

Thus, the entirety of the noise correlations are described by five different terms, which boil down to three independent
fance (u/d)  (u/d)
calculations: Sy7, Sy, S0 -

a. S 00

This term is derived directly from Eq. (B4):

1)\* nksTi ) 1
sy — /dt A D), AU D)) = 2(—) vkg T /dt—/ = (—)vk T > coth (x
00 ({AJH9(0), A1) o BT1)2 Sinb? (ks T ) > ) keTis (x)

[e¢]

v
= —kgTip2.
T

—00

(B11)

In this manner, we see that, for each edge, (up to restoration of e, %), Soo just gives the Johnson-Nyquist noise. As we are interested
in excess noise, i.e., noise measured beyond the Johnson-Nyquist noise, this is subtracted from the total noise contribution we
seek in the main text.

b. Sor =S¢
We define Sor = S(()“T). Plugging Eq. (13) into Eq. (B9), we use the Kubo formula to obtain

Sor = — / di (OO (1) + I (1) (0))

o0

— i f dt f dr<j<“><0){ir(t>, > [neAa(T) + nZAZ(f)]} + {iT(t), > [neAa(T) + nZAZ(r)]}j<“>(0>>
== 1nal*Qu / i / dt(j"(0)ALDA}(T) — AL ()AL(T) — AL(DAL) + Au(DALD)])
— > InlQa / di / dt([A()AL(T) — AL ()AL(T) — AL (D)AL) + Au(DA] ()] (0))

== 110 / di / dt (" O)AL()A](T) — ALDA(D)] + [Au()A](T) — ALAL(D)]j“(0)),

where in the third line, we only kept charge-conserving terms, and in the last line, we switched dummy indices for half the
terms. We can also note that, by switching between ¢ and t in the second term, we just obtain that the second term is the complex
conjugate of the first. Separating this into products of terms given to us by Egs. (B5) and (B3), we obtain

[ ro1 ] / / i(mkgTy)** ! (wksT2)** cos [Q,V (t — 7)]
Sor =Y =%|n. _ dr | d
o Z e el H [U;” v;‘“} ") T Gsinh (rkaTilr — 7 — i — e)]}isinh (TkaTalr — 7 + ik — OIS
X {coth [rkgTi(—t — ie)] — coth [wkgT1(—T — ik)]} +c.c., (B12)

where we employ, here, two positive short time cutoffs, with ¥ > ¢. Assuming vl(") = v,(d)

t =t +y, we obtain

2 Y Tk TOPA T (ke T V22 %
Sor :Z%Inuf(nvzz}z)/dr/dy iGrk )™ (ks T5)™ cos (QuVy)
!

= v;, and changing variables to

(isinh {wkgTi[y — i(k — &)]}isinh {wkgTr[y — i(k — o>

a

x {coth [rkgTi(—T —y — ig)] — coth [wkgT\(—T — ik)]} + c.c.,
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We now calculate the 7 integral. The integral of a single hyperbolic cotangent is diverging:

oo

cosh [TkgTi(—t —y — ig)] _

/ dtcoth [rkgTi(—1 —y — ie)] =/

- In {sinh [7ks T} (=7 — y — ie)])°.,
N T ke (—r —y— )] nkeT, iR TASTI(=T =y =il S

but since we have a difference between two hyperbolic cotangents, this divergence cancels out, and we obtain

/ dt{coth [rkgTi(—t — y — ie)] — coth [wkgT1(—T — ik)]}

[e¢]

_ 1 n sinh [rkpTi (=7 —y —ig)] | ™
T wkgTy sinh [tkgTi(—T — ix)]

1
= _nkBTl (Inexp{mksTi[y — i(k — &)]} — Inexp{—mkpTi[y — i(k — ¢€)]}) = —2[y —i(k — ¢)].
Plugging this back into Eq. (B12), renaming —i(k — &) — —ig, we obtain the full integral expression:
02 o (kg T\ AT o i(mksT))(y — i) cos (QVy)
S()T:—4Z—|T]a|2 1_[1)[2[ (ﬂkBT2)4A 1 Ll / dy - B y - J X A
—~ ; kg1 —oo isinh [wkgTi(y — ie)]isinh [wkg T (y — ie)]}

(B13)
where we replaced the +c.c. with an overall factor of 2 because we see this quantity is real.
Numerical calculation of the above integral requires treating the vicinity of y = 0 with care. We derive a numerics-friendly
expression, which does not require special treatment for any part of the integral, using a convenient change of variables in the
complex plane [96]. For T} > T», we define

i

r:y—ie+2kBTl, (B14)
and we can write the integral as
oo—ig+i/2ksTi J i(mkgTy )2(1 — ﬁ) cos [QaV(t — m)]
/—oo—i£+i/2kBTI i [i sinh (nkBTlr — %”)isinh (ﬂkBTz‘L' — i;’](]‘T“TTIZ)]ZA.

Since i sinh(wkgTiT — %) = cosh(kg T 7), we hence obtain

/oo—i8+i/2kBTl 4 i(kgT)* (1 — ﬁ) cos [Q.V (1 — ﬁ)]
T

. : A"
co—ie+i/2sTi  [cosh (wkgTi7)isinh (wkgToT — ”z’kkTBTTf)]

Now defining y = wkgTit and A = T} /7T, we have
oV

/-oo—i8+iﬂ/2 4 l(y — %) COS [J‘[kBT] (y - %)]

y - .
oo—ie+in/2 ~ {cosh (y)isinh [+(y — F)] }ZA

This expression has poles aty = % + imn due to the cosh term in the denominator and at y = % + Xirn due to the sinh term

in the denominator. For A > 1, we have no poles between 0 an % — ie. Thus, we can move the contour back to the real axis,
giving us a final integral form for the noise term:

00 i(y—Z)cos[ LY (y — =

o=t T [T ol 0)
T = —0 " {cosh (y)isinh [1(y — Z)]}

where G, is given in Eq. (22).

This is a convenient expression, which can be calculated numerically without any special care. Finally, we note that, for S(()‘;),
the entire derivation should be the same, except we lose one factor of A due to replacing 7} <> T; in Eq. (B12). In the case
of T, > T, the derivation is also rather similar, with the only difference being that the shift in the complex plane described in
Eq.(Bl4)isnow t =y —ie + m

C. STT

Plugging Eq. (13) into Eq. (B9), and only keeping charge-conserving terms, we obtain

Srr =Y Oalnal’ / dt(Ag(DA] (1) + AL0)Au(t) + Aa(t)A(0) + Al (1)A,(0)). (B16)
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Plugging in the values found above for all correlation functions, assuming that vl(“) = vl(d) = v; and that we have a scaling

2
. . a . .
dimension of A =}, 5, this now gives

2\ [ ks T)*2 (wkgTo)*® cos (Q, V1)
Srr =43 Q2 nal? = f d (e Th . B17
" Xa:Q”m' (le ) o {isinh [wkn Ty (1 — ie)]i sinh [xks To(t — )] 1D

We continue with the same manipulations used to convert Eq. (B13) to Eq. (B15), using a change of variables, 7 =1 — ie +
m and utilizing the location of the poles in the denominator to shift our contour back to the real axis. This gives us the
convenient integral expression for A > 1:

oo cOS ﬂ y p— ﬂ
Srr =4 QiGaf dy ,[”."BT‘ boB (B18)
- —0 "~ {cosh (y)isinh [1(y — Z)]}

with the extension to the case A < 1 being straightforward.

3. Current

Calculation of the average tunneling current is very similar to the calculations above. Going up an order in the Kubo formula,
we obtain

(r) = —i / dr<{1}(r), > [naAa(r) + nZAZ(r)]}>.

The appropriate utilization of Egs. (13) and (B3) lead to

) 2A 2A
I =2 2 ~2a} f J (mkgT1)™" (kg T2)™" sin (Q.V'1) , B19
! ZXH:Q il (le ) oo {isinh [rks Ty (¢ — ie)isinh (ks T — 2] (B1%)

where we define I = (f7). Similar manipulations as the two previous sections lead to the final expression for A > 1:

00 1 [eni _im
Ir =2y 0.G, / PRSI vl ) BN (B20)
P —00 {cosh ()i sinh [%(y - %)]}

which is numerically convergent and predictably yields finite current only for finite voltage.

4. Limits

Here, we show how the expressions in Egs. (B15), (B18), and (B20) reduce to more convenient expressions in the regimes
discussed in Sec. IV. The extension to the case A < 1 is again straightforward.

a. Equal temperatures

For equal temperatures, we define 71 = 7, = T. As such, in all three integral expressions, we may replace i sinh[%(y —
%’)] — cosh(y). The three terms now give

I =232 0.6, [ Z ay [[Ciﬁ g);f)], (B23)
and the excess noise is given by
S =Srr +2Sor = —i% Z 02G, /_Z W cos[(Eginr(gl;%)] (B24)
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Since all denominators are now even, we may keep only the even components of the respective numerators, reducing the
expressions to

1 QaV
8 n4 e ysin y
S=— ZQiGa sinh( Q )/ dylim), (B25)
T 2kgTy ) J- = [cosh (y)]
.V
. Q. )/“’ cos (z27)
Iry =2 .G, sinh d 5 . B26
=23 0 (2kBTo o feosh ()17 B2
These are now well-known integrals, which correspond to
Q.Y
% cos y \% Vv
/ dy—(”kBT4Z=24AIB<2A+i GV a2 ) (B27)
—0o  [cosh (y)] 2kgT 2mkgT
/ood vsin (2%y) ke 9 /°°d cos (F7) (B28)
o P Teosh P T T 0, oV | P lcosh ()1
_ . 04V . 0V . 04V
_pta-ig (o 4 2 2A —i——— |1 2A - : B29
ke it )"V PA T T (B29)

where B(x, y) is the beta function, the digamma function v (x) = I'’(x)/T"(x) is the logarithmic derivative of the gamma function,
and Im stands for the imaginary part. Finally, for a single vector a, Q, = Q, this reduces to

F= =2—QIm|:I//(2A+i o )} (B30)

2elr e 2mwkgT

b. Dominant temperature

In the regime where bias voltage is much smaller than the two temperatures, i.e., eV <K kgTi, kgT>, we may expand all
trigonometric functions to the leading order in ,;—VT The three terms now give

A o i(y—2)
s 260/ ) 5 7 B31
or =—— Xa:Q - y{cosh (isinh [L(y — )]} o

- 1
Srr=4Y 02G, / d : ’ o
T Z o y{cosh (y)isinh [£(y — Z)]}**

o0 (N4 (y _ ﬂ)
Iy = ZiZQuGa/ dy xkpT; S TCTIIY (B33)
- —0 "~ {cosh (y)isinh [1(y — Z)]}
We note that the integrals for So7 and I are now completely equivalent. Assuming only one type of quasiparticle tunnels, the
Fano factor is now given by

[ dy 1
Fo Str + 2Sor _ wkgTh —00 {cosh (y)isinh[%(y—"’%)]}ZA _ E (B34)
2el 1% o0 iG-% ‘
elr e f_oo dy 2 T

{cosh (p)isinh [ 1 (y—Z )]}ZA

In the limit where A >> 1, we can further simplify this expression by approximating sinh[%(y — %)] ~ %(y - %”), such that
the Fano factor is now to the leading order:

kT i f_oooo dy [cosh (v)i(ly—"‘l)]ZA ks Th
F— Ml ) P QNN (B35)
ev foo d i0-%) eV

This defines the function f(A) used in Eq. (5).

¢. Dominant voltage

In the case of dominant voltage, eV > kgT;, we return to Egs. (B13), (B17), and (B19), and redefine y = Q,V't. This gives us
the expressions

4 2 12 g\ [ dy i(rkgT)* A1 (kg T)*2 (v — i) cos ()
SOT = _; Z Qtllna' ( Yy I) / (Q V)Z .. kT : * ol kgD : 2487 (B36)
- . —oo (LaV)” {isinh [Qa—v(y — ig)]isinh [g,_v(y —ig)]}
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Ir =2i Z Q. |77a|2 —2a, / (mksTh )2A (7TkBTQ)2A sin (y)
a 0.V {i sinh [

Now replacing sinh[ ”kBT Ay —ie)] & ”]‘BT 7 —

—24?
Sor = _4Z;a|na|2< Y, 2
a !
2
STT:4ZQ|7711 ( al)
1

(wksT1)** (Tkp T2)* cos (y)
Srr =4y Qalnal*( [T / ’ >
T Z <l_[ ! ) 0.V zsmh["kBT1 (y — ie)]isinh [M(y— is)]}m
(B38)
mwkeTi (y 18)]1 sinh [nkBTz (y 18)] }ZA
ie), these expressions now give to the leading order
. 4A
kT dy (QaV) _cos (_y]), (B39)
0.V J_o OV [i(y —ig)]
dy (Q.V)* cos(y)
B40
o0 QY [i(y — ig)]*A o
AA
dy (Q,V)*" sin(y) (B41)

Ir = 2iZQa|na|2<H vlz“f)
a 1

—oo OV i(y —ie)]*A

These integrals are now known in terms of Euler gamma functions. For a single quasiparticle, this gives the Fano factor of

_ Srr+25r Q kgTh

ks T;
Rt —4A)+0[( - ) }

2elr e

(B42)
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