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Abstract

We study various trivializations of moment maps. First in the general
framework of a reductive group G acting on a smooth affine variety. We prove
that the moment map is a locally trivial fibration over a regular locus of the
center of the Lie algebra of H a maximal compact subgroup of G. The con-
struction relies on Kempf-Ness theory [KN79] and Morse theory of the square
norm of the moment map studied by Kirwan [Kir84], Ness-Mumford [NM84]
and Sjamaar [Sja98]. Then we apply it together with ideas from Nakajima
[Nak94] and Kronheimer [Kro89] to trivialize the hyperkähler moment map
for Nakajima quiver varieties. Notice this trivialization result about quiver
varieties was known and used by experts such as Nakajima and Maffei but we
could not locate a proof in the literature.

1

http://arxiv.org/abs/2010.08294v2


Contents

1 Introduction 3

1.1 Symplectic quotients and GIT quotients of affine varieties . . . . . . . 3
1.2 Real moment map for the action of a reductive group on an affine

variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Nakajima quiver varieties and hyperkähler moment map . . . . . . . 5

2 Kempf-Ness theory for affine varieties 8

2.1 Characterization of semistability from a differential geometry point
of view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Correspondence between linear characters and elements in the center
of the Lie algebra of H . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Correspondence between symplectic quotient and GIT quotient . . . . 10
2.4 Hilbert-Mumford criterion for stability . . . . . . . . . . . . . . . . . 12
2.5 Regular locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Trivialization of the real moment map over the regular locus . . . . . 19

3 Quiver varieties and stability 21

3.1 Generalities about quiver varieties . . . . . . . . . . . . . . . . . . . . 21
3.2 King’s characterization of stability of quiver representations . . . . . 23

4 Nakajima quiver varieties as hyperkähler quotients and trivializa-

tion of the hyperkähler moment map 26

4.1 Hyperkähler structure on the space of representations of an extended
quiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Hyperkähler structure and moment maps . . . . . . . . . . . . . . . . 28
4.3 Trivialization of the hyperkähler moment map . . . . . . . . . . . . . 29

2



1 Introduction

1.1 Symplectic quotients and GIT quotients of affine varieties

Consider a reductive group G acting on a complex smooth affine variety X. For
χθ ∈ X ∗(G) a linear character, Xθ-ss is the θ-semistable locus and Xθ-s the θ-stable
locus. Mumford’s geometric invariant theory [MF82] provides a quotient

Xθ-ss → Xθ-ss//G.

The affine variety X can be embedded in an hermitian vector space W such that the
G-action is linear and restricts to a unitary action of a maximal compact subgroup
H ⊂ G. The hermitian norm on W is denoted by || . . . ||. We study the associated
real moment map

µ : X → h

with h the Lie algebra of H . Its definition relies on the choice of a non degenerate
scalar product 〈. . . , . . . 〉 on h invariant under the adjoint action of H . The real
moment map satisfies for all Y ∈ h

〈µ(x), Y 〉 =
1

2

d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

(1)

Thanks to the invariant scalar product, to a linear character χθ is associated an
element θ in Z(h), the center of the Lie algebra h, such that for all Y ∈ h

〈θ, Y 〉 = idχθ
Id(Y ).

For a pair (χθ, θ), Kempf-Ness theory [KN79] relates the symplectic quotient (defined
by Meyer [Mey73] and Marsden-Weinstein [MW74]) to the GIT quotient, it gives
an homeomorphism

µ−1(θ)/H
∼
−→ Xθ-ss//G.

We study trivialization of the moment map over a regular locus in the center of
the Lie algebra h. First, in Section 2, we study the general framework of a unitary
action of a compact group on a smooth affine variety. After a reminder of Migliorini’s
version of Kempf-Ness theory [Mig96], a regular locus in Z(h) is defined. Over this
locus the moment map is proved to be a locally trivial fibration. The case of a
torus action was treated by Kac-Peterson [KP84]. The construction of the regular
locus uses the negative gradient flow of square norm of the moment map studied
by Kirwan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin [HW08]
and Hoskins [Hos13].

Nakajima quiver varieties introduced in [Nak94] are particular instances of the
symplectic quotients studied in Section 2. Moreover they are hyperkähler quo-
tients as defined by Hitchin-Karlhede-Lindström-Roček [HKLR87], the construction
of those varieties is recalled in Section 3. In Section 4, the idea of Kronheimer
[Kro89] and Nakajima [Nak94] of consecutive use of different complex structures are
applied together with techniques from previous sections to prove that the hyper-
kähler moment map is a locally trivial fibration. This implies in particular that the
cohomology of the fibers forms a local system. This later result is used by Nakajima
in [Nak94, Section 9] to construct a Weyl group action on the cohomology of quiver
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varieties. Maffei pursued this construction in [Maf02]. I was informed by Nakajima
that the property of the cohomology of the fibers can also be obtained by general-
izing Slodowy argument from [Slo80] to quiver varieties. Similar results concerning
cohomology of the fibers also exist in the framework of deformations of symplec-
tic quotient singularities in Ginzburg-Kaledin [GK04]. Finally Crawley-Boevey and
Van den Bergh [CBVdB04] trivialize the hyperkähler moment map for Nakajima
quiver varieties over complex lines. Nakajima explained to us how to extend their
result to quaternionic lines minus a point thanks to the theory of twistor spaces see
Theorem 4.3.5.

In the remaining of the introduction the results are stated and the various steps
of the constructions are outlined.

1.2 Real moment map for the action of a reductive group on

an affine variety

In Section 2, H ⊂ G is a maximal compact subgroup acting unitarily on a smooth
affine variety X embedded in an hermitian vector space. The differential geometry
point of view from Kempf-Ness theory allows to extend the definition of θ-stability
for elements χθ ∈ X ∗(G)R := X ∗(G)⊗ZR. The correspondence between linear char-
acters and elements in the center of the Lie algebra h thus extends to an isomorphism
of R-vector spaces between X ∗(G)R and Z(h).

In 2.4 we prove a Lie group variant of Hilbert-Mumford criterion for θ-stability.
It is adapted to the differential geometric point of view of Kempf-Ness theory and
the use of real parameters θ ∈ X ∗(G)R. Similar criteria are discussed by Georgoulas,
Robbin and Salamon in [GRS13].

Theorem 1.2.1 (Hilbert-Mumford criterion for stability). Let θ ∈ X ∗(G)R and
x ∈ X. The following statements are equivalent

(i) x is θ-stable.

(ii) For all Y ∈ h, different from zero, such that limt→+∞ exp(itY ).x exists then
〈θ, Y 〉 < 0.

This theorem is applied in 3.2 to generalize a result of King [Kin94] characterizing
θ-stability for quiver representations.

The regular locus Breg is introduced in 2.5. Its construction relies on the study
of the negative gradient flow of the square norm of the moment map from Kir-
wan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin [HW08] and
Hoskins [Hos13]. Breg is an open subset of Z(h) such that for θ ∈ Breg, one has
Xθ-ss = Xθ-s 6= ∅ and for all x ∈ Xθ-s the stabilizer of x is trivial. Over the regular
locus, the moment map is a locally trivial fibration. A similar fibration when G is a
torus follows from a result of Kac-Peterson [KP84]. Let us also mention that with
the flow of the norm square in the hermitian space W , Sjamaar [Sja98] constructed
a retraction of the 0-stable locus to the fiber over 0 of the moment map.

Theorem 1.2.2. Let θ0 in Breg, and Uθ0 the connected component of Breg containing
θ0. There is a diffeomorphism f such that the following diagram commutes
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Uθ0 × µ−1 (θ0) µ−1(Uθ0)

Uθ0

f

∼

µ

Moreover f is H equivariant so that the diagram goes down to quotient

Uθ0 × µ−1 (θ0) /H µ−1(Uθ0)/H

Uθ0

∼

To prove this theorem, first we prove that for any θ ∈ Uθ0 and x ∈ Xθ0-s there
exists a unique Y (θ, x) ∈ h such that exp(iY (θ, x)).x ∈ µ−1(θ). This is achieved
thanks to Migliorini’s version of Kempf-Ness theory [Mig96] which applies to affine
varieties and real parameters χθ ∈ X ∗(G)R. Then the map f is defined by

f(θ, x) := exp (iY (θ, x)) .x

and similarly for its inverse

f−1(x) = (µ(x), exp (iY (θ0, x)) .x) .

The smoothness of f and its inverse is proved in 2.6 with the implicit function
theorem.

1.3 Nakajima quiver varieties and hyperkähler moment map

The quiver varieties considered in this paper were introduced by Nakajima [Nak94].

Let Γ̃ be an extended quiver with vertices Ω0 and edges Ω̃, fix a dimension vector
v ∈ NΩ0 . The space of representations of Γ̃ with dimension vector v is

Rep
(
Γ̃, v
)
=
⊕

γ∈Ω̃

MatC(vh(γ), vt(γ)).

with h(γ) ∈ Ω0 the head of the edge γ and t(γ) ∈ Ω0 its tail. This space is acted
upon by the group

Gv
∼=

{
(gj)j∈Ω0 ∈

∏

j∈Ω0

GLvj

∣∣∣∣∣
∏

j∈Ω0

det(gj) = 1

}
.

This action is described in 3.1, it restricts to a unitary action of the maximal compact
subgroup

Uv =

{
(gj)j∈Ω0 ∈

∏

j∈Ω0

Uvj

∣∣∣∣∣
∏

j∈Ω0

det(gj) = 1

}

with Uvj the group of unitary matrices of size vj . Denote by uv the Lie algebra of
Uv. This is a particular instance of the general situation of Section 2: a unitary
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action of a compact group on a smooth complex affine variety. Let θ ∈ ZΩ0 such
that

∑
j vjθj = 0. Define χθ a linear character of Gv by

χθ ((gj)j∈Ω0) :=
∏

j∈Ω0

det(gj)
−θj . (2)

For quiver representations, the correspondence between linear characters and ele-
ments in the center of uv is easily described: to the character χθ is associated the
element (−iθj Idvj )j∈Ω0 ∈ Z(uv). This element is still denoted by θ, and Z(uv) is
identified in this way with a subspace of RΩ0.

A well-known theorem from King [Kin94] gives a characterization of θ-stability
for quiver representations. In 3.2 this result is generalized to real parameters corre-
sponding to elements χθ ∈ X ∗(G)R.

Theorem 1.3.1. For θ ∈ RΩ0 such that
∑

j∈Ω0
θjvj = 0 and associated element

χθ ∈ X ∗(Gv)
R. A quiver respresentation (V, φ) is θ-stable if and only if for all

subrepresentation W ⊂ V ∑

j∈Ω0

θj dimWj < 0.

unless W = V or W = 0.

The space Rep
(
Γ̃, v
)

admits three complex structures denoted by I, J and K,

they are detailed in 4.1. There is a real moment map for each one of this complex
structure, they are denoted by µI , µJ and µK . They are defined as in equation (1),
for instance

〈µI(x), Y 〉 =
1

2

d

dt
|| exp(t.I.Y ).x||2

∣∣∣∣
t=0

and

〈µJ(x), Y 〉 =
1

2

d

dt
|| exp(t.J.Y ).x||2

∣∣∣∣
t=0

.

Together they form the hyperkähler moment map µH = (µI , µJ , µK), it takes values
in u⊕3

v .
Nakajima quiver varieties are constructed for (θI , θJ , θK) ∈ Z(uv)

⊕3 as quotients
of fibers of the hyperkähler moment map.

mv(θI , θJ , θK) = µ−1
H (θI , θJ , θK)/Uv.

The hyperkähler regular locus in Z(uv)
⊕3 is defined by:

Definition 1.3.2 (Hyperkähler regular locus). For w ∈ NΩ0 a dimension vector

Hw :=

{
(θI , θJ , θK) ∈

(
RΩ0

)3
∣∣∣∣∣
∑

j

wjθI,j =
∑

j

wjθJ,j =
∑

j

wjθK,j = 0

}
.

The regular locus is
Hreg

v = Hv \
⋃

w<v

Hw (3)

the union is over dimension vector w 6= v such that 0 ≤ wi ≤ vi.
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In 4.3 various trivializations of the hyperkähler moment map are discussed. We
prove that the hyperkähler moment map is a locally trivial fibration by consecutive
use of constructions of Theorem 1.2.2 for each complex structure and associated
moment map. The idea of consecutive use of different complex structures comes
from Kronheimer [Kro89] and Nakajima [Nak94].

Theorem 1.3.3 (Local triviality of the hyperkähler moment map). Over the regular
locus Hreg

v , the hyperkähler moment map µH is a locally trivial fibration compatible
with the Uv-action:

Any (θI , θJ , θK) ∈ Hreg
v admits an open neighborhood V , and a diffeomorphism

f such that the following diagram commutes

V × µ−1
H (θI , θJ , θK) µ−1

H (V )

V

f

∼

µH

Moreover f is compatible with the Uv-action so that the diagram goes down to quo-
tient

V × µ−1
H (θI , θJ , θK)/Uv µ−1

H (V )/Uv

V

∼

p

A similar trivialization of the hyperkähler moment map over lines is described in
[CBVdB04, Lemma 2.3.3]. In Theorem 4.3.5 we provide an extension of their result
using twistor spaces as suggested by Nakajima.

Denote by π the map obtained by taking quotient of the hyperkähler moment
map over the regular locus

µ−1
H (Hreg

v )/Uv
π
−→ Hreg

v .

Consider Hiπ∗Ql, the cohomology sheaves of the derived pushforward of the constant
sheaf. As a direct corollary of the local triviality of the hyperkähler moment map,
those sheaves are locally constant. Moreover as Hreg

v is simply connected, those
sheaves are constant. They provide the local system of the cohomology of the fibers.
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2 Kempf-Ness theory for affine varieties

Kempf-Ness [KN79] relate geometric invariant theory quotients to symplectic quo-
tients. In this section we recall Migliorini’s version of this theory [Mig96] which
applies to affine varieties and real parameter χθ ∈ X ∗(G)R. Then we prove that the
real moment map is a locally trivial fibration over a regular locus.

G is a connected reductive group acting on a smooth affine variety X. The action
is assumed to have a trivial kernel.

2.1 Characterization of semistability from a differential ge-

ometry point of view

For χθ ∈ X ∗(G) a linear character of G, a regular function f ∈ C [X ] is θ-equivariant
if there exists a strictly positive integer r such that f(g.x) = χθ(g)rf(x) for all x ∈ X.

Definition 2.1.1. A point x ∈ X is θ-semistable if there exists a θ-equivariant
regular function f such that f(x) 6= 0. The set of θ-semistable points is denoted by
Xθ-ss.

A point x ∈ X is θ-stable if it is θ-semistable and if its orbit G.x is closed in
Xθ-ss and its stabilizer is finite. The set of θ-stable points is denoted by Xθ-s.

The GIT quotient as defined by Mumford [MF82] is denoted byXθ-ss → Xθ-ss//G.
A point of this quotient represents a closed G-orbit in Xθ-ss. When working over the
field of complex numbers, such quotients are related to symplectic quotients. The
affine variety X can be embedded as a closed subvariety of an hermitian space W
with hermitian pairing denoted by p(. . . , . . . ). The embedding can be chosen so that
the action of G on X comes from a linear action on W and the action of a maximal
compact subgroup H ⊂ G preserves the hermitian pairing, p(h.u, h.v) = p(u, v) for
all h ∈ H and u, v ∈ W . Then G can be identified with a subgroup of GL(W ). The
hermitian pairing induces a symplectic form on the underlying real space

ω(. . . , . . . ) := Re p(i . . . , . . . ) (4)

with i a square root of −1 and Re the real part. The hermitian pairing on the
ambient space induces an hermitian metric on X. As X is a smooth subvariety of
W , its tangent space is stable under multiplication by i, hence the non-degeneracy of
the hermitian metric implies the non degeneracy of the restriction of the symplectic
form ω to the tangent space of X and the symplectic form on W restricts to a
symplectic form on X. Then the action of G on X induces a symplectic action of
H on X.

For x ∈ X introduce the Kempf-Ness map

φθ,x : G → R

g 7→ ||g.x||2 − log
(
|χθ(g)|2

)

with || . . . || the hermitian norm.

Theorem 2.1.2 ([Mig96] Theorem A.4 ). A point x0 ∈ X is θ-semistable if and
only if there exists in the closure of its orbit a point x ∈ G.x0 such that φθ,x has a
minimum at the identity.
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Remark 2.1.3. Let X ∗(G)R := X ∗(G)⊗Z R, the definiton of φθ,x makes sense not
only for linear characters but for any χθ ∈ X ∗(G)R. It provides the following gener-
alization of the definition of θ-semistability and θ-stability for any χθ ∈ X ∗(G)R.

Definition 2.1.4 (Semistable points). Let χθ ∈ X ∗(G)R, a point x0 is θ-semistable
if there exists x ∈ G.x0 such that φθ,x has a minimum at the identity.

A point x0 is θ-stable if it is θ-semistable, its orbit is closed in Xθ-ss and its
stabilizer is finite.

In the following of the article, θ-stability and θ-semistability as well as the no-
tations Xθ-s and Xθ-ss always refer to this definition.

2.2 Correspondence between linear characters and elements

in the center of the Lie algebra of H

The Lie algebra of G is denoted by g and the real Lie algebra of H is h. Fix a
non-degenerate scalar product 〈. . . , . . . 〉 on h invariant under the adjoint action.

Proposition 2.2.1 (Polar decomposition). For all g ∈ G there exists a unique
(h, Y ) ∈ H × h such that g = h exp(iY ) such an expression is called a polar decom-
position. This implies for the Lie algebra g = h⊕ ih.

Proof. It follows from [OVG94] Theorem 6.6.

The first step in Kempf-Ness theory is to associate to a character χθ ∈ X ∗(G) an
element in the center Z(h) of the Lie algebra h. As H is compact, its image under
a complex character lies in the unit circle. Consider the differential of the character
at the identity, it is a C-linear map dχθ

Id : g → C. The inclusion χθ(H) ⊂ S1 implies
for the Lie algebra dχθ

Id(h) ⊂ iR. By C-linearity, dχθ
Id(ih) ⊂ R and the following

map is R-linear
dχθ

Id(i . . . ) : h → R

Y 7→ dχθ
Id(iY )

. (5)

The invariant scalar product on h identifies this linear form with an element of h
denoted by θ satisfying for all Y ∈ h

〈θ, Y 〉 = idχθ
Id(Y ).

Moreover, as the scalar product is invariant for the adjoint action and so is the
character χθ, the element θ lies in the center of h. This construction is Z-linear so
that it extends to an R-linear map

ι : X ∗(G)R → Z(h)
χθ 7→ θ

Proposition 2.2.2. The R-linear map ι is an isomorphism from X ∗(G)R to Z(h).

Proof. As G is a complex reductive group G = Z(G)D(G) with Z(G) its center and
D(G) its derived subgroup. Then X ∗(G) identifies with the set of linear characters
of the torus Z(G). Hence X ∗(G) is a Z-module of rank the complex dimension of
Z(G) so that dimRX

∗(G)R = dimR Z(h). It remains to prove that ι is injective.
Let χθ a linear character such that dχθ

Id(iY ) = 0 for all Y ∈ h. By C-linearity and
polar decomposition dχθ

Id = 0. Hence for any g ∈ G the differential at g is also zero
dχθ

g = 0. As G is connected, χθ is the trivial character.
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Remark 2.2.3. This isomorphism justifies the notation χθ for elements in X ∗(G)R,
such elements are uniquely determined by a choice of θ ∈ Z(h), moreover

χθχθ′ = χθ+θ′.

2.3 Correspondence between symplectic quotient and GIT

quotient

Definition 2.3.1 (Real moment map). The real moment map µ : X → h is defined
thanks to the invariant scalar product 〈. . . , . . . 〉 by

〈µ(x), Y 〉 =
1

2

d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

for all Y ∈ h and x ∈ X. In this section the real moment map is just called the
moment map. Later on complex and hyperkähler moment maps are also considered.

Example 2.3.2. Assume the compact group H is a torus T . The ambient space
decomposes as an orthogonal direct sum W =

⊕
χα Wχα with χα linear characters of

T and
Wχα = {x ∈ W |t.x = χα(t)w for all t ∈ T }

Similarly to 2.2, a character χα is uniquely determined by an element α in t the Lie
algebra of T such that

idχα
Id(Y ) = 〈α, Y 〉 .

Let A the finite subset of elements α ∈ t such that Wχα 6= {0}. Let us compute µT

the moment map for the torus action. Let x =
∑

α∈A xχα in W , for Y in t the Lie
algebra of T

〈µT (x), Y 〉 =
1

2

d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

=
∑

α∈A

idχα
Id(Y ) ||xχα ||2

=

〈
∑

χ∈A

||xχα||2 α, Y

〉

Therefore the non-degeneracy of the scalar product implies µT (x) =
∑

χ∈A ||xχα ||2 α.
In particular the image of µT is the cone C(A) ⊂ t spanned by positive coefficients
combinations of elements α ∈ A. This example proves to be useful later on.

Proposition 2.3.3 (Guillemin-Sternberg [GS82]). dxµ the differential of the mo-
ment map at x is surjective if and only if the stabilizer of x in H is finite.

Proof. A computation using the definition of the moment map and the symplectic
form gives for v ∈ TxX a tangent vector at x and Y ∈ h

〈dxµ(v), Y 〉 = ω

(
d

dt
exp(tY ).x

∣∣∣∣
t=0

, v

)
.

This relation is often taken as a definition of the moment map. By non degeneracy
of the symplectic form ω it implies that Y is orthogonal to the image of dxµ if and
only if the stabilizer of x contains exp(tY ) for all t ∈ R. Hence the differential of
the moment map is surjective if and only if the stabilizer of x is finite.
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Lemma 2.3.4. Let χθ ∈ X ∗(G)R and x ∈ X, then φθ,x has a minimum at the
identity if and only if µ(x) = θ.

Moreover if φθ,x has a minimun at the identity and at a point h exp(iY ) with
h ∈ H and Y ∈ h, then exp(iY ).x = x.

Proof. Up to a shift in the definition of the moment map, this result is [Mig96,
Corollary A.7]. The proof is recalled as it is useful for next proposition.

For all h ∈ H and g ∈ G
φθ,x(hg) = φθ,x(g)

so that the differential of φθ,x at the identity vanishes on h. For Y ′ + iY ∈ h ⊕ ih
this differential is

dφθ,x
Id (Y ′ + iY ) = dφθ,x

Id (iY ) =
d

dt
|| exp(itY ).x||2

∣∣∣∣
t=0

− dχθ
Id(iY )− dχθ

Id(iY )

= 2 〈µ(x), Y 〉 − 2 〈θ, Y 〉 .

last equality follows from the definition of the moment map µ and the discussion in
2.2 defining θ and proving the reality of dχθ

Id(iY ).
So far we proved that φθ,x has a critical point at the identity if and only if

µ(x) = θ, it remains to prove that this critical point is necessarily a minimum. Let
φθ,x be critical a the identity and g ∈ G written in polar form g = h exp(iY ). The
action of iY is hermitian so that it can be diagonalized in an orthonormal basis (ej)
such that iY.ej = λjej with λj ∈ R.

φθ,x(h exp(iY ))− φθ,x(Id) = φθ,x(exp(iY ))− φθ,x(Id)

=
∑

j |exp(λj)p(ej, x)|
2 − log

(
∏

j

exp(2rjλj)

)

−
∑

j

|p(ej , x)|
2

with rj real parameters determined by χθ ∈ X ∗(G)R. As φθ,x is critical at the
identity:

0 =
d

dt
φθ,x (exp(itY ))

∣∣∣∣
t=0

=
∑

j

(
2λj |p(ej, x)|

2 − 2rjλj
)
.

Combining the two previous equations

φθ,x(h exp(iY ))− φθ,x(Id) =
∑

j

(exp(2λj)− 2λj − 1) |p(ej, x)|
2 .

So that φθ,x(h exp(iY )) − φθ,x(Id) ≥ 0 with equality if and only if exp(iY ).x = x.
Hence when φθ,x has a critical point at the identity, it is necessarily a minimum.

Proposition 2.3.5. Let χθ ∈ X ∗(G)R then µ−1(θ) ⊂ Xθ-ss. Moreover, a point x0 is
θ-stable if and only if the orbit G.x0 intersects µ−1(θ) exactly in a H-orbit.

Proof. First statement follows from definition of stability 2.1.4 and Lemma 2.3.4.
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Assume x0 is θ-stable, then its orbit is closed in Xθ-ss and G.x0 ∩ µ
−1(θ) is not

empty. Let x lies in this intersection, then φθ,x has a minimum at the identity. For
all g, g′ ∈ G

φθ,g.x(g′) = φθ,x(g′g) + log
(∣∣χθ(g)

∣∣2
)

Hence φθ,g.x(g′) is minimum for g′ = g−1. Now if g ∈ G verifies g.x ∈ µ−1(θ) by
Lemma 2.3.4, φθ,g.x(g′) has a minimum not only at g′ = g−1 but also at the identity.
By the second statement of previous lemma, g−1 = h exp(iY ) with h ∈ H and
exp(iY ).x = x. As x is stable, its stabilizer is finite so that exp(iY ) = Id and
g−1 ∈ H . Moreover for any h ∈ H , the map φθ,h.x has a minimum at identity hence
h.x ∈ µ−1(θ) so that G.x0 ∩ µ

−1(θ) = H.x.
Conversely suppose G.x0∩µ

−1(θ) = H.x. First x0 is θ-semistable. By Migliorini
[Mig96, Proposition A.9], the orbit G.x0 is closed in Xθ-ss. It remains to prove that
the stabilizer of x0 is finite. By Lemma 2.3.4 the map φθ,x is minimum at the identity.
Let Y ∈ h such that exp(iY ) is in the stabilizer of x. Then

∣∣χθ (exp(iY ))
∣∣ = 1,

otherwise either φθ,x (exp(iY )) < φθ,x(Id) or φθ,x (exp(−iY )) < φθ,x(Id). Hence
φθ,x(exp(iY )) = φθ,x(Id) and exp(iY ) ∈ H so that Y = 0 and the stabilizer of x is
finite.

Remark 2.3.6. For χθ ∈ X ∗(G) such that θ-stability and θ-semistability coincide.
Last proposition implies that the inclusion µ−1(θ) ⊂ Xθ-ss goes down to a continuous
bijective map

µ−1(θ)/H
∼
−→ Xθ-ss//G.

This result is a particular instance of Kempf-Ness theory, it gives a natural bijection
between a symplectic quotient and a GIT quotient. Hoskins [Hos13] proved that this
map is actually an homeomorphism.

2.4 Hilbert-Mumford criterion for stability

Next theorem is a variant of the usual Hilbert-Mumford criterion for stability. It
applies to real parameters χθ ∈ X ∗(G)R not only to to linear characters. Instead of
algebraic one-parameter subgroups it relies on one-parameter real Lie groups defined
for Y ∈ h by

R → G
t 7→ exp(itY )

Many variants of Hilbert-Mumford criterion for one-parameter real Lie groups are
given in [GRS13]. Before proving the criterion, two classical technical lemmas are
necessary.

Lemma 2.4.1. Let χθ ∈ X ∗(G)R and Y ∈ h, for t ∈ R

log
∣∣χθ (exp(itY ))

∣∣2 = 2 〈θ, Y 〉 t.

12



Proof. We prove it for χθ ∈ X ∗(G) and deduce for elements in X ∗(G)R by R-linearity.

d

dt

∣∣∣∣
t=s

log
∣∣χθ (exp(itY ))

∣∣2 =
1

|χθ (exp(isY ))|2
d

dt

∣∣∣∣
t=s

∣∣χθ (exp(itY ))
∣∣2

=
d

dt

∣∣∣∣
t=s

∣∣χθ (exp(i(t− s)Y ))
∣∣2

=
d

dt

∣∣∣∣
t=0

∣∣χθ (exp(itY ))
∣∣2

= 2dχθ
Id(iY )

By the construction of the element θ ∈ Z(h) from 2.2 we conclude that

d

dt

∣∣∣∣
t=s

log
∣∣χθ (exp(itY ))

∣∣2 = 2 〈θ, Y 〉

and
log
∣∣χθ (exp(itY ))

∣∣2 = 2 〈θ, Y 〉 t.

Lemma 2.4.2. Let x0 ∈ Xθ-s such that φθ,x0 is minimum at the identity. Let Z ∈ h

and decompose x0 in a basis of eigenvectors of the hermitian endomorphism iZ

x0 =
∑

λ

x0λ

with
exp(iZ)x0λ = exp(λ)x0λ.

Then either 〈θ, Z〉 < 0 or there exists λ > 0 with x0λ 6= 0.

Proof. By Lemma 2.3.4 and Proposition 2.3.5, as x0 is θ-stable, the Kempf-Ness map
φθ,x0 reaches its minimum exactly on H . For Z ∈ h consider the map fZ defined for
t real by

fZ(t) = φθ,x0 (exp(iZt)) .

fZ reaches its minimum only at t = 0. We can compute fZ(t) using the decomposi-
tion of x0 in eigenvectors of iZ and Lemma 2.4.1

fZ(t) =
∑

λ

exp(2tλ)
∣∣∣∣x0λ

∣∣∣∣2 − 2 〈θ, Z〉 t. (6)

Its second derivative is

f ′′
Z(t) =

∑

λ

4λ2 exp(2tλ)
∣∣∣∣x0λ

∣∣∣∣2 .

Then fZ is convex, moreover it reaches its minimum only at t = 0 so that

lim
t→+∞

fZ(t) = +∞.

Looking at equation (6) this implies either 〈θ, Z〉 < 0 or there exists λ > 0 with
x0λ 6= 0.
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Theorem 2.4.3 (Hilbert-Mumford criterion for stability). Let θ ∈ X ∗(G)R and
x ∈ X. The following statements are equivalent

(i) x is θ-stable.

(ii) For all Y ∈ h, different from zero, such that limt→+∞ exp(itY ).x exists then
〈θ, Y 〉 < 0.

Proof. not (i) implies not (ii)

Let x ∈ X \Xθ-s. Then if φθ,x admits a minimum, the stabilizer of x is not finite
and this minimum is reached on an unbounded subset of G. Thus there exists an
unbounded minimizing sequence for φθ,x. By polar decomposition and H invariance
we can assume it has the following form (exp iYn)n∈N with (Yn)n∈N ∈ hN unbounded.
The hermitian space W admits an orthonormal basis Bn = (en1 , . . . , e

n
d) made of

eigenvectors of iYn with associated eigenvalues λn1 , . . . , λ
n
d .

exp(iYn).e
n
k = exp(λnk)e

n
k .

This basis allows to compute:

φθ,x (exp iYn) =

d∑

k=1

exp (2λnk) ||x
n
k ||

2 − 2 〈θ, Yn〉

with xnk = p(x, enk)e
n
k the components of x in the basis Bn. By compactness of the

set of orthonormal frames, we can assume the sequence of basis (Bn)n∈N converges
to an orthonormal basis B = (e1, . . . , ek). Let xk = p(x, ek)ek the components of x
in the basis B. Then limn→+∞ xnk = xk. Let

Σn =

d∑

k=1

|λnk |

As (Yn)n∈N is unbounded, up to an extraction of a subsequence, we can assume that
limn→+∞Σn = +∞ and that the following limit exist and are finite:

Y := lim
n→+∞

Yn
Σn

and

λk := lim
n→+∞

λnk
Σn

.

Now one can bound from bellow the values φθ,x (exp iYn) of the minimizing sequence

φθ,x (exp iYn) ≥
∑

{k|xk 6=0}

exp (2λnk) ||x
n
k ||

2 − 2 〈θ, Yn〉 .

≥
∑

{k|xk 6=0}

exp (2 (λk + o(1))Σn)
(
||xk||

2 + o(1)
)

−2 (〈θ, Y 〉+ o(1))Σn

with o(1) some sequences going to zero when n goes to infinity. As the left-hand side
is the value of a minimizing sequence, it cannot go to plus infinity. Hence 〈θ, Y 〉 ≥ 0,
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moreover if xk 6= 0 Then λk ≤ 0. We conclude as Y satisfies limt→+∞ exp(itY ).x
exists and 〈θ, Y 〉 ≥ 0.

(i) implies (ii)

Let x ∈ Xθ-s, by Lemma 2.3.4 and Proposition 2.3.5 there exists g0 ∈ G such
that for x0 = g0.x, the Kempf-Ness map φθ,x0 reaches its minimum exactly on H .
Now let Y ∈ h such that limt→+∞ exp(itY ).x exists then limn→+∞ exp(inY ).x exists.
For all n ∈ N polar decomposition provides unique hn ∈ H and Zn ∈ h such that

exp(inY ) = hn exp(iZn)g0.

Then Zn is unbounded. Proceed as in the first part of the proof, iZn is an hermitian
endomorphism denote by λn1 , . . . , λ

n
d its eigenvalues and let

Σn =
d∑

k=1

|λnk | .

We can assume that limn→+∞Σn = +∞ and that the following limits exist and are
finite:

Z := lim
n→+∞

Zn

Σn

and

λk := lim
n→+∞

λnk
Σn

.

Then denoting by x0k the components of x0 in an orthonormal basis of eigenvectors
of iZ

φθ,x (exp(iZn)g0) ≥
∑

{k|xk 6=0}

exp (2 (λk + o(1))Σn)
(
||xk||

2 + o(1)
)

−2 (〈θ, Z〉+ o(1))Σn + log
∣∣χθ(g0)

∣∣2

By Lemma 2.4.2 either 〈θ, Z〉 < 0 or there exists λk > 0 with x0k 6= 0. In any case

lim
n→+∞

φθ,x (exp(iZn)g0) = +∞.

Then the relation (2.4) defining Zn implies

lim
n→+∞

φθ,x(exp(inY )) = +∞. (7)

Decompose x in a basis of eigenvectors of the hermitian endomorphism iY

x =
∑

λ

xλ

then
φθ,x(exp(inY )) =

∑

λ

exp(2nλ) ||xλ||
2 − 2 〈θ, Y 〉n.

As the limit limn→+∞ exp(inY ).x is assumed to exist, λ ≤ 0 if xλ 6= 0. Then the
condition (7) implies 〈θ, Y 〉 < 0.
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2.5 Regular locus

In this subsection the closed subvariety X is not relevant, the action of G and H on
the ambient hermitian vector space W is studied. First note that the moment map
can be defined not only on X but on the whole space W . Let T ⊂ H a maximal
torus. As in Example 2.3.2 the ambient space W decomposes as an orthogonal direct
sum W =

⊕
Wχα with χα characters of T and

Wχα = {x ∈ W |t.x = χα(t)x for all t ∈ T } .

Denote by A the finite subset of elements α ∈ t such that for the character χα the
space Wχα is not zero then

W =
⊕

α∈A

Wχα.

As before the link between linear characters and elements in t is through the invariant
pairing 〈. . . , . . . 〉

idχα
Id(β) = 〈α, β〉 .

Hence if β is orthogonal to the R vector space spanned by A

χα(exp tβ) = 1

for all α ∈ A so that exp tβ is in the kernel of the action of H on W . From the
beginning this kernel is assumed to be trivial, hence the vector space spanned by A
is t. As in Example 2.3.2, the image of µT , the moment map relative to the T -action,
is the cone spanned by positive combinations of A. For any A′ finite subset of t the
cone spanned by positive combinations of A′ is:

C(A′) :=

{
∑

α∈A′

aαα | aα ≥ 0 for all α ∈ A′

}
.

For any β ∈ t

〈µ(x), β〉 =
d

dt
||exp(itβ).x||2

∣∣
t=0

= 〈µT (x), β〉 .

Hence, as noted by Kirwan [Kir84], if µ(x) ∈ t then µ(x) = µT (x). For A′ a finite
subset of t we denote by dimA′ the dimension of the vector space spanned by A′.

Lemma 2.5.1. Let x ∈ W such that for all A′ ⊂ A with dimA′ < dim t, the value
of the moment map µT (x) does not lie in C(A′). Then the stabilizer of x is finite.

Proof. Decompose x according to its weight x =
∑

α∈A xα then

µT (x) =
∑

||xα||
2 α.

Denote by Ax the set of elements α such that xα 6= 0. The hypothesis about µT (x)
implies that dimAx = dim t. Now for β ∈ t

exp(βt).x =
∑

α∈Ax

χα(exp βt)xα.

Hence if exp βt is in the stabilizer of x, for all α ∈ Ax the pairing with β vanishes
〈α, β〉 = 0. As Ax spans t this implies that β = 0 and the stabilizer of x in T is
finite.

16



Previous lemma justifies the introduction of the following nonempty open subset
of t

C(A)reg := C(A) \
⋂

A′⊂A
dimA′<dim t

C(A′).

As all maximal torus of H are conjugated, the set C(A)reg ∩Z(h) is independent of
a choice of maximal torus T .

Proposition 2.5.2. For θ ∈ C(A)reg ∩Z(h), every θ-semistable points are θ-stable,
W θ-ss =W θ-s and in particular Xθ-ss = Xθ-s.

Proof. Let x ∈ W θ-ss, then G.x meets µ−1(θ). But G.x \G.x is a union of G-orbits
of dimension strictly smaller than G.x, points in those orbits has stabilizer with
dimension greater than one. By previous lemma every point in µ−1(θ) has a finite
stabilizer. Thus G.x ∩ µ−1(θ) 6= ∅ and the stabilizer of x is finite so that x is
θ-stable.

Kirwan [Kir84], Ness-Mumford [NM84], Sjamaar [Sja98], Harada-Wilkin [HW08]
and Hoskins [Hos13] studied a stratification of W . It relies on the Morse theory of
the following map. For θ ∈ Z(h)

hθ : W → R

x 7→ |µ(x)− θ|2

with |. . . | the norm defined by the invariant pairing 〈. . . , . . . 〉 on h. A critical point
of a smooth map f is a point x where the differential vanishes dxf = 0. A critical
value of f is the image f(x) of a critical point x. The gradient of hθ is the vector
field defined thanks to the hermitian pairing p(. . . , . . . ) for x ∈ W and v ∈ TxW by

p (gradx hθ, v) = dxhθ.v

For x ∈ W the negative gradient flow relative to hθ is the map

γθx : R≥0 → W
t 7→ γθx(t)

uniquely determined by the condition

dγθx(s)

ds

∣∣∣∣
s=t

= − gradγθ
x(t)

hθ.

and γθx(0) = x. By [Sja98] and [HW08] it is well defined and for any x the limit
limt→+∞ γθx(t) exists and is a critical point of hθ. S

θ is the set of point x ∈ W with
negative gradient flow for hθ converging to a point where hθ reaches its minimal
value 0:

Sθ :=

{
x ∈ W

∣∣∣∣ limt→+∞
γθx(t) ∈ µ−1(θ)

}
.

This is the open strata of the stratification, Sjamaar called it the set of analitically
semistable points. When the stability parameter is a true character i.e. χθ ∈ X ∗(G),
Hoskins [Hos13] proved that this strata coincides with the θ-semistable locus. Here
we want to consider any χθ ∈ X ∗(G)R, the proof of the inclusion Sθ ⊂ W θ-ss is the
same and it is enough for our purpose.
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Proposition 2.5.3. Sθ is a subset of W θ-ss.

Proof. The flow γx(t) belongs to the orbitG.x hence limt→+∞ γx(t) ⊂ G.x. Therefore
if x ∈ Sθ then G.x ∩ µ−1(θ) 6= ∅.

An important feature of the map hθ is that its critical points lie in a finite union⋃
A′⊂A µ

−1 (H.β(A′, θ)) indexed by the subsets of the finite set A. With β(A′, θ)
the projection of θ to the closed convex C(A′) and H.β(A′, θ) the adjoint orbit of
β(A′, θ).

Lemma 2.5.4. By definition of the projection to a closed convex in an euclidian
space |β(A′, θ)− θ| is the distance between θ and the cone C(A′), define

dθ = inf
A′⊂A

β(A′,θ)6=θ

|β(A′, θ)− θ|
2

(8)

then dθ > 0 and hθ
−1 [0, dθ[ ⊂ Sθ.

Proof. For any h ∈ H by invariance of the scalar product under the adjoint action
and as θ ∈ Z(h)

|h.β(A′, θ)− θ|
2
= |β(θ, A′)− θ|

2
.

Hence if x is a critical point of hθ not in µ−1(θ), then x ∈ µ−1(H.β(A′, θ)) for some
β(A′, θ) different from θ and

|µ(x)− θ|2 = |β(θ, A′)− θ|
2
> dθ.

So that the only critical value of hθ0 in the intervalle [0, dθ[ is 0.
Now for any x ∈ W , the map t 7→ hθ

(
γθx(t)

)
can only decrease, and it converges

to a critical value. Therefore if x ∈ h−1
θ [0, dθ[ the negative gradient flow converges

necessarily to a point limt→+∞ γθx(t) which belongs to h−1
θ (0) = µ−1(θ) so that x ∈

Sθ.

Theorem 2.5.5. Let θ0 ∈ C(A)reg ∩ Z(h), there is an open neighborhood Vθ0 of
θ0 in C(A)reg ∩ Z(h) such that for all θ ∈ Vθ0, θ-stability and θ0-stability coincide
W θ0-ss = W θ-ss.

Proof. Let ǫ > 0 such that B(θ0, ǫ) the ball of center θ0 and radius ǫ in t is included
in C(A)reg. Then when θ varies in B(θ0, ǫ) it does not meet any frontier of a cone
C(A′) with A′ ⊂ A. So that for θ ∈ B(θ0, ǫ), for all A′ ⊂ A, β(θ, A′) 6= 0 if and only
if β(θ0, A

′) 6= 0. Thus the subset indexing the infima defining dθ and dθ0 in (8) are
identical. As the projection to closed convex is a continuous map, the map θ 7→ dθ
is continuous on B(θ0, ǫ). Therefore one can chose ǫ′ > 0 such that

• dθ >
dθ0
2

for all θ ∈ B(θ0, ǫ
′).

Moreover ǫ′ can be chosen to satisfy the following conditions

• B(θ0, ǫ
′) ⊂ C(A)reg

• ǫ′2 <
dθ0
2
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Let θ in B(θ0, ǫ
′) ∩ Z(h), we shall see that W θ-ss = W θ0-ss. First note that θ ∈

C(A)reg ∩ Z(h) and Proposition 2.5.2 implies W θ-ss =W θ-s.
For x ∈ W θ-ss = W θ-s, by Proposition 2.3.5 there exists g ∈ G such that g.x ∈

µ−1(θ). Then |µ(g.x)− θ0|
< dθ0

2
and g.x ∈ h−1

θ0
[0, dθ0[. By Lemma 2.5.4, g.x ∈ Sθ0

and by Proposition 2.5.3 g.x is θ0-semistable so that x ∈ W θ0-ss.
Similarly for x ∈ W θ0-ss, there exists g ∈ G such that g.x ∈ µ−1(θ0). Then

|µ(g.x)− θ|2 <
dθ0
2

and as
dθ0
2
< dθ, the point g.x lies in h−1

θ [0, dθ[ therefore x is
θ-stable.

Considering again the closed subvariety X ⊂W one defines the regular locus:

Definition 2.5.6 (Regular locus). The regular locus Breg is the set of elements
θ ∈ C(A)reg ∩ Z(h) such that for all x ∈ Xθ-ss the stabilizer of x in G is trivial and
Xθ-ss 6= ∅.

Proposition 2.5.7. The regular locus Breg is the union of some connected compo-
nents of C(A)reg ∩ Z(h).

Proof. By Theorem 2.5.5, if θ and θ′ are in the same connected component of
C(A)reg ∩ Z(h) then W θ-ss = W θ′-ss. Hence if θ ∈ C(A)reg ∩ Z(h) is such that
for all x ∈ Xθ-ss the stabilizer of x in G is trivial and Xθ-ss 6= ∅, the same holds for
θ′ in the same connected component of C(A)reg ∩ Z(h).

Remark 2.5.8. Note that the regular locus Breg can be empty, for instance if the
center Z(h) is a subset of a cone C(A′) with dimA′ < dim t. Fortunately it is
non-empty for the application to Nakajima quiver varieties of next sections.

In next subsection we prove that the real moment map is a locally trivial fibration
over the regular locus Breg.

2.6 Trivialization of the real moment map over the regular

locus

Next construction follows ideas from Hitchin-Karlhede-Lindström-Roček and is il-
lustrated in [HKLR87, Figure 3 p.348].

Proposition 2.6.1. For χθ ∈ X ∗(G)R and x a θ-stable point with trivial stabilizer,
there exists a unique Y θ,x ∈ h such that exp

(
iY θ,x

)
.x ∈ µ−1(θ). Moreover for h ∈ H

the adjoint action of h on Y θ,x satisfies

h.Y θ,x = Y θ,h.x. (9)

Let θ′ = µ(x) and x′ = exp
(
iY θ,x

)
.x, then

Y θ′,x′

= −Y θ,x. (10)

.

Proof. As x is θ-stable, by Proposition 2.3.5 the orbit G.x intersects µ−1(θ) exactly
on aH-orbit. There exists g ∈ G such that g.x ∈ µ−1(θ). Apply polar decomposition
to this element g = h0 exp

(
iY θ,x

)
with h0 ∈ H and Y θ,x ∈ h. Then

µ−1(θ) ∩G.x = H. exp
(
iY θ,x

)
.x
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Take Y ′ such that exp (iY ′) .x ∈ µ−1(θ) then

exp(iY ′).x = h exp(iY θ,x).x

for some h in H . By triviality of the stabilizer of x and uniqueness of polar decom-
position Y ′ = Y θ,x hence Y θ,x is uniquely determined. Let us check H-equivariance,
for h ∈ H

µ−1(θ) ∋ h exp(iY θ,x).x = exp
(
ih.Y θ,x

)
.h.x

by uniqueness Y θ,h.x = h.Y θ,x. Equation (10) is clear.

Remark 2.6.2. The assumption that x has a trivial stabilizer can be relaxed. Then
there exists Y x,θ ∈ h such that

{
Y ∈ h | exp(iY ).x ∈ µ−1(θ)

}
= (StabH x) .Y

θ,x

The right-hand side is the orbit of Y θ,x under the adjoint action of the stabilizer of
x in H. For applications to quiver varieties we only need to consider the case of a
trivial stabilizer.

Lemma 2.6.3. Let θ ∈ Z(h) and x0 a θ-stable point with trivial stabilizer. There
exists an open neighborhood Uθ,x0 of (θ, x0) in h×X and a smooth map

Y : Uθ,x0 → h

(θ′, x′) 7→ Y (θ′, x′)

such that µ (exp (iY (θ′, x′)) .x′) = θ′.

Proof. Note that when θ ∈ Z(h) necessarily Y (θ, x) is equal to the Y θ,x introduced in
previous proposition. Let Y θ,x0 such that x := exp

(
iY θ,x0

)
.x0 is in the intersection

G.x0 ∩ µ
−1(θ). Consider the map

f : h× h×X → h

(Y ′, θ′, x′) 7→ µ (exp(iY ′).x′)− θ′

in order to use the implicit function theorem on a neighborhood of
(
Y θ,x0, θ, x0

)
we

first prove that the differential of f with respect to Y ′ at (Y θ,x0, θ, x0) is invertible. As
x has a finite stabilizer, the embedding of tangent spaces TxH.x −֒→ TxG.x identifies
with the embedding

h ∼= TIdH −֒→ TIdG ∼= h⊕ ih. (11)

By Proposition 2.3.3, dµ is surjective so that µ−1(θ) is a smooth manifold and
ker dµx = Txµ

−1(θ). Proposition 2.3.5 implies µ−1(θ) ∩ G.x = H.x Restricting dxµ
to the tangent space of the G-orbit we obtain the following short exact sequence

0 −֒→ TxH.x −֒→ TxG.x
dxµ|TxG.x
−−−−−−→ h −→ 0.

the surjectivity follows from dimension counting and the identification of the tangent
spaces with (11). Thus we obtain the expected invertibility of the differential with
respect to Y ′ of f at (Y θ,x0, θ, x0), the map dY ′f(Y θ,x0 ,θ,x0), identifies with an invertible
map ih → h. The implicit function theorem applies and gives the existence of
Uθ,x0 ⊂ h × X an open neighborhood of (θ, x0) and the expected smooth map
Y (. . . , . . . ).
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Next theorem is a first result concerning local triviality of the moment map, over
the regular locus Breg the real moment map is a locally trivial fibration.

Theorem 2.6.4. Let θ0 in Breg, and Uθ0 the connected component of Breg containing
θ0. There is a diffeomorphism f such that the following diagram commutes

Uθ0 × µ−1 (θ0) µ−1(Uθ0)

Uθ0

f

∼

µ

Moreover f is H equivariant so that the diagram goes down to quotient

Uθ0 × µ−1 (θ0) /H µ−1(Uθ0)/H

Uθ0

∼

Proof. For θ ∈ Uθ0 we know from 2.5 that Xθ-s = Xθ0-s 6= ∅. Define f by

f(θ, x) := exp (iY (θ, x)) .x

It follows from Proposition 2.6.1 that it is invertible with inverse

f−1(x′) = (µ(x′), exp (iY (θ0, x
′)) .x′) .

Lemma 2.6.3 implies that f is a diffeomorphism. Equivariance follows from equation
(9) so that f(θ, h.x) = h.f(θ, x) and f goes down to a diffeomorphism between
quotients.

In next sections Nakajima quiver varieties are considered, they admit an addi-
tional hyperkähler structure. A similar trivialization is established in this hyperkäh-
ler context.

3 Quiver varieties and stability

3.1 Generalities about quiver varieties

The quiver varieties considered in this paper were introduced by Nakajima [Nak94].
Let Γ be a quiver with vertices Ω0 and edges Ω1. For an edge γ ∈ Ω1 we denote
t(γ) ∈ Ω0 its tail and h(γ) ∈ Ω0 its head, we define the reverse edge γ such that
t(γ) = h(γ) and h(γ) = t(γ).

t(γ)• •h(γ)

γ

γ

Let Ω1 := {γ |γ ∈ Ω1} and Ω̃ := Ω1 ⊔ Ω1. For γ ∈ Ω1 we set γ := γ to obtain an

involution on Ω̃. The extended quiver Γ̃ is obtained by adding an inverse to all edges
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in Ω1, its set of vertices is Ω0 and its set of edges is Ω̃. Let ǫ : Ω̃ → {−1, 1} be the
map {

ǫ(γ) = 1 if γ ∈ Ω1

ǫ(γ) = −1 if γ ∈ Ω1

We fix a dimension vector v ∈ NΩ0 . A representation of the quiver Γ with dimension
vector v is a pair (V, φ) with V =

⊕
j∈Ω0

Vj a graded vector space with dim Vj = vj
and φ = (φγ)γ∈Ω1 a collection of linear maps φγ : Vt(γ) → Vh(γ). A subrepresentation
is a subspace W ⊂ V with a compatible Ω0-grading and preserved by φ. The set of
quiver representations with dimension vector v is identified with

Rep (Γ, v) :=
⊕

γ∈Ω1

MatC(vh(γ), vt(γ)).

For construction of quiver varieties it is interesting to consider representations of
the extended quiver Γ̃

Rep
(
Γ̃, v
)
:=
⊕

γ∈Ω̃

MatC(vh(γ), vt(γ)).

It is a complex vector space, the complex structure considered in this section is

I.(φγ)γ∈Ω̃ = (iφγ)γ∈Ω̃

The group GLv :=
∏

i∈Ω0
GLvi(C) acts linearly on Rep(Γ̃, v)

g. (φγ)γ∈Ω̃ :=
(
gh(γ)φγg

−1
t(γ)

)
γ∈Ω̃

.

The diagonal embedding of C∗ in GLv acts trivially so that the action goes down to
an action of the group

Gv := GLv /C
∗,

which identifies with

Gv
∼=

{
(gj)j∈Ω0 ∈ GLv|

∏

j∈Ω0

det(gj) = 1

}
.

Note that Gv is isomorphic to a product of a special linear group and a finite number
of general linear groups so that it is a reductive group. The Lie algebra of GLv,
respectively Gv is glv =

⊕
j∈Ω0

glvj (C) respectively.

gv =

{
(xj)j∈Ω0 ∈ glv

∣∣∣∣∣
∑

j∈Ω0

trxj = 0

}

The center of gv is

Z(gv) =

{
(ξj Idvj )j∈Ω0

∣∣∣∣∣(ξj)j∈Ω0 ∈ (C)Ω0 with
∑

j∈Ω0

vjξj = 0

}
.

Let θ ∈ ZΩ0 such that
∑

j∈Ω0
vjθj = 0, define χθ a character of Gv by

χθ ((gj)j∈Ω0) =
∏

j∈Ω0

det(gj)
−θj . (12)

The θ-semistable locus, respectively θ-stable locus in the sense of Mumford’s Geo-
metric Invariant Theory [MF82], are denoted by Rep(Γ̃, v)θ-ss, respectively Rep(Γ̃, v)θ-s.
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Definition 3.1 (Complex moment map). The complex moment map is defined by

µC : Rep(Γ̃, v) → gv
(φγ)γ∈Ω̃ 7→

∑
γ∈Ω̃ ǫ(γ)φγφγ

it is Gv-equivariant for the adjoint action on gv.

This complex moment map will be related to the real moment map of Definition
2.3.1 in next section.

Definition 3.2 (Nakajima quiver variety). For ξ ∈ Z(gv), the set µ−1
C (ξ) is an

affine variety in Rep(Γ̃, v), it inherits a Gv action. Nakajima quiver varieties are
defined as GIT quotients:

Mθ
v(ξ) := µ−1

C (ξ) ∩ Rep(Γ̃, v)θ-ss//Gv.

Those varieties are interesting from the differential geometry point of view and
have an hyperkähler structure. We are interested in the family formed by those
varieties when the parameters ξ and θ are varying.

3.2 King’s characterization of stability of quiver representa-

tions

As in Section 2 the geometric invariant theory has a symplectic counterpart. Rep
(
Γ̃, v
)

is an hermitian vector space with norm

∣∣∣
∣∣∣(φγ)γ∈Ω̃

∣∣∣
∣∣∣
2

=
∑

γ∈Ω̃

tr(φγφ
†
γ).

The Gv-action restricts to a unitary action of the maximal compact subgroup

Uv =

{
(gj)j∈Ω0 ∈

∏

j∈Ω0

Uvj

∣∣∣∣∣
∏

j∈Ω0

det(gvj) = 1

}

The Lie algebra of Uv is

uv =

{
(xj)j∈Ω0 ∈

⊕

j∈Ω0

uvj

∣∣∣∣∣
∑

j∈Ω0

tr xj = 0

}

with Uvj , respectively uvj , the group of unitary matrices, respectively the space of
skew-hermitian matrices of size vj. The real moment map µI for the Uv action
satisfies

〈µI(x), Y 〉 =
1

2

d

dt
|| exp(it.Y ).x||2

∣∣∣∣
t=0

for Y ∈ uv. The pairing is defined for Y = (Yj)j∈Ω0 and Z = (Zj)j∈Ω0 by

〈Y, Z〉 =
∑

j∈Ω0

tr(YjZj). (13)
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As in 2.2, to the character χθ defined by (12) is associated the following element of
the Lie algebra uv

θ = (−iθj Idvj )j∈Ω0 ∈ uv. (14)

Indeed for Y = (Yj)j∈Ω0 in the Lie algebra uv, by the usual differentiation of the
determinant map at identity

dχθ
Id(iYj) = −

∑

j∈Ω0

iθj tr(Yj) = 〈θ, Y 〉 .

We recall here an important result from King giving a characterization of θ-
stability for quiver representations.

Theorem 3.3 (King [Kin94] Proposition 3.1). Let θ ∈ ZΩ0 such that
∑
θjvj = 0

and χθ the associated character defined by (12) .

1. A quiver representation (V, φ) ∈ Rep
(
Γ̃, v
)

is θ-semistable if and only if for

all subrepresentation W ⊂ V

∑

j∈Ω0

θj dimWj ≤ 0.

2. A quiver representation (V, φ) is a θ-stable if and only if for all subrepresen-
tation W different from 0 and (V, φ)

∑

j∈Ω0

θj dimWj < 0.

The symplectic point of view allows to consider real parameters θ ∈ RΩ0 such that∑
j∈Ω0

vjθj = 0. They are associated to elements χθ ∈ X ∗(Gv)
R with well-defined

modulus: ∣∣χθ ((gj)j∈Ω0)
∣∣ =

∏

j∈Ω0

|det(gj)|
−θj .

The set of θ-stable points in Rep
(
Γ̃, v
)

is defined by Definition 2.1.4. The end of

this section is devoted to a generalization of the second point of King’s theorem for
real parameters θ ∈ RΩ0 such that

∑
θjvj = 0.

Let Y = (Yj)j∈Ω0
∈ uv, the iYj are hermitian endomorphisms of V j. For λ ∈ R

denote by V j
≤λ the subspace of V j spanned by eigenvectors of iYj with eigenvalues

smaller than λ then define
V≤λ :=

⊕

j∈Ω0

V j
≤λ.

Lemma 3.4. Let x = (V, φ) in Rep
(
Γ̃, v
)

and Y ∈ uv. The limit

lim
t→+∞

exp(itY ).x

exists if and only if for every λ real, V≤λ defines a subrepresentation of (V, φ)
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Proof. For all j ∈ Ω0 take a basis of V j formed by eigenvectors of iYj and assume
the eigenvalues repeated according to multiplicities are ordered

λj1 ≤ λj2 ≤ · · · ≤ λjvj .

In those basis of eigenvectors, for γ ∈ Γ̃ one can write the matrix of φγ and compute
the action of exp(itY )

(exp(itY ).φ)γ =




φγ
1,1 et(λ

h(γ)
1 −λ

t(γ)
2 )φγ

1,2 . . .

et(λ
h(γ)
2 −λ

t(γ)
1 )φγ

2,1
... . . . et(λ

h(γ)
a −λ

t(γ)
b

)φγ
a,b . . .

e
t(λ

h(γ)
vh(γ)

−λ
t(γ)
1 )

φγ
vh(γ),1

. . .




the limit exists if and only if the matrix is upper triangular i.e. φ(V≤λ) ⊂ V≤λ and
V≤λ defines a subrepresentation of (V, φ).

Next result is the generalization of King’s theorem relative to θ-stability of quiver
representations for a real parameter θ. Its proof relies on previous lemma and the
Hilbert-Mumford criterion for real one-parameter Lie groups 2.4.3.

Theorem 3.2.1. Let θ ∈ RΩ0 such that
∑

j∈Ω0
θjvj = 0 and χθ the associated

element in X ∗(Gv)
R. A quiver representation (V, φ) is θ-stable if and only if for all

subrepresentation W ⊂ V different from 0 and (V, φ)
∑

j∈Ω0

θj dimWj < 0.

Proof. Let x = (V, φ) in Rep
(
Γ̃, v
)θ-s

a θ-stable point. By Hilber-Mumford criterion

(Theorem 2.4.3), for all Y ∈ uv such that limt→+∞ exp(itY ).x exists then 〈θ, Y 〉 < 0.
Let W be a subrepresentation of (V, φ) different from 0 and (V, φ). For all j ∈ Ω0

define Yj in uvj such that Wj is an eigenspace of iYj with eigenvalue λ1 and W⊥
j

the orthogonal complement of Wj is an eigenspace of iYj with eigenvalue λ2 and
λ2 > λ1. By previous lemma limt→+∞ exp(itY ).x exists.

〈θ, Y 〉 = −
∑

j∈Ω0

θj (λ1 dimWj + λ2 (dimVj − dimWj))

= −
∑

j∈Ω0

(λ1 − λ2)θj dimWj

because
∑
θjvj = 0. Then Hilbert-Mumford criterion implies 〈θ, Y 〉 < 0, hence∑

j∈Ω0
θj dimWj < 0.

Conversely let x = (V, φ) a quiver representation such that for all subrepresen-
tation W  V different from 0

∑

j∈Ω0

θj dimWj < 0.

Let Y = (Yj)j∈Ω0
∈ uv different from zero. The set of eigenvalues of iYj is ordered

λj1 < · · · < λjdj . The set of all eigenvalues for all j ∈ Ω0 is also ordered

{
λjk
}

j∈Ω0
1≤k≤dj

= {λ1, λ2, . . . , λm}
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with λk < λk+1. For convenience add an element λ0 < λ1. If limt→=∞ exp(itY ).x
exists, by previous lemma V≤λ is a subrepresentation of (V, φ). Moreover

〈θ, Y 〉 = −
∑

j∈Ω0

θj

dj∑

k=1

λjk

(
dimV j

≤λ
j
k

− dimV j

≤λ
j
k−1

)

= −
∑

j∈Ω0

θj

m∑

k=1

λk

(
dimV j

≤λk
− dimV j

≤λk−1

)

= −
∑

j∈Ω0

θj

m−1∑

k=1

(λk − λk+1) dimV j
≤λk

−λm
∑

j∈Ω0

θj dimV j
≤λm

.

The last summand vanishes as
∑
θjvj = 0,

〈θ, Y 〉 = −
m∑

k=1

(λk − λk+1)
∑

j∈Ω0

θj dimV j
≤λk

As Y 6= 0, it has at least two distinct eigenvalues. Then V≤λ1 is a subrepresentation
different from zero and V and

−(λ0 − λ1)
∑

j∈Ω0

θj dimV j
≤λ1

< 0

so that 〈θ, Y 〉 < 0.

This result is useful in next section to characterize a regular locus for the hyper-
kähler moment map.

4 Nakajima quiver varieties as hyperkähler quotients

and trivialization of the hyperkähler moment map

After some reminder about the hyperkähler structure of Nakajima quiver varieties,
trivializations of the hyperkähler moment map are discussed.

4.1 Hyperkähler structure on the space of representations of

an extended quiver

The space Rep
(
Γ̃, v
)

is endowed with three complex structures

I. (φγ, φγ) = (iφγ , iφγ)

J. (φγ, φγ) = (−φ†
γ , φ

†
γ)

K. (φγ, φγ) = (−iφ†
γ , iφ

†
γ)

satisfying quaternionic relations

I2 = J2 = K2 = IJK = −1 (15)
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and a norm ∣∣∣
∣∣∣(φγ)γ∈Ω̃

∣∣∣
∣∣∣
2

=
∑

γ∈Ω̃

tr
(
φγφ

†
γ

)
.

For each complex structure, polarisation identity defines an hermitian pairing com-
patible with || . . . ||. For example the hermitian pairing compatible with the complex
structure I used in previous section is

pI (u, v) =
1

4

(
||u+ v||2 − ||u− v||2 + i||u+ I.v||2 − i||u− I.v||2

)

pJ(. . . , . . . ) and pK(. . . , . . . ) are similarly defined. One expression is particularly
simple

pI

(
(φγ)γ∈Ω̃, (ψγ)γ∈Ω̃

)
=
∑

γ∈Ω̃

tr(φγψ
†
γ).

Remark 4.1.1. Even if the hermitian metric relies on the choice of complex struc-
ture, by the polarisation identity the real part remains the same, it is the hyperkähler
metric

g(. . . , . . . ) := Re pI(. . . , . . . ) = Re pJ(. . . , . . . ) = Re pK(. . . , . . . ).

Definition 4.1.2 (Real symplectic forms). As in equation (4) we define a real
symplectic form for each complex structure

ωI(. . . , . . . ) := g(I . . . , . . . )

ωJ(. . . , . . . ) := g(J . . . , . . . )

ωK(. . . , . . . ) := g(K . . . , . . . )

Notations 4.1.3. I-linear means C-linear with respect to the complex structure I
and similarly for J-linear and K-linear.

Proposition 4.1.4 (Permutation of complex structures). Consider the map

Ψ : Rep
(
Γ̃, v
)

→ Rep
(
Γ̃, v
)

x 7→ 1
2
(1 + I + J +K) .x

It is an isomorphism from the hermitian vector space Rep
(
Γ̃, v
)

with the complex

structure I and hermitian pairing pI to the hermitian vector space Rep
(
Γ̃, v
)

with

the complex structure J and pairing pJ .
More generally it cyclically permutes the three complex structure I, J,K

Ψ(I.x) = J.Ψ(x)
Ψ(J.x) = K.Ψ(x)
Ψ(K.x) = I.Ψ(x).

(16)

Such a map is sometimes called an hyperkähler rotation.

Proof. Relations (16) follow from a computation with the quaternionic relations
(15). To prove the compatibility with the hermitian structures it is enough to check
that ||Ψ(x)|| = ||x||.

||(1 + I + J +K).x||2 = g ((1 + I + J +K).x, (1 + I + J +K).x) .

The expected result is obtain after cancellations from the identity g(I.u, u) = 0,
similar relations for the other complex structures and quaternionic relations (15).
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In 3.1 an I-linear action of Gv is described. The hyperkähler rotation Ψ provides
the following construction for J-linear and K-linear actions. This three actions
coincide when restricted to the compact subgroup Uv.

Definition 4.1.5 (Complexification of the action). Thanks to polar decomposition,
to define a linear action of Gv compatible with the complex structure J it is enough
to define the action of exp(i.Y ) for Y ∈ uv. To highlight the complex structure used,
this action is written exp(J.Y ) . . . and defined by

exp(J.Y ).x := Ψ
(
exp(i.Y ).Ψ−1(x)

)

with the element exp(i.Y ) of Gv acting by the natural I-linear action previously
described. Similarly

exp(K.Y ).x := Ψ−1 (exp(i.Y ).Ψ(x)) .

Remark 4.1.6. A point x is θ-(semi)stable with respect to the I-linear action if and
only if Ψ(x) is θ-(semi)stable with respect to the J-linear action.

4.2 Hyperkähler structure and moment maps

By Proposition 4.1.4 the variousGv-actions previously described are compatible with
the hermitian metrics so that the constructions of section 2 apply. They provide a
moment map for each complex structure.

〈µI(x), Y 〉 =
1

2

d

dt
|| exp(t.I.Y ).x||2

∣∣∣∣
t=0

〈µJ(x), Y 〉 =
1

2

d

dt
|| exp(t.J.Y ).x||2

∣∣∣∣
t=0

〈µK(x), Y 〉 =
1

2

d

dt
|| exp(t.K.Y ).x||2

∣∣∣∣
t=0

.

The pairing is defined by (13).

Definition 4.2.1 (Hyperkähler moment map). Those three real moment maps fit

together in an hyperkähler moment map µH : Rep
(
Γ̃, v
)
→ uv ⊕ uv ⊕ uv defined by

µH = (µI , µJ , µK).

The moment map µC defined in 3.1 by

µC

(
(φγ)γ∈Ω̃

)
:=
∑

γ∈Ω̃

ǫ(γ)φγφγ. (17)

can be expressed from the real moment maps

µC := µJ + iµK .

it is a polynomial map with respect to the complex structure I.

Remark 4.2.2. By cyclic permutation of the complex structure, µK + iµI is polyno-
mial with respect to the complex structure J and µI + iµJ is polynomial with respect
to the complex structure K.
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Take (θJ,j)j∈Ω0 and (θK,j)j∈Ω0 in RΩ0 such that
∑

j vjθJ,j =
∑

j vjθK,j = 0. Asso-
ciate to each of them an element in the center of the Lie algebra uv

θJ :=
(
−iθJ,j Idvj

)
j∈Ω0

θK :=
(
−iθK,j Idvj

)
j∈Ω0

.

Then θJ + iθK defines an element in the center of gv = uv ⊕ iuv. Hence µ−1
J (θJ) ∩

µ−1
K (θK) = µ−1

C (θJ+iθK) is an affine variety embedded in the vector space Rep
(
Γ̃, v
)

endowed with the complex structure I and stable under the Gv-action. Section 2
does not apply directly to this situation as µ−1

C (θJ+iθK) might be singular. However

it applies to the action of Gv on the ambiant space Rep
(
Γ̃, v
)
. For θI ∈ RΩ0 such

that
∑

j∈Ω0
vjθI,j = 0 consider the associated element χθI ∈ X ∗(Gv)

R.

Definition 4.2.3 (Hyperkähler regular locus). For w ∈ NΩ0 a dimension vector

Hw :=

{
(θI , θJ , θK) ∈

(
RΩ0

)3
∣∣∣∣∣
∑

j

wjθI,j =
∑

j

wjθJ,j =
∑

j

wjθK,j = 0

}
.

The regular locus is
Hreg

v = Hv \
⋃

w<v

Hw (18)

the union is over dimension vector w 6= v such that 0 ≤ wi ≤ vi.

Remark 4.2.4. This regular locus is empty unless the dimension vector v is indi-
visible, then Hreg

v is the complementary of a finite union of codimension 3 real vector
space.

Thanks to Kempf-Ness theory, Nakajima quiver varieties can be constructed as
hyperkähler quotients. The underlying manifold of the variety MθI

v (θJ + iθK) (see
definition 3.2) is :

mv(θI , θJ , θK) = µ−1
H (θI , θJ , θK)/Uv

4.3 Trivialization of the hyperkähler moment map

We study the family of Nakajima quiver varieties when the parameters (θI , θJ , θK)
are varying. Nakajima proved by consecutive uses of different complex structures
that for θ and θ′ in Hreg

v the manifolds mv(θI , θJ , θK) and mv(θ
′
I , θ

′
J , θ

′
K) are diffeo-

morphic [Nak94, Corollary 4.2]. We use this idea of consecutive uses of different
complex structures to prove that those manifolds fit in a locally trivial family over
the regular locus Hreg

v . First let us highlight relevant facts about the regular locus.

Lemma 4.3.1. Let (θI , θJ , θK) ∈ Hreg
v and x ∈ µ−1

J (θJ) ∩ µ−1
K (θK). Then x is

θI-stable if and only if it is θI-semistable.

Proof. If x0 ∈ µ−1
H (θI , θJ , θK) its stabilizer in Gv is trivial. Indeed Maffei proved

that the differential of the moment map at x0 is surjective [Maf02, Lemma 48], then
Proposition 2.3.3 implies the triviality of the stabilizer of x0.

Let x ∈ µ−1
J (θJ) ∩ µ−1

K (θK) a θI -semistable point. Then Gv.x ∩ µ−1
I (θI) is not

empty. As µ−1
J (θJ ) ∩ µ−1

K (θK) = µ−1
C (θJ + iθK) is Gv stable, the closure of the

orbit Gv.x meets µ−1
H (θI , θJ , θK) at a point x0. This point necessarily has a trivial

stabilizer, hence x0 ∈ Gv.x and x is θI-stable.
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Let (θI , θJ , θK) ∈ Hreg
v and consider first the complex structure I. By previous

lemma and King’s characterisation of stability (Theorem 3.2.1), for θ′I in an open
neighborhood of θI , stability with respect to θ′I is the same as stability with respect
to θI .

Now consider the complex structure J . Thanks to Remark 4.1.6 on the affine
variety µ−1

K (θK) ∩ µ
−1
I (θI) all θJ -semistable points are θJ -stable. Moreover for θ′J in

an open neighborhood of θJ , stability with respect to θ′J is the same as stability with
respect to θJ . Similarly for the complex structure K.

Assume that the dimension vector v is a root of the quiver so that the moment
map is surjective, see [CB06, Theorem 2]. Consider the diagram

µ−1
H (Hreg

v ) Rep
(
Γ̃, v
)

Hreg
v uv ⊕ uv ⊕ uv

µH

.

.

Theorem 4.3.2 (Local triviality of the hyperkähler moment map). Over the regular
locus Hreg

v , the hyperkähler moment map µH is a locally trivial fibration compatible
with the Uv-action:

Any (θI , θJ , θK) ∈ Hreg
v admits an open neighborhood V , and a diffeomorphism

f such that the following diagram commutes

V × µ−1
H (θI , θJ , θK) µ−1

H (V )

V

f

∼

µH

Moreover f is compatible with the Uv-action so that the diagram goes down to quo-
tient

V ×mv(θI , θJ , θK) µ−1
H (V )/Uv

V

∼

Proof. The method is similar to the proof of Theorem 2.6.4 applied consecutively
to the three complex structures. The idea of using different complex structures
comes from [Nak94] and [Kro89]. Take (θI , θJ , θK) ∈ Hreg

v and a connected open
neighborhood UI × UJ × UK such that for θ′I ∈ UI , any x ∈ µ−1

J (UJ) ∩ µ
−1
K (UK) is

θ′I-semistable if and only if it is θI -stable. Similarly for UJ and UK . For any x with
µH(x) = (θ′I , θ

′
J , θ

′
K) ∈ UI × UJ × UK , by Proposition 2.6.1 applied to the I-linear

action of Gv on Rep
(
Γ̃, v
)
, there exists a unique YI(θI , x) ∈ uv such that

exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θ

′
J , θ

′
K).

Then by exchanging the three complex structures with hyperkähler rotations, there
exists unique YJ(θJ , x) and YK(θK , x) such that

exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θJ , θ

′
K)
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and

exp (K.YK(θK , x)) exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x ∈ µ−1
H (θI , θJ , θK).

This defines the map f−1

f−1(x) := ((θ′I , θ
′
J , θ

′
K), exp (K.YK(θJ , x)) exp (J.YJ(θJ , x)) exp (I.YI(θI , x)) .x) .

Lemma 2.6.3 implies the smoothness of f−1. This map induces a diffeomorphism,
indeed exchanging θ and θ′ in previous construction produces the expected inverse

f (x, (θ′I , θ
′
J , θ

′
K)) := exp (I.YI(θ

′
I , x)) exp (J.YJ(θ

′
J , x)) exp (K.YK(θ

′
K , x)) .x

It follows from equation (10) that the maps are inverse of each others. The exchange
in the order of appearance of the complex structures I, J and K in the definition
of f and f−1 are necessary as the exponentials do not necessarily commute. The
Uv-equivariance follows from equation (9).

Similarly one can consider the complex moment map µC = µJ + iµK instead of
µH. The complex regular locus is Creg

v := Cv \
⋃

w<v Cw with

Cw =

{
ξ ∈ CΩ0

∣∣∣∣∣
∑

j∈Ω0

wjξj = 0

}

Theorem 4.3.3. The complex moment map is a locally trivial fibration over Creg
v .

Any ξ ∈ Creg
v admits an open neighborhood V , and a diffeomorphism f such that the

following diagram commutes

V × µ−1
C (ξ) µ−1

C (V )

V

f

∼

µC

Proof. The proof is similar to the hyperkähler situation.

Denote π : µ−1
H (Hreg

v )/Uv → Hreg
v the map obtained taking the quotient of µH.

Consider the cohomology sheaves Hiπ∗Ql of the derived pushforward of the con-
stant sheaf and the cohomology sheaves Hiπ!Ql of the derived compactly supported
pushforward of the constant sheaf.

Corollary 4.3.4. The sheaves Hiπ∗Ql and Hip!Ql are constant sheaves over Hreg
v .

Proof. By Theorem 4.3.2 those sheaves are locally constant. Hreg
v is a complemen-

tary of a finite union of codimension 3 real vector spaces, hence it is simply connected
so that the locally constant sheaves are constant.

Nakajima explained to us that this corollary can also be obtained by generalizing
Slodowy’s construction [Slo80] to quiver varieties.

Finally we extend the trivialization of the hyperkähler moment map over lines
constructed by Crawley-Boevey and Van den Bergh [CBVdB04] using twistor spaces
as told to us by Nakajima.
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Denote by H, respectively H0, the set of quaternions, respectively the set of
purely imaginary quaternions and H∗

0 = H0 \ {0}. The space u⊕3
v is identified with

H0 ⊗R uv. Then the hyperkähler moment map reads

µH = I ⊗ µI + J ⊗ µJ +K ⊗ µK .

Once an orthonormal basis of R3 is fixed, the triple of complex structures I, J and
K is fixed and we write µR = µI , µC = µJ + iµK . The hyperkähler moment map
is assumed to be surjective and the dimension vector indivisible. Then Hreg

v is the
open subset of generic parameters in H0⊗RZ(uv). For θ ∈ Hreg

v a generic parameter
and S a contractible subset of H∗

0, Crawley-Boevey and Van den Bergh constructed
a trivialization of the hyperkähler moment map over S ⊗ θ, see [CBVdB04] proof of
Lemma 2.3.3 (in the statement of this lemma S is chosen to be a complex line). The
assumption contractible is relaxed in next theorem. It relies on the theory of twistor
spaces developped by Penrose [Pen76], Atiyah-Hitchin-Singer [AHS78] and Salamon
[Sal82][Sal86]. The main point is the compatibility between hyperkähler quotients
and twistor spaces from Hitchin-Karlhede-Lindström-Roček [HKLR87] p.560, see
also Hitchin [Hit92]. The following Theorem as well as its proof was told to us by
Nakajima.

Theorem 4.3.5. For θ generic in H0 ⊗R Z(uv) define

H∗
0.θ = {h⊗ θ |h ∈ H∗

0} .

There exists a diffeomorphism f such that the following diagram commutes

µ−1
H (H∗

0.θ)/Uv µ−1
H (θ)/Uv ×H

∗
0.θ

H∗
0.θ

f

µH

the vertical arrow is the projection to H∗
0.θ.

Proof. Consider the quaternionic vector space Rep
(
Γ̃, v
)

and the projection

Rep
(
Γ̃, v
)
× S2 → S2.

With S2 the 2-sphere of imaginary quaternions with unit norm

S2 =
{
aI + bJ + cK

∣∣a2 + b2 + c2 = 1
}
.

S2 is given the usual complex structure of the projective line. The twistor space

associated to Rep
(
Γ̃, v
)

is the manifold Rep
(
Γ̃, v
)
× S2 endowed with a complex

structure such that the fiber over Iu ∈ S2 is Rep
(
Γ̃, v
)

seen as a vector space with

complex structure Iu.
As detailed in [CBVdB04], the group of quaternion of unit norm, identified with

SU(2), acts on H0 ⊗ Z(uv) by

h. (h′ ⊗ θ) = hh′h⊗ θ.
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with aI + bJ + cK + d = −aI − bJ − cK + d. Let θ a generic parameter, up to the
choice of orthonormal basis of R3 we can assume θ = I ⊗ θI . The SU(2) orbit of θ
thus identifies with S2 as

SU(2).θ =
{
Iu ⊗ θ

∣∣Iu ∈ S2
}
. (19)

The twistor space of the hyperkähler manifold µ−1
H (θ)/Uv is a complex manifold T

with an holomorphic map p to S2

T S2.
p

The underlying differential manifold of the twistor space is just a product and p the
projection to the second factor

µ−1
H (θ)/Uv × S2 S2.

The twistor spaces construction is compatible with hyperkähler quotients as ex-
plained in [HKLR87] p.560. Thus the fiber of p over Iu is µ−1

H (θ)/Uv endowed
with the complex structure inherited from the complex structure Iu on Rep

(
Γ, v
)
.

Namely if Iu ⊗ θ = (θ′I , θ
′
J , θ

′
K) then the fiber of the twistor space over Iu is the

complex manifold
p−1(Iu) = µ−1

C (θ′J + iθ′K) ∩ µ
−1
R (θ′I)/Uv

Thus fibers of p are exactly fibers of µH and the twistor space provides trivialization
of the hyperkähler moment map over the orbit SU(2).θ:

µ−1
H (SU(2).θ)/Uv T µ−1

H (θ)/Uv × S2

SU(2).θ S2

µH

β

p

γ

∼
α

α is defined thanks to (19), the map β is the identity on the fibers and γ forgets the
complex structure. This diagram traduces the equivalence between, on the right,
varying complex structure on a fixed fiber µ−1

H (θ)/Uv and on the left varying the
fiber for a fixed complex structure I.

The construction is similar to Crawley-Boevey and Van den Bergh’s construction
except that the twistor space formalism allows to obtain a trivialization over the
non-contractible space SU(2).θ.

As in [CBVdB04], the trivialization can be extended thanks to the R>0 action.
Note that for t a positive real number µH(tx) = t2µH(x). Then identifying S2×R>0

with H∗
0 we obtain the trivialization

µ−1
H (H∗

0.θ)/Uv µ−1
H (θ)/Uv ×H

∗
0

H∗
0.θ H∗

0

The SU(2)-action on the base of this trivialization traduces the variation of complex
structure on the hyperkähler manifold µ−1

H (θ)/Uv whereas the R>0 action traduces
the rescaling of the metric.
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