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Trivializations of moment maps

. Then we apply it together with ideas from Nakajima [Nak94] and Kronheimer [Kro89] to trivialize the hyperkähler moment map for Nakajima quiver varieties. Notice this trivialization result about quiver varieties was known and used by experts such as Nakajima and Maffei but we could not locate a proof in the literature. Contents 1 Introduction 1.1 Symplectic quotients and GIT quotients of affine varieties . . . . . . . 1.2 Real moment map for the action of a reductive group on an affine variety . . . . . . . . . . .

Introduction

Symplectic quotients and GIT quotients of affine varieties

Consider a reductive group G acting on a complex smooth affine variety X. For χ θ ∈ X * (G) a linear character, X θ-ss is the θ-semistable locus and X θ-s the θ-stable locus. Mumford's geometric invariant theory [START_REF] Mumford | Geometric Invariant Theory[END_REF] provides a quotient X θ-ss → X θ-ss //G.

The affine variety X can be embedded in an hermitian vector space W such that the G-action is linear and restricts to a unitary action of a maximal compact subgroup H ⊂ G. The hermitian norm on W is denoted by || . . . ||. We study the associated real moment map µ : X → h with h the Lie algebra of H. Its definition relies on the choice of a non degenerate scalar product . . . , . . . on h invariant under the adjoint action of H. The real moment map satisfies for all Y ∈ h µ(x), Y = 1 2

d dt || exp(itY ).x|| 2 t=0 (1) 
Thanks to the invariant scalar product, to a linear character χ θ is associated an element θ in Z(h), the center of the Lie algebra h, such that for all Y ∈ h θ, Y = idχ θ Id (Y ).

For a pair (χ θ , θ), Kempf-Ness theory [START_REF] Kempf | The length of vectors in representation spaces[END_REF] relates the symplectic quotient (defined by Meyer [START_REF]Symmetries and integrals in mechanics[END_REF] and Marsden-Weinstein [START_REF] Marsden | Reduction of symplectic manifolds with symmetry[END_REF]) to the GIT quotient, it gives an homeomorphism µ -1 (θ)/H ∼ -→ X θ-ss //G.

We study trivialization of the moment map over a regular locus in the center of the Lie algebra h. First, in Section 2, we study the general framework of a unitary action of a compact group on a smooth affine variety. After a reminder of Migliorini's version of Kempf-Ness theory [START_REF] Migliorini | Stability of homogeneous vector bundles[END_REF], a regular locus in Z(h) is defined. Over this locus the moment map is proved to be a locally trivial fibration. The case of a torus action was treated by Kac-Peterson [START_REF] Kac | Unitary structure in representations of infinite-dimensional groups and a convexity theorem[END_REF]. The construction of the regular locus uses the negative gradient flow of square norm of the moment map studied by Kirwan [START_REF] Clare | Cohomology of Quotients in Symplectic and Algebraic Geometry[END_REF], Ness-Mumford [START_REF] Ness | A stratification of the null cone via the moment map[END_REF], Sjamaar [START_REF] Sjamaar | Convexity properties of the moment mapping reexamined[END_REF], Harada-Wilkin [START_REF] Harada | Morse theory of the moment map for representations of quivers[END_REF] and Hoskins [START_REF] Hoskins | Stratifications associated to reductive group actions on affine spaces[END_REF].

Nakajima quiver varieties introduced in [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF] are particular instances of the symplectic quotients studied in Section 2. Moreover they are hyperkähler quotients as defined by Hitchin-Karlhede-Lindström-Roček [START_REF] Hitchin | Hyperkähler metrics and supersymmetry[END_REF], the construction of those varieties is recalled in Section 3. In Section 4, the idea of Kronheimer [START_REF] Kronheimer | The construction of ALE spaces as hyper-kähler quotients[END_REF] and Nakajima [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF] of consecutive use of different complex structures are applied together with techniques from previous sections to prove that the hyperkähler moment map is a locally trivial fibration. This implies in particular that the cohomology of the fibers forms a local system. This later result is used by Nakajima in [Nak94, Section 9] to construct a Weyl group action on the cohomology of quiver varieties. Maffei pursued this construction in [START_REF] Maffei | A remark on quiver varieties and Weyl groups[END_REF]. I was informed by Nakajima that the property of the cohomology of the fibers can also be obtained by generalizing Slodowy argument from [START_REF] Slodowy | Four lectures on simple groups and singularities[END_REF] to quiver varieties. Similar results concerning cohomology of the fibers also exist in the framework of deformations of symplectic quotient singularities in Ginzburg-Kaledin [START_REF] Ginzburg | Poisson deformations of symplectic quotient singularities[END_REF]. Finally Crawley-Boevey and Van den Bergh [START_REF] Crawley | Absolutely indecomposable representations and Kac-Moody Lie algebras[END_REF] trivialize the hyperkähler moment map for Nakajima quiver varieties over complex lines. Nakajima explained to us how to extend their result to quaternionic lines minus a point thanks to the theory of twistor spaces see Theorem 4.3.5.

In the remaining of the introduction the results are stated and the various steps of the constructions are outlined.

Real moment map for the action of a reductive group on an affine variety

In Section 2, H ⊂ G is a maximal compact subgroup acting unitarily on a smooth affine variety X embedded in an hermitian vector space. The differential geometry point of view from Kempf-Ness theory allows to extend the definition of θ-stability for elements χ θ ∈ X * (G) R := X * (G) ⊗ Z R. The correspondence between linear characters and elements in the center of the Lie algebra h thus extends to an isomorphism of R-vector spaces between X * (G) R and Z(h).

In 2.4 we prove a Lie group variant of Hilbert-Mumford criterion for θ-stability. It is adapted to the differential geometric point of view of Kempf-Ness theory and the use of real parameters θ ∈ X * (G) R . Similar criteria are discussed by Georgoulas, Robbin and Salamon in [START_REF] Georgoulas | The moment-weight inequality and the Hilbert-Mumford criterion[END_REF].

Theorem 1.2.1 (Hilbert-Mumford criterion for stability). Let θ ∈ X * (G) R and x ∈ X. The following statements are equivalent (i) x is θ-stable.

(ii) For all Y ∈ h, different from zero, such that lim t→+∞ exp(itY ).x exists then θ, Y < 0.

This theorem is applied in 3.2 to generalize a result of King [START_REF] King | Moduli of representations of finite dimensional algebras[END_REF] characterizing θ-stability for quiver representations. The regular locus B reg is introduced in 2.5. Its construction relies on the study of the negative gradient flow of the square norm of the moment map from Kirwan [START_REF] Clare | Cohomology of Quotients in Symplectic and Algebraic Geometry[END_REF], Ness-Mumford [START_REF] Ness | A stratification of the null cone via the moment map[END_REF], Sjamaar [START_REF] Sjamaar | Convexity properties of the moment mapping reexamined[END_REF], Harada-Wilkin [START_REF] Harada | Morse theory of the moment map for representations of quivers[END_REF] and Hoskins [START_REF] Hoskins | Stratifications associated to reductive group actions on affine spaces[END_REF]. B reg is an open subset of Z(h) such that for θ ∈ B reg , one has X θ-ss = X θ-s = ∅ and for all x ∈ X θ-s the stabilizer of x is trivial. Over the regular locus, the moment map is a locally trivial fibration. A similar fibration when G is a torus follows from a result of Kac-Peterson [START_REF] Kac | Unitary structure in representations of infinite-dimensional groups and a convexity theorem[END_REF]. Let us also mention that with the flow of the norm square in the hermitian space W , Sjamaar [START_REF] Sjamaar | Convexity properties of the moment mapping reexamined[END_REF] constructed a retraction of the 0-stable locus to the fiber over 0 of the moment map.

Theorem 1.2.2. Let θ 0 in B reg , and U θ 0 the connected component of B reg containing θ 0 . There is a diffeomorphism f such that the following diagram commutes

U θ 0 × µ -1 (θ 0 ) µ -1 (U θ 0 ) U θ 0 f ∼ µ
Moreover f is H equivariant so that the diagram goes down to quotient

U θ 0 × µ -1 (θ 0 ) /H µ -1 (U θ 0 )/H U θ 0 ∼
To prove this theorem, first we prove that for any θ ∈ U θ 0 and x ∈ X θ 0 -s there exists a unique Y (θ, x) ∈ h such that exp(iY (θ, x)).x ∈ µ -1 (θ). This is achieved thanks to Migliorini's version of Kempf-Ness theory [START_REF] Migliorini | Stability of homogeneous vector bundles[END_REF] which applies to affine varieties and real parameters χ θ ∈ X * (G) R . Then the map f is defined by f (θ, x) := exp (iY (θ, x)) .x and similarly for its inverse

f -1 (x) = (µ(x), exp (iY (θ 0 , x)) .x) .
The smoothness of f and its inverse is proved in 2.6 with the implicit function theorem.

Nakajima quiver varieties and hyperkähler moment map

The quiver varieties considered in this paper were introduced by Nakajima [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF]. Let Γ be an extended quiver with vertices Ω 0 and edges Ω, fix a dimension vector v ∈ N Ω 0 . The space of representations of Γ with dimension vector v is

Rep Γ, v = γ∈ Ω Mat C (v h(γ) , v t(γ) ).
with h(γ) ∈ Ω 0 the head of the edge γ and t(γ) ∈ Ω 0 its tail. This space is acted upon by the group

G v ∼ = (g j ) j∈Ω 0 ∈ j∈Ω 0 GL v j j∈Ω 0 det(g j ) = 1 .
This action is described in 3.1, it restricts to a unitary action of the maximal compact subgroup

U v = (g j ) j∈Ω 0 ∈ j∈Ω 0 U v j j∈Ω 0 det(g j ) = 1
with U v j the group of unitary matrices of size v j . Denote by u v the Lie algebra of U v . This is a particular instance of the general situation of Section 2: a unitary action of a compact group on a smooth complex affine variety. Let θ ∈ Z Ω 0 such that j v j θ j = 0. Define χ θ a linear character of G v by χ θ ((g j ) j∈Ω 0 ) := j∈Ω 0 det(g j ) -θ j .

(2)

For quiver representations, the correspondence between linear characters and elements in the center of u v is easily described: to the character χ θ is associated the element (-iθ j Id v j ) j∈Ω 0 ∈ Z(u v ). This element is still denoted by θ, and Z(u v ) is identified in this way with a subspace of R Ω 0 . A well-known theorem from King [START_REF] King | Moduli of representations of finite dimensional algebras[END_REF] gives a characterization of θ-stability for quiver representations. In 3.2 this result is generalized to real parameters corresponding to elements

χ θ ∈ X * (G) R . Theorem 1.3.1. For θ ∈ R Ω 0 such that j∈Ω 0 θ j v j = 0 and associated element χ θ ∈ X * (G v ) R . A quiver respresentation (V, φ) is θ-stable if and only if for all subrepresentation W ⊂ V j∈Ω 0 θ j dim W j < 0. unless W = V or W = 0.
The space Rep Γ, v admits three complex structures denoted by I, J and K, they are detailed in 4.1. There is a real moment map for each one of this complex structure, they are denoted by µ I , µ J and µ K . They are defined as in equation (1), for instance

µ I (x), Y = 1 2 d dt || exp(t.I.Y ).x|| 2 t=0 and µ J (x), Y = 1 2 d dt || exp(t.J.Y ).x|| 2 t=0 .
Together they form the hyperkähler moment map µ H = (µ I , µ J , µ K ), it takes values in u ⊕3 v . Nakajima quiver varieties are constructed for (θ I , θ J , θ K ) ∈ Z(u v ) ⊕3 as quotients of fibers of the hyperkähler moment map.

m v (θ I , θ J , θ K ) = µ -1 H (θ I , θ J , θ K )/U v .
The hyperkähler regular locus in Z(u v ) ⊕3 is defined by: Definition 1.3.2 (Hyperkähler regular locus). For w ∈ N Ω 0 a dimension vector

H w := (θ I , θ J , θ K ) ∈ R Ω 0 3 j w j θ I,j = j w j θ J,j = j w j θ K,j = 0 .
The regular locus is

H reg v = H v \ w<v H w ( 3 
)
the union is over dimension vector w = v such that 0 ≤ w i ≤ v i .

In 4.3 various trivializations of the hyperkähler moment map are discussed. We prove that the hyperkähler moment map is a locally trivial fibration by consecutive use of constructions of Theorem 1.2.2 for each complex structure and associated moment map. The idea of consecutive use of different complex structures comes from Kronheimer [START_REF] Kronheimer | The construction of ALE spaces as hyper-kähler quotients[END_REF] and Nakajima [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF].

Theorem 1.3.3 (Local triviality of the hyperkähler moment map). Over the regular locus H reg v , the hyperkähler moment map µ H is a locally trivial fibration compatible with the U v -action:

Any (θ I , θ J , θ K ) ∈ H reg v
admits an open neighborhood V , and a diffeomorphism f such that the following diagram commutes

V × µ -1 H (θ I , θ J , θ K ) µ -1 H (V ) V f ∼ µ H
Moreover f is compatible with the U v -action so that the diagram goes down to quotient

V × µ -1 H (θ I , θ J , θ K )/U v µ -1 H (V )/U v V ∼ p
A similar trivialization of the hyperkähler moment map over lines is described in [CBVdB04, Lemma 2.3.3]. In Theorem 4.3.5 we provide an extension of their result using twistor spaces as suggested by Nakajima.

Denote by π the map obtained by taking quotient of the hyperkähler moment map over the regular locus

µ -1 H (H reg v )/U v π -→ H reg v .
Consider H i π * Q l , the cohomology sheaves of the derived pushforward of the constant sheaf. As a direct corollary of the local triviality of the hyperkähler moment map, those sheaves are locally constant. Moreover as H reg v is simply connected, those sheaves are constant. They provide the local system of the cohomology of the fibers.
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Kempf-Ness theory for affine varieties

Kempf-Ness [START_REF] Kempf | The length of vectors in representation spaces[END_REF] relate geometric invariant theory quotients to symplectic quotients. In this section we recall Migliorini's version of this theory [START_REF] Migliorini | Stability of homogeneous vector bundles[END_REF] which applies to affine varieties and real parameter χ θ ∈ X * (G) R . Then we prove that the real moment map is a locally trivial fibration over a regular locus.

G is a connected reductive group acting on a smooth affine variety X. The action is assumed to have a trivial kernel.

Characterization of semistability from a differential geometry point of view

For χ θ ∈ X * (G) a linear character of G, a regular function f ∈ C [X] is θ-equivariant if there exists a strictly positive integer r such that f (g.x) = χ θ (g) r f (x) for all x ∈ X.

Definition 2.1.1. A point x ∈ X is θ-semistable if there exists a θ-equivariant regular function f such that f (x) = 0. The set of θ-semistable points is denoted by X θ-ss . A point x ∈ X is θ-stable if it is θ-semistable and if its orbit G.x is closed in X θ-ss and its stabilizer is finite. The set of θ-stable points is denoted by X θ-s .

The GIT quotient as defined by Mumford [START_REF] Mumford | Geometric Invariant Theory[END_REF] is denoted by X θ-ss → X θ-ss //G. A point of this quotient represents a closed G-orbit in X θ-ss . When working over the field of complex numbers, such quotients are related to symplectic quotients. The affine variety X can be embedded as a closed subvariety of an hermitian space W with hermitian pairing denoted by p(. . . , . . . ). The embedding can be chosen so that the action of G on X comes from a linear action on W and the action of a maximal compact subgroup H ⊂ G preserves the hermitian pairing, p(h.u, h.v) = p(u, v) for all h ∈ H and u, v ∈ W . Then G can be identified with a subgroup of GL(W ). The hermitian pairing induces a symplectic form on the underlying real space ω(. . . , . . . ) := Re p(i . . . , . . . )

with i a square root of -1 and Re the real part. The hermitian pairing on the ambient space induces an hermitian metric on X. As X is a smooth subvariety of W , its tangent space is stable under multiplication by i, hence the non-degeneracy of the hermitian metric implies the non degeneracy of the restriction of the symplectic form ω to the tangent space of X and the symplectic form on W restricts to a symplectic form on X. Then the action of G on X induces a symplectic action of H on X. For x ∈ X introduce the Kempf-Ness map

φ θ,x : G → R g → ||g.x|| 2 -log |χ θ (g)| 2
with || . . . || the hermitian norm.

Theorem 2.1.2 ([Mig96] Theorem A.4 ). A point x 0 ∈ X is θ-semistable if and only if there exists in the closure of its orbit a point x ∈ G.x 0 such that φ θ,x has a minimum at the identity.

Remark 2.1.3. Let X * (G) R := X * (G) ⊗ Z R, the definiton of φ θ,x makes sense not only for linear characters but for any χ θ ∈ X * (G) R . It provides the following generalization of the definition of θ-semistability and θ-stability for any χ θ ∈ X * (G) R . Definition 2.1.4 (Semistable points). Let χ θ ∈ X * (G) R , a point x 0 is θ-semistable if there exists x ∈ G.x 0 such that φ θ,x has a minimum at the identity.

A point x 0 is θ-stable if it is θ-semistable, its orbit is closed in X θ-ss and its stabilizer is finite.

In the following of the article, θ-stability and θ-semistability as well as the notations X θ-s and X θ-ss always refer to this definition.

Correspondence between linear characters and elements

in the center of the Lie algebra of H

The Lie algebra of G is denoted by g and the real Lie algebra of H is h. Fix a non-degenerate scalar product . . . , . . . on h invariant under the adjoint action.

Proposition 2.2.1 (Polar decomposition). For all g ∈ G there exists a unique (h, Y ) ∈ H × h such that g = h exp(iY ) such an expression is called a polar decomposition. This implies for the Lie algebra g = h ⊕ ih.

Proof. It follows from [START_REF] Onishchik | Lie groups and Lie algebras III. Structure of Lie groups and Lie algebras[END_REF] Theorem 6.6.

The first step in Kempf-Ness theory is to associate to a character χ θ ∈ X * (G) an element in the center Z(h) of the Lie algebra h. As H is compact, its image under a complex character lies in the unit circle. Consider the differential of the character at the identity, it is a C-linear map dχ θ Id : g → C. The inclusion χ θ (H) ⊂ S 1 implies for the Lie algebra dχ θ Id (h) ⊂ iR. By C-linearity, dχ θ Id (ih) ⊂ R and the following map is R-linear dχ θ Id (i . . .

) : h → R Y → dχ θ Id (iY ) . (5) 
The invariant scalar product on h identifies this linear form with an element of h denoted by θ satisfying for all Y ∈ h θ, Y = idχ θ Id (Y ). Moreover, as the scalar product is invariant for the adjoint action and so is the character χ θ , the element θ lies in the center of h. This construction is Z-linear so that it extends to an R-linear map

ι : X * (G) R → Z(h) χ θ → θ Proposition 2.2.2. The R-linear map ι is an isomorphism from X * (G) R to Z(h).
Proof. As G is a complex reductive group G = Z(G)D(G) with Z(G) its center and D(G) its derived subgroup. Then X * (G) identifies with the set of linear characters of the torus Z(G).

Hence X * (G) is a Z-module of rank the complex dimension of Z(G) so that dim R X * (G) R = dim R Z(h).
It remains to prove that ι is injective. Let χ θ a linear character such that dχ θ Id (iY ) = 0 for all Y ∈ h. By C-linearity and polar decomposition dχ θ Id = 0. Hence for any g ∈ G the differential at g is also zero

dχ θ g = 0. As G is connected, χ θ is the trivial character.
Remark 2.2.3. This isomorphism justifies the notation χ θ for elements in X * (G) R , such elements are uniquely determined by a choice of θ ∈ Z(h), moreover

χ θ χ θ ′ = χ θ+θ ′ .

Correspondence between symplectic quotient and GIT quotient

Definition 2.3.1 (Real moment map). The real moment map µ : X → h is defined thanks to the invariant scalar product . . . , . . . by

µ(x), Y = 1 2 d dt || exp(itY ).x|| 2 t=0
for all Y ∈ h and x ∈ X. In this section the real moment map is just called the moment map. Later on complex and hyperkähler moment maps are also considered.

Example 2.3.2. Assume the compact group H is a torus T . The ambient space decomposes as an orthogonal direct sum W = χ α W χ α with χ α linear characters of T and

W χ α = {x ∈ W |t.x = χ α (t)w for all t ∈ T } Similarly to 2.2, a character χ α is uniquely determined by an element α in t the Lie algebra of T such that idχ α Id (Y ) = α, Y . Let A the finite subset of elements α ∈ t such that W χ α = {0}. Let us compute µ T the moment map for the torus action. Let x = α∈A x χ α in W , for Y in t the Lie algebra of T µ T (x), Y = 1 2 d dt || exp(itY ).x|| 2 t=0 = α∈A idχ α Id (Y ) ||x χ α || 2 = χ∈A ||x χ α || 2 α, Y
Therefore the non-degeneracy of the scalar product implies µ

T (x) = χ∈A ||x χ α || 2 α.
In particular the image of µ T is the cone C(A) ⊂ t spanned by positive coefficients combinations of elements α ∈ A. This example proves to be useful later on.

Proposition 2.3.3 (Guillemin-Sternberg [GS82]
). d x µ the differential of the moment map at x is surjective if and only if the stabilizer of x in H is finite.

Proof. A computation using the definition of the moment map and the symplectic form gives for v ∈ T x X a tangent vector at x and Y ∈ h

d x µ(v), Y = ω d dt exp(tY ).x t=0 , v .
This relation is often taken as a definition of the moment map. By non degeneracy of the symplectic form ω it implies that Y is orthogonal to the image of d x µ if and only if the stabilizer of x contains exp(tY ) for all t ∈ R. Hence the differential of the moment map is surjective if and only if the stabilizer of x is finite.

Lemma 2.3.4. Let χ θ ∈ X * (G) R and x ∈ X, then φ θ,x has a minimum at the identity if and only if µ(x) = θ. Moreover if φ θ,x has a minimun at the identity and at a point h exp(iY ) with h ∈ H and Y ∈ h, then exp(iY ).x = x.

Proof. Up to a shift in the definition of the moment map, this result is [START_REF] Migliorini | Stability of homogeneous vector bundles[END_REF]Corollary A.7]. The proof is recalled as it is useful for next proposition.

For all h ∈ H and g ∈ G φ θ,x (hg) = φ θ,x (g) so that the differential of φ θ,x at the identity vanishes on h.

For Y ′ + iY ∈ h ⊕ ih this differential is dφ θ,x Id (Y ′ + iY ) = dφ θ,x Id (iY ) = d dt || exp(itY ).x|| 2 t=0 -dχ θ Id (iY ) -dχ θ Id (iY ) = 2 µ(x), Y -2 θ, Y .
last equality follows from the definition of the moment map µ and the discussion in 2.2 defining θ and proving the reality of dχ θ Id (iY ). So far we proved that φ θ,x has a critical point at the identity if and only if µ(x) = θ, it remains to prove that this critical point is necessarily a minimum. Let φ θ,x be critical a the identity and g ∈ G written in polar form g = h exp(iY ). The action of iY is hermitian so that it can be diagonalized in an orthonormal basis (e j ) such that iY.e j = λ j e j with λ j ∈ R.

φ θ,x (h exp(iY )) -φ θ,x (Id) = φ θ,x (exp(iY )) -φ θ,x (Id) = j |exp(λ j )p(e j , x)| 2 -log j exp(2r j λ j ) - j |p(e j , x)| 2
with r j real parameters determined by χ θ ∈ X * (G) R . As φ θ,x is critical at the identity:

0 = d dt φ θ,x (exp(itY )) t=0 = j 2λ j |p(e j , x)| 2 -2r j λ j .
Combining the two previous equations

φ θ,x (h exp(iY )) -φ θ,x (Id) = j (exp(2λ j ) -2λ j -1) |p(e j , x)| 2 .
So that φ θ,x (h exp(iY ))φ θ,x (Id) ≥ 0 with equality if and only if exp(iY ).x = x. Hence when φ θ,x has a critical point at the identity, it is necessarily a minimum.

Proposition 2.3.5. Let χ θ ∈ X * (G) R then µ -1 (θ) ⊂ X θ-ss . Moreover, a point x 0 is θ-stable if and only if the orbit G.x 0 intersects µ -1 (θ) exactly in a H-orbit.
Proof. First statement follows from definition of stability 2.1.4 and Lemma 2.3.4.

Assume x 0 is θ-stable, then its orbit is closed in X θ-ss and G.x 0 ∩ µ -1 (θ) is not empty. Let x lies in this intersection, then φ θ,x has a minimum at the identity. For all g, g ′ ∈ G φ θ,g.x (g ′ ) = φ θ,x (g ′ g) + log χ θ (g) 2 Hence φ θ,g.x (g ′ ) is minimum for g ′ = g -1 . Now if g ∈ G verifies g.x ∈ µ -1 (θ) by Lemma 2.3.4, φ θ,g.x (g ′ ) has a minimum not only at g ′ = g -1 but also at the identity. By the second statement of previous lemma, g -1 = h exp(iY ) with h ∈ H and exp(iY ).x = x. As x is stable, its stabilizer is finite so that exp(iY ) = Id and g -1 ∈ H. Moreover for any h ∈ H, the map φ θ,h.x has a minimum at identity hence

h.x ∈ µ -1 (θ) so that G.x 0 ∩ µ -1 (θ) = H.x. Conversely suppose G.x 0 ∩ µ -1 (θ) = H.x. First x 0 is θ-semistable.
By Migliorini [Mig96, Proposition A.9], the orbit G.x 0 is closed in X θ-ss . It remains to prove that the stabilizer of x 0 is finite. By Lemma 2.3.4 the map φ θ,x is minimum at the identity. Let Y ∈ h such that exp(iY ) is in the stabilizer of x. Then χ θ (exp(iY )) = 1, otherwise either φ θ,x (exp(iY )) < φ θ,x (Id) or φ θ,x (exp(-iY )) < φ θ,x (Id). Hence φ θ,x (exp(iY )) = φ θ,x (Id) and exp(iY ) ∈ H so that Y = 0 and the stabilizer of x is finite.

Remark 2.3.6. For χ θ ∈ X * (G) such that θ-stability and θ-semistability coincide. Last proposition implies that the inclusion µ -1 (θ) ⊂ X θ-ss goes down to a continuous bijective map

µ -1 (θ)/H ∼ -→ X θ-ss //G.
This result is a particular instance of Kempf-Ness theory, it gives a natural bijection between a symplectic quotient and a GIT quotient. Hoskins [START_REF] Hoskins | Stratifications associated to reductive group actions on affine spaces[END_REF] proved that this map is actually an homeomorphism.

Hilbert-Mumford criterion for stability

Next theorem is a variant of the usual Hilbert-Mumford criterion for stability. It applies to real parameters χ θ ∈ X * (G) R not only to to linear characters. Instead of algebraic one-parameter subgroups it relies on one-parameter real Lie groups defined for

Y ∈ h by R → G t → exp(itY )
Many variants of Hilbert-Mumford criterion for one-parameter real Lie groups are given in [START_REF] Georgoulas | The moment-weight inequality and the Hilbert-Mumford criterion[END_REF]. Before proving the criterion, two classical technical lemmas are necessary.

Lemma 2.4.1. Let χ θ ∈ X * (G) R and Y ∈ h, for t ∈ R log χ θ (exp(itY )) 2 = 2 θ, Y t.
Proof. We prove it for χ θ ∈ X * (G) and deduce for elements in X * (G) R by R-linearity.

d dt t=s log χ θ (exp(itY )) 2 = 1 |χ θ (exp(isY ))| 2 d dt t=s χ θ (exp(itY )) 2 = d dt t=s χ θ (exp(i(t -s)Y )) 2 = d dt t=0 χ θ (exp(itY )) 2 = 2dχ θ Id (iY )
By the construction of the element θ ∈ Z(h) from 2.2 we conclude that

d dt t=s log χ θ (exp(itY )) 2 = 2 θ, Y and log χ θ (exp(itY )) 2 = 2 θ, Y t.
Lemma 2.4.2. Let x 0 ∈ X θ-s such that φ θ,x 0 is minimum at the identity. Let Z ∈ h and decompose x 0 in a basis of eigenvectors of the hermitian endomorphism iZ

x 0 = λ x 0 λ with exp(iZ)x 0 λ = exp(λ)x 0 λ .
Then either θ, Z < 0 or there exists λ > 0 with x 0 λ = 0. Proof. By Lemma 2.3.4 and Proposition 2.3.5, as x 0 is θ-stable, the Kempf-Ness map φ θ,x 0 reaches its minimum exactly on H. For Z ∈ h consider the map f Z defined for t real by f Z (t) = φ θ,x 0 (exp(iZt)) .

f Z reaches its minimum only at t = 0. We can compute f Z (t) using the decomposition of x 0 in eigenvectors of iZ and Lemma 2.4.1

f Z (t) = λ exp(2tλ) x 0 λ 2 -2 θ, Z t. (6) 
Its second derivative is

f ′′ Z (t) = λ 4λ 2 exp(2tλ) x 0 λ 2 .
Then f Z is convex, moreover it reaches its minimum only at t = 0 so that

lim t→+∞ f Z (t) = +∞.
Looking at equation (6) this implies either θ, Z < 0 or there exists λ > 0 with x 0 λ = 0.

Theorem 2.4.3 (Hilbert-Mumford criterion for stability). Let θ ∈ X * (G) R and x ∈ X. The following statements are equivalent (i) x is θ-stable.

(ii) For all Y ∈ h, different from zero, such that lim t→+∞ exp(itY ).x exists then θ, Y < 0.

Proof. not (i) implies not (ii) Let x ∈ X \ X θ-s . Then if φ θ,x admits a minimum, the stabilizer of x is not finite and this minimum is reached on an unbounded subset of G. Thus there exists an unbounded minimizing sequence for φ θ,x . By polar decomposition and H invariance we can assume it has the following form

(exp iY n ) n∈N with (Y n ) n∈N ∈ h N unbounded.
The hermitian space W admits an orthonormal basis B n = (e n 1 , . . . , e n d ) made of eigenvectors of iY n with associated eigenvalues λ n 1 , . . . , λ n d .

exp(iY n ).e n k = exp(λ n k )e n k .
This basis allows to compute: As (Y n ) n∈N is unbounded, up to an extraction of a subsequence, we can assume that lim n→+∞ Σ n = +∞ and that the following limit exist and are finite:

φ θ,x (exp iY n ) = d k=1 exp (2λ n k ) ||x n k || 2 -2 θ, Y n with x n k = p(x,
Y := lim n→+∞ Y n Σ n and λ k := lim n→+∞ λ n k Σ n .
Now one can bound from bellow the values φ θ,x (exp iY n ) of the minimizing sequence

φ θ,x (exp iY n ) ≥ {k|x k =0 } exp (2λ n k ) ||x n k || 2 -2 θ, Y n . ≥ {k|x k =0 } exp (2 (λ k + o(1)) Σ n ) ||x k || 2 + o(1) -2 ( θ, Y + o(1)) Σ n
with o(1) some sequences going to zero when n goes to infinity. As the left-hand side is the value of a minimizing sequence, it cannot go to plus infinity. Hence θ, Y ≥ 0, moreover if x k = 0 Then λ k ≤ 0. We conclude as Y satisfies lim t→+∞ exp(itY ).x exists and θ, Y ≥ 0. (i) implies (ii) Let x ∈ X θ-s , by Lemma 2.3.4 and Proposition 2.3.5 there exists g 0 ∈ G such that for x 0 = g 0 .x, the Kempf-Ness map φ θ,x 0 reaches its minimum exactly on H. Now let Y ∈ h such that lim t→+∞ exp(itY ).x exists then lim n→+∞ exp(inY ).x exists. For all n ∈ N polar decomposition provides unique h n ∈ H and Z n ∈ h such that

exp(inY ) = h n exp(iZ n )g 0 .
Then Z n is unbounded. Proceed as in the first part of the proof, iZ n is an hermitian endomorphism denote by λ n 1 , . . . , λ n d its eigenvalues and let

Σ n = d k=1 |λ n k | .
We can assume that lim n→+∞ Σ n = +∞ and that the following limits exist and are finite:

Z := lim n→+∞ Z n Σ n and λ k := lim n→+∞ λ n k Σ n .
Then denoting by x 0 k the components of x 0 in an orthonormal basis of eigenvectors of iZ

φ θ,x (exp(iZ n )g 0 ) ≥ {k|x k =0 } exp (2 (λ k + o(1)) Σ n ) ||x k || 2 + o(1) -2 ( θ, Z + o(1)) Σ n + log χ θ (g 0 ) 2
By Lemma 2.4.2 either θ, Z < 0 or there exists λ k > 0 with x 0 k = 0. In any case

lim n→+∞ φ θ,x (exp(iZ n )g 0 ) = +∞.
Then the relation (2.4) defining Z n implies

lim n→+∞ φ θ,x (exp(inY )) = +∞. (7) 
Decompose x in a basis of eigenvectors of the hermitian endomorphism iY

x = λ x λ then φ θ,x (exp(inY )) = λ exp(2nλ) ||x λ || 2 -2 θ, Y n.
As the limit lim n→+∞ exp(inY ).x is assumed to exist, λ ≤ 0 if x λ = 0. Then the condition (7) implies θ, Y < 0.

Regular locus

In this subsection the closed subvariety X is not relevant, the action of G and H on the ambient hermitian vector space W is studied. First note that the moment map can be defined not only on X but on the whole space W . Let T ⊂ H a maximal torus. As in Example 2.3.2 the ambient space W decomposes as an orthogonal direct sum W = W χ α with χ α characters of T and

W χ α = {x ∈ W |t.x = χ α (t)
x for all t ∈ T } .

Denote by A the finite subset of elements α ∈ t such that for the character χ α the space W χ α is not zero then

W = α∈A W χ α .
As before the link between linear characters and elements in t is through the invariant pairing . . . , . . . idχ α Id (β) = α, β . Hence if β is orthogonal to the R vector space spanned by A χ α (exp tβ) = 1 for all α ∈ A so that exp tβ is in the kernel of the action of H on W . From the beginning this kernel is assumed to be trivial, hence the vector space spanned by A is t. As in Example 2.3.2, the image of µ T , the moment map relative to the T -action, is the cone spanned by positive combinations of A. For any A ′ finite subset of t the cone spanned by positive combinations of A ′ is:

C(A ′ ) := α∈A ′ a α α | a α ≥ 0 for all α ∈ A ′ . For any β ∈ t µ(x), β = d dt ||exp(itβ).x|| 2 t=0 = µ T (x), β .
Hence, as noted by Kirwan [START_REF] Clare | Cohomology of Quotients in Symplectic and Algebraic Geometry[END_REF], if µ(x) ∈ t then µ(x) = µ T (x). For A ′ a finite subset of t we denote by dim A ′ the dimension of the vector space spanned by A ′ .

Lemma 2.5.1. Let x ∈ W such that for all A ′ ⊂ A with dim A ′ < dim t, the value of the moment map µ T (x) does not lie in C(A ′ ). Then the stabilizer of x is finite.

Proof. Decompose x according to its weight x = α∈A x α then

µ T (x) = ||x α || 2 α.
Denote by A x the set of elements α such that x α = 0. The hypothesis about µ T (x)

implies that dim A x = dim t. Now for β ∈ t exp(βt).x = α∈Ax χ α (exp βt)x α .
Hence if exp βt is in the stabilizer of x, for all α ∈ A x the pairing with β vanishes α, β = 0. As A x spans t this implies that β = 0 and the stabilizer of x in T is finite.

Previous lemma justifies the introduction of the following nonempty open subset of t

C(A) reg := C(A) \ A ′ ⊂A dim A ′ <dim t C(A ′ ).
As all maximal torus of H are conjugated, the set C(A) reg ∩ Z(h) is independent of a choice of maximal torus T .

Proposition 2.5.2. For θ ∈ C(A) reg ∩ Z(h), every θ-semistable points are θ-stable, W θ-ss = W θ-s and in particular X θ-ss = X θ-s .

Proof. Let x ∈ W θ-ss , then G.x meets µ -1 (θ). But G.x \ G.
x is a union of G-orbits of dimension strictly smaller than G.x, points in those orbits has stabilizer with dimension greater than one. By previous lemma every point in µ -1 (θ) has a finite stabilizer. Thus G.x ∩ µ -1 (θ) = ∅ and the stabilizer of x is finite so that x is θ-stable.

Kirwan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin [HW08]
and Hoskins [START_REF] Hoskins | Stratifications associated to reductive group actions on affine spaces[END_REF] studied a stratification of W . It relies on the Morse theory of the following map. For θ ∈ Z(h)

h θ : W → R x → |µ(x) -θ| 2
with |. . . | the norm defined by the invariant pairing . . . , . . . on h. A critical point of a smooth map f is a point x where the differential vanishes d x f = 0. A critical value of f is the image f (x) of a critical point x. The gradient of h θ is the vector field defined thanks to the hermitian pairing p(. . . , . . . ) for x ∈ W and v ∈ T x W by

p (grad x h θ , v) = d x h θ .v
For x ∈ W the negative gradient flow relative to h θ is the map

γ θ x : R ≥0 → W t → γ θ x (t)
uniquely determined by the condition

dγ θ x (s) ds s=t = -grad γ θ x (t) h θ .
and γ θ x (0) = x. By [START_REF] Sjamaar | Convexity properties of the moment mapping reexamined[END_REF] and [START_REF] Harada | Morse theory of the moment map for representations of quivers[END_REF] it is well defined and for any x the limit lim t→+∞ γ θ x (t) exists and is a critical point of h θ . S θ is the set of point x ∈ W with negative gradient flow for h θ converging to a point where h θ reaches its minimal value 0:

S θ := x ∈ W lim t→+∞ γ θ x (t) ∈ µ -1 (θ) .
This is the open strata of the stratification, Sjamaar called it the set of analitically semistable points. When the stability parameter is a true character i.e. χ θ ∈ X * (G), Hoskins [START_REF] Hoskins | Stratifications associated to reductive group actions on affine spaces[END_REF] proved that this strata coincides with the θ-semistable locus. Here we want to consider any χ θ ∈ X * (G) R , the proof of the inclusion S θ ⊂ W θ-ss is the same and it is enough for our purpose.

Proposition 2.5.3. S θ is a subset of W θ-ss .

Proof. The flow γ x (t) belongs to the orbit G.x hence lim t→+∞ γ x (t) ⊂ G.x. Therefore if x ∈ S θ then G.x ∩ µ -1 (θ) = ∅.

An important feature of the map h θ is that its critical points lie in a finite union

A ′ ⊂A µ -1 (H.β(A ′ , θ))
indexed by the subsets of the finite set A. With β(A ′ , θ) the projection of θ to the closed convex C(A ′ ) and H.β(A ′ , θ) the adjoint orbit of β(A ′ , θ).

Lemma 2.5.4. By definition of the projection to a closed convex in an euclidian space |β(A ′ , θ) -θ| is the distance between θ and the cone C(A ′ ), define

d θ = inf A ′ ⊂A β(A ′ ,θ) =θ |β(A ′ , θ) -θ| 2 (8) then d θ > 0 and h θ -1 [0, d θ [ ⊂ S θ .
Proof. For any h ∈ H by invariance of the scalar product under the adjoint action and as

θ ∈ Z(h) |h.β(A ′ , θ) -θ| 2 = |β(θ, A ′ ) -θ| 2 . Hence if x is a critical point of h θ not in µ -1 (θ), then x ∈ µ -1 (H.β(A ′ , θ)) for some β(A ′ , θ) different from θ and |µ(x) -θ| 2 = |β(θ, A ′ ) -θ| 2 > d θ .
So that the only critical value of h θ 0 in the intervalle [0, d θ [ is 0. Now for any x ∈ W , the map t → h θ γ θ x (t) can only decrease, and it converges to a critical value. Therefore if x ∈ h -1 θ [0, d θ [ the negative gradient flow converges necessarily to a point lim t→+∞ γ θ x (t) which belongs to h -1 θ (0) = µ -1 (θ) so that x ∈ S θ . Theorem 2.5.5. Let θ 0 ∈ C(A) reg ∩ Z(h), there is an open neighborhood V θ 0 of θ 0 in C(A) reg ∩ Z(h) such that for all θ ∈ V θ 0 , θ-stability and θ 0 -stability coincide W θ 0 -ss = W θ-ss .

Proof. Let ǫ > 0 such that B(θ 0 , ǫ) the ball of center θ 0 and radius ǫ in t is included in C(A) reg . Then when θ varies in B(θ 0 , ǫ) it does not meet any frontier of a cone C(A ′ ) with A ′ ⊂ A. So that for θ ∈ B(θ 0 , ǫ), for all A ′ ⊂ A, β(θ, A ′ ) = 0 if and only if β(θ 0 , A ′ ) = 0. Thus the subset indexing the infima defining d θ and d θ 0 in (8) are identical. As the projection to closed convex is a continuous map, the map θ → d θ is continuous on B(θ 0 , ǫ). Therefore one can chose ǫ ′ > 0 such that

• d θ > d θ 0
2 for all θ ∈ B(θ 0 , ǫ ′ ). Moreover ǫ ′ can be chosen to satisfy the following conditions

• B(θ 0 , ǫ ′ ) ⊂ C(A) reg • ǫ ′2 < d θ 0 2
Let θ in B(θ 0 , ǫ ′ ) ∩ Z(h), we shall see that W θ-ss = W θ 0 -ss . First note that θ ∈ C(A) reg ∩ Z(h) and Proposition 2.5.2 implies W θ-ss = W θ-s .

For x ∈ W θ-ss = W θ-s , by Proposition 2.3.5 there exists g ∈ G such that g.x ∈ µ -1 (θ). Then |µ(g.x)θ 0 | < d θ 0 2 and g.x ∈ h -1 θ 0 [0, d θ 0 [. By Lemma 2.5.4, g.x ∈ S θ 0 and by Proposition 2.5.3 g.x is θ 0 -semistable so that x ∈ W θ 0 -ss .

Similarly for x ∈ W θ 0 -ss , there exists g ∈ G such that g.x ∈ µ -1 (θ 0 ). Then |µ(g.x) -θ| 2 < d θ 0 2 and as

d θ 0 2 < d θ , the point g.x lies in h -1 θ [0, d θ [ therefore x is θ-stable.
Considering again the closed subvariety X ⊂ W one defines the regular locus: Definition 2.5.6 (Regular locus). The regular locus B reg is the set of elements θ ∈ C(A) reg ∩ Z(h) such that for all x ∈ X θ-ss the stabilizer of x in G is trivial and X θ-ss = ∅.

Proposition 2.5.7. The regular locus B reg is the union of some connected components of C(A) reg ∩ Z(h).

Proof. By Theorem 2.5.5, if θ and θ ′ are in the same connected component of C(A) reg ∩ Z(h) then W θ-ss = W θ ′ -ss . Hence if θ ∈ C(A) reg ∩ Z(h) is such that for all x ∈ X θ-ss the stabilizer of x in G is trivial and X θ-ss = ∅, the same holds for θ ′ in the same connected component of C(A) reg ∩ Z(h).

Remark 2.5.8. Note that the regular locus B reg can be empty, for instance if the center Z(h) is a subset of a cone C(A ′ ) with dim A ′ < dim t. Fortunately it is non-empty for the application to Nakajima quiver varieties of next sections.

In next subsection we prove that the real moment map is a locally trivial fibration over the regular locus B reg .

Trivialization of the real moment map over the regular locus

Next construction follows ideas from Hitchin-Karlhede-Lindström-Roček and is illustrated in [HKLR87, Figure 3 p.348].

Proposition 2.6.1. For χ θ ∈ X * (G) R and x a θ-stable point with trivial stabilizer, there exists a unique Y θ,x ∈ h such that exp iY θ,x .x ∈ µ -1 (θ). Moreover for h ∈ H the adjoint action of h on Y θ,x satisfies

h.Y θ,x = Y θ,h.x . ( 9 
)
Let θ ′ = µ(x) and x ′ = exp iY θ,x .x, then

Y θ ′ ,x ′ = -Y θ,x . (10) 
.

Proof. As x is θ-stable, by Proposition 2.3.5 the orbit G.x intersects µ -1 (θ) exactly on a H-orbit. There exists g ∈ G such that g.x ∈ µ -1 (θ). Apply polar decomposition to this element g = h 0 exp iY θ,x with h 0 ∈ H and Y θ,x ∈ h. Then

µ -1 (θ) ∩ G.x = H. exp iY θ,x .x
Take Y ′ such that exp (iY ′ ) .x ∈ µ -1 (θ) then exp(iY ′ ).x = h exp(iY θ,x ).x for some h in H. By triviality of the stabilizer of x and uniqueness of polar decomposition

Y ′ = Y θ,x hence Y θ,x is uniquely determined. Let us check H-equivariance, for h ∈ H µ -1 (θ) ∋ h exp(iY θ,x ).x = exp ih.Y θ,x .h.x
by uniqueness Y θ,h.x = h.Y θ,x . Equation ( 10) is clear.

Remark 2.6.2. The assumption that x has a trivial stabilizer can be relaxed. Then there exists Y x,θ ∈ h such that

Y ∈ h | exp(iY ).x ∈ µ -1 (θ) = (Stab H x) .Y θ,x
The right-hand side is the orbit of Y θ,x under the adjoint action of the stabilizer of x in H. For applications to quiver varieties we only need to consider the case of a trivial stabilizer.

Lemma 2.6.3. Let θ ∈ Z(h) and x 0 a θ-stable point with trivial stabilizer. There exists an open neighborhood U θ,x 0 of (θ, x 0 ) in h × X and a smooth map

Y : U θ,x 0 → h (θ ′ , x ′ ) → Y (θ ′ , x ′ ) such that µ (exp (iY (θ ′ , x ′ )) .x ′ ) = θ ′ .
Proof. Note that when θ ∈ Z(h) necessarily Y (θ, x) is equal to the Y θ,x introduced in previous proposition. Let Y θ,x 0 such that x := exp iY θ,x 0 .x 0 is in the intersection G.x 0 ∩ µ -1 (θ). Consider the map

f : h × h × X → h (Y ′ , θ ′ , x ′ ) → µ (exp(iY ′ ).x ′ ) -θ ′
in order to use the implicit function theorem on a neighborhood of Y θ,x 0 , θ, x 0 we first prove that the differential of f with respect to Y ′ at (Y θ,x 0 , θ, x 0 ) is invertible. As x has a finite stabilizer, the embedding of tangent spaces T x H.x ֒-→ T x G.x identifies with the embedding

h ∼ = T Id H ֒-→ T Id G ∼ = h ⊕ ih. ( 11 
)
By Proposition 2.3.3, dµ is surjective so that µ -1 (θ) is a smooth manifold and

ker dµ x = T x µ -1 (θ). Proposition 2.3.5 implies µ -1 (θ) ∩ G.x = H.x Restricting d x µ
to the tangent space of the G-orbit we obtain the following short exact sequence

0 ֒-→ T x H.x ֒-→ T x G.x dxµ| TxG.x ------→ h -→ 0.
the surjectivity follows from dimension counting and the identification of the tangent spaces with (11). Thus we obtain the expected invertibility of the differential with respect to Y ′ of f at (Y θ,x 0 , θ, x 0 ), the map d Y ′ f (Y θ,x 0 ,θ,x 0 ) , identifies with an invertible map ih → h. The implicit function theorem applies and gives the existence of U θ,x 0 ⊂ h × X an open neighborhood of (θ, x 0 ) and the expected smooth map Y (. . . , . . . ).

Next theorem is a first result concerning local triviality of the moment map, over the regular locus B reg the real moment map is a locally trivial fibration.

Theorem 2.6.4. Let θ 0 in B reg , and U θ 0 the connected component of B reg containing θ 0 . There is a diffeomorphism f such that the following diagram commutes

U θ 0 × µ -1 (θ 0 ) µ -1 (U θ 0 ) U θ 0 f ∼ µ
Moreover f is H equivariant so that the diagram goes down to quotient

U θ 0 × µ -1 (θ 0 ) /H µ -1 (U θ 0 )/H U θ 0 ∼ Proof. For θ ∈ U θ 0 we know from 2.5 that X θ-s = X θ 0 -s = ∅. Define f by f (θ, x) := exp (iY (θ, x)) .x
It follows from Proposition 2.6.1 that it is invertible with inverse

f -1 (x ′ ) = (µ(x ′ ), exp (iY (θ 0 , x ′ )) .x ′ ) .
Lemma 2.6.3 implies that f is a diffeomorphism. Equivariance follows from equation (9) so that f (θ, h.x) = h.f (θ, x) and f goes down to a diffeomorphism between quotients.

In next sections Nakajima quiver varieties are considered, they admit an additional hyperkähler structure. A similar trivialization is established in this hyperkähler context.

3 Quiver varieties and stability

Generalities about quiver varieties

The quiver varieties considered in this paper were introduced by Nakajima [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF]. Let Γ be a quiver with vertices Ω 0 and edges Ω 1 . For an edge γ ∈ Ω 1 we denote t(γ) ∈ Ω 0 its tail and h(γ) ∈ Ω 0 its head, we define the reverse edge γ such that t(γ) = h(γ) and h(γ) = t(γ).

t(γ) • • h(γ) γ γ
Let Ω 1 := {γ |γ ∈ Ω 1 } and Ω := Ω 1 ⊔ Ω 1 . For γ ∈ Ω 1 we set γ := γ to obtain an involution on Ω. The extended quiver Γ is obtained by adding an inverse to all edges in Ω 1 , its set of vertices is Ω 0 and its set of edges is Ω.

Let ǫ : Ω → {-1, 1} be the map ǫ(γ) = 1 if γ ∈ Ω 1 ǫ(γ) = -1 if γ ∈ Ω 1
We fix a dimension vector v ∈ N Ω 0 . A representation of the quiver Γ with dimension vector v is a pair (V, φ) with V = j∈Ω 0 V j a graded vector space with dim V j = v j and φ = (φ γ ) γ∈Ω 1 a collection of linear maps φ γ : V t(γ) → V h(γ) . A subrepresentation is a subspace W ⊂ V with a compatible Ω 0 -grading and preserved by φ. The set of quiver representations with dimension vector v is identified with

Rep (Γ, v) := γ∈Ω 1 Mat C (v h(γ) , v t(γ) ).
For construction of quiver varieties it is interesting to consider representations of the extended quiver

Γ Rep Γ, v := γ∈ Ω Mat C (v h(γ) , v t(γ) ).
It is a complex vector space, the complex structure considered in this section is

I.(φ γ ) γ∈ Ω = (iφ γ ) γ∈ Ω The group GL v := i∈Ω 0 GL v i (C) acts linearly on Rep( Γ, v) g. (φ γ ) γ∈ Ω := g h(γ) φ γ g -1 t(γ) γ∈ Ω .
The diagonal embedding of C * in GL v acts trivially so that the action goes down to an action of the group

G v := GL v /C * ,
which identifies with

G v ∼ = (g j ) j∈Ω 0 ∈ GL v | j∈Ω 0 det(g j ) = 1 .
Note that G v is isomorphic to a product of a special linear group and a finite number of general linear groups so that it is a reductive group. The Lie algebra of

GL v , respectively G v is gl v = j∈Ω 0 gl v j (C) respectively. g v = (x j ) j∈Ω 0 ∈ gl v j∈Ω 0 tr x j = 0
The center of g v is

Z(g v ) = (ξ j Id v j ) j∈Ω 0 (ξ j ) j∈Ω 0 ∈ (C) Ω 0 with j∈Ω 0 v j ξ j = 0 . Let θ ∈ Z Ω 0 such that j∈Ω 0 v j θ j = 0, define χ θ a character of G v by χ θ ((g j ) j∈Ω 0 ) = j∈Ω 0 det(g j ) -θ j . (12) 
The θ-semistable locus, respectively θ-stable locus in the sense of Mumford's Geometric Invariant Theory [START_REF] Mumford | Geometric Invariant Theory[END_REF], are denoted by Rep( Γ, v) θ-ss , respectively Rep( Γ, v) θ-s .

Definition 3.1 (Complex moment map). The complex moment map is defined by

µ C : Rep( Γ, v) → g v (φ γ ) γ∈ Ω → γ∈ Ω ǫ(γ)φ γ φ γ
it is G v -equivariant for the adjoint action on g v .

This complex moment map will be related to the real moment map of Definition 2.3.1 in next section. Definition 3.2 (Nakajima quiver variety). For ξ ∈ Z(g v ), the set µ -1 C (ξ) is an affine variety in Rep( Γ, v), it inherits a G v action. Nakajima quiver varieties are defined as GIT quotients:

M θ v (ξ) := µ -1 C (ξ) ∩ Rep( Γ, v) θ-ss //G v .
Those varieties are interesting from the differential geometry point of view and have an hyperkähler structure. We are interested in the family formed by those varieties when the parameters ξ and θ are varying.

King's characterization of stability of quiver representations

As in Section 2 the geometric invariant theory has a symplectic counterpart. Rep Γ, v is an hermitian vector space with norm

(φ γ ) γ∈ Ω 2 = γ∈ Ω tr(φ γ φ † γ ).
The G v -action restricts to a unitary action of the maximal compact subgroup

U v = (g j ) j∈Ω 0 ∈ j∈Ω 0 U v j j∈Ω 0 det(g v j ) = 1
The Lie algebra of U v is

u v = (x j ) j∈Ω 0 ∈ j∈Ω 0 u v j j∈Ω 0 tr x j = 0
with U v j , respectively u v j , the group of unitary matrices, respectively the space of skew-hermitian matrices of size v j . The real moment map µ I for the U v action satisfies

µ I (x), Y = 1 2 d dt || exp(it.Y ).x|| 2 t=0 for Y ∈ u v . The pairing is defined for Y = (Y j ) j∈Ω 0 and Z = (Z j ) j∈Ω 0 by Y, Z = j∈Ω 0 tr(Y j Z j ). (13) 
As in 2.2, to the character χ θ defined by ( 12) is associated the following element of the Lie algebra

u v θ = (-iθ j Id v j ) j∈Ω 0 ∈ u v . (14) 
Indeed for Y = (Y j ) j∈Ω 0 in the Lie algebra u v , by the usual differentiation of the determinant map at identity

dχ θ Id (iY j ) = - j∈Ω 0 iθ j tr(Y j ) = θ, Y .
We recall here an important result from King giving a characterization of θstability for quiver representations.

Theorem 3.3 (King [Kin94] Proposition 3.1). Let θ ∈ Z Ω 0 such that θ j v j = 0 and χ θ the associated character defined by (12) .

1. A quiver representation (V, φ) ∈ Rep Γ, v is θ-semistable if and only if for all subrepresentation W ⊂ V j∈Ω 0 θ j dim W j ≤ 0.
2. A quiver representation (V, φ) is a θ-stable if and only if for all subrepresentation W different from 0 and (V, φ)

j∈Ω 0 θ j dim W j < 0.
The symplectic point of view allows to consider real parameters θ ∈ R Ω 0 such that j∈Ω 0 v j θ j = 0. They are associated to elements χ θ ∈ X * (G v ) R with well-defined modulus:

χ θ ((g j ) j∈Ω 0 ) = j∈Ω 0 |det(g j )| -θ j .
The set of θ-stable points in Rep Γ, v is defined by Definition 2.1.4. The end of this section is devoted to a generalization of the second point of King's theorem for real parameters θ ∈ R Ω 0 such that

θ j v j = 0. Let Y = (Y j ) j∈Ω 0 ∈ u v , the iY j are hermitian endomorphisms of V j . For λ ∈ R denote by V j
≤λ the subspace of V j spanned by eigenvectors of iY j with eigenvalues smaller than λ then define

V ≤λ := j∈Ω 0 V j ≤λ . Lemma 3.4. Let x = (V, φ) in Rep Γ, v and Y ∈ u v . The limit lim t→+∞ exp(itY ).x
exists if and only if for every λ real, V ≤λ defines a subrepresentation of (V, φ)

Proof. For all j ∈ Ω 0 take a basis of V j formed by eigenvectors of iY j and assume the eigenvalues repeated according to multiplicities are ordered

λ j 1 ≤ λ j 2 ≤ • • • ≤ λ j v j .
In those basis of eigenvectors, for γ ∈ Γ one can write the matrix of φ γ and compute the action of exp(itY )

(exp(itY ).φ) γ =       φ γ 1,1 e t(λ h(γ) 1 -λ t(γ) 2 ) φ γ 1,2 . . . e t(λ h(γ) 2 -λ t(γ) 1 ) φ γ 2,1 . . . . . . e t(λ h(γ) a -λ t(γ) b ) φ γ a,b . . . e t(λ h(γ) v h(γ) -λ t(γ) 1 ) φ γ v h(γ) ,1 . . .      
the limit exists if and only if the matrix is upper triangular i.e. φ(V ≤λ ) ⊂ V ≤λ and V ≤λ defines a subrepresentation of (V, φ).

Next result is the generalization of King's theorem relative to θ-stability of quiver representations for a real parameter θ. Its proof relies on previous lemma and the Hilbert-Mumford criterion for real one-parameter Lie groups 2.4.3.

Theorem 3.2.1. Let θ ∈ R Ω 0 such that j∈Ω 0 θ j v j = 0 and χ θ the associated element in X * (G v ) R . A quiver representation (V, φ) is θ-stable if and only if for all subrepresentation W ⊂ V different from 0 and (V, φ) j∈Ω 0 θ j dim W j < 0. Proof. Let x = (V, φ) in Rep Γ, v θ-s
a θ-stable point. By Hilber-Mumford criterion (Theorem 2.4.3), for all Y ∈ u v such that lim t→+∞ exp(itY ).x exists then θ, Y < 0.

Let W be a subrepresentation of (V, φ) different from 0 and (V, φ). For all j ∈ Ω 0 define Y j in u v j such that W j is an eigenspace of iY j with eigenvalue λ 1 and W ⊥ j the orthogonal complement of W j is an eigenspace of iY j with eigenvalue λ 2 and λ 2 > λ 1 . By previous lemma lim t→+∞ exp(itY ).x exists.

θ, Y = - j∈Ω 0 θ j (λ 1 dim W j + λ 2 (dim V j -dim W j )) = - j∈Ω 0 (λ 1 -λ 2 )θ j dim W j because θ j v j = 0.
Then Hilbert-Mumford criterion implies θ, Y < 0, hence j∈Ω 0 θ j dim W j < 0.

Conversely let x = (V, φ) a quiver representation such that for all subrepresentation W V different from 0

j∈Ω 0 θ j dim W j < 0. Let Y = (Y j ) j∈Ω 0 ∈ u v different from zero. The set of eigenvalues of iY j is ordered λ j 1 < • • • < λ j d j .
The set of all eigenvalues for all j ∈ Ω 0 is also ordered

λ j k j∈Ω 0 1≤k≤d j = {λ 1 , λ 2 , . . . , λ m }
with λ k < λ k+1 . For convenience add an element λ 0 < λ 1 . If lim t→=∞ exp(itY ).x exists, by previous lemma V ≤λ is a subrepresentation of (V, φ). Moreover

θ, Y = - j∈Ω 0 θ j d j k=1 λ j k dim V j ≤λ j k -dim V j ≤λ j k-1 = - j∈Ω 0 θ j m k=1 λ k dim V j ≤λ k -dim V j ≤λ k-1 = - j∈Ω 0 θ j m-1 k=1 (λ k -λ k+1 ) dim V j ≤λ k -λ m j∈Ω 0 θ j dim V j ≤λm .
The last summand vanishes as

θ j v j = 0, θ, Y = - m k=1 (λ k -λ k+1 ) j∈Ω 0 θ j dim V j ≤λ k
As Y = 0, it has at least two distinct eigenvalues. Then V ≤λ 1 is a subrepresentation different from zero and V and

-(λ 0 -λ 1 ) j∈Ω 0 θ j dim V j ≤λ 1 < 0 so that θ, Y < 0.
This result is useful in next section to characterize a regular locus for the hyperkähler moment map.

Nakajima quiver varieties as hyperkähler quotients and trivialization of the hyperkähler moment map

After some reminder about the hyperkähler structure of Nakajima quiver varieties, trivializations of the hyperkähler moment map are discussed.

Hyperkähler structure on the space of representations of an extended quiver

The space Rep Γ, v is endowed with three complex structures

I. (φ γ , φ γ ) = (iφ γ , iφ γ ) J. (φ γ , φ γ ) = (-φ † γ , φ † γ ) K. (φ γ , φ γ ) = (-iφ † γ , iφ † γ )
satisfying quaternionic relations

I 2 = J 2 = K 2 = IJK = -1 (15) 
and a norm

(φ γ ) γ∈ Ω 2 = γ∈ Ω tr φ γ φ † γ .
For each complex structure, polarisation identity defines an hermitian pairing compatible with || . . . ||. For example the hermitian pairing compatible with the complex structure I used in previous section is 

p I (u, v) = 1 4 ||u + v|| 2 -
Ψ : Rep Γ, v → Rep Γ, v x → 1 2 (1 + I + J + K) .
x It is an isomorphism from the hermitian vector space Rep Γ, v with the complex structure I and hermitian pairing p I to the hermitian vector space Rep Γ, v with the complex structure J and pairing p J .

More generally it cyclically permutes the three complex structure I, J, K

Ψ(I.x) = J.Ψ(x) Ψ(J.x) = K.Ψ(x) Ψ(K.x) = I.Ψ(x). ( 16 
)
Such a map is sometimes called an hyperkähler rotation.

Proof. Relations (16) follow from a computation with the quaternionic relations (15). To prove the compatibility with the hermitian structures it is enough to check that ||Ψ(x)|| = ||x||.

||(1 + I + J + K).x|| 2 = g ((1 + I + J + K).x, (1 + I + J + K).x) .

The expected result is obtain after cancellations from the identity g(I.u, u) = 0, similar relations for the other complex structures and quaternionic relations (15).

In 3.1 an I-linear action of G v is described. The hyperkähler rotation Ψ provides the following construction for J-linear and K-linear actions. This three actions coincide when restricted to the compact subgroup U v . Definition 4.1.5 (Complexification of the action). Thanks to polar decomposition, to define a linear action of G v compatible with the complex structure J it is enough to define the action of exp(i.Y ) for Y ∈ u v . To highlight the complex structure used, this action is written exp(J.Y ) . . . and defined by exp(J.Y ).x := Ψ exp(i.Y ).Ψ -1 (x) with the element exp(i.Y ) of G v acting by the natural I-linear action previously described. Similarly exp(K.Y ).x := Ψ -1 (exp(i.Y ).Ψ(x)) .

Remark 4.1.6. A point x is θ-(semi)stable with respect to the I-linear action if and only if Ψ(x) is θ-(semi)stable with respect to the J-linear action.

Hyperkähler structure and moment maps

By Proposition 4.1.4 the various G v -actions previously described are compatible with the hermitian metrics so that the constructions of section 2 apply. They provide a moment map for each complex structure.

µ I (x), Y = 1 2 d dt || exp(t.I.Y ).x|| 2 t=0 µ J (x), Y = 1 2 d dt || exp(t.J.Y ).x|| 2 t=0 µ K (x), Y = 1 2 d dt || exp(t.K.Y ).x|| 2 t=0 .
The pairing is defined by (13).

Definition 4.2.1 (Hyperkähler moment map). Those three real moment maps fit together in an hyperkähler moment map µ

H : Rep Γ, v → u v ⊕ u v ⊕ u v defined by µ H = (µ I , µ J , µ K ).
The moment map µ C defined in 3.1 by

µ C (φ γ ) γ∈ Ω := γ∈ Ω ǫ(γ)φ γ φ γ . ( 17 
)
can be expressed from the real moment maps

µ C := µ J + iµ K .
it is a polynomial map with respect to the complex structure I.

Remark 4.2.2. By cyclic permutation of the complex structure, µ K + iµ I is polynomial with respect to the complex structure J and µ I + iµ J is polynomial with respect to the complex structure K.

Take (θ J,j ) j∈Ω 0 and (θ K,j ) j∈Ω 0 in R Ω 0 such that j v j θ J,j = j v j θ K,j = 0. Associate to each of them an element in the center of the Lie algebra u v θ J := -iθ J,j Id v j j∈Ω 0 θ K := -iθ K,j Id v j j∈Ω 0 .

Then θ J + iθ K defines an element in the center of

g v = u v ⊕ iu v . Hence µ -1 J (θ J ) ∩ µ -1 K (θ K ) = µ -1 C (θ J +iθ K
) is an affine variety embedded in the vector space Rep Γ, v endowed with the complex structure I and stable under the G v -action. Section 2 does not apply directly to this situation as µ -1 C (θ J +iθ K ) might be singular. However it applies to the action of G v on the ambiant space Rep Γ, v . For θ I ∈ R Ω 0 such that j∈Ω 0 v j θ I,j = 0 consider the associated element

χ θ I ∈ X * (G v ) R .
Definition 4.2.3 (Hyperkähler regular locus). For w ∈ N Ω 0 a dimension vector

H w := (θ I , θ J , θ K ) ∈ R Ω 0 3 j w j θ I,j = j w j θ J,j = j w j θ K,j = 0 .
The regular locus is

H reg v = H v \ w<v H w ( 18 
)
the union is over dimension vector w = v such that 0 ≤ w i ≤ v i .

Remark 4.2.4. This regular locus is empty unless the dimension vector v is indivisible, then H reg v is the complementary of a finite union of codimension 3 real vector space.

Thanks to Kempf-Ness theory, Nakajima quiver varieties can be constructed as hyperkähler quotients. The underlying manifold of the variety

M θ I v (θ J + iθ K ) (see definition 3.2) is : m v (θ I , θ J , θ K ) = µ -1 H (θ I , θ J , θ K )/U v

Trivialization of the hyperkähler moment map

We study the family of Nakajima quiver varieties when the parameters (θ I , θ J , θ K ) are varying. Nakajima proved by consecutive uses of different complex structures that for θ and θ

′ in H reg v the manifolds m v (θ I , θ J , θ K ) and m v (θ ′ I , θ ′ J , θ ′ K ) are diffeo- morphic [Nak94, Corollary 4.2].
We use this idea of consecutive uses of different complex structures to prove that those manifolds fit in a locally trivial family over the regular locus H reg v . First let us highlight relevant facts about the regular locus.

Lemma 4.3.1. Let (θ I , θ J , θ K ) ∈ H reg v and x ∈ µ -1 J (θ J ) ∩ µ -1 K (θ K ). Then x is θ I -stable if and only if it is θ I -semistable. Proof. If x 0 ∈ µ -1
H (θ I , θ J , θ K ) its stabilizer in G v is trivial. Indeed Maffei proved that the differential of the moment map at x 0 is surjective [Maf02, Lemma 48], then Proposition 2.3.3 implies the triviality of the stabilizer of x 0 .

Let

x ∈ µ -1 J (θ J ) ∩ µ -1 K (θ K ) a θ I -semistable point. Then G v .x ∩ µ -1 I (θ I ) is not empty. As µ -1 J (θ J ) ∩ µ -1 K (θ K ) = µ -1 C (θ J + iθ K ) is G v stable, the closure of the orbit G v .x meets µ -1
H (θ I , θ J , θ K ) at a point x 0 . This point necessarily has a trivial stabilizer, hence x 0 ∈ G v .x and x is θ I -stable. and

exp (K.Y K (θ K , x)) exp (J.Y J (θ J , x)) exp (I.Y I (θ I , x)) .x ∈ µ -1 H (θ I , θ J , θ K ).
This defines the map f -1

f -1 (x) := ((θ ′ I , θ ′ J , θ ′ K ), exp (K.Y K (θ J , x)) exp (J.Y J (θ J , x)) exp (I.Y I (θ I , x)) .x) .
Lemma 2.6.3 implies the smoothness of f -1 . This map induces a diffeomorphism, indeed exchanging θ and θ ′ in previous construction produces the expected inverse

f (x, (θ ′ I , θ ′ J , θ ′ K )) := exp (I.Y I (θ ′ I , x)) exp (J.Y J (θ ′ J , x)) exp (K.Y K (θ ′ K , x)) .x
It follows from equation (10) that the maps are inverse of each others. The exchange in the order of appearance of the complex structures I, J and K in the definition of f and f -1 are necessary as the exponentials do not necessarily commute. The U v -equivariance follows from equation (9).

Similarly one can consider the complex moment map µ 

C = µ J + iµ K instead of µ H . The complex regular locus is C reg v := C v \ w<v C w with C w = ξ ∈ C Ω 0 j∈Ω 0 w j ξ j = 0
V × µ -1 C (ξ) µ -1 C (V ) V f ∼ µ C
Proof. The proof is similar to the hyperkähler situation.

Denote π : µ -1 H (H reg v )/U v → H reg v the map obtained taking the quotient of µ H . Consider the cohomology sheaves H i π * Q l of the derived pushforward of the constant sheaf and the cohomology sheaves H i π ! Q l of the derived compactly supported pushforward of the constant sheaf.

Corollary 4.3.4. The sheaves H i π * Q l and H i p ! Q l are constant sheaves over H reg v . Proof. By Theorem 4.3.2 those sheaves are locally constant. H reg v is a complementary of a finite union of codimension 3 real vector spaces, hence it is simply connected so that the locally constant sheaves are constant.

Nakajima explained to us that this corollary can also be obtained by generalizing Slodowy's construction [START_REF] Slodowy | Four lectures on simple groups and singularities[END_REF] to quiver varieties.

Finally we extend the trivialization of the hyperkähler moment map over lines constructed by Crawley-Boevey and Van den Bergh [START_REF] Crawley | Absolutely indecomposable representations and Kac-Moody Lie algebras[END_REF] using twistor spaces as told to us by Nakajima.

Denote by H, respectively H 0 , the set of quaternions, respectively the set of purely imaginary quaternions and H * 0 = H 0 \ {0}. The space u ⊕3 v is identified with H 0 ⊗ R u v . Then the hyperkähler moment map reads

µ H = I ⊗ µ I + J ⊗ µ J + K ⊗ µ K .
Once an orthonormal basis of R 3 is fixed, the triple of complex structures I, J and K is fixed and we write µ R = µ I , µ C = µ J + iµ K . The hyperkähler moment map is assumed to be surjective and the dimension vector indivisible. Then H reg v is the open subset of generic parameters in H 0 ⊗ R Z(u v ). For θ ∈ H reg v a generic parameter and S a contractible subset of H * 0 , Crawley-Boevey and Van den Bergh constructed a trivialization of the hyperkähler moment map over S ⊗ θ, see [START_REF] Crawley | Absolutely indecomposable representations and Kac-Moody Lie algebras[END_REF] proof of Lemma 2.3.3 (in the statement of this lemma S is chosen to be a complex line). The assumption contractible is relaxed in next theorem. It relies on the theory of twistor spaces developped by Penrose [START_REF] Penrose | Nonlinear Gravitons and Curved Twistor Theory[END_REF], Atiyah-Hitchin-Singer [START_REF] Atiyah | Self-duality in fourdimensional riemannian geometry[END_REF] and Salamon [Sal82][Sal86]. The main point is the compatibility between hyperkähler quotients and twistor spaces from Hitchin-Karlhede-Lindström-Roček [HKLR87] p.560, see also Hitchin [START_REF] Hitchin | Hyperkähler manifolds[END_REF]. The following Theorem as well as its proof was told to us by Nakajima.

Theorem 4.3.5. For θ generic in H 0 ⊗ R Z(u v ) define

H * 0 .θ = {h ⊗ θ |h ∈ H * 0 } .
There exists a diffeomorphism f such that the following diagram commutes

µ -1 H (H * 0 .θ)/U v µ -1 H (θ)/U v × H * 0 .θ H * 0 .θ f µ H
the vertical arrow is the projection to H * 0 .θ.

Proof. Consider the quaternionic vector space Rep Γ, v and the projection

Rep Γ, v × S 2 → S 2 .
With S 2 the 2-sphere of imaginary quaternions with unit norm

S 2 = aI + bJ + cK a 2 + b 2 + c 2 = 1 .
S 2 is given the usual complex structure of the projective line. The twistor space associated to Rep Γ, v is the manifold Rep Γ, v × S 2 endowed with a complex structure such that the fiber over I u ∈ S 2 is Rep Γ, v seen as a vector space with complex structure I u . As detailed in [START_REF] Crawley | Absolutely indecomposable representations and Kac-Moody Lie algebras[END_REF], the group of quaternion of unit norm, identified with SU(2), acts on H 0 ⊗ Z(u v ) by h. (h ′ ⊗ θ) = hh ′ h ⊗ θ.

with aI + bJ + cK + d = -aI -bJ -cK + d. Let θ a generic parameter, up to the choice of orthonormal basis of R 3 we can assume θ = I ⊗ θ I . The SU(2) orbit of θ thus identifies with S 2 as SU(2).θ = I u ⊗ θ I u ∈ S 2 .

(
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The twistor space of the hyperkähler manifold µ -1 H (θ)/U v is a complex manifold T with an holomorphic map p to S 2 T S 2 .

p

The underlying differential manifold of the twistor space is just a product and p the projection to the second factor

µ -1 H (θ)/U v × S 2 S 2 .
The twistor spaces construction is compatible with hyperkähler quotients as explained in [HKLR87] p.560. Thus the fiber of p over I u is µ -1 H (θ)/U v endowed with the complex structure inherited from the complex structure I u on Rep Γ, v . Namely if I u ⊗ θ = (θ ′ I , θ ′ J , θ ′ K ) then the fiber of the twistor space over I u is the complex manifold p -1 (I u ) = µ -1 C (θ ′ J + iθ ′ K ) ∩ µ -1 R (θ ′ I )/U v Thus fibers of p are exactly fibers of µ H and the twistor space provides trivialization of the hyperkähler moment map over the orbit SU(2).θ: α is defined thanks to (19), the map β is the identity on the fibers and γ forgets the complex structure. This diagram traduces the equivalence between, on the right, varying complex structure on a fixed fiber µ -1 H (θ)/U v and on the left varying the fiber for a fixed complex structure I.

The construction is similar to Crawley-Boevey and Van den Bergh's construction except that the twistor space formalism allows to obtain a trivialization over the non-contractible space SU(2).θ.

As in [START_REF] Crawley | Absolutely indecomposable representations and Kac-Moody Lie algebras[END_REF], the trivialization can be extended thanks to the R >0 action. Note that for t a positive real number µ H (tx) = t 2 µ H (x). Then identifying S 2 × R >0 with H * 0 we obtain the trivialization

µ -1 H (H * 0 .θ)/U v µ -1 H (θ)/U v × H * 0 H * 0 .θ H * 0
The SU(2)-action on the base of this trivialization traduces the variation of complex structure on the hyperkähler manifold µ -1 H (θ)/U v whereas the R >0 action traduces the rescaling of the metric.

  e n k )e n k the components of x in the basis B n . By compactness of the set of orthonormal frames, we can assume the sequence of basis (B n ) n∈N converges to an orthonormal basis B = (e 1 , . . . , e k ). Let x k = p(x, e k )e k the components of x in the basis B. Then lim n→+∞ x n k = x k . Let Σ n = d k=1 |λ n k |

  Remark 4.1.1. Even if the hermitian metric relies on the choice of complex structure, by the polarisation identity the real part remains the same, it is the hyperkähler metric g(. . . , . . . ) := Re p I (. . . , . . . ) = Re p J (. . . , . . . ) = Re p K (. . . , . . . ). Definition 4.1.2 (Real symplectic forms). As in equation (4) we define a real symplectic form for each complex structure ω I (. . . , . . . ) := g(I . . . , . . . ) ω J (. . . , . . . ) := g(J . . . , . . . ) ω K (. . . , . . . ) := g(K . . . , . . . ) Notations 4.1.3. I-linear means C-linear with respect to the complex structure I and similarly for J-linear and K-linear. Proposition 4.1.4 (Permutation of complex structures). Consider the map

  Theorem 4.3.3. The complex moment map is a locally trivial fibration over C reg v . Any ξ ∈ C reg v admits an open neighborhood V , and a diffeomorphism f such that the following diagram commutes

  ||u -v|| 2 + i||u + I.v|| 2 -i||u -I.v|| 2 p J (. . . , . . . ) and p K (. . . , . . . ) are similarly defined. One expression is particularly simple p I (φ γ ) γ∈ Ω , (ψ γ ) γ∈ Ω =

	tr(φ γ ψ † γ ).
	γ∈ Ω

Let (θ I , θ J , θ K ) ∈ H reg v and consider first the complex structure I. By previous lemma and King's characterisation of stability (Theorem 3.2.1), for θ ′

I in an open neighborhood of θ I , stability with respect to θ ′ I is the same as stability with respect to θ I . Now consider the complex structure J. Thanks to Remark 4.1.6 on the affine variety µ -1 K (θ K ) ∩ µ -1 I (θ I ) all θ J -semistable points are θ J -stable. Moreover for θ ′ J in an open neighborhood of θ J , stability with respect to θ ′ J is the same as stability with respect to θ J . Similarly for the complex structure K.

Assume that the dimension vector v is a root of the quiver so that the moment map is surjective, see

. Theorem 4.3.2 (Local triviality of the hyperkähler moment map). Over the regular locus H reg v , the hyperkähler moment map µ H is a locally trivial fibration compatible with the U v -action:

admits an open neighborhood V , and a diffeomorphism f such that the following diagram commutes

Moreover f is compatible with the U v -action so that the diagram goes down to quotient

The method is similar to the proof of Theorem 2.6.4 applied consecutively to the three complex structures. The idea of using different complex structures comes from [START_REF] Nakajima | Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras[END_REF] and [START_REF] Kronheimer | The construction of ALE spaces as hyper-kähler quotients[END_REF]. Take (θ 

Then by exchanging the three complex structures with hyperkähler rotations, there exists unique Y J (θ J , x) and Y K (θ K , x) such that exp (J.Y J (θ J , x)) exp (I.Y I (θ I , x)) .x ∈ µ -1 H (θ I , θ J , θ ′ K )