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Abstract

We study the optimal control of discrete time mean filed dynamical systems under
partial observations. We express the global law of the filtered process as a controlled
system with its own dynamics. Following a dynamic programming approach, we prove
a verification result providing a solution to the optimal control of the filtered system.
As an application, we study a general linear quadratic example for which an explicit
solution is given. We also describe an algorithm for the numerical approximation of
the optimal value and provide numerical experiments on a financial example.
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1 Introduction

We consider an optimal control problem for a system with mean field discrete time dynamics
under partial observations. The question of how to optimally control a system with mean
field dependence in the dynamics is related to the modelization of the optimal behavior for
populations with large number of interacting individuals.

The case where each individual chooses an own action in order to optimise a non-
cooperative reward, has led to the theory of mean-field games (MFGs), introduced in [12]
and [13]. The Nash equilibrium is then described by two equations, the first one correspond-
ing to the optimal behavior of a representative agent and the second one corresponding to
the evolution of the whole population under the optimal choice of each individual.
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In the case where all the individuals follow the same goal, the cooperative behavior leads
to the optimal control of mean field dynamical systems. A growing literature has emerged
on the subject for the continuous time case with two main approaches. The first one follows
a maximum principle method to provide necessary and sufficient conditions for optimality,
see e.g. [2, 14, 4, 5, 11]. The second approach consists in proving a dynamic programming
principle to solve the problem, see e.g. [1, 3, 18].

Such models with law dependency of the dynamics appear in mathematical finance. The
calibration of local volatility models to market smiles leads indeed to mean field stochastic
differential equations. We refer to [10, Chapter 11] for more details.

Concerning the discrete-time case, [6] studied the case of a linear-quadric problem and
turn it into a quadratic optimization problem in an Hilbert space, allowing to get necessary
and sufficient conditions for solving the problem. A dynamic programming approach is use
in [17] to the case where controls are restricted to feedback ones. By considering the law of
the controlled process as a state variable, it allows to get a verification theorem and to solve
explicitly the linear quadratic case.

In this paper, we investigate the optimal control problem of mean-field discrete time sys-
tems under partial information. This question has already been studied for systems without
mean-field interaction. We refer to the book [7] for a detailed presentation of the estimation
and the control of systems under partial information. The common approach to deal with
optimal control of partially observable systems consists in computing the conditional law
of the unobserved component given the observation and to derive its dynamic to retrieve a
completely observable controlled system called filtered controlled system.

In the case where the unobservable component admits a mean-field dependence, this
approach leads to an intractable problem since the filtered system involves two different
marginal laws, the original law of the unobservable component and the filtered law given
the observations.

To overcome this issue, we consider the law of the global system composed by both
observed and unobserved components as a state variable. By keeping in mind the past, it also
allows to consider general controls that might not be in the feedback form. We then rewrite
the initial problem as a new control problem with respect to the global law of the system
starting from the initial time and with controls as functions depending only on the observed
variables. We derive a dynamic programming principle and a verification theorem for this
new formulation. A second verification theorem is also provided for feedback controls. As an
application of the verification theorem, we provide the explicit solution of a linear-quadratic
optimal control problem with partial observations. As it is not possible to get explicit
solutions in many cases, we describe an algorithm for the numerical approximation of the
optimal value of our problem. We then provide numerical experiments for this algorithm. We
first test our algorithm an a benchmark given by the explicit solution of the linear-quadratic
model. We then apply our algorithm to a model inspired by the optimal investment problems
for private equities in finance and compare the results with standard strategies.

The remainder of the paper is organized as follows. In Section 2, we present the control
problem and the computation of the filter. In Section 3, we extend the original filtered
problem to get a tractable problem. We then provide a dynamic programing principle for
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the extended problem and a verification theorem. We also present a feedback version of this
verification theorem. Finally, we present in Section 4 some applications. We first study a
linear quadratic model for which we give an explicit solution via the verification Theorem.
An algorithm is then provided to approximate the optimal valuein the general case. We test
this algorithm on the linear-quadratic problem and run an experiment on a financial model
inspired by private equity investments.

2 The control problem under partial observation

2.1 The model

We fix a probability space (Ω,A,P) and three Banach spaces E, F and C. We denote
by |.| the norm on those spaces and by B(E), B(F ) and B(C) their respective Borel σ-
algebrae. We also denote by P2(E) the set of probability measure µ on (E,B(E)) such that∫
E
|x|2dµ(x) < +∞. We similarly define P2(E × E) and P2(E × F ). We endow the set

P2(E) with the 2-Wasserstein distance W2 defined by

W2(µ, µ′) =
(

inf
{∫

E2

|x− y|2π(dx, dy), π ∈ P2(E2) : π(.× E) = µ , π(E × .) = µ′
}) 1

2

and denote by B(P2(E)) its related Borel σ-algebra. We also similarly define W2 on E × F
and B(P2(E × F )). We fix a terminal time T and we define the partially observed control
system.

Controls. A control is a sequence α := (αn)0≤n≤T−1 of random variables defined on
(Ω,A,P) and valued in C such that

E
[
|αn|2

]
< +∞ (2.1)

for all n = 0, . . . , T − 1. We denote by C the set of such controls.

Hidden system. For a given control α ∈ C, we consider a controlled process (Xk)0≤k≤T
defined by its initial condition Xα

0 = ξ where ξ ∈ L2(Ω,A,P;E) and the dynamics

Xα
n+1 = Gn+1(Xα

n ,PXα
n
, αn, εn+1) , 0 ≤ n ≤ T − 1

for some measurable functions G1, . . . , GT from E ×P2(E)×C ×Rd to E, where (εn)1≤n≤T
is a sequence of square integrable i.i.d. random variables valued in Rd and independent of
ξ. We make the following assumption on the functions G1, . . . , GT .

(H1) There exist a constant C such that

Gn(x, µ, a, e) ≤ C
(
1 + |x|2 +W2(µ, δ0)2 + |a|2 + |e|2

)
,

for all(x, a, µ, e) ∈ E × C × P2(E)× Rd and n = 1, . . . , T .
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Observed System. For a given control α ∈ C, the observation is given by a process
(Y α

n )0≤n≤T defined by its initial condition Y α
0 = ζ where ζ ∈ L2(Ω,A,P;F ) is independent

of (εn)1≤n≤T and the dynamics

Y α
n+1 = Hn+1(Xα

n+1, Y
α
n , αn, ηn+1) , 0 ≤ n ≤ T − 1

for some measurable functions H1, . . . , HT from E×F ×C ×Rd′ into F , where (ηn)1≤n≤T is
a sequence of i.i.d. random variables valued in Rd′ , independent of ξ, ζ and (εn)1≤n≤T . We
make the following assumption on the functions H1, . . . , HT .

(H2) There exist a constant C such that

Hn(x, y, e) ≤ C
(
1 + |x|2 + |y|2 + |e|2

)
,

for all (x, y, e) ∈ E × F × Rd′ and n = 1, . . . , T .

Under Assumptions (H1) and (H2), we get that the controlled process (Xα
n , Y

α
n )0≤n≤T

is square integrable

E
[
|Xα

n |2] + E
[
|Y α
n |2] < +∞

for any control α ∈ C̃ and any n = 0, . . . , T .

Optimization problem. We fix T measurable functions c0, . . . , cT−1 from E×P2(E)×C
to R and a function γ from E × P2(E) to R. on which we make the following assumption.

(H3) There exist a constant C such that

cn(x, µ, a) ≤ C
(
1 + |x|2 +W2

2 (µ, δ0) + |a|2
)
, n = 0, . . . , T − 1 ,

γ(x, µ) ≤ C
(
1 + |x|2 +W2

2 (µ, δ0)
)

for all (x, µ, a) ∈ E × P2(E)× C.

We next introduce the cost function J by

J(α) := E
[ T−1∑
k=0

ck
(
Xα
k ,PXα

k
, αk
)

+ γ
(
Xα
T ,PXα

T

)]
for a strategy α ∈ C. We notice that under (H1), (H2) and (H3) J(α) is well defined. We
now define the subset C̄ of C by

C̄ =
{
α = (αk)0≤k≤T−1 ∈ C adapted to the filtration generated by Y α

}
The problem is to compute

V0 = inf
α∈C̄

J(α) . (2.2)

In the sequel we use the following notation : for N ≥ 0 and (x0, . . . , xN) a given vector,
we write xn:m for (xn, . . . , xm) where 0 ≤ n ≤ m ≤ N .

4



We notice that for α ∈ C̄, there exists measurable functions ak : F k → A, k = 0, . . . , T−1
such that

αk = a(Y α
0:k) , k = 0, . . . , T − 1 .

We therefore identify in the sequel, the set C̄ to the set C̃ defined by

C̃ :=
{
a = (ak)0≤k≤T−1 such that ak : F k → A measurable

and E[|a(Y a
0:k)|2] < +∞ for k = 0, . . . , T − 1

}
.

with Xa = Xα and Y a = Y α for αk = ak(Y
a

0:k), k = 0, . . . , T − 1. Let us stress the well
posedness of the controlled processes Xa and Y a as the components Xa

k and Y a
k depend only

on α0, . . . , αk−1 for k = 1, . . . , T .
More precisely, we have the following identity

V0 = sup
a∈C̃

J̃(a)

where

J̃(a) = E
[ T−1∑
k=0

ck
(
Xa
k ,PXa

k
, ak(Y

a
0:k)
)

+ γ
(
Xa
T ,PXa

T

)]
= J(α) .

We next define the sets C̃0, . . . , C̃T−1 by

C̃k(µ) =
{
ak : F k+1 → C measurable such that

∫
Fk+1

|ak(y0:k)|2dµ(x0:k, y0:k) < +∞
}
,

for µ ∈ P2((E × F )k+1) and k = 0, . . . , T − 1. In particular, we have

C̃ =
{
a = (ak)0≤k≤T−1 such that ak ∈ C̃k(PXa

0:k,Y
a
0:k

) for k = 0, . . . , T − 1
}
.

We take in the rest of the paper E = Rp and F = Rp′ and C = Rp′′ for some integers
p, p′, p′′ ≥ 1.

2.2 Filtered system

To compute the value V0 defined by (2.2), we would like to compute the conditional law of
Xk given Y0:k for k = 1, . . . , T . For that, we make the following assumption.

(H4) For (x, y, a) ∈ E×F ×C and k = 1, . . . , T , the random variable Hk(x, y, a, ηk) admits
a density

e 7→ hk(x, y, a, e)

where the function hk is a B(E)⊗ B(F )⊗ B(C)⊗ B(Rd′)-measurable.

Denote by P the controlled transition probability of the process X. It is given by

P u
k (xk−1, µ, dxk) = P(Gk(xk−1, µ, u, εk) ∈ dxk)

5



for k ≥ 1, xk−1 ∈ Rd and µ ∈ P2(Rd).
For a given control a ∈ C̃, we get from assumption (H4) that the pair (Xa

k , Y
a
k )0≤k≤T−1

admits the following transition

P
(
(Xa

k , Y
a
k ) ∈ dxkdyk|Xa

0:k−1, Y
a

0:k−1

)
=

hk(xk, Y
a
k−1, ak−1(Y a

0:k−1), yk)P
ak−1(Y a0:k−1)

k (Xa
k−1,PXa

k−1
, dxk)dyk (2.3)

for k = 1, . . . , T . Therefore, the joint law P(Xa
0:k,Y

a
0:k) of (Xa

0:k, Y
a

0:k) is given by

P(Xa
0:k,Y

a
0:k)(dx0:k, dy0:k) = PX0,Y0(dx0, dy0)

k∏
`=1

h`(x`, y`−1, a`−1, y`)P
a`−1(y0:`−1)
` (x`−1, µ

a
`−1, dx`)dy` .

where µa` = PXa
`

for ` = 1, . . . , k.
We next introduce the measures Πa

k, k = 0, . . . , T defined by

Πa
k,y0:k

(dxk) = P(Xa
k ∈ dxk|Y a

0:k = y0:k) .

From (2.3) we get the Kallianpur Streibel formula

Πa
k,y0:k

(dxk) =

∫
x0:k−1

∏k
`=1 h`(x`, y`−1, a`−1, y`)P

a`−1(y0:`−1)
` (x`−1, µ

a
`−1, dx`)PX0(dx0|Y0 = y0)∫

x′0:k

∏k
`=1 h`(x

′
`, y`−1, a`−1, y`)P

a`−1(y0:`−1)
` (x′`−1, µ

a
`−1, dx`)PX0(dx

′
0|Y0 = y0)

.

We also define the unnormalized measures πak,y0:k by

πak,y0:k(dxk) =

∫
x0:k−1

k∏
`=1

h`(x`, y`−1, a`−1, y`)P
a`−1(y0:`−1)
` (x`−1, µ

a
`−1, dx`)PX0(dx0|Y0 = y0) .

Still using (2.3) we get

Πa
k,y0:k

(dxk) =
πak,y0:k(dxk)

πak,y0:k(R
d)

.

We now compute the probability measures µak. From (2.3) we have

µak(dxk) =

∫
x0:k−1

∫
y0:k−1

P
ak−1(y0:k−1)
k (xk−1, µ

a
k−1, dxk)hk(xk, yk−1, ak−1, yk)

k−1∏
`=1

h`(x`, y`−1, a`−1, y`)P
a`−1(y0:`−1)
` (x`−1, µ

a
`−1, dx`)dy1:k−1PX0,Y0(dx0, dy0) .

2.3 The filtered problem

We now turn to the computation of the value V0. By definition we have

V0 = inf
a∈C̃

J(a)

= inf
a∈C̃

E
[ T−1∑
k=0

E
[
ck
(
Xa
k ,PXa

k
, ak(Y

a
0:k)
)
|Y a

0:k

]
+ E

[
γ
(
Xa
T ,PXa

T

)
|Y a

0:T

]]
.
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Using the previous notations, we get

V0 = inf
a∈C̃

E
[ T−1∑
k=0

∫
ck(xk, µ

a
k, ak(Y

a
0:k))Π

a
k,Y a0:k

(dxk) +

∫
γ(xT , µ

a
T )Πa

T,Y a0:T
(dxT )

]
.

Unfortunately, this form is not time consistent. Indeed, the costs involve the marginal laws
of the unobservable controlled process Xa but also the controlled conditional laws Πa

k,Y a0:k
.

3 Extended filtered control problem

3.1 Extended problem

Under the previous form the problem is not tractable as it involves the laws µan and Πa
n,Y0:n

.
Indeed, we cannot get µan from Πa

n,Y0:n
and conversely. This prevents from an application

of a dynamic programming approach. To overcome this issue, we introduce the controlled
measures Ma

n ∈ P2

(
(E × F )n+1

)
defined by

Ma
n(dx0:n, dy0:n) =

n∏
`=1

h`(x`, y`−1, α`−1, y`)P
a`−1(y0:`−1)
` (x`−1, µ

a
`−1, dx`)dy1:nPX0,Y0(dx0, dy0)

for n = 0, . . . , T . We observe that µan and Πa
n,Y0:n

can be computed from the measure Ma
n .

Indeed, we first have

µan(dx0:n) =

∫
y0:n

Ma
n(dx0:n, dy0:n) .

Secondly, we have

πan,y0:n(dxn) =

∫
x0:n−1

dMa
n

dy0:n

(y0:n, dx0:n) .

Therefore, we get

Πa
n,y0:n

(dxn) =

∫
x0:n−1

dMa
n

dy0:n
(y0:n, dx0:n)∫

x0:n

dMa
n

dy0:n
(y0:n, dx0:n)

.

We now introduce some notations. For n ∈ {0, . . . , T} and M ∈ P2((E × F )n+1) we denote
by `M the `-th marginal of M :

`M(dx`, dy`) =

∫
x0,y0

· · ·
∫
x`−1,y`−1

∫
x`+1,y`+1

· · ·
∫
xn,yn

M(dx0:n, dy0:n)

and 1
`M and 2

`M the first and second marginals of `M respectively:

1
`M(dx`) =

∫
y`

`M(dx`, dy`)

2
`M(dy`) =

∫
x`

`M(dx`, dy`)
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for ` ∈ {0, . . . , n}. We define the controlled transition probability P̄n : (E × F )n × C̃ ×
P2((E × F )n)→ P2(E × F ) by

P̄ an−1
n (z,M, dw) = P an−1(y0:n−1)

n (xn−1,
1
n−1M,dw1)hn(w1, yn−1, an−1(y0:n−1), w2)dw2

for z = (x`, y`)0≤`≤n−1 ∈ (E×F )n, M ∈ P2

(
(E×F )n), an−1 ∈ C̃n−1(M) and w = (w1, w2) ∈

E × F and n = 1, . . . , T . The controlled measures PXa
n,Y

a
n

have the following dynamics

P(Xa
0:n+1,Y

a
0:n+1)(dx0:n+1, dy0:n+1) =

P̄ an
n+1(x0:n, y0:n, an(Y0:n),P(Xa

0:n,Y
a
0:n), dxn+1, dyn+1)P(Xa

0:n,Y
a
0:n)(dx0:n, dy0:n)

for n = 0, . . . , T − 1. In the sequel, we use the following notation : for µ ∈ P2((E × F )n+1)
and an ∈ C̃n(µ), we define P̄ an

n+1µ ∈ P2((E × F )n+2) by

P̄ an
n+1µ(dx0:n+1, dy0:n+1) = P̄ an

n+1(x0:n, y0:n, µ, dxn+1, dyn+1)µ(dx0:n, dy0:n)

for n = 0, . . . , T − 1. The dynamics of the controlled measures P(Xa
0:n,Y

a
0:n) can be rewritten

under the following simplified form

P(Xa
0:n+1,Y

a
0:n+1)(dx0:n+1, dy0:n+1) = P̄ an

n+1P(Xa
0:n,Y

a
0:n)(dx0:n, dy0:n)

for n = 0, . . . , T − 1.
We now turn to the filtered problem. We define the cost functions Cn, n = 0, . . . , T − 1

and Γ by

Cn(M,an) =

∫
cn

(
xn,

1
nM,an(y0:n)

)
dM(x0:n, y0:n)

for M ∈ P2

(
(E × F )n+1)

)
, an ∈ C̃n(M) and

Γ(M) =

∫
γ
(
xT ,

1
TM

)
dM(x0:T , y0:T ) ,

for M ∈ P2

(
(E × F )T+1

)
. A straightforward computation gives

V0 = inf
a∈C̃

J̄(a) .

where the criteria J̄ is defined by

J̄(a) :=
T−1∑
n=0

Ck
(
P(Xa

0:n,Y
a
0:n), an

)
+ Γ

(
P(Xa

0:T ,Y
a
0:T )

)
, a ∈ C̃ . (3.4)

3.2 Dynamic programming

We dynamically extend the value V0. For that, we define for n = 0, . . . , T the functions
Vn : P2((E × F )n+1)→ R by

Vn(µ) = inf
a∈ nC̃(µ)

J̄n(µ, a)
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where

J̄n(µ, a) :=
T−1∑
k=n

Ck
(
Mn,µ,a

k , ak
)

+ Γ
(
Mn,µ,a

T

)
with (Mn,µ,a

k )k=n,...,T defined by Mn,µ,a
n = µ and

Mn,µ,a
k+1 = P̄ a

k+1M
n,µ,a
k (3.5)

for k = n, . . . , T − 1, and

nC̃(µ) =
{
a = (ak)0≤k≤T−1 such that ak ∈ C̃k(M

n,µ,a
k ) for k = n, . . . , T − 1

}
for any µ ∈ P2((E × F )n+1)

Lemma 3.1 (Dynamic programming). The value functions V0, . . . , VT satisfy the following
dynmic programming principle

Vn(µ) = inf
an∈C̃n(µ)

{
Cn
(
µ, an

)
+ Vn+1

(
P̄ an
n+1µ

)}
, µ ∈ P2((E × F )n+1) , (3.6)

for n = 0, . . . , T − 1

Proof. Denote by Zn(µ) the right-hand-side of (3.6). Fix a strategy a ∈ nC̃(µ). We then
have a ∈ n+1C̃(P̄ an

n µ) . We then notice that

M
n+1,P̄ann+1µ,a

k = Mn,µ,a
k

for k = n+ 1, . . . , T . Therefore, we have

Vn+1(P̄ an
n+1µ) ≤

T−1∑
k=n+1

Ck
(
Mn,µ,a

k , ak
)

+ Γ
(
Mn,µ,a

T

)
and

Cn
(
µ, an

)
+ Vn+1(P̄ an

n+1µ) ≤ J̄n(µ, a).

Taking the infimum over a ∈ nC̃(µ), we get

Zn(µ) ≤ Vn(µ) .

We turn to the reverse inequality. Fix ε > 0 and a strategy aεn ∈ C̃n(µ) such that

Cn
(
µ, aεn

)
+ Vn+1(P̄

aεn
n+1µ)− ε

2
≤ Zn(µ) . (3.7)

We now fix a strategy ãε ∈ n+1C̃(P̄
aεn
n+1µ) such that

J̄n+1(P̄
aεn
n+1µ, ã

ε)− ε

2
≤ Vn+1(P̄

aεn
n+1µ) . (3.8)
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We define âε as the concatenation of aεn and ãε:

âεk(.) = aεn(.)1k=n + ãεk(.)1k 6=n .

Then we have â ∈ nC̃(µ), Mn,µ,âε

n+1 = P̄
aεn
n+1µ and

Mn,µ,âε

k = M
n+1,P̄

aεn
n+1µ,ã

ε

k

for k = n+ 1, . . . , T . Therefore we get from (3.7) and (3.8)

J̄n(µ, âε)− ε ≤ Zn(µ)

and

Vn(µ)− ε ≤ Zn(µ) .

Since ε is arbitrarily chosen, we get Vn(µ) ≤ Zn(µ).

We now provide a verification result for the optimal value and an optimal strategy.

Theorem 3.1 (Verification). Consider the functions W0, . . . ,WT defined by

WT (µ) = Γ(µ) , µ ∈ P2((E × F )T+1) ,

and

Wn(µ) = inf
an∈C̃n(µ)

{
Cn
(
µ, an

)
+Wn+1(P̄ an

n+1µ)
}
, µ ∈ P2((E × F )n+1) (3.9)

for n = 0, . . . , T − 1. Then Wn = Vn for n = 0, . . . , T .
Suppose that for any n = 0, . . . , T − 1 and any µ ∈ P2((E × F )n), there exist a function

aµ,∗n ∈ C̃n(µ) such that

Wn(µ) = Cn
(
µ, aµ,∗n

)
+Wn+1(P̄

aµ,∗n+1
n µ). (3.10)

Then for a given starting measure µ ∈ P2(E × F ), the strategy a∗ defined by a∗0 = a∗,µ0 and

a∗n = aM
0,µ,a∗
n ,∗

n , n = 1, . . . , T − 1 , (3.11)

is optimal:

V0(µ) = J̄(µ, a∗) .

Proof. Fix n = 0, . . . , T − 1, µ ∈ P2((E × F )n+1) and a control a ∈ nC̃(µ). Since WT = Γ,
we get by (3.9) and a straightforward backward induction

Wn(µ) ≤
T−1∑
k=n

Ck
(
Mn,µ,a

k , ak
)

+ Γ
(
Mn,µ,a

T

)
.

10



Since a ∈ nC̃(µ) is arbitrarily chosen, we get

Wn(µ) ≤ Vn(µ)

for µ ∈ P2((E × F )n+1) and n = 0, . . . , T .
We now prove the reverse inequality by a backward induction. First we have VT = Γ =

WT , so WT ≥ VT .
Suppose that we have Wn+1 ≥ Vn+1. Using Lemma 3.1 and (3.9) we get Wn ≥ Vn.

Therefore, the result holds true for any n = 0, . . . , T .
Fix now µ ∈ P2(E × F ) and consider the strategy a∗ defined by (3.11). Writing the

equality (3.9) at each step we get

W0(µ) = Ĵ(µ, a∗)

and a∗ is optimal since W0(µ) = V0(µ).

In the previous result, the verification condition (3.9) is written over the set C̃n which
might be too large. Indeed, as the dynamics (3.5) of Mn,µ,a involves the past only through
the control a, one may wonder if condition (3.9) can be reduced to closed loop controls, i.e.
controls depending on the the present value of Mn,µ,a, and if an optimal strategy of this
form can be derived. This is possible under the condition that the starting position measure
µ already has this structure.

More precisely, we introduce, for n = 0, . . . , T − 1 and µ ∈ P2((E × F )n) the subset
C̃n,cl(µ) of C̃n(µ) composed by control functions an depending only on the last component

an(y0:n) = an(yn) , y0:n ∈ F n+1 .

We then define for µ ∈ P2(E × F ) the set C̃cl(µ) as the set of controls a = (a0, . . . , aT−1) ∈
0C̃(µ) such that an ∈ C̃n,cl(M

0,µ,a
n ) for n = 0, . . . , T−1. We finally denote by Pcl

(
(E×F )n

)
the

subset of P2

(
(E × F )n

)
composed by laws of controlled processes (Xa

0:n, Y
a

0:n) for a ∈ C̃cl(µ)
with P(Xa

0 ,Y
a
0 ) = µ and µ ∈ P2(E × F ). We notice that Pcl

(
E × F

)
= P2

(
E × F

)
as the

initial position does not depend on the control. We can now state the verification result for
closed loop controls.

Theorem 3.2 (Verification with closed loop controls). Consider the functions W0, . . . ,WT

defined by

WT (µ) = Γ(µ) , µ ∈ Pcl((E × F )T+1) ,

and

Wn(µ) = inf
an∈C̃n(µ)

{
Cn
(
µ, an

)
+Wn+1(P̄ an

n+1µ)
}
, µ ∈ Pcl((E × F )n+1) , (3.12)

for 0 ≤ n ≤ T − 1. Then Wn = Vn for n = 0, . . . , T on Pcl((E × F )n+1). Suppose that for
any n = 0, . . . , T − 1 there exists a measurable function an : P2((E × F )n) × F → C such
that

Wn(µ) = Cn
(
µ, an(µ, .)

)
+Wn+1(P̄

an(µ,.)
n+1 µ). (3.13)
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and an(µ, .) ∈ C̃n for all µ ∈ Pcl((E×F )n). Then for a given starting measure µ ∈ P2(E×F ),
the strategy a∗ defined by a∗0 = a0(µ, .) and

a∗n = an(M0,µ,a∗

n , .) , n = 1, . . . , T − 1 ,

is optimal:

V0(µ) = J̄(µ, a∗) .

Proof. The proof follows exactly the same lines as that of Theorem 3.1 and is therefore
omitted.

4 Applications

4.1 Linear-quadratic case

We take p = p′ = p′′ = d′ = d in this section. We suppose that the processes X and Y have
the following dynamics

Xa
k+1 = BkX

a
k + B̄kE[Xa

k ] +Dkak(Y
a

0:k) + εk+1 (4.14)

Y a
k+1 = Jk+1X

a
k+1 + ηk+1 , (4.15)

where Bk, B̄k Dk and Jk are deterministic d× d matrices and εk and ηk follow N (0, Id). We
also suppose that X0 and Y0 are independent and follow N (0, Id). We then define the cost
function J̃ by

J̃(a) := E
[ T−1∑
k=0

Xa
k
>QkX

a
k + E[Xa

k ]>Q̄kE[Xa
k ] + a(Y a

0:k)
>Rka(Y a

0:k)

+Xa
T
>QTX

a
T + E[Xa

T ]>Q̄TE[Xa
T ]
]
,

for any strategy a ∈ C̃. In this case (H1)-(H2)-(H3) are satisfied and we have

hk(x, y, a, e) = hk(x, e) =
1

(
√

2π)d
exp

(
− 1

2

∣∣e− Jkx∣∣2) , x, y, a, e ∈ Rd ,

which is the density of the law N (Jkx, Id). We now introduce some notations. For µ ∈
P2(E × F ) and Λ ∈ R2d×2d, we set

µ̄ =

∫
R2d

(
x
y

)
dµ(x, y)

and

〈µ〉(Λ) =

∫
R2d

(
x
y

)>
Λ

(
x
y

)
dµ(x, y) .

12



We also define the matrices Qk, Q̄k ∈ R2d×2d by

Qk =

(
Qk 0
0 0

)
and Q̄k =

(
Q̄k 0
0 0

)
for k = 0, . . . , T . The functions Ck and Γ appearing in the definition (3.4) of J̄ are then
given by

Ck(µ, a) = 〈kµ〉(Qk) + kµ̄
>Qkkµ̄+

∫
a(y0:k)

>Rka(y0:k)dµ(x0:k, y0:k)

for µ ∈ P2((E × F )k+1) , a ∈ C̃k(µ), k = 0, . . . , T − 1, and

Γ(µ) = 〈Tµ〉(QT ) + T µ̄
>(QT

)
T µ̄ , µ ∈ P2((E × F )T+1) ,

where we recall that kµ stands for the k-th marginal of µ for k = 0, . . . , T .
We look for candidates Wk, k = 0, . . . , T , satisfying the verification Theorem. For that

we chose an ansatz in the following quadratic form:

Wk(µ) = 〈kµ〉(Λk) + kµ̄
>Θkkµ̄+ χk (4.16)

for µ ∈ P2((E×F )k+1). We next suppose that J1, . . . , JT and D0, . . . , DT−1 are all invertible
and that Q1, Q1 + Q̄1, . . . , QT , QT + Q̄T are symmetric nonnegative and R1, . . . , RT are all
symmetric positive. We then have the following result.

Proposition 4.1. There exists Λk,Θk ∈ R2d×2d symmetric, with Λk and Θk + Λk non-
negative, and χk ∈ R, k = 0, . . . , T , symmetric nonnegative such that the functions Wk,
k = 0, . . . , T , given by (4.16) satisfy the verification Theorem 3.2 with a feedback optimal
strategy a of the form

an(µ, y) = Gn

(
ΞnΦn(µ, y) + Ŝ>n nµ̄

)
, y ∈ Rd , µ ∈ Pcl((Rd × Rd)n+1) ,

with Φn given by

Φn(µ, y) =

∫
Rd
xn

e−
1
2
|Jnxn−yn|2∫

Rd e
− 1

2
|Jnx′n−yn|2d 1

nµ(x′n)
d 1
nµ(xn), (4.17)

and Gn ∈ Rd×d, Ξn ∈ Rd×d and Ŝn ∈ R2d×d for n = 0, . . . , T − 1

Proof. We use a backward induction on k to prove the following statement:

For n = 0, . . . , N , there exists Λk,Θk ∈ R2d×2d symmetric, with Λk and Θk + Λk nonneg-
ative, and χk ∈ R, k = 0, . . . , T , such that the functions Wk, k = n, . . . , T , given by (4.16)
satisfy the verification Theorem 3.2 with a feedback optimal strategy a of the form

ak(µ, y) = Gk

(
ΞkΦk(µ, y) + Ŝ>k kµ̄

)
, y ∈ Rd , µ ∈ Pcl((Rd × Rd)k+1) ,

with Gk ∈ Rd×d, Ξk ∈ Rd×d and Ŝk ∈ R2d×d some matrices depending on the coefficients for
k = n, . . . , T − 1
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For n = T a straightforward computation gives

ΛT = QT , ΘT = Q̄T and χT = 0 .

Therefore, the property holds for n = T .
Suppose that the property holds for n+ 1. Fix µ ∈ Pcl((E×F )n+1). From the induction

assumption, we have

inf
an∈C̃n(µ)

{
Cn
(
µ, an

)
+Wn+1(Mn,µ,an

n+1 )
}

=

inf
an∈C̃n(µ)

{
Cn
(
µ, an

)
+ 〈n+1M

n,µ,an
n+1 〉(Λn+1)

+(n+1M̄
n,µ,a
n+1 )>Θn+1(n+1M̄

n,µ,an
n+1 ) + χn+1

}
=

inf
an∈C̃n(µ)

{
〈nµ〉(Qn) + nµ̄

>Q̄nnµ̄

+

∫
an(y0:n)>Rnan(y0:n)dµ(x0:n, y0:n) + 〈n+1M

n,µ,an
n+1 〉(Λn+1)

+(n+1M̄
n,µ,a
n+1 )>Θn+1(n+1M̄

n,µ,an
n+1 ) + χn+1

}
.

From (3.5) we have

n+1M̄
n,µ,an
n+1 =

∫
R2d

(
xn+1

yn+1

)
d n+1M

n,µ,an
n+1 (xn+1, yn+1)

=

∫
R2d

(
xn+1

yn+1

)∫
(R2d)n

P an(y0:n)
n (xn,

1
nµ, dxn+1)hn(xn+1, yn+1)dyn+1dµ(x0:n, y0:n)

From (4.14)-(4.15) we get

n+1M̄
n,µ,an
n+1 =

1

(2π)d

∫
R2d

(
xn+1

yn+1

)∫
(R2d)n

e−
1
2
|xn+1−(Bnxn+B̄n1

nµ̄+Dnan(y0:n))|2

e−
1
2
|yn+1−Jn+1xn+1|2dµ(x0:n, y0:n)dxn+1dyn+1

=

∫
(R2d)n

(
(Bnxn + B̄n

1
nµ̄+Dnan(y0:n))

Jn+1(Bnxn + B̄n
1
nµ̄+Dnan(y0:n))

)
dµ(x0:n, y0:n)

= Jn+1(Bn + B̄n)1
nµ̄+ Jn+1Dn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)

where

Jn+1 =

(
Id
Jn+1

)
∈ R2d×d .

Therefore we get

(n+1M̄
n,µ,an
n+1 )>Θn+1(n+1M̄

n,µ,an
n+1 ) =

nµ̄
>(Bn + B̄n)>J>n+1Θn+1Jn+1(Bn + B̄n)1

nµ̄

+2nµ̄
>(Bn + B̄n)>J>n+1Θn+1Jn+1Dn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)

+
(∫

(R2d)n
an(y0:n)dµ(x0:n, y0:n)

)>
D>n J>n+1Θn+1Jn+1Dn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)
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with

Bn =
(
Bn 0

)
∈ Rd×2d and B̄n =

(
B̄n 0

)
∈ Rd×2d .

We turn to the computation of the second order moment. Still using (4.14)-(4.15), a com-
putation gives ∫

R2d

(
xn+1

yn+1

)>
Λn+1

(
xn+1

yn+1

)
d(n+1M

n,µ,an
n+1 )(xn+1, yn+1) =∫

(R2d)n

1

(2π)d

∫
R2d

(
xn+1

yn+1

)>
Λn+1

(
xn+1

yn+1

)
e−

1
2
|xn+1−(Bnxn+B̄n1

nµ̄+Dnan(y0:n))|2

e−
1
2
|yn+1−Jn+1xn+1|2dxn+1dyn+1dµ(x0:n, y0:n) =∫

(R2d)n
(Bnxn + B̄n

1
nµ̄+Dnan(y0:n))>J>n+1Λn+1Jn+1(Bnxn + B̄n

1
nµ̄+Dnan(y0:n))dµ(x0:n, y0:n)

+Tr(J>n+1Λn+1Jn+1) + Tr(I>Λn+1I)

where

I =

(
0
Id

)
∈ R2d×d .

We therefore finally get

〈n+1M
n,µ,an
n+1 〉(Λn+1) =

〈nµ〉(B>nJ>n+1Λn+1Jn+1Bn)

+nµ̄
>(B̄>nJ>n+1Λn+1Jn+1B̄n + B>nJ>n+1Λn+1Jn+1B̄n + B̄>nJ>n+1Λn+1Jn+1Bn)nµ̄

+Tr(J>n+1Λn+1Jn+1) + Tr(I>Λn+1I)

+

∫
(R2d)n

an(y0:n)>D>n J>n+1Λn+1Jn+1Dnan(y0:n)dµ(x0:n, y0:n)

+2

∫
(R2d)n

x>nB
>
n J>n+1Λn+1Jn+1Dnan(y0:n)dµ(x0:n, y0:n)

+2nµ̄
>
∫

(R2d)n
B̄>nJ>n+1Λn+1Jn+1Dnan(y0:n)dµ(x0:n, y0:n) .
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We now go back to the definition of Wn:

Wn(µ) = inf
an∈C̃n(µ)

{
〈nµ〉(Qn) + nµ̄

>Q̄nnµ̄+

∫
an(y0:n)>Rnan(y0:n)dµ(x0:n, y0:n)

+〈n+1M
n,µ,an
n+1 〉(Λn+1) + (n+1M̄

n,µ,a
n+1 )>Θn+1(n+1M̄

n,µ,an
n+1 ) + χn+1

}
= inf

a∈C̃n(µ)

{
〈nµ〉(Qn + B>nJ>n+1Λn+1Jn+1Bn) + (nµ̄)>Kn(nµ̄)

+Tr(J>n+1Λn+1Jn+1) + Tr(I>Λn+1I) + χn+1

+
(∫

(R2d)n
an(y0:n)dµ(x0:n, y0:n)

)>
Nn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)

+2nµ̄
>Sn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)

+2

∫
(R2d)n

x>nB
>
n J>n+1Λn+1Jn+1Dnan(y0:n)dµ(x0:n, y0:n)

+

∫
(R2d)n

an(y0:n)>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(y0:n)dµ(x0:n, y0:n)

}
where

Kn = Q̄n + (Bn + B̄n)>J>n+1Θn+1Jn+1(Bn + B̄n) + B̄>nJ>n+1Λn+1Jn+1B̄n ,

+B>nJ>n+1Λn+1Jn+1B̄n + B̄>nJ>n+1Λn+1Jn+1Bn ,

Nn = D>n J>n+1Θn+1Jn+1Dn ,

Sn = (Bn + B̄n)>J>n+1Θn+1Jn+1Dn + B̄>nJ>n+1Λn+1Jn+1Dn .

Since µ ∈ Pcl

(
(E ×F )n), there exists ā ∈ C̃cl(P(Xa

0 ,Y
a
0 )) such that µ is the law of (Xa

0:n, Y
a

0:n).
Therefore, we get(∫

(R2d)n
an(y0:n)dµ(x0:n, y0:n)

)>
Nn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)

+2nµ̄
>Sn

∫
(R2d)n

an(y0:n)dµ(x0:n, y0:n)

+2

∫
(R2d)n

x>nB
>
n J>n+1Λn+1Jn+1Dnan(y0:n)dµ(x0:n, y0:n)

+

∫
(R2d)n

an(y0:n)>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(y0:n)dµ(x0:n, y0:n) =

E
[
an(Y ā

0:n)
]>

NnE
[
an(Y ā

0:n)
]

+2nµ̄
>SnE

[
an(Y ā

0:n)
]

+2E
[
(X ā

n)>B>n J>n+1Λn+1Jn+1Dnan(Y ā
0:n)
]

+E
[
an(Y ā

0:n)>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(Y ā

0:n)
]
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for any an ∈ C̃n(µ). Since Λn+1 and Rn are positive and from the definition of Sn, we can
apply Jensen conditional inequality given Yn and we get

E
[
an(Y ā

0:n)
]>

NnE
[
an(Y ā

0:n)
]

+ 2nµ̄
>SnE

[
an(Y ā

0:n)
]

+2E
[
(X ā

n)>B>n Λ̃n+1Dnan(Y ā
0:n)
]

+E
[
an(Y ā

0:n)>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(Y ā

0:n)
]
≥

E
[
ân(Y ā

n )
]>

NnE
[
ân(Y ā

n )
]

+ 2nµ̄
>SnE

[
ân(Y ā

n )
]

+2E
[
(X ā

n)>B>n J>n+1Λn+1Jn+1Dnân(Y ā
n )
]

+E
[
ân(Y ā

n )>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
ân(Y ā

n )
]

where ân is defined by

ân(y) = E
[
an(Y ā

0:n)
∣∣∣Yn = y

]
, y ∈ Rd .

Therefore, the infimum in the definition of Wn can be restricted to C̃n,cl(µ):

Wn(µ) = inf
an∈C̃n,cl(µ)

{
〈nµ〉(Qn + B>nJ>n+1Λn+1Jn+1Bn) + (nµ̄)>Kn(nµ̄)

+Tr(J>n+1Λn+1Jn+1) + Tr(I>Λn+1I) + χn+1

+
(∫

R2d

an(yn)dnµ(xn, yn)
)>

Nn

∫
R2d

an(yn)dnµ(xn, yn)

+2nµ̄
>Sn

∫
R2d

an(yn)dnµ(xn, yn)

+2

∫
R2d

x>nB
>
n J>n+1Λn+1Jn+1Dnan(yn)dnµ(xn, yn)

+

∫
R2d

an(yn)>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(yn)dnµ(xn, yn)

}
.

From this last identity we deduce that Wn depends only on nµ. Using (4.15), we have

Wn(µ) = inf
an∈C̃n,cl(µ)

{
〈nµ〉(Qn + B>nΛn+1Bn) + Tr(I>Λn+1I) + χn+1 + (nµ̄)>Kn(nµ̄)

+
(∫

Rd
an(yn)d 2

nµ(yn)
)>

Nn

∫
Rd
an(yn)d 2

nµ(yn)

+2 nµ̄
>Sn

∫
R2d

an(yn)d 2
nµ(yn)

+2

∫
Rd

Φn(µ, yn)>B>n J>n+1Λn+1Jn+1Dnan(yn)d 2
nµ(yn)

+

∫
Rd
an(yn)>

(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(yn)d 2

nµ(yn)
}
.
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where Φn is given by (4.17). We then notice that the function of an inside the infimum is
continuous and goes to +∞ as

∫
|an|2d 2

nµ goes to infinity since Λn+1 + Θn+1 is nonnegative
and Rn is positive. Hence, this function admits a global minimum. Since this function is
continuously differentiable we can compute the first order condition and we get

Nn

(∫
R2d

an(y′n)d 2
nµ(y′n)

)
+ S>n nµ̄+D>n J>n+1Λn+1Jn+1BnΦ(µ, yn) (4.18)

+
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
an(yn) = 0 , yn ∈ Rd .

Therefore we get

a∗n(yn) = −
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1(
D>n J>n+1Λn+1Jn+1BnΦ(µ, yn)

+S>n nµ̄+ Nn

∫
Rd
an(yn)d(2

nµ)(yn)
)
.

Taking the integral with respect to (2
nµ) on both sides of (4.18), we get∫

Rd
an(yn)d(2

nµ)(yn) = −
(
D>n J>n+1(Λn+1 + Θn+1)Jn+1Dn +Rn

)−1
S̃>n nµ̄

with

S̃n = Sn + B>nJ>n+1Λn+1Jn+1Dn

and

a∗n(yn) = Gn

(
ΞnΦ(µ, yn) + Ŝ>n nµ̄

)
.

with

Gn = −
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1

Ξn = D>n J>n+1Λn+1Jn+1BnJ
−1
n+1

Ŝn = Sn − S̃n
(
D>n J>n+1(Λn+1 + Θn+1)Jn+1Dn +Rn

)−1
Nn .

We then get

Wn(µ) = 〈nµ〉(Qn + B>nΛn+1Bn) + Tr(J>n+1Λn+1Jn+1) + Tr(I>Λn+1I)

+χn+1 + (nµ̄)>Kn(nµ̄)

+
(∫

(R2d)

a∗n(yn)dnµ(xn, yn)
)>

Nn

∫
(R2d)

a∗n(yn)d nµ(xn, yn)

+2nµ̄
>Sn

∫
R2d

a∗n(yn)d nµ(xn, yn)

+2

∫
(R2d)

x>nB
>
n J>n+1Λn+1Jn+1Dna

∗
n(yn)d nµ(xn, yn)

+

∫
R2d

a∗n(yn)>
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)
a∗n(yn)d nµ(xn, yn)

= 〈nµ〉(Λn) + nµ̄
>Θn nµ̄+ χn
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with

Λn = Qn + B>nΛn+1Bn + IΞ>n (D>n J>n+1Λn+1Jn+1Dn +Rn)ΞnI
> ,

Θn = Kn

+Ŝn
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Nn

(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Ŝ>n

+IΞ>n
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Nn

(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
ΞnI

>

+IΞ>n
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Nn

(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Ŝ>n

+Ŝn
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Nn

(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
ΞnI

>

+2Sn
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1(
ΞnI

> + Ŝ>n
)

+2I
(
BnJ

−1
n+1

)>
J>n+1Λn+1Jn+1Dn

(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Ŝ>n

+Ŝn
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Ŝ>n

+IΞ>n
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
Ŝ>n

+Ŝn
(
D>n J>n+1Λn+1Jn+1Dn +Rn

)−1
ΞnI

> ,

χn = Tr(J>n+1Λn+1Jn+1) + Tr(I>Λn+1I) + χn+1 .

We then easily have Λn nonnegative. A straghtforward computation shows that Θn + Λn is
also nonnegative. Therefore, the induction property holds true at rank n, and it holds for
any n = 0, . . . , T .

4.2 Numerical approximation of the optimal value

4.2.1 The algorithm

We present a numerical algorithm for the approximation of the optimal value base on the
verification Theorem 3.1. For that, we define two finite subsets ΛE and ΛF of E and F
respectively by

ΛE =
{
x1, . . . , xN

}
,

ΛF =
{
y1, . . . , yN

}
.

We next introduce two Voron̈ı tessellations (C(ΛE)i)1≤i≤N and (C(ΛF )i)1≤i≤N of subsets of
E and F respectively. This means that (C(ΛE)i)1≤i≤N and (C(ΛF )i)1≤i≤N satisfy⋃

1≤i≤N

C(ΛE)i = E , C(ΛE)i ∩ C(ΛE)j = ∅ for i 6= j ,⋃
1≤i≤N

C(ΛF )i = F , C(ΛF )i ∩ C(ΛF )j = ∅ for i 6= j ,

and

C(ΛE)i ⊂
{
x ∈ E : |x− xi| = min

1≤j≤N
|x− xj|

}
,

C(ΛF )i ⊂
{
y ∈ F : |y − yi| = min

1≤j≤N
|x− xj|

}
,
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for i = 1, . . . , N . We then define the projection operators ProjΛE and ProjΛF by

ProjΛE(x) = xi

for x ∈ Ci(ΛE) and

ProjΛF (y) = yi

for y ∈ Ci(ΛF ) and 1 ≤ i ≤ N . Our goal is to provide a discrete version of the dynamic
programming equation defining the functions W0, . . . ,WT in Theorem 3.1. We first discretize
the initial conditions ξ and ζ by defining

ξ̂ = ProjΛE(ξ) ,

ζ̂ = ProjΛF (ζ) .

We then define the processes (X̂a, Ŷ a) as the quantizer (Xa, Y a) according to ΛE and ΛF .
This means that (X̂a, Ŷ a) is the approximation of (Xa, Y a) valued in ΛE×ΛF by (X̂a

0 , Ŷ
a

0 ) =
(ξ̂, ζ̂) and

X̂a
n+1 = ProjΛE

(
Gn+1

(
X̂a
n,PX̂a

n
, a(Ŷ a

0:n), εn+1

))
,

Ŷ a
n+1 = ProjΛF

(
Hn+1

(
X̂a
n, Ŷ

a
n , a(Ŷ a

0:n), ηn+1

))
for n = 0, . . . , T − 1. A straightforward computation give the dynamics of the process
(X̂a, Ŷ a) as

P
(
(X̂a

n+1, Ŷ
a
n+1) = (xi, yj)

∣∣X̂a
0:n, Ŷ

a
0:n

)
= ĥn+1

(
xi, Ŷ a

n , an(Ŷ a
0:n), yj

)
P̂
an(Ŷ a0:n)
n+1

(
X̂a
n,PX̂a

n
, x̂j
)

for n = 0, . . . , T − 1 and (xi, yj) ∈ ΛE × ΛF , where

ĥn+1

(
xi, Ŷ a

n , an(Ŷ a
0:n), yj

)
=

∫
Cj(ΛF )

hn+1

(
xi, Ŷ a

n , an(Ŷ a
0:n), y

)
dy

and

P̂
an(Ŷ a0:n)
n+1

(
X̂a
n,PX̂a

n
, xj
)

=

∫
Ci(ΛE)

P
an(Ŷ a0:n)
n+1

(
X̂a
n,PX̂a

n
, dx
)
.

Then, the global controlled transition P̄ is replaced by ˆ̄P defined by

ˆ̄P an
n+1(z,M,w) = P̂

an(y0:n)
n+1 (xn,

1
nM,w1)ĥn+1(w1, yn, an(y0:n), w2)

for n = 0, . . . , T −1, z = (x`, y`)0≤`≤n ∈ (ΛE×ΛF )n+1, M ∈ P2

(
(ΛE×ΛF

)n+1)
, an ∈ C̃n(M)

and w = (w1, w2) ∈ ΛE × ΛF . For n = 0, . . . , T − 1 and µ ∈ P2((ΛE × ΛF )n+1) an ∈ C̃n(µ),
we define the measure P̄ a

n+1µ ∈ P2((ΛE × ΛF )n+2) by

ˆ̄P an
n+1µ(x0:n+1, y0:n+1) = ˆ̄P an

n+1(x0:n, y0:n, µ, xn+1, yn+1)µ(x0:n, y0:n)
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for (x0:n+1, y0:n+1) ∈ (ΛE ×ΛF )n+2. The dynamics of the controlled measures PX̂a
n,Ŷ

a
n

can be
written under the following simplified form

PX̂a
0:n+1,Ŷ

a
0:n+1

(x0:n+1, y0:n+1) = ˆ̄P an
n+1PX̂a

0:n,Ŷ
a
0:n

(x0:n, y0:n) .

We then define the related discretized cost coefficients Ĉn for n = 0, . . . , T − 1 and γ by

Ĉn(M,an) =
∑

(x0:n,y0:n)∈ΛE×ΛF

cn

(
xn,

1
nM,an(y0:n)

)
M(x0:n, y0:n)

for M ∈ P2

(
(ΛE × ΛF )n+1

)
, an ∈ C̃n(M) and

Γ̂(M) =
∑

(x0:T ,y0:T )∈ΛE×ΛF

γ
(
xT ,

1
TM

)
dMT (x0:T , y0:T ) ,

for M ∈ P2

(
(ΛE × ΛF )T+1

)
. Then, the related approximated value functions Ŵn, n =

0, . . . , T are given by

ŴT (µ) = Γ̂(µ) , µ ∈ P2((ΛE × ΛF )T+1) ,

and

Ŵn(µ) = inf
an∈C̃n(µ)

{
Ĉn
(
µ, an

)
+ Ŵn+1( ˆ̄P an

n+1µ)
}
, µ ∈ P2((ΛE × ΛF )n+1) ,

for n = 0, . . . , T − 1. To get tractable versions W̃n of values functions Ŵn, n = 0, . . . , T , we
define finite subsets Πn+1 of P2((ΛE × ΛF )n+1) as follows. We first introduce L sequences
(p`i,j)1≤i,j≤N for ` = 1, . . . , L such that p`i,j ∈ R+ for i, j = 1, . . . , N and∑

1≤i,j≤N

p`i,j = 1

for ` = 1, . . . , L. We next define the set Πn by

Πn =
{ ∑

1≤i1,j1,...,in,jn≤N

δ(xi0 ,...,xin ,yi0 ,...,yin )

n∏
r=0

p`rir,jr , `1, . . . , `n ∈ {1, . . . , L}
}

⊂ P2

(
(ΛE × ΛF )n

)
for n = 1, . . . , T . We next define the approximation ˜̄P of ˆ̄P defined by

˜̄P an
n+1(z,M,w) = Proj{p1i,j ...,pLi,j}

(
ˆ̄P an
n+1(z,M,w)

)
for n = 0, . . . , T − 1, z = (x`, y`)0≤`≤n ∈ (ΛE × ΛF )n+1 with (xn, yn) = (xi, yj), M ∈
P2

(
(ΛE × ΛF

)n+1)
, an ∈ C̃n(M) and w = (w1, w2) ∈ ΛE × ΛF . We observe that

˜̄P an
n+1µ ∈ Πn+2
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for n = 0, . . . , T−1, µ ∈ Πn+1 and an ∈ C̃n(µ). In particular, the functions W̃n, n = 0, . . . , T
are given by

W̃T (µ) = Γ̂(µ) , µ ∈ ΠT+1 ,

and

W̃n(µ) = inf
an∈C̃n(µ)

{
Ĉn
(
µ, an

)
+ W̃n+1( ˜̄P an

n+1µ)
}
, µ ∈ Πn+1 ,

for n = 0, . . . , T −1, provide a computable approximation of the functions Wn, n = 0, . . . , T .

4.2.2 Test of the algorithm

It is possible to compare this approximated algorithm with the linear quadratic case devel-
oped earlier. We choose to fix ΛE and ΛF to be the centers of the Voronöı cells C(ΛE)i

and C(ΛF )i for 1 ≤ i ≤ N respectively. Precisely, we apply Lloyd Algorithm on N (0, Id) to
obtain C(ΛE)i and C(ΛF )i. Thus, ΛE = ΛF and C(ΛE)i = C(ΛF )i. We refer to the book
[15] for a description of quantization methods and their related algorithms.

We fix d = 2. In order to be complete, we describe all the matrices we used for this
experiment.

For the main dynamics we fix:

Bk =

(
0 0
0 0

)
,

B̄k =

(
0 0
0 0

)
,

Dk =

(
1 1
0 1

)
,

Jk+1 =

(
1 1
0 1

)
for k = 1, . . . , T . For the cost function J̄ , we fix:

Qk =

(
1 1
1 1

)
,

Q̄k =

(
1 1
1 1

)
,

Rk = Id

for k = 1, . . . , T . We approximate the integral needed to compute ĥn+1 and P̂
an(Ŷ a0:n)
n+1 through

Monte Carlo simulations. Controls α are restricted to the following set

C̃n(M) :=

{(
−2
−2

)
,

(
−1
−1

)
,

(
1
1

)
,

(
2
2

)}
.

Finally, we fix T = 3 and we compute Wt at time t = 0 using the formula derived in the
proof of Proposition 4.1 and W̃0 using the algorithm described in Section 4.2.1. The relative

error |W̃0−W0|
W0

is computed for N = 2, 4, 10 and 20. The results are presented in the Figure
1.
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Figure 1: Relative Error of Value function as N grows

Errors are expressed as percentages. Increasing N decreases the relative error. For small
N , we achieve good results. For example, with N ≥ 4, the absolute error is less than 10%
(round 8%). However, the error does not decrease anymore for N ≥ 4. This might be
explained by the restriction done on the control set.

4.3 A Mean-Variance optimal investment problem

We refer to [16] for a review on portfolio optimization in partial observation framework. We
consider a financial market over the horizon {0, . . . , T}. We suppose that this market is
composed by one asset with return process (R0, . . . , RT ) satisfying

Rk = b0∆ + σ
√

∆εk+1 , k = 0, . . . , T − 1 ,

where the drift and the variance b0 and σ are known. We assume that (ε1, . . . , εT ) is a se-
quence of independent N (0, 1)-distributed random variables independent from X0. We con-
sider an investor who can invest at each time on this asset. The wealth process (Xα

0 , . . . , X
α
T )

is given by

Xα
k+1 = Xα

k + αk

(
b0∆ + σ

√
∆εk+1

)
, k = 0, . . . , T − 1 ,

Due to a lack of liquidity on this asset, we suppose that the investor does not observe its
portfolio directly, but rather an approximate representation (Xα

0 , . . . , X
α
T ) is given by

Y α
k = Xα

k + ηk , k = 1, . . . , T .

Such a situation can be faced by private equity investors since they only have some intuition
about the value of their portfolios. We refer to [8], [9], [19] for more details. The studied
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system is then:  Xα
k+1 = Xα

k + αk

(
b0∆ + σ

√
∆εk+1

)
,

Y α
k+1 = Xα

k+1 + ηk+1 , k = 0, . . . , T − 1 .
(4.19)

We suppose that ηk+1 is a sequence of independent N (0, 1)-distributed random variables,
also independent from (η1, . . . , ηT ), X0 and Y0.

The investor goal is to find a portfolio allocation that minimize a mean-variance criterum:

V0 = inf
α∈C̄

J(α)

= inf
α∈C̄

[
γ

2
V ar[Xα

T ]− E[Xα
T ]

]

for a γ > 0.
We propose to apply the numerical approximation algorithm of Section 4.2.1. As a

starting point, we set the d = 1, T = 5. Additionally, we fix b0 = 0.02, σ = 0.05 for the
Return process, so that the investor can expect a return of 0.02 with a volatility of 0.05 for
this asset. Furthermore, we assume the control space to be {0.5, 0.75, 1, 2}. Investing only
a quarter, half, three quarters, or the entire wealth of an investor is permitted. Using the
proposed algorithm with N = 2, we compute the optimal control at every time t = 0, . . . , T .
This control leads to a portfolio. Our proposed allocation is benchmarked against two
strategies. The first one is known as ’buy and hold’: the investor remains invested in the
asset at all times. For the second strategy, it can be viewed as a classical trending strategy:
if the asset return is positive at a given time t, the investor invests, else the investor shorts
the asset. Based on 250 trajectory simulations, we compute the empirical final wealth mean,
denoted by Ē[Xα

T ] and the empirical final wealth variance denoted by V̄ar[Xα
T ]. We present

in Tables 1, 2, 3 and 4 the results for several values of γ.

Proposed Strategy Buy and Hold Trending Strategy
Ē[Xα

T ] 1,02027868 1,04535767 1,01155139
V̄ar[Xα

T ] 0,00481573 0,00680738 0,00688046
V0 -1,01546295 -1,03855029 -1,00467093

Table 1: Empirical Results for γ = 2

Proposed Strategy Buy and Hold Trending Strategy
Ē[Xα

T ] 1,02681514 1,03881421 1,01034027
V̄ar[Xα

T ] 0,00467356 0,00653589 0,00636125
V0 -1,01746802 -1,02574243 -0,99761777

Table 2: Empirical Results for γ = 4
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Proposed Strategy Buy and Hold Trending Strategy
Ē[Xα

T ] 1,02314645 1,03975832 1,00942357
V̄ar[Xα

T ] 0,00452504 0,00651461 0,00684134
V0 -1,00504629 -1,01369988 -0,98205821

Table 3: Empirical Results for γ = 8

Proposed Strategy Buy and Hold Trending Strategy
Ē[Xα

T ] 1,01748989 1,03562335 1,01643678
V̄ar[Xα

T ] 0,00433524 0,00693694 0,006672365
V0 -0,98280797 -0,98012783 -0,96305786

Table 4: Empirical Results for γ = 16

With the proposed approach, the variance of the final wealth is systematically smaller
for every γ. The buy-and-hold strategy provides the best returns for investors: however,
the proposed strategy reduces variance compared to a buy-and-hold strategy. For example,
when γ = 2, the proposed strategy reduces volatility by 41% compared to buy and hold for
a return’s cost of 2.45%. We note that the proposed strategy is better in terms of V0 value
when γ is equal to 16. As a result, we have proposed an interesting allocation that can be
used to reduce portfolio risk using only two quantization points.

5 Conclusion

A partially observed optimal control problem for a system with mean field discrete time
dynamics is presented and solved. We extend the linear-quadratic case (also known as
Kalmann Bucy) to deal with the mean field dependence. We also propose a general al-
gorithmic approach based on optimal quantization to approximate the optimal value. We
check the robustness of the algorithm empirically with a financial example. Some extensions
of the work can be proposed. A first natural question is the estimation of the error of the
proposed algorithm. The extension of the results to the continuous time case can also be
addressed. This leads to the question of the approximation of the continuous time case by
a discrete-time model using an Euler discretization of the continuous problem.
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