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Generation of Helical States - Breaking of

Symmetries, Curie’s Principle, and Excited

States

Julia Sabalot-Cuzzubbo,[a] William Lafargue-Dit-Hauret,+,[a] Michel Rérat,+,[a]

Karine Costuas,+,[b] Didier Bégué,*[a] Jacky Cresson,*[c]

Herein, we deeply detail for the very first time mathematical con-
cepts behind the generation of helical molecular orbitals (MOs) for
linear chains of atoms. We first give a definition of helical MOs
and we provide an index measuring how far a given helical states
is from a perfect helical distribution. Structural properties of heli-
cal distribution for twisted [N]-cumulene and cumulene version of
Möbius systems are given. We then give some simple structural
assumptions as well as symmetry requirements ensuring the exis-
tence of helical MOs. Considering molecules which do not admit
helical MOs, we provide a first way to induce helical states by the
breaking of symmetries. We also explore an alternative way us-
ing excited conformations of given molecules as well as different
electronic multiplicities.

Introduction
During the past few years, a huge interest has been developed
for particular linear chains of atoms like cumulene or carbyne.
One of the interests is to possess in some configurations, helical
MOs along the chain opening new possibilities in nanoscale elec-
tronics [1–10]. This phenomenon called electrohelicity has been
discussed in several different ways, in particular, using classical
Hückel theory and symmetry group (see for example Ref. 1) or
from a more physical point of view using properties of the Hamilto-
nian (see for example Ref. 11). To our knowledge, these works are
restricted to molecules in their ground state and no studies provide
a discussion of the effect of excited states [12] as well as electronic
multiplicities on electrohelicity.

First, we define helical MOs following the previous work of M.
H. Garner et al. [1] and S. Gunasekaran et al. [11]. A helical MO is
associated to a given distribution of vectors or angles associated to
the p-system. The classical picture is to draw a helix representing
the twist of the p-vectors along the structure. In Ref. 10, W. Bro-
Jørgensen et al. study how far a given distribution is from a perfect
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helix, i.e. a distribution governed by a fixed pitch. We introduce
an index based on the standard least square method giving the best
perfect helix fitting to a given helical distribution. We take this
opportunity to give general results about Hückel distributions of
twisted [N]-cumulene and equivalent cumulene version of Möbius
systems.

Second, we review previous work leading to a characterization
of electrohelicity in term of basic structural assumptions on the lin-
ear chain and symmetry properties [13]. This characterization can
be used to precisely identify which kind of atoms can be used to
construct molecule admitting electrohelicity. Chirality plays an im-
portant role in this setting and is supported by a general physical
argument called the Curie’s principle.

Third, taking molecules which do not support electrohelicity in
their ground state, we explain how to obtain it by looking to excited
states or electronic multiplicities. Such a possibility is only valid
for molecules which in their ground state admit a subgroup with the
basic ingredients of electrohelicity. In this case, using symmetry
adapted MOs, we are able to predict the properties of the induced
helical MOs.

Finally, we illustrate our discussion with several examples.

Results and Discussion
Helical States and some Properties
Definition of Helical States

In this section, we are guided by the work of S. Gunasekaran et
al. [11]. We consider a chain of N � 1 sp-atoms Ai denoted by C,
together with arbitrary left and right end groups denoted by L and
R, consisting of a connection with an sp2-atom with a given struc-
ture (see Figure 1). The chain C of atoms is oriented along the
z-axis. The p-system of the chain can be modelled with a basis
set comprising a px and py orbital for each atom of the chain. The
pz-orbital is directed along the chain direction and is part of the
s -system.

Figure 1. Representation of a standard chain

The left and right groups can have arbitrary shapes, but the most
usual situation encountered for this type of chain-compound is that
of unsubstituted methylene (alkylidene) like cumulenes where L1 =
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L2 = H and R1 = R2 = H. The cumulene molecule with N dou-
ble bonds is denoted as [N]-cumulene. In their ground-states cu-
mulenes with even numbers of carbon atoms and hence with odd
numbers of double bonds are planar (eclipsed conformation). Cu-
mulenes with odd numbers of carbon atoms are nonplanar, with
orthogonal planes of the terminal methyl groups.

Our interest is on the orbital structure restricted to the chain
C, meaning that we will not discuss the particular orbital structure
emerging in the left and right side groups. Also, we focus on heli-
cal orbitals which were discussed by M. H. Garner and co-workers
in Ref. 1 in connection with cumulenes and annulenes. Helical or-
bitals allow a p-electron delocalization twisting along the chain.

Formally, this can be viewed as follows. Let E be a given energy
and z the integer position of the atoms of the chain with z = 0
corresponding to the left side and z = N to the right side. Denoted
by y(z) the atomic molecular orbital associated to atoms A(z), we
have Eq. 1:

y(z) =
✓

yx(z)
yy(z)

◆
= MR(zw)v0 (1)

where v0 is a fixed two-dimensional unit vector, w 2 R, R(zw) is
the rotation matrix of angle zw and M is a real symmetric matrix.

As the vector R(zw)v0 belongs to the unit circle S1, the vec-
tor y(z) belongs to the image of the unit circle by the linear map
associated to M. Denoted by va and vb the two orthogonal eigen-
vectors of M associated to the eigenvalues a and b which are real,
the image of S1 is an ellipse whose major/minor axis are given by
ava and bvb. The vector y(z) rotates along the ellipse when z in-
creases. The orientation of the rotation when z increases depends
on M, which characterizes the elliptic polarization. If | M |> 0
(resp. | M |< 0) the rotation is clockwise (resp. counterclockwise).

Fitting a Helix to Helical MOs

We first introduce the notion of distribution of angles. We call
the distribution associated to y and we denote by D(y) a finite
family of angles f(z j), j = 0, . . . ,m or equivalently a finite family
of unit vectors y(z j) 2 S1, where z j 2R is an increasing family of
real values.

Remark 1. It must be noted that in principle a helical MO induces
a continuous distribution of angles f(z) but in practice we will
have access only to a sampling of this distribution.

We can represent a distribution by sections along a cylinder ori-
ented along the z-axis. A linear molecule being given, a distribu-
tion can be obtained in essentially two different ways:

• First, we can use Hückel theory in order to determine an ap-
proximation of the wave function along the molecule, and a
vector y(z) corresponding to the decomposition of it in the ba-
sis given by px(z) and py(z) at the atom positioned at point z.
Such a distribution will be denoted by DHuckel .

• We can use DFT in order to determine the vector y(z) using
the technique developed by W. Bro-Jørgensen et al. in Ref. 10.
Such a distribution will be denoted by DDFT .

Remark 2. The previous distributions are not the only ones which
can be defined. Observations deduced from DFT are sometimes
subject to caution. As a consequence, one can imagine using more
refined methods for example CASSCF (Complete Active Space) in
order to check if the underlying phenomenon is method’s dependent
or not (see Supporting Information). In the following, we then also
studied DCASSCF .

We can associate to each distribution D(y) a continuous helix
in the following sense. For each set of real constants b > 0, g 2 R,

e = ±1 and r > 0 (an example is provided in Figure 2), one can
defined an helix hr,b,e whose parametrization is given by Eq. 2:

8
<

:

x(t) = r cos(gt),
y(t) = er sin(gt),
z(t) = bgt.

(2)

Figure 2. Perfect helix curve based on Eq. 2 with b = 2, r = 1, g = 1,
e = 1.

Another way to write the parametrization is provided in Eq. 3:

hr,b,g,e (t) = r
�
cos(gt)ex + e sin(gt)ey

�
+bgtez, (3)

where (ex,ey,ez) is the canonical basis defined by ex = (1,0,0),
ey = (0,1,0), ez = (0,0,1).

In the following, we simply denote hb,g,e for hr,b,g,e . If the pa-
rameter e = 1 (resp. �1), then the helix is right-hand (resp. left-
hand). For each distribution D(y) one can look for the best helix
hb,e which minimizes the quantity in Eq. 4:

L(r,b,g,e) =
m

Â
i=0

k y(zi)�hr,b,g,e (zi) k2 (4)

The sign of e for a given distribution is easy to determine, so that
we are reduced to the minimization of the functional in Eq. 5:

L(r,b,g) =
m

Â
i=0

k y(i)�hr,b,g,e (i) k2, (5)

where e is fixed.
Such a problem is solved using the non linear least squares

method. In general no unique solution is found and no explicit
formula can be given from the data because the method is an iter-
ative process. Another possibility is to restrict our attention to the
distribution angles instead of the specific geometry of the helix.
This is done in the next section.

Fitting a Helical Distribution - Cumulated Angle

Helix with a constant pitch b induces a distribution of the form of
Eq. 6:

DHelix = {f(zi) = zi/b, i = 0, . . . ,N} (6)

As a consequence, if one considers the cumulated angle defined
by Eq. 7:

fc(i) =
i

Â
1
| f(z j)�f(z j�1) | with fc(z0) = 0, (7)

2
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one obtains Eq. 8:

fc(z) =
1
b

z, (8)

i.e. a straight line passing through 0 with a constant slope 1/b. An
idea is then to compare the set of points (z j,fc(z j)), j = 0; . . . ,N
of a given helical distribution with a set of helical points (z j,z j/b),
by minimizing the quantity in Eq. 9:

L (b) =
n

Â
i=0

�
fc( j)� f j

�2
, (9)

where f j = z j/b, i.e. to use the (linear) least squares method or
regression analysis in order to obtain the best fitted straight line
of the form of Eq. 10:

f = a (z� z0)+f0, (10)

where a 2 R has to be determined, to the set of data fc(z j). It
must be noted that the special form of the straight line is due to
the fact that we impose on the line to pass through the initial point
(z0,fc(0) which is the first value of the cumulated angles distribu-
tion.

As we usually choose z0 = 0 for the position of the first atom
and fc(0)) = 0, the optimization problem reduces to find the best
linear line expressed in Eq. 11:

f = az (11)

which fits the set of data fc(z j).

Remark 3. A similar idea is used by W. Bro-Jørgensen et al. [10],
where the authors define the MAD index which corresponds to the
mean of the absolute deviation | fc(z j)� f j |.

The solution to the previous problem has an explicit analytical
solution given by Eq. 12:

a =
s(fc(z),z)+fc(z)z̄

s2(z)
, (12)

where for two given series x = (x0, . . . ,xN), y = (y0 . . . ,yN), we
denote by Eqs. 13 to 15:

x̄ =
1

N +1

N

Â
i=0

xi, (13)

s(x,y) =
N

Â
i=0

(xi � x̄)(yi � ȳ)
N +1

, (14)

s2(x) =
N

Â
i=0

(xi � x̄)2

N +1
, (15)

the mean of x, covariance between x and y and variance of x. Let
us denote by r(x,y) the correlation factor defined by Eq. 16:

r(x,y) = s(x,y)
s(x)s(y)

(16)

The quality of the approximation given by the regression line is
measured by r(fc(z),z). If r2(fc(z),z) is very close to one then
the approximation is very good.

Remark 4. As usual, the quality of the indicator is related to the
quality of measure and it is subject to discussion. In general, for
very good, measured quantities, a correlation > 0.95 is assumed
to represent a very good approximation by a straight line.

Consequently, we propose as an indicator of helicity the quantity
in Eq. 17:

HEL = r(fc(z),z), (17)
instead of the MAD index proposed in Ref. 10. Two advantages at
least can be pointed out:

• First, the correlation quantity is well-known and its interpreta-
tion, even if it is subject to discussion, is well documented.

• Second, a comparison is possible as HEL 2 [0,1]. Contrarily,
the MAD index can take arbitrary values and it is not clear what
is the exact difference between a MAD index of 4, 7 or 10 as
no normalization is given.

As an example, let us take the following angle distributions ob-
tained for equivalent [4]-cumulene version of Möbius systems (see
Properties of Distributions for CCC222-Adapted MOs of qqq === 000 or qqq ===
p
2

Twisted Cumulene) when n = 1 given by Eq. 18:

D4,1 = {0, 32, 45, 58, 90} (18)

The associated cumulated distribution is given by Eq. 19:

fc = {0, 32, 77, 135, 225} (19)

The "best" perfect helix fitting this set of data is given by Eq. 20:

f(z) = 49.7z, (20)

and the correlation factor is given by Eq. 21:

r(z,fc(z)) = 0.9887211, (21)

which shows very good agreement (see Figure 3).

Figure 3. Best fitted helix for distribution of equivalent [4]-cumulene
version of a Möbius system and n = 1.

The same can be done for the distribution of the equivalent [4]-
cumulene version of a Möbius system when n = 2. In this case, the
distribution is given by Eq. 22:

D4,1 = {0, 58, 135, 212, 270} . (22)

The associated cumulated distribution is given by Eq. 23:

fc = {0, 58, 193, 405, 675} . (23)

The "best" perfect helix fitting this set of data is given by Eq. 24:

f(z) = 145.3z, (24)

and the correlation factor is given by Eq. 25:

r(z,fc(z)) = 0.9794173, (25)

which again this shows a very good fit (see Figure 4). Taking
the solution of the minimisation problem, we can represent the p-
system along the C system like a helix as depicted in Figure 5.

3
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Figure 4. Best fitted helix for distribution of equivalent [4]-cumulene
version of a Möbius system and n = 2

Figure 5. Representation of the p-system along the C system

Fitting a Helix - General Case

Classical helixes are called perfect helixes in Ref. 10. However,
perfect helixes are not the rule as many examples already proven
(see the next sections and Ref. 1). A more general class of helix is
given by helix with a non-constant pitch, i.e. a helix of the form of
Eq. 26: 8

<

:

x(t) = r cos(t),
y(t) = er sin(t),
z(t) = P(t),

(26)

where P(t) is a smooth increasing function (see Figure 6).

Figure 6. Imperfect helix based on Eq. 26 with P(t) = 2t2 +3.

More generally, one can consider a helix with a non-constant
radius of the form of Eq. 27:

8
<

:

x(t) = r(t)cos(t),
y(t) = er(t)sin(t),
z(t) = P(t),

(27)

where r : R 7! R+ is an arbitrary positive function.
A very good approximation of the function P can be obtained

from the set of data completing the best helix approximation just
studied but in a nonlinear setting, for example using polynomial
functions for P(t) as well as for r(t). The previous generalization is
not only a mathematical idea as shown in Figure 7 which evidences
the general helix structure of a linear molecule.

Figure 7. Non standard helix

In fact, a very large class of morphology is possible, and the case
of perfect helix seems to be not representative of helical state. In
that respect, it seems unreasonable to take a perfect helix as a struc-
ture to make comparisons with. Linear chains of boron nitride [14]

could illustrate the existence of non standard helix. Like carbon
nanostructures, boron nitride (BN) nanostructures present a wide
variety of physical and chemical properties. They also present a
wide variety of MOs according to both the number of atoms on
the chains (even or odd), and to the nature of the A0 and AN atoms
(boron or nitrogen) as illustrated in Figure 8 and in Supporting In-
formation (Tables S3 and S4).

Some Properties of Hückel Distributions for
000 <<< qqq <<<

p
2

Twisted [[[NNN]]]-Cumulene

From a theoretical point of view, helical Hückel distributions are
the only ones that can be dealt with. A complete treatment can be
done for twisted [N]-cumulene. In this case the Hückel distribution
DHuckel(q) is obtained through the set of vectors given by Eq. 28:

yn(z) = anR
✓

q
2

◆
D bn

an
R(knz+dn), (28)

where Dl : R2 7!R2 denotes a dilatation map of weight l defined
by (x,y) 7! (x,ly), dn satisfies Eq. 29:

tan(dn) =�an
bn

tan
✓

q
2

◆
, (29)

and kn satisfies Eq. 30:

sin2((N +1)kn) = cos2(q) sin2(kn), for 1  n  2N (30)

In general, it is not possible to obtain explicit values for the distri-
bution angles unless the case q = 0 or q =

p
2

which are discussed
in the next section. We can nevertheless give some hints on its
structure. Indeed, for each twist angle q , the Hückel distribution
DHuckel(N,q) of twisted [N]-cumulene by an angle q possesses
the following structure. The distribution DHuckel(N,q) is such that
(see Eq. 31):

f(N � z)�f
✓

N
2

◆
= f

✓
N
2

◆
�f(z), z = 0, . . . ,N (31)

The distribution possesses an axis of symmetry directed along the

vector f(N
2
). As f(0) = 0 and f(N) = q , this axis is at

q
2

or

4
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Figure 8. Molecular orbitals of a linear chain N=4 B=N=B=N=B obtained at the B3LYP/6-311G(d,p) level of theory - c = charge

q
2
+

p
2

depending on the number of turns and if the helix is right
handed or left handed. It must be noticed that this property is not
as trivial as it looks due to the fact that we have a dilatation map
which sends the components of y(z) on an ellipse as schemed in
Figure 9.

The distribution is obtained from the circular distribution Dcirc(q)
defined by Eq. 32:

fn(z) = knz+dn (32)
This distribution is symmetric with respect to 0, meaning that we
have Eq. 33:

fn(N � z) =�fn(z), (33)
for z = 0, . . . ,N. The distribution DHuckel(q) is then obtained from
Dcirc(q) by a dilatation map Db/a from the vectors vn(z) = aeifn(z),

i2 = �1 followed by a rotation ei q
2 . Rotations are isometric trans-

formations so that they preserve angles. Dilatations are not pre-
serving angles, but they preserve the structure of the circular distri-
bution as can be seen by a simple computation.

A formal proof of the previous result can be obtained using the
circularly polarized MOs version of the previous case studied by
S. Gunasekaran et al. [11] (p.4-5). They consider a modified Hückel
matrix by increasing the coupling between the terminal lone p or-
bitals from t to

p
2t instead of a constant coupling t between the

atoms of the chain (see Fig. 5a p.5 in Ref. 11). This simple change
made the mathematical analysis greatly simplified and explicit ex-
pressions for the distribution given by fn(0) = 0, fn(N) = q can
be obtained (see Eqs. 34 and 35):

fn(z) = knz, z = 1, . . . ,N �1, (34)

Nkn =

⇢
q +mp, n = 2m+1
mp �q , n = 2m (35)

For a given z 2 {1, . . . ,N �1}, we can rewrite fn(z) as Eq. 36:

fn(z) = Nkn
z
N

=

8
>><

>>:

(q +mp) z
N
, n = 2m+1

(mp �q) z
N
, n = 2m

(36)

The quantity fn(z) is well defined for z =
N
2

and gives Eq. 37:

fn(
N
2
) =

8
>><

>>:

(q +mp)1
2
, n = 2m+1

(mp �q)1
2
, n = 2m

(37)

We can verify directly the previous symmetry results on the distri-
butions DHuckel(q), i.e. that (Eq. 31) is satisfied. Indeed, we have
Eq. 38:

fn(
N
2
)�fn(z) =

8
>><

>>:

(q +mp)(1
2
� z

N
), n = 2m+1

(mp �q)(1
2
� z

N
), n = 2m

(38)

and Eq. 39:

fn(N � z)�fn(
N
2
) =

8
>><

>>:

(q +mp)(1� z
N
� 1

2
), n = 2m+1

(mp �q)(1� z
N
� 1

2
), n = 2m

(39)

= fn(
N
2
)�fn(z)

Properties of Distributions for CCC222-Adapted MOs of
qqq === 000 or qqq ===

p
2

Twisted Cumulene

For q = 0 or q =
p
2

, cumulenes do not possess helical MOs. This
is due to the fact that the px-system and the py-system are decou-
pled in this case (see Basic Structural Properties for more details).
However, we can look for C2-adapted MOs, where C2 mixes the px
and py system.

Remark 5. Looking for C2-adapted MOs is natural when cumu-
lenes are considered as linear versions of cyclic chains under the
Möbius topology. This can be understood as replacing the elec-
tronic complexity by a geometric complexity keeping symmetry
properties here given by a C2 symmetry group. We refer to Ref. 1
for more details. In particular, one can note that the angular dis-
tribution for the Möbius cyclic system is perfect but this property
is lost when looking for a cumulene analogue. We refer to Ref. 1
where this problem is studied in details and to the following sec-
tions.

The Case q =
p
2

For q =
p
2

, the p-system of cumulenes can
be obtained by a N-chain of atoms from z = 0 to z = N � 1 gov-
erning the py part and a N-chain for px from z = 1 to z = N. For a

5
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Figure 9. Construction of the helical distribution from the circular distribution

N-linear chain, the coefficients cN,n(z) of the wave function yn(z)
for z = 1 to N are of the form of Eq. 40:

cN,n(z) =
r

2
N +1

aN,n(z) (40)

where aN,n(z) is expressed as Eq. 41:

aN,n(z) = sin(knz), z = 1, . . . ,N, (41)

with kn satisfying Eq. 42:

kn =
np

N +1
, for 1  n  N (42)

The special form of the Hückel matrix in this case implies that (see
The Case q =

p
2

and Eqs. 43 and 44):

cy(z) =
r

2
N +1

aN,n(z+1), z = 0, . . . ,N �1, (43)

cx(z) =
r

2
N +1

aN,n(z), z = 1, . . . ,N, (44)

with cy(N) = 0 and cx(0) = 0. Looking for C2-adapted MOs, we
obtain Eqs. 45 and 46:

y+,n =
1p
2

�
cy(z)py + cx(z)px

�
, and (45)

y�,n =
1p
2

�
cy(z)py � cx(z)px

�
(46)

Choosing y+,n or y�,n give rise to a right (resp. left) hand helix.
In the following, we focus on y+,n. We then have Eq. 47:

yn(z) =
r

2
N +1

✓
aN,n(z)
aN,n(z+1)

◆
(47)

For z = 0, . . . ,N, we want to compare f+,n(z) and f+,n(N � z). As
the coefficients an satisfies Eq. 48:

aN,n(N � z+1) = (�1)n+1aN,n(z), (48)

(see A Technical Result) we deduce that yn(N � z) can be written
as Eq. 49:

yn(z) =
r

2
N +1

✓
aN,n(N � z)
aN,n(N � z+1)

◆
(49)

= (�1)n+1
r

2
N +1

✓
aN,n(z+1)
aN,n(z)

◆

As a consequence, y+,n(N � z) is obtained from yn(z) by ax-
ial symmetry along the line y = x (diagonal symmetry) and multi-
plication by a factor (�1)n+1. Denoting by S : (x,y) ! (y,x) the
diagonal symmetry map, we have Eq. 50:

y+,n(N � z) = (�1)n+1S (y+,n(z)) (50)

We directly deduce the relationship on the distribution of the
angles Eq. 31. In this case (see The Case q =

p
2

), an explicit ex-
pression can be obtained for the angle AN,n,+,0,z between y+,n(0)
and y+,n(z) and is given by Eqs. 51 and 52:

AN,n,+,0,z = cos�1

0

BB@e(aN,n(1))e(aN,n(z+1))
1r

1+ aN,n(z)
aN,n(z+1)

2

1

CCA

(51)
z = 0, . . . ,N �1, (52)

and Eq. 53:
AN,n,+,0,N = (�1)n+1 p

2
, (53)

where e(x) denotes the sign of x. As an example, we obtain for
N = 3 and N = 4 the distributions represented in Figures 10 and
11, respectively.

We can check some consequences of our previous results using
the simulations, namely that:

• By Eq. 53, the angle between yn(0) and yn(N) is equal to
p
2

when n is odd and �p
2

when n is even.

• For all n, the family of vectors yn(z), z = 1, . . . ,N are making a
turn of an angle of (2n�1)/4 with respect to its initial position
yn(0). As an example, for N = 3, n = 1 (a quarter turn), n = 2
(three quarter turn) and n = 3 (five quarter turn). In the same
way, for N = 4, n = 1 (a quarter turn), n = 2 (three quarter
turn), n = 3 (five quarter turn) and n = 4 (seven quarter turn)
etc.

The Case q = 0 For q = 0, the p-system of cumulenes can be
obtained by a N +1-chain of atoms from z = 0 to z = N governing
the py part and a N �1 chain for px for z = 1 to z = N �1.

The special form of the Hückel matrix in this case implies that
(see The Case q = 0 and Eqs. 54 to 57) :

cy(z) =
r

2
N +2

aN+1,n(z+1) =
r

2
N +2

sin
✓

np(1+ z)
N +2

◆
,

(54)
z = 0, . . . ,N (55)
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Figure 10. Distribution for q =
p
2

, N = 3, n = 1 (HOMO-2 and HOMO-3), n = 2 (HOMO-1 and HOMO) and n = 3 (LUMO and LUMO+1)
- Corresponding MOs obtained by the CASSCF(8:10)/6-311G(d,p) level of theory for the [3]-cumulene in its excited triplet state (see Table
S6 in Supporting Information for details).

Figure 11. Distribution for q =
p
2

, N = 4, n = 1 (HOMO-2 and HOMO-3), n = 2 (HOMO-1 and HOMO), n = 3 (LUMO and LUMO+1)
and n = 4 (LUMO+2 and LUMO+3)

7

10.1002/cphc.202200951

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem



cx(z) =

r
2
N

aN�1,n�1(z) =

r
2
N

sin
✓
(n�1)pz

N

◆
, (56)

z = 1, . . . ,N �1, (57)
with cx(0) = 0 and cx(N) = 0. Looking for C2-adapted MOs, we
obtain Eq. 58, focusing on y+,n:

yn(z) =

0

BBBB@

r
2
N

sin
✓
(n�1)pz

N

◆

r
2

N +2
sin
✓

np(z+1)
N +2

◆

1

CCCCA
(58)

for z = 1, . . . ,N � 1. Here again, one can compute explicitly the
distribution of angles for particular values of n. In particular, using
the same notations as before, we have (see The Case q =

p
2

and
Eq. 59):

AN,n,+,0,N =
(1� (�1)n+1)

2
p =

⇢
0 if n is odd,
p otherwise (59)

As an example, we obtain for q = 0, N = 3 and N = 4 the distribu-
tions depicted in Figures 12 and 13, respectively.

Figure 12. Distribution for q = 0, N = 3, n = 2 (HOMO-1 and
HOMO), n = 3 (LUMO and LUMO+1)

The simulations illustrate our previous results:
• The angle between yn(0) and yn(N)) is 0 when n is odd and

180 when n is even.
• For all n, the family of vectors yn(z) are making (n � 1)/2

turns with respect to its initial position yn(0).In particular, for
N = 3, n = 2 (half turn) and n = 3 (one turn). For N = 4, n = 2
(half turn) , n = 3 (one turn) and n = 4 (one and a half turns)
etc.

Note that the results of distributions for N = 11 and q = 10 are
illustrated in Figures S1-S3 in Supporting Information.

How To Detect Helical Orbitals -
Algebraic Approach
Following S. Gunasekaran et al. in (Ref. 11, p.5-6), it is possible
to detect helical orbitals in a pure algebraic way. The idea is to use
the Löwdin partitioning technique [15], which is a simple tech-
nique allowing focus on a particular part of the molecule by "con-
structing an effective Hamiltonian which acts only on the target
model space but gives the same result as the original Hamiltonian
acting on the complete space" (see Ref. 16). The Hamiltonian H
of the complete system can be written as Eq. 60:

H =

0

@
Haa HaC 0
HCa HCC HCb

0 HbC Hbb

1

A (60)

The left group is associated to a set pa = (p1, . . . , pa) of basis
orbitals and the right group to pb = (p?1, . . . , p?b). The central chain
consists of 2N orbitals given by pL, pR and 2(N �2) orbitals px,i,
py,i, i = 1, . . . ,N � 1. We denote by pC this vector. The matrix H
is then a a+ 2n+ b square matrix. By construction of the Hamil-
tonian, we have Ht

Ca = HaC where t denotes the transpose. The
associated Schrödinger equation H ·y = Ey gives for Eq. 61:

y =
a

Â
i=1

ci pi+cL pL +
n

Â
i=1

cx,i px,i+cy,i py,i+cR pR+
b

Â
j=1

c j p?j (61)

a linear system of the form of Eq. 62:
8
<

:

Haa pa +HaC pC = E pa,
HCa pa +HCC pC +HCb pb = E pC,
HbC pC +Hbb pb = E pb,

(62)

For any integer d > 0, let us denotes by Id , the identity matrix
of size d. Assuming that for a given E the matrices EIa �Haa and
EIb �Hbb are invertible, one can express pa and pb using pC, as
in Eq. 63: ⇢

pa = (EIa �Haa)
�1HaC pC,

pb = (EIb �Hbb)
�1HbC pC,

(63)

Replacing in the second equation pa and pb by their expressions,
we obtain Eq. 64:

HCa(EIa �Haa)
�1HaC pC +

HCC pC +
HCb(EIb �Hbb)

�1HbC pC = E pC

(64)

This last equation can be understood as the action of an effective
Hamiltonian He f f defined over pC by Eq. 65:

He f f = SL +HC +SR, (65)

where the matrix SL and SR are defined by Eq. 66:
⇢

SL = HCa(EIa �Haa)
�1HaC

SR = HCb(EIb �Hbb)
�1HbC,

(66)

leading to a 2N ⇥ 2N Hamiltonian. The two matrices SL(E) and
SR(E) are 2N ⇥ 2N and depend only on the coupling between the
end groups and the terminal orbital of the chain pL and pR.

The main result of S. Gunasekaran et al. [11] can be stated as fol-
lows:

Existence criterion: A necessary condition for H to yield he-
lical states is that SL and SR do not commute, i.e. [SL,SR] 6= 0,
where the bracket [,̇]̇ is defined by [A,B] = AB�BA.

The main difficulty in applying this result is due to the com-
putation of the two matrix SL and SR which leads in general to
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Figure 13. Distribution for q = 0, N = 4, n = 2 (HOMO-2 and HOMO-3), n = 3 (HOMO-1 and HOMO) and n = 4 (LUMO and LUMO+1)
- Corresponding MOs obtained by B3LYP/6-311G(d,p) level of theory for the [4]-cumulene in its ground singlet state (see Table S7 in
Supporting Information for details).

complex and non explicit expressions and only possible in simple
configurations. We refer to Ref. 16 for more details and examples.
However, we can deduce from the previous result the following
statement:

Genericity of helical orbitals: A linear chain satisfying the pre-
vious assumptions admits generically helical orbitals.

The proof of this statement relies on the existence criterion. In-
deed, let A and B be two arbitrary square matrices. The condition of
non-commutation is open, i.e. that sufficiently small perturbations
of A and B do not commute. Another way of saying that arbitrary
close perturbations of commutative matrices are in general non-
commutative. As a consequence, helical orbitals are not special;
on the contrary they are the most common behavior of orbitals for
linear chains.

Despite its interest, the previous criterion is from a practical
point of view not effective to detect helical orbitals for a specific
molecule as it demands the explicit computation of the matrices
SL and SR. In the following, we rely on an approach suggested
by Garner and co-workers in Ref. 1 making an essential use of the
symmetry properties of the molecule.

How To Detect Helical Orbitals -
Symmetries Approach
Basic Structural Properties

We restrict ourselves to linear molecules made of N atoms Ai,
i = 1, . . . ,N. We denote by A = {Ai}i=1,...,N the family of atoms
and by LA the corresponding linear molecule. We assume that a
coordinates system is given such that z is in the direction of the
molecule. In order to observe helical MOs in a linear molecule

LA, one needs to deal with atoms supporting a p-system which is
two dimensional, i.e. with atoms having as a basis set px and py,
pz supporting the s -bond. We assume that we have n such atoms.
As a consequence, along the molecule we have two planes Px and
Py containing the family of p orbitals px(z) and py(z) respectively
where z denotes the integer position of each atom along the chain.

The previous restriction implies that one has to restrict atten-
tion to atoms belonging to the bloc p of the periodic table of the
elements. Moreover, in order to have a structure which can be un-
derstood, it seems reasonable to restrict our attention to elements
of the bloc p of the second and third line of the periodic table.
The boundary of such a chain can be generated by a single MO. For
more simplicity, we assume that the left boundary MO is py = p0
and the right one is an MO denoted by pN which can be arbitrarily
oriented in the x� y plane. We have then N = n+ 2 atoms in the
linear chain. The left and right atoms of the linear chain belong to
some structures denoted by SL and SR. The Hückel matrix of such
a molecule takes the form in Eq. 67, taking as a basis set p0 = px,
pi

x, pi
y, i = 1, . . . ,n, pN .
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0

BBBBBBBBBBBBBBBBBBBBBBBB@

py
0 pL py pN�1

y pR pN�1
x pi

x
pL a a 0 · · ·
p1

y a
Ay 0 0p2

y 0
...
0 a

pN�1
y 0 0 a a �k 0 0 0

pr
... 0 �k a �? 0

pN�1
x 0 0 · · · 0 0 �? a a

0 a
...

0 0 Ax...
p1

x 0

1

CCCCCCCCCCCCCCCCCCCCCCCCA

(67)
where the green, red and blue blocks denote the y-part, the mix-

ing matrix and the x-part, respectively. The A matrix is given by
Eq. 68:

Ay =

0

BBBBB@

p1
y ... pk

y
p1

y a a 0
...

a
. . .

0
. . . a

pk
y a a

1

CCCCCA
(68)

The characteristic polynomial of H can be decoupled in two
cases:
1. when �k = 0, corresponding to the case where pN is orthog-

onal to pn
x , i.e. pN = py. The mixing matrix reduces to the

orthogonal matrix shown in Eq. 69:

Mix? =

0

@
a 0 0
0 a �?

0 �? a

1

A (69)

and the characteristic polynomial has the form of Eq. 70:

P(x) = PA(x)PA?,�?(x). (70)

2. when �? = 0, corresponding to the case where pN is orthogo-
nal to pn

y , i.e. that pN = px. The mixing matrix reduces to the
one shown in Eq. 71:

Mixk =

0

@
a �k 0
�k a 0
0 0 a

1

A (71)

and the characteristic polynomial is given by Eq. 72:

P(x) = PA?(x)PA,�k(x). (72)

The first case corresponds to the orthogonal configuration of the
ethylene and the second one to the planar configuration. In all the
other configurations, we have a mixing between the components
of the px and py orbitals which is a necessary condition for the
existence of helical orbitals.

Symmetry Properties

The existence of helical states implies that we have a mixing be-
tween MOs px and py in a very special way. In particular, we as-
sume that there exists what is called an helicogenic C2 symmetry
axis (see Ref. 1), i.e. a C2 axis such that C2(px) = py.

As an example, for the ethylene we have:

• the planar configuration of the ethylene possesses three C2 axes:
one directed along the chain and two passing through the centre
directed along x and y. None of these C2 axes are helicogenic.

• the orthogonal configuration also possesses three C2 axes: one
along the chain and two which are dihedral. These last two
axes are helicogenic.

However, as already discussed in the previous section, none of
these two examples possess explicit helical MOs. In the first case,
no mixing is induced by the symmetries so that one cannot wait
for helical MOs. For the orthogonal case however, this is due to
the fact that despite the mixing generated by the symmetry axes,
the characteristic polynomial factorizes and the behaviour of the
px and py family is disconnected. This last property can be related
to the existence of another symmetry of the molecule, namely that
the orthogonal configuration of the ethylene possesses a mirror-
plane symmetry. As a consequence, we have to assume that no
mirror-plane symmetry must be present in order to generate helical
MOs.

The Helical Orbitals Criterion - Symmetries

Following the previous discussion, we are led to the following
statement, which was originally made by M. H. Garner et al. [1]

(p. J) for cumulenes:

The helical orbitals criterion: Linear chain LA satisfying the
structural assumption, without mirror-plane symmetry, admitting a
C2 helicogenic axis, has explicit helical MOs.

The proof of such a theorem can be deduced from the properties
of the Hückel matrix associated to such kind of molecules. The
absences of a mirror-plane symmetry implies that the molecule is
chiral, i.e. that the image of the molecule by a mirror plane is not
invariant. This remark can be used to give an alternative statement
of the helical orbitals theorem:

Helical orbitals criterion: linear chain LA satisfying the struc-
tural assumption and chiral admitting a C2 helicogenic axis, has
explicit helical MOs.

This statement can be related to the Curie’s principle in which
he states informally in his paper "On Symmetry in Physical Phe-
nomena" [17] in 1894 an intuitively plausible relationship between
the symmetry of an effect and its cause, namely that "when cer-
tain causes produce certain effects, the elements of symmetry of
the causes must be found in the effects produced" (p. 401). In-
deed, we are waiting for helical molecular orbitals. These objects
are naturally chiral so that following Curie’s principle, one must
find chirality in the initial geometry of the molecule which induces
the orbitals structure. As a consequence, chirality is unavoidable.
The Curie’s principle gives a physical support to the sentence "the
formation of helical symmetry-adapted MOs requires chirality; not
surprising considering a helix is a chiral object" made by M.H.
Garner et al. in ( [1], page J): this is not surprising indeed and is
a consequence of the Curie’s principle. We refer to Chalmers’ as
well as Ismael’s investigations [18,19] for more details and discus-
sion about the validity of the Curies’s principle.

Observable Consequence of the Helicity

One of the electronic property strongly depending on the absolute
structure of the [N]-cumulene and their dihedral angles q -value be-
tween the two CH2 end groups is the optical rotation b -response
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property. Another relationship observed between helicity and ob-
servable (magnetism) will be discussed in Beyond ppp-Orbitals - He-
lical States Using ddd-Orbitals and Metallacumulenes.

In solution or gaz phase, the molecule is optically active if the
trace of its optical rotation is not equal to zero, i.e. for the C2
symmetry and when q is neither equal to 0 (D2h symmetry) nor
90�(D2d symmetry) i.e. the conditions required to turn off the heli-
cal orbital criterion as established in Symmetry Properties.

In Table 1, we have reported the b̄ mean optical rotation value
of methane, ethylene and [N]-cumulene (in its singlet state) with
[N] equal to 2, 3,... and 5, and for q equal to 0, 10, 20, ... and
90�, at the light wavelength equal to 1000 nm (1.24 eV) making
negligible its vibrational contribution.

First, the self-consistent field (SCF) PBE0 hamiltonian with the
6-31G** basis set is used to calculate the unperturbed singlet state.
Then, the frequency-dependent coupled-perturbed (CP-PBE0) method
is used with the velocity operator as the electric field perturbation.
In that condition, it is shown that the trace is gauge-invariant [20].

It is interesting to see that b̄ is larger for small values of q (ex-
cept 0�per symmetry reason) for even [N]-number, and decreases
to zero when the angle increases till 90�. This is due to the fact
that the HOMO ! LUMO DE-energy (not reported in the table)
increases when q increases. This is exactly the contrary for odd [n]-
number: DE decreases when q increases, and b̄ is larger for large
values of q (except 90�per symmetry reason). However, for [3] and
[5], the CP-PBE0 optical gap is reached with 1.24 eV (l = 1000
nm) when q is between 70 and 80�, and 60 and 70�, respectively.
Actually, the unrelaxed HOMO ! LUMO DE energy is around 2
eV for these previous structures, but the CP-PBE0 calculation di-
minishes the optical gap by an exciton energy correction of ⇠ 1 eV
with respect to the unrelaxed sum over state PBE0 (SOS-PBE0)
one. This is the reason why b̄ becomes very large (in absolute val-
ues) and changes its sign after resonances. It is important to notice
that for q larger than 90�, the sign of b̄ changes since the other
enantiomer forme is obtained.

Induced Helical MOs for Non Helical
Linear Chains
The previous characterization of helical MOs can be used to induce
helical states from a molecule which does not admit it at a first
glance. Several strategies can be tested.

Breaking of Symmetries and Chirality

Let us consider a linear chain which does not satisfy the helical
orbital criterion but satisfying the structural assumptions. By defi-
nition, the core chain possesses two C2 helicogenic axes and one C2
axis along the chain. Moreover, the core chain also possesses also
three orthogonal mirror planes sx,y, sx,z and sy,z (see Figures 14
and 15 - the choice of x and y axes defined in these two figures is
the one chosen for all the MOs representations of this article).

In order to satisfy the helical orbital criterion, we have to break
the mirror-plane symmetries. This will depend on the fragment we
put on the boundaries. This can be done in several steps:

• Breaking the sx,z mirror-plane symmetry means that the molecule
is not planar.

Let us now consider a non-planar linear chain. This condition is
not sufficient as the orthogonal configuration of the [N]-cumulenes
in their ground states does not support helical MOs for example.

• Taking the left fragment L to be contained in the plane sx,z, the
breaking of the mirror-plane sx,z will be effective with a right
fragment R which is not contained in Py.

Such a choice, will naturally induce the breaking of the sx,y
mirror-plane symmetry. The previous remarks imply that an axis
torsion of the end group of a linear chain will generically induce
helical MOs.

Using Exited States of Molecules

The previous result is valid as long as one considers a stable min-
imal configuration, i.e. the fundamental configuration of a given
molecule. However, the symmetry group of the MOs of a given
molecule depends on its energy state. As a consequence, if the
symmetry group of a given molecule is such that the molecule
does not admit helical MOs but contains symmetry elements which
alone satisfy the helical state theorem, one can find an excited ver-
sions of it, which can nevertheless exhibit helical MOs thanks to
symmetry adapted MOs (see Figures 16 and 17). As we see, the
previous remark also applies also for different electronic multi-
plicities. In the next section, we study more complex examples
illustrating the previous discussion. In particular, we observe the
following results:

• There exists generically excited version of the molecule lead-
ing to stable configuration admitting helical states.

• Symmetry adapted MOs can be used to predict the characteris-
tics of the helixes.

Cumulenes Containing Double-Bonded
Heavy Elements
Cumulenes are a highly varied class of compounds, including such
species as ketenes, allenes, ketenimines, and isocyanates, as well as
analogues where carbons C0 and CN are replaced by silicon, ger-
manium, oxygen, sulfur, nitrogen phosphorus and/or arsenic (see
Figures 18 and 19).

In agreement with the review of Escudié et al. [21] fifteen fami-
lies of compounds were studied in order to scan a major part of the
experimentally known cumulenes containing double-bonded heavy
elements. Examples of molecules (see Table 2) were tested at the
B3LYP/6-311G(d,p) level of theory in order to study the presence
of helical orbitals. Note that 2 other examples with DPBD and
tolanophane molecules demonstrate also induced helical MOs are
visible in Figures S9 and S10 in Supporting Information.

Beyond ppp-Orbitals - Helical States
Using ddd-Orbitals and
Metallacumulenes
As recently reported by Garner et al. [10] the prospective of helical
states using d-orbitals has started. In particular, the metallacumu-
lenes are potential classes of molecules that may exhibit helical
MOs in the linear fragments of the molecules. If some MOs of the
trans-[EtC = (C =)4C = Ru = (C =)4CMe]2+ system are some-
what helical, Garner also reports that at the ruthenium centre there
exists a jump not yet identified in the evolution of the helical MOs.
This jump is assigned by the authors to the inherent sign-change in
the metal d-orbitals that couple to the carbon p-orbitals.

The presence of variable helicity in different parts of a molecule
is then clearly highlighted. However, the question that now arises
is whether the existence of possible helical MOs of the metal part.
In a last perspective we finally wanted to imagine the helical MOs
of the metallic part through, for example, the study of a metal-
metal bonds. Theoretical investigations refer to the existence of
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Table 1. CP-PBE0 optical rotation (b̄) of methane, ethylene and [N]-cumulene (singlet state) in degree dm�1 mol.�1 l. with respect to the
dihedral q -angle in degree. The light wave length is: l = 1000 nm (1.24 eV).

q 0 10 20 30 40 50 60 70 80 90

methane / b̄ 0.0 1.2 2.0 1.9 1.4 0.9 0.4 0.1 0.0 0.0
ethylene / b̄ 0.0 4.0 9.0 15.0 21.0 30.0 40.0 50.0 13.0 0.0

[2]-cumulene / b̄ 0.0 15.0 13.0 11.0 10.0 8.0 6.0 4.0 2.0 0.0
[3]-cumulene / b̄ 0.0 7.0 15.0 25.0 39.0 60.0 100.0 248.0 �123.0 0.0
[4]-cumulene / b̄ 0.0 22.0 17.0 14.0 11.0 8.0 6.0 4.0 3.0 0.0
[5]-cumulene / b̄ 0.0 19.0 40.0 71.0 122.0 216.0 313.0 �71.0 �306.0 0.0

Figure 14. Representation of the HOMO and LUMO MOs obtained at the B3LYP/6-311G(d,p) level of theory for the N = 3 cumulene in
its ground singlet state at a 0�, 50�and 90�rotation (see Table S5 in Supporting Information for details).

Figure 15. Representation of the HOMO and LUMO MOs obtained at the B3LYP/6-311G(d,p) level of theory for the N = 4 cumulene in
its ground singlet state at a 0�, 50�and 90�rotation (see Table S7 in Supporting Information for details).

multiple metal-metal bonds, mainly consisting of a combination of
s and p interactions in all the [M2X8]

2� species investigated [22].
In addition, d -like interactions also occur in the complexes of rhe-
nium (M=Re) in particular. The conformation of the [Re2H8]

2�

system where hydrogen ligands are eclipsed (D4h) were studied in

its lowest energy configuration represented as [s2p4d 2]. The main
reason of this decision was that conformation allows for maximum
d -d overlap between the Re(III) centre resulting in the formation
of a potential helix when the (D4h) symmetry is broken as shown
in Figure 20.
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Figure 16. Representation of the HOMO and LUMO MOs obtained at the B3LYP/6-311G(d,p) level of theory for the N = 3 cumulene in
its first excited triplet state at a 0�, 50�and 90 �rotation (see Table S6 in Supporting Information for details).

Figure 17. Representation of the HOMO and LUMO MOs obtained at the B3LYP/6-311G(d,p) level of theory for the N = 4 cumulene in
its first excited triplet state at a 0�, 50�and 90�rotation (see Table S8 in Supporting Information for details).

Following a recent result presented by Gendron et al. [23] we
discuss another possibility of using metallacumulenes. The main
observation is that thanks to d interaction and breaking of sym-
metries, helical orbitals are again observed. Interestingly, another
possible arrangement of metallacumulenes consists in positioning
two metallic fragments as end-groups. These systems have been
developed originally as models of molecular wires following the
early developments of molecular electronics [24]. The electron-rich
metallic fragments that are usually found in the literature are of
general formula MLn (M = Fe, Ru, Re essentially; L = organic
or inorganic coordinating ligands). They are connected to the car-
bon atoms via a direct metal-carbon bond. Depending on the ox-
idation state of the systems, the carbon chains that are encoun-
tered can be described as polyynediyl (LnM-(C2)x-MLn) type with
a different amount of cumulene character. Interestingly, the elec-
tronic structures of this compounds can comprise helical carbon-
chain MOs depending on the local symmetry of the MLn frag-
ments (usually pseudo-octahedral), their orientations, and the de-
gree of cumulene-type character [23,25,26]. In the [Cp*(dppe)M-
(C2)3-M(dppe)Cp⇤]m+ series (Cp⇤ = pentamethylcyclopentadienyl;
dppe = (diphenylphosphinno)ethane); M = Fe, Ru; m = 0, 1, 2), the

two-electron oxidized unsaturated systems (m = 2) are presenting
interesting magnetic behaviors in which the symmetry-breaking in-
duced by the rotation of one metallic end-groups with respect to the
other has a direct consequence on the magnetic coupling, i.e. on the
relative energies between the ferromagnetic and the antiferromag-
netic states [23,25]. Interestingly, the spinorbitals which are mainly
involved in the description of the unpaired electrons are showing
a twisted shape which seems to reinforce the antiferromagnetic
coupling [5,6]. This will be investigated following this fundamental
study (see preliminary results in Supporting Information).

Conclusion
Starting from the work of M. H. Garner et al. [1], we studied in
generality the generation of helical orbitals for particular chain of
atoms which include in particular [N]-cumulenes.

We first discuss the definition of helical orbitals following Ref.
1,11. In particular, we discuss the possibility to associate a perfect
helix to a given distribution of angles representing the evolution of
the p-system along the chain. We introduce as an index of helicity
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Figure 18. N = 2. Molecular orbitals obtained at the B3LYP/6-311G(d,p) level of theory for a rotation of 25�.

Figure 19. N = 3. Molecular orbitals obtained at the B3LYP/6-311G(d,p) level of theory for a rotation of 25�.

a correlation number obtained by linear regression between an hy-
pothetical perfect helix and the exact feature of the p-system under
consideration. This index is different from the MAD index of Ref.
10. Taking as an example linear chains of boron nitride, we show

that perfect helix are not the rule and a more general definition of
helices are needed, as long as one is interested in characterizing
as precisely as possible helical orbitals by a single parameterized
function.
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Table 2. Cumulenes containing doubly bonded heavy elements - see figure 1 for the L1, L2, R1 and R2 definitions.

A0/AN L1 L2 R1 R2

Cumulene C/C H H H H

N=3 :
Phosphabutatriene P/C H - H H
Diphosphabutatriene P/P H - H -
Arsabutatriene As/C H - H H
Silabutatriene Si/C H H H H

N=2 :
Phosphaallene P/C H - H H
Diphosphaallene P/P H - H -
Phosphaazaallene P/N H - H -
Arasaallene As/C H - H H
Arsaphosphaallene As/P H - H -
Diarsaallene As/As H - H -
Silaallene Si/C H H H H
Phosphasilaallene Si/P H H H -
Silaketene Si/O H H - -
Germaallene Ge/C H H H H
Germaphosphaallene Ge/P H H H -

Figure 20. Representation of the N=1 HOMO-5 and the HOMO of
the [Re2H8]

2�

We then give a global description of distribution obtained using
Hückel theory for twisted [N]-cumulenes generalizing and com-
pleting previous work of M. H. Garner et al. [1] which is limited
to even numbered [N]-cumulenes. Explicit formula are given and
several general properties of Hückel-distribution are proved. Sim-
ulations are provided in order to illustrate these properties.

We then discuss minimal assumptions under which a given lin-
ear chain admit helical orbitals. Several methods exist.

We first focus on an algebraic characterization of helical orbitals
given by S. Gunasekaran et al. [11] based on the Löwdin partition-
ing technique. Using this characterization, we deduce that helical
orbitals are generic. Indeed, the existence criterion is based on the
fact that two matrices do not commute which is a generic property
for a set of matrices. Despite its interest, this criterion is not use-
ful from a practical point of view because the computation of the
matrices entering in the criterion are in general too complicated to
compute explicitly.

We then discuss more precisely the structural properties of lin-
ear chain focusing on the role of symmetries of the molecule. As
helical orbitals are associated to special geometrical properties of
the molecule and are chiral objects, we deduce using Curie’s prin-
ciple, that a necessary condition for a molecule to possess helical
orbitals is chirality. This assumption joins observation made by M.
H. Garner et al. [1]. Moreover, the existence of helicogenic axes
of symmetries as defined in Ref. 1 is also necessary. The previ-
ous conditions are necessary when looking for helical orbitals at

the ground state. If not, as the symmetry group of MOs for a given
molecule depends on the energy state, one can look for excited ver-
sion of a given molecule for which symmetry adapted MOs lead to
helical orbitals. The previous remark opens many possibilities for
a huge number of structures to exhibit helical orbitals, in particu-
lar when different electronic multiplicities are allowed. This point
clearly proves again that helical orbitals must be more generic than
usually believed. Several examples are given in order to illustrate
these ideas.

Helical orbitals are constructed by focusing on 2p orbitals. How-
ever, the criterion for helicity based on helicogenic axes and chi-
rality suggests that d orbitals can be a good candidate to construct
helical orbitals of a new kind. Following a recent result presented
in Ref. 10 we discuss this possibility using metallacumulenes. The
main observation is that thanks to d interaction and breaking of
symmetries, helical orbitals are again observed.

We hope that this work provides significant information and
tools to study helical orbitals in various situations. The use of d-
orbitals seems to be very promising as it opens the possibility to
construct helical orbitals for new types of molecules with possibly
different helical morphology.

Computational Methods
In the same way that Garner et al. asked the following question
e.g. “What changes if we progress from a Hückel model to wave
function based or DFT calculations?” [1], it is legitimate to ask the
same type of question concerning eventual changes observed by
the use of approaches leading to the use of the multiconfigurational
wave function on the one hand and, by the use of purely localized
orbitals and/or unlocalized model in other hand. To do this, it is
important to situate the methods in relation to each other.

In this work, the ground and excited-states geometries were all
determined at the DFT level using the B3LYP exchange-correlation
function with the 6-311G(d,p) basis set. Calculations were per-
formed using Gaussian 09 program package [27]. To describe an
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eventual Multi-Reference character of states, CASSCF(8:10)sp/6-
311G(d,p) calculations were also carried out. CASSCF calcula-
tions were performed using Molpro program package [28].

As expected, mono and pluri-determinental wavefunctions reach
to the same conclusions. It is the same for calculations with dif-
ferent orbital representations e.g., delocalized and localized (see
Tables S1 and S2 in Supporting Information). Two series of calcu-
lations have been carried out to highlight this assumption. Plane-
wave delocalized orbitals calculations were performed using DFT
within the augmented wave projector approach, as implemented in
the VASP software [29–31].The basis set expansion is fixed by a cut-
off energy of 550 eV, and the PBE exchange-correlation functional
was used. Simulations were carried out on isolated molecules into
a ⇠8000 Å3 box to remove any interaction between periodic im-
ages. Only the G-point was considered to describe the first Bril-
louin zone. Results on N = 3 and N = 4 of the cumulene systems
were carried out and are reported in Supporting Information(see
Tables S5-S8). There is no noticeable change between the MOs ob-
tained by this approach and those obtained classically in B3LYP/6-
311G(d,p).

Second, because the occupied canonical orbitals that are ob-
tained from a Hartree-Fock (HF) calculation are generally delo-
calized, it could be difficult to attach a chemical interpretation to
these molecular orbitals. The set of canonical molecular orbitals
can be transformed into equally valid set of localized HF molec-
ular orbitals by a (unitary) transformation that preserves orthonor-
mality. These localized molecular orbitals (LMOs) [32] correspond
to chemically familiar concepts, including the core orbitals on the
heavy atoms, bonding orbitals, and the lone pair orbitals. As illus-
trate in Supporting Information (Tables S1 and S2) each localized
orbital obtained for the cumulene systems will have a partial twist
to recover the overall twist of the wavefunction. For localized nat-
ural orbitals (LNO), the obtained solutions must be mixed (±) into
a linear combination (50/50) to reconstruct the twist (right/left) of
the wavefunction to recover the helical character (see Figure 21).

Figure 21. Combination of molecular HOMO-1 ± HOMO and
LUMO ± LUMO+1 orbitals of cumulene with N = 4 with localized
natural orbitals in B3LYP/6-311G(d,p), + clockwise, - unclockwise

Appendix
A Technical Result

For all N � 1, z = 0, . . . ,N, the function an(z) = sin
✓

znp
N +1

◆
sat-

isfies the equality in Eq. 73:

an(N � z+1) = (�1)n+1an(z) (73)

This is a simple computation. We have Eq. 74:

an(N � z+1) = sin
✓
(N � z+1)

np
N +1

◆

= sin
✓
(N +1)np

N +1
� znp

N +1

◆

= sin(np)cos
✓

znp
N +1

◆
� cos(np)sin

✓
znp

N +1

◆

= �cos(np)sin
✓

znp
N +1

◆
= (�1)n+1an(z)

(74)

Proof of the Angle Formula for Cumulene

The Case q =
p
2

The aim of this section is to prove the following formula in Eq. 75:

AN,n,+,0,z = cos�1
✓

yn(0).yn(z)
kyn(0)kkyn(z)k

◆

= cos�1

 
e(an(1))e(an(z+1))p
1+(an(z)/an(z+1))2

! (75)

where e(x) is the function equal to +1 if x > 0 and �1 if x < 0.
The two vectors yn(0) and yn(z) are given by Eq. 76:

8
>><

>>:

y0(z) =
r

2
N +1

✓
0

an(1)

◆

yn(z) =
r

2
N +1

✓
an(z)

an(z+1)

◆ (76)

whose scalar product yn(0) ·yn(z) is given by Eq. 77:

yn(0) ·yn(z) =
2

N +1
an(1)an(z+1) (77)

The norm of each vector yn(0) and yn(z) is given by Eqs. 78
and 79:

kyn(0)k=
r

2
N +1

| an(1) | and (78)

kyn(z)k=
r

2
N +1

q
(an(z))2 +(an(z+1))2 (79)

We then obtain Eq. 80:

AN,n,+,0,z = cos�1

 
an(1)an(z+1)

| an(1) |
p

(an(z))2 +(an(z+1)2

!
(80)

As an(z+1) 6= 0 when z = 1, . . . ,N �1, putting (an(z+1))2 in
factor in the square root, we deduce Eq. 81:

AN,n,+,0,z = cos�1

0

BB@e(an(1))e(an(z+1))
1r

1+ (an(z)
an(z+1))

2

1

CCA

(81)
When z = N, we have an(N + 1) = sin(np) = 0 and AN,n,+,0,N

reduces to AN,n,+,0,z = cos�1(0) = ±p
2

. Due to the symmetry
relation (Eq. 50), we deduce that the sign depends only on n and is
given by (�1)n+1. This completes the proof.
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The Case q =
p
2

By definition, we have Eq. 82:
8
>>>>>><

>>>>>>:

yn(0) =

0

@
0r

2
N +2

sin
✓

np
N +2

◆
1

A

yn(N) =

0

@
0r

2
N +2

sin
✓

np(N +1)
N +2

◆
1

A
(82)

As Eq. 83:

sin
✓

np(N +1)
N +2

◆
= sin

✓
np � np

N +2

◆

= (�1)n+1 sin
✓

np
N +2

◆ (83)

we obtain Eq. 84:

yn(N) = (�1)n+1yn(0) (84)

We deduce directly that for n odd, yn(N) = yn(0) and the angle
is null and for n even yn(N) = �yn(0) and the angle is p . This
concludes the proof.

Proof of the Formula for the OM
Coefficients of C2 Symmetry-Adapted
Linear Combinations for q = 0 and q =

p
2

Twisted Cumulene
The Case q =

p
2

This is the simplest case. Indeed, denoting by AN(w) the N ⇥N
matrix given by Eq. 85:

AN(w) =

0

BBBBBBBB@

w 1 0 . . . 0

1 w
. . .

. . .
...

0
. . .

. . .
. . . 0

... 1
0 . . .0 1 w

1

CCCCCCCCA

, (85)

and posing as usual w =
a �l

b
, the secular determinant SN(l ) of

the Hückel matrix HN defined by SN(l ) = det(HN �l Id) is such
that (see Eq. 86):

SN(l ) = b N (PN(w))2 , (86)

where PN(w) = det(AN(w)) and AN is the classical matrix associ-
ated with a N-linear chain of carbon atoms.

The N roots of SN are doubly degenerate and are symmetrically
distributed around the value a and are given by Eq. 87:

ln = a +2b cos
�
kN,n

�
, (87)

with kN,n = np/N +1.
We refer to the work of C.A. Coulson (Ref. 33, Appendix p.393-

394) for more details.

The Case q = 0

This case is more complicated. The secular determinant SN(l ) for
the Hückel matrix reads in this case as Eq. 88:

SN(l ) = b NPN+1(w)PN�1(w) (88)

We have 2N roots which are non-degenerate and obtained by intri-
cating the symmetric roots of PN+1(w) and PN�1(w). The roots of
PN�1 corresponding to the px system and those of PN+1 to the py
system.

Symmetry-adapted linear combinations in C2 of atomic orbitals
coming from the px and py systems are possible only for atomic
orbitals which are not too far in energy. As a consequence, we
must understand how the two spectrums are intricated. Denoting
by ln,y the eigenvalues induced by the y part and ln,x the eigenval-
ues induced by the x part we obtain an intrication of the form of
Eq. 89:

lN+1,y < lN�1,x < lN,y < · · ·< l2,y < l1,x < l1,y. (89)

Taking explicit values (see just below), one can observe that taking
n for a particular energy level corresponding to ln,y , n = 2, . . . ,N,
the closest values of lk,x is obtained for k = n�1.

As an example, taking N = 3,4 and 5 representing only the value
2cos(kN+1,n) for ln,y and 2cos(kN�1,n) for ln,x, we obtain:

• N = 3: l4,y = a +1.618b < l2,x = a +1.000b < l3,y = a +
0.618a < l2,y = a � 0.618b < l1,x = a � 1.000b < l1,y =
l1 = a �1.618b

• N = 4: l5,y = a +1.732b < l3,x = a +1.414b < l4,y = a +
1.000b < l2,x = a + 0.000b < l3,y = a + 0.0000b < l2,y =
a �1.000b < l1,x = a �1.414b < l1,y = a �1.732b

• N = 5: l6,y = a +1.802b < l4,x = a +1.618b < l5,y = a +
1.247b < l3,x = a + 0.618b < l4,y = a + 0.445b < l3,y =
a �0.445b < l2,x = a �0.618b < l2,y = a �1.247 < l1,x =
a �1.618b < l1,y = a �1.802b

The intrication of these values is resumed in the following Fig-
ure 22 for each of these three cases:

Figure 22. Representation in diagram form

As a consequence, taking the general form of the coefficients
cN,n(z) for a linear chain given in Eq. 40, we obtain for a given N
and n = 2, . . . ,N Eq. 90:

cq=0
y,n,N(z) = cN+1,n(z+1), and cq=0

x,n,N(z) = cN�1,n�1(z). (90)

This concludes the proof. A working example is given in the next
Section for N = 3 and N = 4.

17

10.1002/cphc.202200951

A
cc

ep
te

d 
M

an
us

cr
ip

t

ChemPhysChem



Explicit Computations of C2-Adapted
Linear Combination of MOs for the q = 0
Twisted [N]-Cumulene, N =3, 4.
As an example of the computations and quantities manipulated in
the previous section, we derive explicit values for the case N = 3,4
in the q = 0 case (see Figure 23), where the plane of the molecule
is (z,x) and the orthogonal one corresponds to y.

Figure 23. N = 3,4 cases of planar molecule

As already observed, the molecular orbitals are made of two per-
pendicular p systems contained in the (x,z) plane and (z,y) plane
respectively corresponding to a N+1 linear chain in the (z,y) plane
represented in blue and a N �1 linear chain in the (x,z) plane (see
Figures 24 and 25).

Figure 24. p systems for N = 3 case

The coefficients cq=0
y,N,n(z) computed for all values of n and z us-

ing formula and finally the corresponding eigenvalues correspond-

Figure 25. p systems for N = 4 case

ing to 2cos(
pn

N +2
) Eq. 90 are reported in Tables 3 and 4.

Table 3. cQ=0
y,3,n (z) coefficients

z/n 1 2 3 4

0 0.370 0.600 0.600 0.370
1 0.600 0.370 -0.370 -0.600
2 0.600 -0.370 -0.370 0.600
3 0.370 -0.600 0.600 -0.370

ln,y 1.618 0.618 -0.618 -1.618

Table 4. cQ=0
y,4,n (z) coefficients

z/n 1 2 3 4 5

0 0.289 0.500 0.577 0.500 0.289
1 0.500 0.500 0.000 -0.500 -0.500
2 0.577 0.000 -0.577 0.000 0.577
3 0.500 -0.500 0.000 0.500 -0.500
4 0.289 -0.500 0.577 -0.500 0.289

ln,y 1.732 1.000 0.000 -1.000 -1.732

These values corresponding for each n to the MOs configura-
tions are depicted in Figure 26.

In the same way, the coefficients cq=0
x,N,n(z) are given in Tables 5

and 6
The MOs configurations obtained for each n are shown in Figure

27.
We then report in Tables 7 and 8 the C2-adapted linear combi-

nations of MOs using equation Eq. 47.

Supporting Information Summary
Additional references cited within the Supporting Information [34–36].
Supporting Information highlights more details on results obtained
for different cases: cumulenes, diphenylbutadiene, tolanophane and
metallacumulene.
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Figure 26. Projections of y-values for MOs configurations for N =
3,4 cases.

Table 5. cQ=0
x,3,n(z) coefficients

z/n 1 2 3 4

0 - 0.000 0.000 -
1 - 0.707 0.707 -
2 - 0.707 -0.707 -
3 - 0.000 0.000 -

ln,x - 1.000 -1.000 -

Table 6. cQ=0
x,4,n(z) coefficients

z/n 1 2 3 4 5

0 - 0.000 0.000 0.000 -
1 - 0.500 0.707 0.500 -
2 - 0.707 0.000 -0.707 -
3 - 0.500 -0.707 0.500 -
4 - 0.000 0.000 0.000 -

ln,x - 1.414 0.000 -1.414 -
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Table 7. Y3,n(z) C2-adapted linear combinations of MOs

z/n 2 3

0
✓

0.000
0.600

◆ ✓
0.000
0.600

◆

1
✓

0.707
0.370

◆ ✓
0.707
�0.370

◆

2
✓

0.707
�0.370

◆ ✓
�0.707
�0.370

◆

3
✓

0.000
�0.600

◆ ✓
0.000
0.600

◆

Table 8. Y4,n(z) C2-adapted linear combinations of MOs

z/n 1 2 3 4 5

1
✓

0.000
0.289

◆ ✓
0.000
0.500

◆ ✓
0.000
0.577

◆ ✓
0.000
0.500

◆ ✓
0.000
0.289

◆

2
✓

0.000
0.500

◆ ✓
0.500
0.500

◆ ✓
0.707
0.000

◆ ✓
0.500
�0.500

◆✓
0.000
�0.500

◆

3
✓

0.000
0.577

◆ ✓
0.707
0.000

◆ ✓
0.000
�0.577

◆✓
�0.707
0.000

◆ ✓
0.000
0.577

◆

4
✓

0.000
0.500

◆✓
0.500
�0.500

◆✓
�0.707
0.000

◆ ✓
0.500
0.500

◆ ✓
0.000
�0.500

◆

5
✓

0.000
0.289

◆✓
0.000
�0.500

◆ ✓
0.000
0.577

◆ ✓
0.000
�0.500

◆ ✓
0.000
0.289

◆
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We deeply detail mathemati-

cal concepts behind the gen-

eration of helical molecular or-

bitals (MOs) for linear chains

of atoms. After defining he-

lical MOs, we provide an in-

dex measuring how far a given

helical states is from a per-

fect helical distribution. Struc-

tural properties of helical distri-

bution for twisted cumulene ver-

sion of Möbius systems are also

discussed. Furthermore, some

structural assumptions as well as

symmetry requirements ensuring

the existence of helical MOs are

given.
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