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Immersive technologies, like virtual and augmented reality, allow engaging the general public in interactive experiences, 
which are particularly promising in educational and cultural activities (e.g. museums, exhibits). For now, the design of such 
interactive experiences requires extensive knowledge of expert programming tools, and thus they are not accessible to 
non-developers. A promising method to ease the prototyping of interactive scenes for non-expert users stands on the concept 
of programming-by-demonstration. With such an approach, novice users can simply demonstrate an interaction or the 
expected behavior of a virtual object to build their prototype, without knowing the underlying coding mechanisms. In this 
paper, we propose an immersive authoring system that bases on that approach. We prototyped two use cases based on this 
system, as well as a user study. Using our observations and the results of the study, we discuss challenges associated with the 
design of such systems and provide guidelines for the development of future immersive programming-by-demonstration 
tools.

CCS Concepts: • Human-centered computing → Virtual reality; • Software and its engineering → Programming by 
example; Software prototyping.

Additional Key Words and Phrases: Virtual reality, immersive, authoring interactions, demonstration, direct manipulation, 
end users, challenges
Les technologies immersives, comme la réalité virtuelle et augmentée, permettent de proposer au grand public des expériences 
interactives, particulièrement dans les activités éducatives et culturelles. Pour l’instant, la conception de telles expériences 
nécessite une connaissance approfondie de langages de programmation, difficilement accessibles aux non-développeurs. La 
programmation par démonstration est une approche qui permet de faciliter le prototypage de scènes interactives pour les 
utilisateurs non experts. Avec cette approche, les utilisateurs peuvent construire un prototype sans connaître les mécanismes 
de codages sous-jacents, simplement en effectuant l’interaction ou le comportement attendu d’un objet virtuel. Dans cet 
article, nous proposons un système de création immersif basé sur cette approche. Nous avons prototypé deux cas d’utilisations, 
ainsi que réalisé une étude utilisateur. En s’appuyant sur nos observations et les résultats de l’étude, nous discutons des défis 
et des lignes directrices pour le développement de futurs outils de programmation immersive par démonstration.

Mots-clés additionnels : Réalité Virtuelle, immersif, édition d’interactions, démonstration, manipulation directe, utilisateurs 
finaux, défis
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1 INTRODUCTION
The use of immersive technologies in educational and cultural contexts is rising [8, 36]. Thanks to virtual reality,
users can live experiences that would be too far in space or time, or too abstract to be experienced in reality. Such
technology also supports active learning and engagement [12].
Educators and cultural mediators benefit from their expertise in their own domain to design relevant VR

experiences. In 2019, the Louvre’s curators team and VR developers collaborated to create "Mona Lisa: Beyond the
Glass"1, an immersive and interactive scene in which the Louvre’s visitors get the opportunity to closer analyze
the painting, explore it through different angles and vision techniques. Strengthen by the cultural and artistic
knowledge of curators and the coding skills of developers, they proposed a unique experience by giving life to
the painting.
To create such immersive VR experiences, non-technical experts need to rely on developers in the early

stages of prototyping. This dependency can hinder the design process and slows the emergence of new projects
[2]. Enabling VR authoring to non-developers is therefore an opportunity to support the expansion of VR.
Although many tools are available for static immersive prototyping and animation editing [18], authoring tools
for interactive experiences are not yet available to end-users.
Interactive prototypes help designers envision the type of interactions that would work in a specific context,

and they support the discovery of design flaws through unexpected behaviors from users. However, to author such
interactive prototypes without code is still an open research question. Various methods have been investigated
such as simplified desktop interfaces [41], visual programming [42], and authoring by demonstration [3, 29, 39].
Immersive authoring by demonstration appears as a promising way of creation as users directly visualize

the outcome of their actions and create the interaction with the first-person point of view inside the context.
However, it raises several design challenges that have not been studied yet. Such investigation would help in the
design of more adapted and more accessible authoring tools.
In this paper, we propose a tool for the interactive creation of immersive experiences to investigate the

challenges in this domain. Building upon two interactive experiences authored using our tool, and a user study,
we introduce five challenges and future research questions for immersive VR authoring by demonstration. The
goal of this paper is not to compare and promote the use of programming by demonstration over other methods
such as visual programming, but rather explore its use and identify its challenges in both the conception and
use stages. We hope this paper will serve as a basis for future designers in the creation of VR authoring tools by
demonstration, as well as a groundwork for future research in the domain.

2 RELATED WORK
In their study, Ashtari et al. [2] interviewed end-user developers to tackle the current practices and challenges of
AR/VR authoring. They noticed that many non-developer AR/VR creators use complex authoring tools such as
Unity2 and therefore face many challenges including searching for resources, debugging, and testing. Nebeling et
al. [28] studied augmented and virtual reality authoring tools, and they identified a gap in high-fidelity tools
requiring a low level of technical skills. Enabling programming to non-developers is a common concern in
research and several methods have been explored to make it more graphical and less abstract.

2.1 Authoring Immersive Application
To allow end-users to participate in the authoring of immersive applications throughout the design phase is
essential to identify design flaws in an early stage, get feedback for an iterative design process and improve
the design before reaching the costly implementation stage. A common basic prototyping technique is paper
1https://store.steampowered.com/app/1172310/Mona_Lisa_Beyond_The_Glass/?l=french
2https://unity.com/
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prototyping. This technique is fast and efficient for 2D interactions. Yet, as AR and VR evolve in a three-dimensional
space and are usually dynamic, conveying ideas through paper is more challenging. With 360Proto [26], Nebeling
and Madier generate a 360° AR/VR prototype from paper which gives a more realistic preview of the final
experience.

To help users get a better understanding of the final product, it is possible to use videos that are more dynamic
or technologies closer to the final product. Burns et al. [6] suggest combining informance design and video
prototyping. This method allowed them to identify design flaws during the prototype creation and get feedback
from a large audience as they shared the video. Researchers also focused on solutions that rely on technologies
similar to the final device, and explore the use of real AR and VR for prototyping. DART [23] is a desktop AR
prototyping tool that allows 3D dynamic storyboarding. With VREUD [41], Yigitbas et al. proposed a desktop
authoring interface with a low entry barrier. Using VREUD users can edit the scene, event-based interactions,
and tasks. Such a solution benefits from the accuracy of the desktop, yet, it forces users to code out of context
and to go back and forth between the desktop and the HMD while testing and debugging. With ProtoAR [27],
Nebeling et al. facilitate the creation of virtual props using tangible Play-Doh props. Similarly, SpatialProto [25]
enables immersive spatial prototyping by recording animation using physical props.

2.2 Authoring in Immersive Environments
Oulasvirta et al. [30] discuss the benefits of designing in the original context or an environment similar to it.
Such practice helps designers better understand the context and be aware of it during the design phase. As
designers do not rely on their memory, their mental model of the context is more reliable. With Reality Editor
[15], users can edit the behavior of smart tangible objects in AR. MARVist [10] and DXR [33] allow their users to
edit visualization directly in the context it will be experienced which facilitates previewing the final result. Ens
et al. implemented Ivy [11] a VR spatially situated visual programming tool for understanding data flows and
connections between smart objects. As the original context is not always accessible or available, the authoring
can also occur in a reproduction of the original context. It allows in-context remote authoring. Using CAVE-AR
[9], users can simulate and debug AR experiences from a VR CAVE. In DistanciAR [40] and Corsican Twin [31]
users author the AR experience in a virtual scan of the place. Thus, authoring in context supports the users’
awareness of the final environment during the authoring process. Beyond being in context, in this paper we
investigate how the user can interact with this context to author interactions.

In immersive environments, users can more naturally interact with virtual objects thanks to direct manipulation.
Lee et al. introduce this concept as WYXIWYG (What You eXperience Is What You Get) [20] which describes the
benefits of immersive authoring. With VR Safari Park [16], Ichikawa et al. illustrate the ease with which users can
edit a virtual environment using direct manipulation. Suzuki et al. introduce RealitySketch [35], an authoring tool
for AR interactive graphics and visualizations. Interactions can be created by manipulating the virtual objects
and directly linking triggers and actions attached to these objects as demonstrated by Vargas González et al.
[37]. LevelEd VR [3] is a VR level editor in which users can create and edit virtual objects and visually script the
game conditions. VRFromX [17] and Ng et al.’s system [29] enable the edition of virtual objects and making them
interactive by creating and connecting triggers and actions.
Most of the examples previously mentioned allow users to author using direct manipulation, however, it

only allows, most of the time, to design applications with simple interactions. To prototype more complex
interactions, some researchers proposed to use Visual Scripting, a programming method allowing its users to
code by manipulating and assembling graphical programming elements instead of textual coding. It is used in
FlowMatic [42], an immersed visual scripting tool. It allows its users to directly script interaction in the virtual
environment and to benefit from authoring in context. Another method, more accessible to non-programmers, is
to use demonstration to define an interaction.
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2.3 Authoring by demonstration
Programming by demonstration has been developed to allow end-users to easily specify an expected behavior to
the machine (robot or computer) by simply demonstrating it. Programming by demonstration differs from other
programming methods during the authoring phase rather than during its visualization. While programming
by demonstration users directly manipulate objects, they need less fundamental knowledge and do not have to
learn and use the textual primitives that are usually used with classical visual programming, which decreases the
accessibility level. However, its visualization can either be textual with the demonstration being translated to code,
or it can be more visual. In that case, after the authoring phase, the results of programming by demonstration
can be considered as visual programming.
Saket et al.’s system [32] analyses the users’ actions to extract their intent and deduce the expected behavior.

The analysis can either rely on one example of the event like AREDA [4], an authoring tool for AR assembly
instructions, or on several examples of the expected behavior. Relying on several demonstrations helps the system
generalize a behavior and manage individual variations. Gesture Studio [22] as well as Hartmann et al.’s system
[14] rely on multiple examples to generalize an interaction.

The rising availability of VR and AR equipment, as well as the increasing power of such devices, has allowed
the exploration of VR/AR authoring by demonstration. Immersive VR demonstration has been explored for
intuitive animation editing. In their paper, Arora et al. [1] study the use of mid-air hand gestures for the authoring
of complex animations like particle behavior. Tvori3 is a commercialized tool that allows VR film-making through
demonstration. Rapido [21] uses a similar combination of demonstration and interfaces comparable to video
editing interfaces to turn video prototypes of AR experience into executable state machines that simulate
interactions on tablet.
Demonstration is not only meant to specify the users’ behavior but also the elements they interact with.

In GhostAR [7], a human-robot interaction authoring tool, users not only demonstrate the users’ actions but
also the robot’s reaction. Lécuyer et al. [19] explore the use of demonstration for authoring a scenario-based
training experience. The scenario is demonstrated directly in VR and is then edited on a desktop interface. With
AffordIt! [24], Masnadi et al. fully immersed the authoring of affordances. Users directly cut into the virtual
meshes and manipulate them to specify the affordances, for instance, users can cut a circle into the mesh of a
washing machine to make a door that can be opened. With GesturAR [39], Wang et al. introduce a freehand
interaction authoring tool. Users can create either dynamic or static interactions and behaviors that can also be
either discrete or continuous. However, the system only allows linking triggers and actions and does not support
more complex authoring such as chains or delays.
Through this state of the art, we notice that authoring by demonstration has been explored before, yet the

expressivity and power of the tools remain limited. They do not enable the authoring of complex interactions. The
studies mentioned above focus on specific issues such as the use of hand gestures for demonstration [1, 39]. As
they do not investigate the authoring of complex interactive experiences, they do not discuss the main challenges
that need to be studied and overcome to allow immersive authoring by demonstration of complex interactions.
Thus, we decided to design, implement and test an authoring tool for interactive experiences in order to better
identify the challenges in both the design phase and the tool adoption.

3 SYSTEM OVERVIEW
In order to identify the challenges while designing and using interaction authoring tools, we implemented and
tested a VR authoring tool based on demonstration. In this section, we introduce a simple framework for authoring
interactions, present our prototype and share the implementation details of our prototype.

3https://tvori.co/
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3.1 Framework
To illustrate the different concepts exposed here, we will consider a very simple interactive system: a virtual room
with a white cube floating in the air at eyes level. There is a table in the middle of the room with a big button on
top of it with the label "Change color" on it. Our user, Alice, is at the beginning standing idle in front of the table.

In an interactive system, users can act on the virtual scene and modify some of its entities using interactions.
It means that, for our scene to be interactive, Alice should be able to modify the cubes around her: move them,
remove them, change their color, etc. According to Yigitbas et al. [41], an interaction can be defined as an event
that acts as the trigger and an effect that defines the modification done on the virtual scene. A basic interaction in
our scene could be that when Alice presses the big button (trigger), the cube becomes blue (effect). Conditions
can be added to the interactions. For instance, we could add as a condition that the button should be pressed with
the left hand and not the right one.
To author an interaction, Alice would have to define an action that would act as a trigger, define an action

that would be the effect of the interaction, and link both to show that one provokes the other. There are multiple
ways to define these actions to the system, it could be programmed in a script or visually in the VR scene, but in
this work, we choose to use Demonstration. As explained before, programming by demonstration can be easier
to understand for non-programmers and can be done directly in context (i.e. inside the virtual scene). In our
scene, if Alice wants to author the interaction "When a user touches the cube, it falls on the ground", she has to
demonstrate the first action: touching the cube that is the trigger, and then demonstrate the second action: the
cube falls on the ground (that can be done by having Alice moving the cube to the ground) that is the effect.

In our framework, we define 4 steps to author an interaction:
(1) Recording the interaction: In this step, the user records one or several actions that will be used as trigger

and one or several actions that will be used as effect. Table 1 shows all the actions that can be recorded by
our prototype as trigger, effect, or both.

(2) Inspecting the interaction: In the previous step, all actions performed either by the user or objects were
recorded, however, not all of them are relevant to the interaction the user wants to create. In our example,
when Alice records the action touch the cube, an action corresponding to the movement of her hand is
recorded, then the action of her hand colliding with the cube. She needs to remove the action of the
movement, else the interaction will be triggered only when the hand follows the same movement as the
one demonstrated and then collides with the cube.

(3) Linking the trigger and the effect: The user needs then to tell the system which set of actions is the trigger
of the interaction and which set is the effect.

(4) Testing the interaction: The user can then test the interaction to make sure it has the appropriate behavior.

3.2 Prototype
Based on our framework we implemented a prototype of a system that allows for the authoring of interactive
immersive scenes.

3.2.1 Basic functionalities. To allow users to author an interactive experience, it needs to provide first a set of
basic functionalities. The prototype allows users to create a static scene with basic 3D geometries, 3D objects,
and images. Using an inspector, a panel that is displayed near a selected entity, users can change their size, color,
and visibility. The system also allows users to draw trigger areas on the floor or in the air. Wireframe visual
representations allow the users to position them in the environment (see Figure 2). Then, during the actual
experience, these trigger areas become invisible but have a collider meaning that they can trigger a collision
event. They can be used to create interactions in which the trigger isWhen the user or the object moves to this

5
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Table 1. List of the actions that can be recorded by the tool either as a trigger or as an effect.

Action (Dim.) Description Trigger & Effect

Collision (C) Collision between two entities
(e.g. objects, users’ hands, users’ head) ✓

Move (M) Specific movement of an entity
(e.g. objects, users’ hands, users’ head) ✓ ✓

Grab (G) Grabbing of an object by users using the hand or a controller
(pressing the trigger or grip button) ✓

Release (R) Dropping of an object by users (after it was grabbed) ✓
Drag (D) Movement of an object that has been grabbed by users ✓
Look (L) Gaze of users is focused on an object ✓
Enter (En) Users enter a trigger area ✓
Exit (Ex) Users exit a trigger area ✓
Property Change
(Co: Color, S/H: Visibility) Property (e.g. colors, visibility) of an object is changed ✓ ✓

specific area orWhen the user or the object leaves this specific area. Finally, users can navigate inside the scene
either by physically moving or by using teleportation.

3.2.2 Recording interactions. A recording mode in the system can be activated by users at any moment and starts
the saving of the performed actions. To limit the number of actions recorded, users can choose to only record
either their own actions (hands/head movement, collision, grab, etc.) or the actions of objects. The user recording
mode allows users to create 5 types of actions: movement, collision, grab, drag and drop. In the object recording
mode, users can either record object movements or collisions with other objects or property changes such as
color or visibility changes.
A puppet is also available to users that can be used to demonstrate, from a third-person perspective, actions

also done by the user as it can be moved in space and each hand can be independently manipulated (see Figure 1).
It can demonstrate movement and collision with hands and body. The puppet is also used to record the specific
action of Looking at a specific object/area. As the users’ gaze stares at many different objects and moves a lot,
recording such an action directly with the tracking of the user’s head would lead to too many events or would
require to create an interaction, such as pushing a controller’s button, to instantiate the creation of the event.
Yet, the possibilities for such an interaction are limited since it needs to be triggered without the user looking
elsewhere, which would be especially difficult for novices. Therefore we believe that using an intermediary such
as a puppet could solve this issue. A yellow sphere, shown in Figure 1, in front of the puppet head represents its
gaze, it can be moved by users and when it collides with an object or area it creates a Look action. This way,
users have full control over the creation of look actions which limits the creation of unwanted actions.

3.2.3 Inspecting the interaction. After the recording, the saved actions are displayed in the scene using semi-
transparent bubbles with a letter indicating the type of the recorded action (see Figure 3 and Table 1 for the
meaning of each letter). Actions that were recorded but not wanted by users can be removed. In order to provide
more information about the action, when users point at a bubble, a ghost simulation of the action is played. The
bubble is positioned near the object it concerns, except when it only concerns the user’s movements actions.

6
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Fig. 1. Users can record interactions using a puppet that represents the user. In this picture the user manipulates the puppet
to make it touch the picture and create a collision event between the picture and the user’s hand.

Fig. 2. Users can create trigger areas. They can shape 3D cubes (on the left) or draw an area on the floor (on the right)

By clicking on the bubble of a movement or drag action, users can show the trajectory with all the recorded
points4, and move or delete them (it is not possible to add points). It is also possible to turn the trajectory into an
infinite move following the vector ®𝐴𝐵 with A the center of the object and B the position of the last point.

Inspecting the action bubbles can be done at any time in the authoring process. It is not a mandatory action from
users but it is rather meant to provide information on the action to users and allow them to modify trajectories.
Actions saved during the same recording are linked through a thin purple thread and the first and the last

created events are highlighted with different colors. The order of their creation is used to specify in which order
they have to be done. For instance, if users want to define a trigger in which a cube, a sphere, and a cylinder should
4In order to keep a limited number of points, the trajectory is filtered using the Ramer–Douglas–Peucker algorithm. It allows to only keep
the points that define the main shape of the trajectory.
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Fig. 3. Events are visualized with a floating bubble. In this simple example the Collision of the sphere with the user’s hand,
makes the cube become invisible (Hide)

be touched sequentially, they would record their hand touching these three objects in a row. This functionality
allows users to integrate some sequences of actions into their interactions.

3.2.4 Linking the trigger and the effect. Up to this step, there are only actions, users now need to define which
ones are the trigger and which ones are the effect of the interaction. This relationship is defined by drawing an
arrow that goes from the last action of a set of actions (this set will be the trigger) to the first action of another set
of actions (the effect). An effect can have several triggers meaning that it can be triggered by any one of them. A
trigger can be linked to several effects. Using a thread to represent a link is quite common in visual programming
and is used in several immersive authoring tools [11, 29, 39]. The system does not contain manipulable logical
operators, however, linking two different actions to the same effect is equivalent to the OR operator.

3.2.5 Testing the interaction. It is important to allow users to quickly and easily test while creating the interactions.
Thus, they can verify if the interactions behave as expected and make sure that they are adapted to the final users.
For instance, users can make sure that after moving, an object will still be accessible for the next interaction
(neither behind a wall, invisible, nor too high). In test mode, users can choose to show or not the graph (bubbles +
links) of the recorded interactions.

3.3 Implementation
The prototype was implemented with Unity 2019.4.18f1 using C# and SteamVR. The prototype runs on a HTC
Vive and a laptop computer MSI GT63 Titan 10SF with an Intel Processor Core i7-10750H CPU 2.59 GHz, 16Go
RAM and a Nvidia GTX 2070 graphic card. The code is publicly available and open source5.

5https://gitlab.inria.fr/egros/authoring_by_demonstration
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Fig. 4. On the left, a screen capture of the authoring of the Beat Saber scene. The diagram on the right describes the logic
behind the Beat Saber interactive scene we authored.

4 USE CASES
In this section, we present and discuss two interactive experiences, a Beat Saber inspired scene and an escape
game, authored with our prototype. The figures 4 and 5 are provided in this paper as a graphical representation
of the authored interactions to help readers better understand the interactions, however, participants to the study
described in section 5 did not see such visualization.

4.1 Beat saber
For this interactive scene, we drew inspiration from the VR game Beat Saber 6.

4.1.1 Scenario. The user starts facing a picture with "Press to start" written on it. When they touch the picture,
it disappears and two green cubes and one red cube move toward them. The user needs to touch the green cubes
to make them disappear. However, if they touch the red cube with their hand, all cubes disappear and a "game
over" picture falls in front of them.

4.1.2 Authored interactions . We describe here the logic behind the Beat Saber scene and provide a diagram (see
Figure 4) as a support to the description. To create this interactive scene we first created a collision event (C1)
between the user’s hand and the "Press to start" picture.

Each cube has three events attached to it, an infinite linear movement event (M1, M2, M3), a collision with the
user’s hand event (C2, C3, C4), and a hide event (H1, H2, H3). C2, C3 and C4 trigger respectively H1, H2, and H3,
which makes the cubes disappear when they collide the user’s hand. C1 is linked to M1, M2 and M3 so when the
user touches the picture, the cubes start moving toward them. It is also linked to a hide event (H4) to make the
picture disappear once the game starts.

The "Game Over" picture has two events attached to it, a show event (S1) to make it appear and a move event
(M4) to make the picture fall in front of the user. Finally, C4, which is attached to the red cube, is linked to S1 and
M4.
6https://store.steampowered.com/app/620980/Beat_Saber/
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4.1.3 Discussion. In order to make the game interesting, we would need lots of cubes coming at the player. If we
used the copy and paste tool to create them all, the authoring environment would soon be overcrowded. Thus,
users need a way to specify that they want multiple identical objects with the same behavior created over time.
In order to do so, we would need a "virtual printer" that would take a template as input and can be activated or
deactivated during the experience.
Since we don’t want all cubes to come at once, we would also need the possibility to control when they are

produced by the virtual printer. Thus, the trigger sent to activate the printer needs to be conditioned with a time
delay. To improve enjoyability of the game, we need to add randomity to this time delay.

Finally, since the interactive experience is a game, we want to count points. For instance, each time the player
touches a green cube, a score displayed on the wall in front of them would get incremented. This requires to have
a variable that the user can modify and apply arithmetical operations on, such as additions or subtractions.

4.2 Escape Game
4.2.1 Scenario. The user is in a virtual room with no accessible exit since there are three huge blocks blocking
the corridor. In order to escape, the user needs to solve three enigmas. All three enigmas are scattered inside the
room. The first enigma is a bomb on a block in the middle of the room. The bomb has three colored wires, blue,
green, and red. Next to the bomb, there are a wire cutter and a sphere half sunk inside the block. When the user
grabs the wire cutter and touches the blue wire with it, nothing happens. The user drops the wire cutter and
touches the sphere with their right hand. The sphere turns red, then green, then blue. The user grabs the wire
cutter again and touches in order the red, the green, and the blue wires. Each time the wire cutter collides with a
wire, the wire disappears. Once all wires disappeared, the bomb disappears as well as one of the blocks inside the
corridor. The first enigma is solved.

For the second enigma, the user has to open a chest. When the user touches or tries to grab the chest, nothing
happens. The user starts looking for a key and finds one hidden in the room. When they drag the key to the
keyhole of the chest, the top of the chest disappears. At the bottom of the chest, there is a hammer. The user
grabs it and starts walking to the corridor. In the corridor, one of the two blocks is cracked. The user uses the
hammer to hit it and the block disappears.
For the last enigma, there is a maze on the wall with a red sphere in the middle of it. In front of the maze are

displayed four buttons, up, down, right, and left. As the maze is a spiral, the user needs to press alternately the
down, right, up, and left buttons until the sphere is outside the maze. When the sphere gets outside the maze, the
last block in the corridor disappears.

The user then walks through the corridor and reaches the exit. When the user crosses the exit, a trophy and a
picture with ’Congratulation’ written on it appear.

4.2.2 Authored interactions. We now describe the logic behind the Escape Game interactive scene. We also
provide a visual support to this description in Figure 5. Each of the three blocks that seal off the exit has a hide
event (H1, H2, H3) attached to it. The first enigma is composed of six objects, a bomb, a wire cutter, three wires
(red, green and blue) and a sphere. The wire cutter has four events attached to it, a grab event (G1) to specify this
object can be grabbed by the final user, and three collision events (C1, C2 and C3) that are connected with an
order link so they have to be triggered in the right order. Each collision event is linked to a hide event attached to
a wire (H4, H5, H6). The sphere has four events attached to it, a collision event (C4) with the user’s hand that is
linked to a red color event (Co1) which is linked to a green color event (Co2), which is finally linked to a blue
color event (Co3). Finally, the bomb has a hide event attached to it (H7) which is linked to H1.

The second enigma is composed of four objects, a key, a closed chest, an open chest and a hammer. A grab event
(G2) and a drag event (D1) are attached to the key. The drag event’s trajectory depicts the key going through the
chest key hole. The closed chest has a hide event (H8) and the open chest a show event (S1) attached to it. These
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two events are triggered by D1. A grab event (G3) is attached to the hammer as well as a collision event (C5) that
is triggered when the hammer collides with the cracked block at the exit. Finally, C5 is linked to H2.

The third enigma has six objects, a spiral maze, a ball and four direction buttons, and it only has two types of
events, four collision events (C6, C7, C8, C9) between the direction buttons and the user’s hand, and 11 movement
events (M1 to M11). The movement events describe the 11 movements the ball needs to do to get out of the maze
and are connected with an order link. C6 is linked to all the left movements (M4, M8), C7 to all the up movements
(M3, M7, M11), C8 to all the right movements (M2, M6, M10), and C9 to all the down movements (M1, M5, M9).
Finally, the last movement M11 triggers H3.

The exit has two objects, a congratulation picture and a cup, as well as an interactive object, a 2D trigger area.
The trigger area covers the exit of the room and has an entry event (En1) attached to it that is triggered when the
user enters the area. En1 is linked to two show events (S2, S3) attached to the picture and the cup.

4.2.3 Discussion. In order for an event to work with either the right or the left hand, the creator needs to record
it twice, one time for each hand. For instance, for the bomb enigma in the escape game, when the user touches
the sphere, if we want the sphere to change color no matter which hand touches it, we need to record two
collisions, one for each hand. As the system relies on a single demonstration of the interaction, it needs additional
information to deduce if the interaction targets one specific hand or both.
In this scene, if the user touches the wires with the wire cutter in the wrong order, for instance by touching

first the blue wire instead of the red wire, nothing happens. To create a "Game Over" message that appears when
the user cuts the blue wire, we would need to add a condition "The event collision between wire cutter and red
wire hasn’t been triggered" which requires using the NOT and AND logical operators. Yet, our system does not
allow its users to create logical operators.

Finally, to make the sphere move into the spiral maze, we recorded all expected movements in one recording.
Thus, as explained in the section 3.2.3, all actions were linked by a time constraint forcing the action n to
be triggered before being able to trigger the action n+1. In this case, in order to trigger the third expected
movement, the first two movements needed to be executed. However, it is not possible to go backward, nor
choose between two different directions. This example would require to have the object itself as a reference
frame for the movement as well as being able to control the length of the translation as distances vary in the
maze. In our system, movements have the world has a reference frame, which means that the coordinates (0,0,0)
refer to the origin of the world coordinates and not the object’s position in the world.

5 FEEDBACK SESSION
We performed a feedback session to better understand the challenges that participants could face while authoring
interactions. In this section we discuss not only the challenges inherent in interaction authoring, but also those
related to design flaws so it could benefit to future designers.

5.1 Study Design
5.1.1 Participants. We had 6 participants (4 female and 2 male) aged 24 to 29, (average:26), all participants had
experience with either virtual or augmented reality. All participants had experience in programming in general,
however, two of them had no programming experience in neither virtual reality nor augmented reality. Among
the participants, two of them were left-handed.

5.1.2 Procedure. The participants were first asked to fill out a demographic questionnaire. To show the partici-
pants an example of what can be authored with the tool, we started trials by showing the participants a reduced
version of the escape game. We showed the participants the test mode without the logic appearing so they could
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Fig. 5. A screen capture of the first enigma’s logic (top left), a screen capture of the logic of the exit animation (top right),
and a diagram that describes the logic behind the Escape Game interactive scene we authored (bottom).

not see it first. We then let them try the experience by themselves. Then, we explained all functionalities to the
participants through demonstration and answered any questions they could have.
For the next step, the participants were instructed to author two interactive experiences given by the exper-

imenter. The first instruction, "When the user touches an object, the color of the object changes" described a
low-complexity scene and was meant to help the participants get familiar with interaction authoring. The second
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instruction, "When the user gets out of the room, an object appears behind him. When the user turns over and
looks at it, the object starts falling.", depicted a more complex scene and forced the participants to use the puppet
recording mode as well as the trigger area functionality.
Once the participants performed both tasks, they did a free authoring session with no time constraint. The

only condition was to create at least one interaction. During the constrained and free creation steps, automatic
backups were made every 30 seconds. The creation tasks were followed by a semi-structured interview during
which participants were asked to share their feelings about their experience. At the end of the study, participants
were asked to fill out a raw NASA-TLX questionnaire [13] followed by a semi-structured interview.

5.2 Results
5 of the 6 participants showed a significant improvement during training and one participant had difficulties
understanding how the authoring tools for interaction worked and couldn’t create successful interactions during
the free creation step. In total, the participants spent less than two hours using the system. At the end, the
participants mentioned feeling more confident with the system and experimenters noticed that participants
progressively made less mistakes and needed less help during the session.

5.2.1 NASA-TLX. Results to the raw NASA-TLX questionnaire are depicted in Figure 6. The participants had a
tendency to find the system mentally demanding as only two participants rated the mental demand below 50 and
half of them rated the effort they put into their work above 50. Yet, most participants seemed satisfied with the
work they achieved, all participants rated their performance equal or below 50, meaning they judge their work as
successful. Moreover, the frustration scores were very low as 5 of the 6 participants rated their frustration equal
to or below 20.

5.2.2 Interactions Log. We analyzed the final results of the free creation task and seek which interactions were
the most created and whether they were correctly used. On Figure 7, we can observe that the events move,
collision, show, color, and zone collider are the most used. On the other side, the events drag, drop and look were
never correctly used. The most popular events actually are the events that were necessary to complete the two
constrained tasks. We can notice that the look event was not used during the free creation task even though it
was required in the second constrained task, however, many participants did not instinctively realize the need for
the look event and either realized it by themselves during creation or had to be reminded.

5.2.3 Feedback from interviews. One of the main difficulties reported by the participants was the difficulty to
assimilate all functionalities. The participants not only had to learn how to use the interaction authoring tools
but also the modeling tools, as well as how to navigate and how to manipulate objects. Therefore, the participants
had a lot to remember, which hindered their experience and could explain the high mental demand found in the
NASA-TLX scores. Moreover, all participants thought that they would get better if they had more time to learn
how to use the tool.
P1 suggested adding a history to the palette in order to easily visualize what had already been created and

what is left to make. The possibility to add a history or a 2D representation of the authored interactions on the
palette was also mentioned by P5. Indeed having a mixed interface, both 2D and 3D would allow the user to have
a global view of the program. Once the program is authored, the user could easily rearrange or select blocks of
codes.
The participants could easily read and understand the events they created. The letters inside bubbles were a

first clue to remember the nature of the event and the participants could easily get more information by pointing
at the bubble in order to launch the ghost simulation. They particularly enjoyed the ghost visualization for events,
however, they believed it could be improved. For instance, when the collision simulation is launched, a ghost of
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Fig. 6. Results to the NASA-TLX questionnaire

the object appears next to the collided object and hits it. Yet the user doesn’t know where the ghost will appear.
P5 suggested adding a textual label that could be hidden attached to the event.

5.2.4 Experimenters’ observations. Several participants had difficulties understanding how to link triggers to the
effect. Two of them linked the effect before the trigger and therefore inverted the relationship between the two
events. In a more general manner, most participants reminded themselves out loud the order "trigger then effect"
to avoid any mistake. During the first constrained task P4 forgot to link the trigger to its action before testing
and P2 launched the test mode before creating the trigger and expected the action to be triggered by default. All
these observations happened during the two constrained tasks and did not happen again after our clarification.

During the first constrained task, 3 participants misidentified the events they were expected to create. For the
first task "The color of the object changes when the user touches it", P2 and P4 created a grab event instead of a
hand collision and P3 kept a hand movement event in addition to the collision.
The participants also had a tendency to get confused about the way attributes work. Some of them started

changing the object’s color without recording, thinking it would create a color event. Several participants also
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Fig. 7. Interactions created by the participants during the free creation task: the participants mostly used interactions that
they had to use during the first two constrained tasks

forgot to set the default visibility before recording and ended up creating the opposite event (show instead of
hide or hide instead of show).

During the free creation step, two participants launched the wrong recording modes. P1 recorded the left hand
actions instead of the right hand and P3 launched the right hand recording instead of the objects recording mode.

6 DISCUSSION
In this section we discuss the challenges of authoring by demonstration as well as the limitations to our study.
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6.1 Impossible manipulation
Authoring by demonstration allows users to specify an event by grabbing an object and directly manipulating it.
Yet, some wanted behaviors could be conflicting with the users’ physical constraints. For instance, if the user
wants an object to spin and turn on 360° or more, their arm won’t be able to turn that much, therefore the recorded
move will not be smooth nor complete. A similar problem could occur if the user wants to move the object over
a long distance or manipulate very large objects. One solution to this problem is to use a World-In-Miniature
(WIM) [34], yet visualizing and manipulating small objects in it would be laborious.

6.2 Demonstration of abstract concepts
Looking back at the Beat Saber use case (see Section 4), let’s imagine we want to create the following interactive
experience, "Every 0.2 to 2 seconds, a red or green cube appears and moves towards the player. If the player
touches the green cube, they win a point, but if they touch a red cube, the game stops and a game over message
is displayed". These two sentences involve the demonstration of many abstract concepts such as time to specify
the delay between two appearances, randomness to make this time vary, multiple instantiations of objects with
similar behaviors, generalization of an interaction to all green or red cubes and not just the one the user interacts
with during the demonstration, and variables for score management.

Some of these concepts are intangible and therefore are not directly manipulable for the demonstration. In our
example, it is the case for time, randomness, multiple instantiations, and digital values. To make these concepts
manipulable and allow demonstration, one solution would be to materialize them by creating manipulable
metaphors. For instance, in the Beat Saber use case (see Section 4), we mentioned a virtual printer to instantiate
multiple times interactive objects. One of the main challenges for this kind of virtual metaphor is to create a
visualization that speaks for itself and is easily manipulable. We believe that the manipulation and demonstration
of time is an interesting research topic. We encourage future research to explore how users may include time
concepts such as delays or order restrictions during the authoring process.

In the same example, we would also need to be able to generalize the collision between the player’s hand and
the green cubes, to both of the player’s hands on one side, and to all green cubes on the other side. To do so the
user starts the recording and touches a green cube with their dominant hand. This demonstration has several
possible interpretations. The collision can involve either both hands or the dominant hand only. Similarly, the
system does not know if the interaction targets only this specific cube, all green cubes, all cubes, or all green
objects.
This constitutes a second challenge involved by abstract concepts, generalizing a demonstration to a set of

entities sharing one or several similar properties. Such a deduction isn’t possible based on a single demonstration
as there are too many possible interpretations. Thus, future research should focus on either context specification
or the use of multiple demonstrations, a method already explored for authoring by demonstration [32]. Such a
method would also enable logic deduction, and differentiate conjunction from disjunction.

6.3 Process ambiguities
One demonstration can lead to several outcomes. As the user performs the demonstration, the recording is
polluted by all the actions the user has to do to simulate the event but that are not the target of the demonstration.
We illustrate this challenge with a simple demonstration. "The user walks to the sphere, they reach for it, as the
hand touches the sphere they grab it, drag it on their right and drop it, and finally stop the recording.". This single
demonstration has many possible interpretations. Does the user want the sphere to move when they walk toward
it, or when the hand touches it? The point of the collision or the hand’s trajectory could also matter. Another
possible interpretation is the demonstration of a dragging movement.
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As we can see, it is unsure which actions are of interest nor which object is the focus of the demonstration
(user body, hands, or sphere). To partially resolve this issue we split the recording according to the referent of the
action, yet it disables the possibility to demonstrate an interaction at once as well as automatic logic creation.

The issue of ambiguous demonstrations has previously been studied in human-robot interaction. Naive human
teachers are likely to perform ambiguous and incomplete demonstrations to robots which need to interpret the
teachers’ intent. Future VR authoring tools by demonstration could for instance build upon Breazeal et al.’s work
[5], they designed a robot which is a socially engaged and cognitive learner.

6.4 Creating and visualizing logic
To improve the Escape Game use case (see Section 4), we may want the bomb to explode if the player does not
cut the wires in the right order. To do so, the user needs to specify "If the player cuts the blue wire (Event A)
or the green wire (Event B) but the red wire is not cut (! Event C), then the bomb explodes (Event D)." which
corresponds to the following logic "If (A || B) && !C, do D". Yet, the link connectors commonly used in immersive
systems such as our prototype or the systems mentioned in the related work [3, 29, 39] can only specify the
logical operator OR by connecting two trigger events to the same action event.
Enabling all logical connectors would require to complicate this logic creation process whereas participants

are already struggling to handle the current logic (see Section 5). Thus we believe the logic should be created
by the system and deduced from the recorded demonstration. Yet, it raises the question of how the system
can differentiate conjunction from disjunction in a demonstration. Such logic elements will also need to be
visualized and understood by non-programmers and avoid crowding too much space. Visual occlusion is one
of the challenges mentioned in FlowMatic [42]. There is also a risk of creating an interaction graph that would
become complex to read as interaction can be scattered in the virtual space. Some participants of the user study
already mentioned getting confused with the current graph and suggested using a 2D visualization or a history.

Moreover, the logic is not limited to the OR, AND and NOT operators. In this paper, we limited our framework
to triggers being the result of a binary change of state (done or not done), yet, it could also be continuous based
on the state of an object. For instance, the color of a virtual thermometer could vary depending on the size of
a virtual mercury bar. Other elements could also be added to this trigger-action relation, such as delays, order
constraints and iterations. We could also consider other logic concepts such as Vernier and Nigay’s framework
[38] or applying the set theory to movements. Thus, creating logic using programming by demonstration is a
complex subject which requires to be explored.

6.5 Visual programming and programming by demonstration
The goal of the paper is not to claim the superiority of programming by demonstration over visual programming.
We believe that it is first necessary to identify and study the challenges raised by immersive authoring of
interactive experiences by demonstration.

During the feedback session, we did not provide the participants with visual representations similar to figures
4 and 5 because we wanted participants to create the interactions by demonstration from spoken language
without going through a graphical programming representation first. In future studies, it would be interesting to
compare the participants’ capacities to create an interactive experience from spoken language using either visual
programming or programming by demonstration.
It is most likely that, when compared, visual programming and programming by demonstration happen to

have both drawbacks and benefits. Thus, both methods could be complementary. Programming by demonstration
is likely to show strengths whenever spatiality is involved (movements, collisions...) and when figuring out the
relations between objects. However, visual programming seems more promising to easily get an overview of the
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created interactions and to handle abstract concepts. Thus it would be interesting to explore, in the future, the
use of an authoring system combining both methods.

6.6 Provide assistance to users
All our participants had at least basis in programming, yet they still struggled to decompose the interactive
experiences they had to author into primary events. Creating the logic, despite being reduced to its minimum, also
required the users to go through a learning phase. Learning Authoring by demonstration can induce an important
cognitive load for users. They need to learn how to navigate and interact with the virtual environment, model
objects, author and debug interactions. As the authoring tool gains in power and expressivity, functionalities are
likely to multiply and the complexity to rise.

Thus, we believe authoring systems should provide as much assistance as possible to their users. In VRFromX
[17] users can benefit from IA assistance during the modeling phase and an affordance recommander during the
authoring phase.

6.7 Limitations
Our analysis of the challenges faces the limitations of our prototype and feedback session. All of our participants
had at least basic knowledge in coding, thus, we might have missed challenges that non-developers users would
have. Yet, we believe that the challenges we identified with our participants can be generalized to non-developer
users and that our work provides a foundation for future research in interaction authoring. In order to create
interactions, users needed to get familiar with prerequisite functionalities such as navigation, grabbing, and
modeling. These functionalities were not the focus of our study yet were necessary to be mastered by users. This
resulted in an increased learning curve of the prototype. In addition to that, the learning phase was hindered
by the communication and awareness issues inherent in the isolation of VR HMDs. Finally, the participants
experience was hindered by the technical limitations of our prototype. We implemented a basic modeling tool for
this study, yet we noticed that the limitations of the modeling system has repercussions on the expressivity of
the authoring, as well as its usability.

7 CONCLUSION AND PERSPECTIVES
In this paper we investigate the challenges of immersive authoring by demonstration of interactive VR experiences
through the design, implementation and evaluation of a prototype. We expect this paper to pave the way of
future research on immersive authoring by demonstration, by highlighting design issues that need to be studied.
Beyond authoring prototypes, immersed authoring by demonstration is useful to edit trainings and tutorials

directly in the immersive environment. Lécuyer et al. [19] actually enable medical training using authoring by
demonstration which could be generalized to other domains of application. Implementing a tutorial for complex
VR application is laborious and an authoring tool by demonstration would greatly facilitate the process.
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