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ABSTRACT: Highly conducting, mixed-valence, multi-component nickel bis(diselenolene) 

salts were obtained by electrocrystallization of the monoanionic species [Ni(Me-thiazds)2]
−1 

(Me-thiazds: N-methyl-1,3-thiazoline-2-thione-4,5-diselenolate), with 1:2 and 1:3 

stoichiometry depending of the counter ion used (Et4N
+ and nBu4N

+ vs. Ph4P
+, respectively). 

This behavior strongly differs from the corresponding monoanionic dithiolene complexes 

whose oxidation afforded the single component neutral species. This provides additional rare 

examples of mixed-valence conducting salts of nickel diselenolene complexes, only known in 

two examples with the dsit (1,3-dithiole-2-thione-4,5-diselenolate) and dsise (1,3-dithiole-2-

selone-4,5-diselenolate) ligands. The mixed-valence salts form highly dimerized or trimerized 

bi- and trimetallic units, rarely seen with such nickel complexes. Transport measurements under 

high pressure (up to 10 GPa) and band structure calculations confirm the semiconducting 

character of the [Ph4P][Ni(Me-thiazds)2]3 and the quasi metallic character of [Et4N][Ni(Me-

thiazds)2]2 and [NBu4]x[Ni(Me-thiazds)2]2 salts (0 < x < 1). 
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■ INTRODUCTION    

Nickel and gold bis(dithiolene) complexes have focused a great deal of attention for affording 

highly conducting systems, either as single-component1 or as multi-component molecular 

materials.2,3  In order to generate the partially or fully oxidized metal bis(dithiolene) complex, 

the corresponding monoanionic species [M(dt)2]
−1 (M = Ni, Au) is generally used in 

electrocrystallization experiments, and this complex should be at least soluble in a convenient 

solvent to be oxidized. It should be stressed here that upon electro-oxidation, the large majority 

of monoanionic gold complexes [Au(dt)2]
−1 gives the open-shell species [Au(dt)2]

•,1 i.e. the 

neutral radical complexes, leading to single component molecular conductors, while the 

monoanionic nickel complexes afford mainly multi-component, mixed-valence conductors 

(C+)[Ni(dt)2]n (n = 2,3) as the prototypical [Ni(dmit)2] salts (Chart 1a) but rarely the neutral 

diamagnetic species [Ni(dt)2]
0.  

As the chemical approaches to generate the monoanionic Au and Ni complexes are 

essentially the same, authors generally investigated in parallel both monoanionic metal 

complexes with the same ligand.4,5,6,7,8 Within this frame, we have particularly developed one 

family of ligands (Chart 1c), namely the N-alkyl-1,3-thiazoline-2-thione-4,5-dithiolate (R-

thiazdt, R = alkyl group)9 and investigated their corresponding Ni and Au complexes.  

 

Chart 1. 

 

 

Our chemical approach concerning these complexes relies on the initial preparation of 

the reduced species such as the d8 dianionic Ni2+ complexes, which are further oxidized in air 

to the monoanionic open-shell complexes, or for the gold complexes, the direct synthesis of the 
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monoanionic d8 Au3+ species. Then through electrochemical oxidation, the neutral species are 

most often isolated as single component molecular conductors, either with nickel as closed shell 

species [Ni(R-thiazdt)2]
0 or with gold as radical complexes [Au(R-thiazdt)2]

•. Such neutral Ni 

bis(dithiolene) complexes exhibit, given their closed shell nature, semi conducting behavior for 

[Ni(R-thiazdt)] (R = Me, Et, Pr).10,11 We previously showed, however, that [Ni(Et-thiazdt)2]
0 

(R = Et) turns metallic under pressure in the low temperature range when the pressure reaches 

4.4 GPa and in the whole temperature range for pressures above 6.9 GPa.11 In the gold series, 

we have shown that the presence of a substituent smaller than the ethyl one on the ligand 

allowed us to go from a Mott insulator material for [Au(Et-thiazdt)2]
•,12 to a metallic system for 

[Au(Me-thiazdt)2]
•.13 Altogether, the use of the R-thiazdt ligand, either with nickel or gold, 

systematically led to the neutral complexes, rather than mixed-valence salts, upon 

electrocrystallization of the monoanionic precursors. 

Besides the changes of the R substituent, we also investigated the replacement of sulfur 

atoms for selenium ones in the metallacycles using the R-thiazds ligand (N-alkyl-1,3-

thiazoline-2-thione-4,5-diselenolate) (Chart 1f). Such substitution parallels that reported earlier 

with the dsit ligand (Chart 1d), the diselenolene analog of dmit. It should be stressed at this 

point that very few [M(dsit)2] diselenolene complexes have been reported and structurally 

characterized to date. They are limited to salts of the monoanionic [Ni(dsit)2]
1− nickel 

complex,14 and one single mixed-valence conducting palladium salt, namely 

(Me4N)[Pd(dsit)2]2.
15 Besides, one should mention the dsise analogs16 (Chart 1e) with only one 

mention of a mixed-valence conducting salt (Bu4N)[Ni(dsise)2]2.
17 We have shown that the 

oxidation of [Ni(Et-thiazds)2]
−1 salts afforded the neutral [Ni(Et-thiazds)2]

0, which exhibits an 

essentially 1D electronic structure with large band dispersion and small HOMO−LUMO gap 

and a semi-conducting behavior, with σRT = 8 × 10−3 S cm−1 and Eact = 0.12 eV.18 By analogy 

with our recent results on gold diselenolene complexes with the less sterically demanding R = 

Me analog  [Au(Me-thiazds)2]
−1,19,20 we investigate here the oxidation of the corresponding 

monoanionic N-methyl substituted nickel diselenolene analogue, which is to say [Ni(Me-

thiazds)2]
−1 (Chart 1f), in order to see whether this complex during electrocrystallization would 

generate the unknown single-component conductor [Ni(Me-thiazds)2]
0 or a rare mixed-valence 

salt. Herein, we describe the synthesis of three monoanionic nickel complexes of the Me-thiazds 

diselenolene ligand with different counterions, [C][Ni(Me-thiazds)] with C = Bu4N
+, Et4N

+ and 

Ph4P
+ and the outcome of their electrocrystallization, providing rare examples of mixed-valence 

salts of nickel diselenolene complexes, further blessed with high conductivities.  
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■ RESULTS AND DISCUSSION  

Syntheses. The monoanionic nickel diselenolene complexes were prepared starting from 

the cyanoethyl-protected diselenolene proligand 1 (Scheme 1).9 The proligand 1 was 

deprotected through the addition of sodium methanolate and then, after successive additions of 

NiCl2. 6H2O and Ph4PCl or Et4NBr or Bu4NCl, the dianionic species of the nickel complexes 

were generated. A recrystallization in air from CH2Cl2/MeOH (1:4) solution afforded the 

monoanionic complexes as brown compounds: [Ph4P][Ni(Me-thiazds)2], [Et4N][Ni(Me-

thiazds)2], and [Bu4N][Ni(Me-thiazds)2]. Good quality crystals were isolated only for the 

[Ph4P][Ni(Me-thiazds)2] complex. 

 

Scheme 1. Synthetic route toward the monoanionic, radical, Ni bis(diselenolene)complex, 

[Et4N][Ni(Me-thiazds)2] , [Bu4N][Ni(Me-thiazds)2]  and [Ph4P][Ni(Me-thiazds)2]. 

 

 

 

 

The [Ph4P][Ni(Me-thiazds)2] salt crystallizes in the monoclinic system, space group P21/n, with 

both ions in general position. As shown in Figure 1, the diselenolene ligands are disordered on 

two positions with a 92:8 distribution. Due to the presence of the unsymmetrical Me-thiazds 

ligand, the cis and trans isomers can be formed. However, as the Ni complex is localized in a 

general position in the unit cell, this crystallographic disorder is compatible only with a trans 

configuration of the complex. This disorder is reminiscent to the one observed for the analogous 

gold complex, [Ph4P][Au(Me-thiazds)2].
20  
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Figure 1. Molecular view of the anion radical species [Ni(Me-thiazds)2]
–1 in [Ph4P][Ni(Me-

thiazds)2]. The two disordered moieties with a 92:8 distribution are highlighted with light grey 

and black bonds, respectively. 

 

In the solid state, the monoanionic complexes in [Ph4P][Ni(Methiazds)] interact only along the 

a axis (S•••S: 3.62 Å), and are well separated by Ph4P
+ cations associated into inversion-

centered pairs in a so-called phenyl embrace motif (Figure S1). The magnetic susceptibility of 

this complex (Figure S2) is well fitted with a Curie-Weiss law, giving a Curie constant of 0.404, 

and a  value of −0.76 K, with a g = 2.077 value deduced from EPR experiments. 

The redox behavior of the three novel salts has been analyzed by cyclic voltammetry in 

CH2Cl2 using NBu4PF6 as supporting electrolyte. Their UV-vis-NIR absorption properties were 

measured in CH2Cl2 at room temperature. For the three salts, the redox system corresponding 

to the oxidation of the radical anion to the neutral state is not fully reversible, but characterized 

by a strong adsorption phenomenon occurring at the electrode (Figure 2a). Contrariwise, the 

redox system corresponding to the reduction into the dianionic species is fully reversible. This 

trend of deposition of the oxidized species at the electrode upon oxidation is different to the one 

observed for the N-Et analogues presumably due to a decrease in solubility of the N-Me 

oxidized species. The counterion does not have a significant influence on the redox potentials 

(Table 1). 
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Figure 2. (a) Cyclic voltammetry and (b) UV-vis-NIR monitoring of the electrochemical 

oxidation of [PPh4][Ni(Me-thiazds)2] in CH2Cl2, with 0.2M NBu4PF6 as a supporting 

electrolyte.  

 

Table 1. Redox potentials (E in V vs SCE) in CH2Cl2, with 0.1M NBu4PF6 as a supporting 

electrolyte, absorption maxima max (nm) and molar extinction coefficients  (M–1cm–1) for the 

NIR absorptions of the [C][Ni(Me-thiazds)2] salts (C = Ph4P
+, Et4N

+, Bu4N
+)  

 E–2/–1  Epa/pc
–1/0   max () 

 (nm, M–1cm–1) 

Ref 

[Et4N][Ni(Me-thiazds)2]
a  –0.24 +0.21/+0.03 1187 (22300) 9 

[Bu4N][Ni(Me-thiazds)2] –0.28 +0.24/+0.07 1186 (15800) this work 

[Ph4P][Ni(Me-thiazds)2] –0.30 +0.27/+0.09 1184 (16200) this work 

E = (Epa+Epc)/2. a in CH3CN solution. Epa/Epc: anodic and cathodic peak potentials.  
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We also performed spectro-electrochemical experiments as they give access to the absorption 

properties of the neutral species generated at the electrode. The UV-vis-NIR spectroscopic 

investigations carried out on freshly prepared dichloromethane solution of the monoanionic 

diselenolene complexes allowed us to determine the absorption maxima (max) of the lowest 

energy NIR electronic transitions for the monoanionic species (Figure 2b). If we compare the 

spectra obtained for the three monoanionic species, either as a Ph4P
+ salt, Bu4N

+ or Et4N
+ one, 

there is no influence of the counterion on the wavelength of the low energy absorption band.  If 

we compare now these diselenolene complexes with the dithiolene analogue, [PPh4][Ni(Me-

thiazdt)2] (max = 1278 nm),11 it can be noticed that the replacement of the sulfur atoms by 

selenium ones induces an hypsochromic shift of this NIR absorption band of about 90 nm. As 

can be seen in Figure 2b, upon gradual oxidation, an overall decrease of the NIR absorption 

band was observed resulting from the oxidation of the monoanionic species but concomitantly 

no spectral signature of the neutral species appeared (Figure 2b). Instead, upon oxidation of the 

monoanionic species, a strong deposit occurred on the platinum grid, attributed to the formation 

of the highly insoluble oxidized species.  

 

In order to crystallize and identify the nature of the oxidized species, 

electrocrystallization experiments were conducted with the three monoanionic complexes. We 

found that the choice of the electrolyte used in the electrocrystallization cell is particularly 

important to favor a given phase. Moreover, high quality crystals were obtained only when the 

counterion of the supporting electrolyte was the same as the counterion of the complex to be 

oxidized. All electrocrystallizations carried out with these derivatives were reproducible and 

led systematically to novel multi-component, mixed-valence salts. The salts obtained by 

electrocrystallization of [C][Ni(Me-thiazds)2] diselenolene complexes (Scheme 2), are of 1:3 

stoichiometry, i.e. [Ph4P][Ni(Me-thiazds)2]3 starting from the Ph4P
+ salt, and of 1:2 

stoichiometry, i.e. [Et4N][Ni(Me-thiazds)2]2 starting with the Et4N
+ salt, while the 

stoichiometry is not defined unambiguously in the material obtained from the Bu4N
+ salt, as the 

cations could not be clearly identified during the structural refinement (see below). This Bu4N
+ 

salt is isostructural with the Et4N
+ one but the limited increase of the unit cell volume (from 

971 Å3 to 1016 Å3) indicates a sub-stoichiometry in the Bu4N
+ cation, hence the formulation 

[Bu4N]x[Ni(Me-thiazds)2]2 with 0 < x < 1 (See below for details). The obtention of mixed-

valence salts comes here in strong contrast with the N-ethyl dithiolene and diselenolene [Ni(Et-

thiazdt)2]
0 and [Ni(Et-thiazds)2]

0 as well as the N-methyl dithiolene [Ni(Me-thiazdt)2]
0, all 

isolated as neutral, single-component species.10,11,18 
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Scheme 2 Electrocrystallization conditions and outcomes. 

 

 

Molecular structures. In the three mixed-valence salts, the nickel complexes are 

organized in the form of highly dimerized, for [NEt4][Ni(Me-thiazds)2]2 and [NBu4]x[Ni(Me-

thiazds)2]2, or trimerized motifs for [PPh4][Ni(Me-thiazds)2]3 (Figure 3). The presence of apical 

nickel−selenium bonds results in a square pyramidal-like arrangement around the nickel atoms 

for the dimers, and an octahedral one for the central nickel atom in the trimer. These interactions 

also shift the structure of the complexes significantly away from planarity, with a strong 

distortion of the NiSe2C2 metallacycles. This type of arrangement has been mostly reported in 

iron and cobalt bis(dithiolene) complexes, where they are described as M−X dimers or trimers 

(X= S, Se).21 For nickel bis(dichalcogenolene) complexes, dimers have been reported in 

[Ni(dsit)2] diselenolene salts,14,22 and trimers in {[Ni(dddt)2]3}
2− salts (dddt : 4,5-dihydro-1,4-

dithiine-2,3-dithiolate).23 In the dimers, the two ligands around the Ni1 metal center adopt the 

trans geometry. In the trimer, the trans geometry is observed around the central nickel atom 

(Ni1), while a disorder on two positions is found around Ni2. Refinement of the occupation 

parameter converged to a ¾ - ¼ distribution, with the major contribution for the trans geometry 

around Ni2. The intramolecular Ni−Se bonds are shorter than the apical intermolecular (but 

intradimer) ones by about 0.2 Å. These apical distances are almost identical with those observed 

in [Ni(dsit)2].
22 Furthermore, the folding angles of the metallacycles along the Se---Se hinge, 

Se-Se, are relatively large (6.4-28.1o) reflecting their strong distortion.  
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Figure 3. Molecular view of (a) the trimeric motif in [Ph4P][Ni(Me-thiazds)2]3 and (b) the 

dimeric motif in [Et4N][Ni(Me-thiazds)2]2. 

 

Table 2. Structural characteristics of the trimeric and dimeric motifs in the mixed-valence salts 

( is the folding angle of the NiSe2C2 metallacycle along the Se---Se hinge).  

[PPh4][Ni(Me-thiazds)2]3 [NEt4][Ni(Me-thiazds)2]2 [NBu4]x[Ni(Me-thiazds)2]2 

Bond distances (Å)   

Ni1•••Ni2 3.4132(11) Ni1•••Ni1 3.1572(10) Ni1•••Ni1 3.1685(14) 

Ni1−Se3 apical 2.6371(8) Ni1−Se1 apical 2.5147(9) Ni1−Se1 apical 2.5132(13) 

Ni2−Se1 apical 2.4591(11) Ni1−Se1  2.3164(9) Ni1−Se1  2.3131(12) 

Ni1−Se1 2.3913(7) Ni1−Se2 2.3273(10) Ni1−Se2 2.3188(14) 

Ni1−Se2 2.4109(7) Ni1−Se3 2.3355(9) Ni1−Se3 2.3219(13) 

Ni2−Se3 2.3290(12) Ni1−Se4 2.3134(9) Ni1−Se4 2.3101(13) 

Ni2−Se4 2.3529(11)     

Ni2−Se5 2.3447(14)     

Ni2−Se6 2.305(2)     

      

C1−Se1 1.844(7) C1−Se1 1.857(6) C1−Se1 1.844(9) 

C2−Se2 1.859(7) C2−Se2 1.869(6) C2−Se2 1.845(9) 

C5−Se3 1.850(7) C5−Se3 1.867(6) C5−Se3 1.881(8) 
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Solid state properties. The 1:3 salt with the Ph4P
+ cation, [PPh4][Ni(Me-thiazds)2]3, 

crystallizes in the monoclinic system, space group C2/c. The Ni(Me-thiazds)2 complexes form 

trimers which are associated into layers in the bc plane alternating along the a axis with layers 

of Ph4P
+ cations (Figure 4). The trimerized units pack in a perpendicular fashion, similar to a 

κ-type phase arrangement. The central nickel atom of the trimer resides on an inversion center, 

and the phosphorous atom on a twofold axis. 

 

 

Figure 4. (a) Projection of the unit cell of [Ph4P][Ni(Me-thiazds)2]3 along b, (b) detail of the 

anionic layer showing interactions between trimers in the (bc) plane.  

 

 Each trimer interacts with six neighboring trimers in the (bc) plane and the shortest inter-

trimer Se•••Se contacts are found at 3.67 Å, i.e. 94% on the van der Waals contact distance. 

C6−Se4 1.893(7) C6−Se4 1.826(6) C6−Se4 1.846(10) 

C9−Se5 1.848(10)     

C10−Se6 1.871(10)     

C1=C2 1.382(10) C1=C2 1.378(8) C1=C2 1.365(12) 

C5=C6 1.372(10) C5=C6  1.384(8) C5=C6  1.335(12) 

C9=C10 1.310(12)     

Folding angles (°)      

Se1-Se2 28.1 Se1-Se2 6.7 Se1-Se2 6.4 

Se3-Se4 12.9 Se3-Se4 17.3 Se3-Se4 17.0 

Se5-Se6 18.0     
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The highest occupied and lowest unoccupied levels of one trimer are a set of six levels built 

from the HOMO and LUMO of the Ni(Me-thiazds)2 monomers and delocalized within the 

trimer. Three of these levels are doubly filled in the neutral species. Since the unit cell of the 

layer contains two trimers, the band structure contains six pairs of bands (Figure 5). These bands 

exhibit a quite poor energy dispersion, especially those marked with a red arrow, which are 

those half-filled by the transferred electrons. Such band structure clearly shows that the trimers 

interact only weakly, thus suggesting this salt to behave as a Mott insulator with one localized 

(but delocalized within the trimer) S = ½ radical per trimer. 

 

 

 

Figure 5. Calculated extended Hückel band structure for the anionic layer of [PPh4][Ni(Me-

thiazds)2]3 where Γ = (0, 0), Y = (b*/2, 0), Z = (0, c*/2), M = (b*/2, c*/2). The red arrow points 

out the bands that would be occupied by the two transferred electrons. 

 

Transport and magnetic measurements confirmed these assumptions. The material 

shows a semiconducting behavior, with a room temperature conductivity of 4 × 10−4 S.cm−1, 

and an activation energy of 203 meV (Figure 6). This semiconducting behavior persists at 

higher pressures (up to 11.9 GPa), with an increase of the RT conductivity by 3 orders of 

magnitude (σRT = 0.25 S.cm−1), while the activation energy is divided by two down to 68 meV 

at 11.9 GPa. This electronic localization is also confirmed by the temperature dependence of 

the magnetic susceptibility (Figure S3). It shows a behavior that is well fitted to a Curie-Weiss 

law, giving a Curie constant of 0.409, and a  value of +0.92 K. The calculated g value amounts 

to 2.088, which is very close to what was observed for the monoanionic precursor 

[PPh4][Ni(Me-thiazds)2] (g = 2.077). This shows that, due to the strong trimerization, each unit 

acts as a single radical moiety, with very weak interactions between the S = ½ trimeric species. 
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Figure 6.  (a) Temperature dependence of the resistivity of [PPh4][Ni(Me-thiazds)2]3 at 

different pressures between 1 bar and 11.9 GPa. 

 

 The mixed-valence Et4N
+ salt, [Et4N][Ni(Me-thiazds)2]2, crystallizes in the triclinic 

system, space group P1̅, in a 1:2 stoichiometry. The complexes form inversion-centered 

dimerized units making stacks and the Et4N
+ cation is disordered on an inversion center. The 

monoanionic radical dimers and cations form layers in the ab plane that alternate along the c 

axis (Figure 7).  

 

 

Figure 7 (a) Projection view of the unit cell of [NEt4][Ni(Me-thiazds)2]2 along b showing in 

light and dark grey atoms the disorder model on the Et4N
+ cation, (b) End-on view of the anionic 

layer. Hydrogen atoms have been omitted for clarity.  

 

 The evolution of the conductivity of [Et4N][Ni(Me-thiazds)2]2 at ambient pressure 

shows a semiconducting behavior with a high room temperature conductivity of 6 S.cm−1 and a 

very small activation energy of 12 meV. Repeated attempts to measure the conductivity at 
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higher pressures in the Diamond Anvil Cell (DAC) were unsuccessful as the gold contacts 

crystals appear to react with the crystals. 

 

 

Figure 8. Temperature dependence of the resistivity of [NEt4][Ni(Me-thiazds)2]2 at ambient 

pressure 

 

Short inter-dimer Se•••Se contacts are found along the stacking b axis (down to 3.46 Å), 

and between the stacks (down to 3.39 Å), associated with three types of inter-dimer interactions 

within the layers, running along b, between neighboring dimers along a, and diagonally along 

(a−b). The occurrence of these very short Se•••Se contacts seems to be in conflict with the 

activated character of the conductivity, suggesting indeed a metallic character. Extended 

Hückel band structure calculations (Figure S4) as those used above for the 1:3 Ph4P
+ salt in 

Figure 5 show that the Fermi level indeed cuts a band with a substantial energy dispersion of 

~0.4 eV. Such a dispersion (calculated with the same computational settings)2b,24 for this type 

of dimerized metal bis(dithiolene) type layers is usually associated with a metallic behavior, 

thus confirming our initial expectation. At this point we decided to turn to DFT calculations 

that by considering electronic interactions explicitly will allow a more in-depth exploration of 

this apparent contradiction. The calculated band structure for [NEt4][Ni(Me-thiazds)2]2 

assuming double occupation of the levels is reported in Figure 9a. Because of the strong cation 

disorder, we removed the cations from the calculation replacing them by a uniform background 

charge keeping the neutrality of the unit cell. This procedure has been tested in numerous cases 

and shown to provide band structures almost undistinguishable from those using the full unit 

cell.25,26,27  Because of the very short intra-dimer Se•••Se contacts and the Ni-over-Se type 

dimerization (see Figure 3b), the splitting of the HOMO and LUMO levels in a dimeric unit is 
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not the typical one found in many metal bis(dithiolene) dimerized salts (see Figure 9b).2b,3b,27 

The bonding/antibonding combinations of the HOMOs are the main components of the 

lower/upper levels of the set of four dimer orbitals; the bonding/antibonding combinations of 

the LUMOs occur in between them. Such ordering is essentially kept in the layer according to 

the band structure of Figure 9a which corresponds to a metallic system. The bonding 

combinations of both the HOMO and LUMO levels are filled providing a strong stability to the 

dimers and the electron transferred from the cation partially fills the antibonding combination 

of the LUMOs. This level ordering is unexpected since in the absence of any calculation and 

with one electron transferred to the dimer, one would expect that the bonding combination of 

the LUMOs would house the electron. This level ordering is still another consequence of the so 

called two-band behavior.2b,24,27 

 

 

 

 

 

 

 

 

 

Figure 9. (a) Calculated DFT band structure for [NEt4][Ni(Me-thiazds)2]2 assuming that all 

levels are doubly filled. The Fermi level is represented by a dashed line and Γ, X, Y, M, and Z 

refer to Γ = (0, 0, 0), X = (1/2, 0, 0), Y = (0, 1/2, 0), M = (1/2, 1/2, 0) and Z= (0, 0, 1/2) in units 

of the triclinic Brillouin zone. (b) Schematic diagram showing the splitting of the Ni(Me-

thiazds)2  HOMO and LUMO levels in the [Ni(Me-thiazds)2]2 dimers of Figure 3b. The “b” and 

“ab” labels refer to bonding and antibonding combinations, respectively.  

 

 In order to find a plausible explanation for the observed activated conductivity of this 

salt we carried out spin-polarized DFT calculations to see if states with electrons localized on 

the dimers more stable than the metallic one could be found. This proved to be a difficult task 

since our trials invariably converged to the delocalized metallic state. After several unsuccessful 

attempts, we considered the possibility of some inadequacy in our computational approach, 

either because of the use of the uniform background charge or from some deficiency in the 

computational settings that was exaggerating the Se•••Se interactions, thus favoring the metallic 
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state. In order to test the latter we carried out calculations with exactly the same computational 

details for a single-molecule conductor based on a very similar complex, [Au(Et-thiazds)2].
19 

We were able to reproduce the subtle energy difference between metallic and antiferromagnetic 

localized states of the previous calculations carried out with a different plane wave based 

computational approach,19 so that the problems found for the present case seem not to arise 

from an inadequate choice of our computational method.  

 As mentioned above, the use of a uniform background of charge for molecular 

conductors where counterions exhibit disorder has been tested in numerous cases, and shown 

to provide band structures almost undistinguishable from those using the full unit cell with the 

disordered counterion frozen in the majority position.25,26,28 Thus, we suspected that the 

difficulty in converging toward localized states was most likely unrelated to technical problems 

with the computations. For this reason, we devised a different strategy to search for possible 

localized states by rigidly shifting the dimers along different directions of the lattice so as to 

decrease the Se•••Se interactions selectively. As shown in the band structure of Figure 9a, the 

band widths along the chain direction (-Y) are substantially larger than those along the 

interchain direction (-X), specially for the partially filled band. Thus, we decided to explore 

the behavior of a single chain of dimers along the b axis. We used a 2a×2b×2c cell so as to have 

well separated chains. We found that an antiferromagnetic (AF) state lying very slightly below 

the metallic state (4 meV/dimer) can be obtained (Figure S5). The ferromagnetic state is 

considerably higher in energy than the metallic state (40 meV/dimer). The stability of this AF 

state increases when the dimers are rigidly shifted along the chain, decreasing the Se•••Se 

contacts between them. However, as soon as the inter-chain interactions are switched on, only 

the metallic state can be obtained. It is thus clear that the chain of dimers has two almost 

degenerate states: metallic and AF. The two states are so close in energy that even if the inter-

chain interactions are weak, they slightly stabilize the metallic state which becomes the more 

stable alternative when the total spin is S = 0. However, we suspected that if we allowed 

antiferromagnetic interactions along the inter-chain direction maybe the localized AF state 

would be the more stable state for the layer, as it was for the isolated chain. A calculation using 

a 2a×2b×1c cell confirmed this expectation and the fully AF state could be located and was 

found to be 1 meV/dimer more stable than the metallic state. Of course, this very small energy 

difference should not be taken at its right face and the only meaningful conclusion of this 

computational exercise is that [Et4N][Ni(Me-thiazds)2]2 has two possible ground states, 

metallic and localized, which are very close in energy. Why then the present system, although 

quite conductive as suggested by the calculations, chooses to exhibit a semiconducting 
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behavior? The simplest possibility would rely on a slight predominance of electronic repulsions 

over delocalization effects. In that case, a very small pressurization should stabilize the metallic 

state albeit we were not able to verify it experimentally. However, a plausible answer can be 

attained after consideration of the results for the Bu4N
+ salt.  

The mixed-valence salt with the Bu4N
+ cation crystallizes in the triclinic system, space 

group P1̅. The overall structure and organization are very close to that of the Et4N
+ salt, with 

strong dimerization of the complex units. For instance, the shorter inter-dimer Se•••Se contacts 

along the stacking b axis are now 3.44 Å and those between the stacks now go down to 3.37 Å. 

These values are very similar to those quoted above for the Et4N
+ salt, at 3.46 and 3.39 Å 

respectively. As mentioned above, the strong disorder of the Bu4N
+ moiety in the crystal 

structure could not be solved, even when the data collection was performed at low temperatures 

(150 K). For this reason, the cation was squeezed out of the crystal structure. This issue poses 

a hurdle in assessing the true stoichiometry between the complexes and cations, a crucial aspect 

concerning the overall band filling of this salt. Considering the unit cell volume of the Et4N
+ 

salt (971 Å3 for 47 non-hydrogen atoms), the Bu4N
+ salt with 55 non-hydrogen atoms should 

have, with a 1:2 stoichiometry, a cell volume around 1133 Å3, instead of the observed 1016 Å3 

volume. This corresponds to a [Bu4N]x[Ni(Me-thiazds)2]2 salt with an x value of 0.66. Analysis 

of the SQUEEZE procedure during the structural refinement of [Bu4N]x[Ni(Me-thiazds)2]2 to 

represent the disordered Bu4N
+ cation gives a very similar value (x = 0.70). As expected from 

the structural discussion, the calculated DFT band structure is practically identical to that of the 

Et4N
+ salt (Figure S6) and the only noticeable effect of the partial occupation of the cation sites 

is a displacement of the corresponding Fermi level. 

 The temperature dependence of the resistivity at ambient pressure shows a highly 

conducting but activated behavior, with RT = 1.25 S cm−1 and Eact = 19 meV, comparable to 

those found in the stoichiometric Et4N
+ salt. Resistivity measurements under pressure could be 

performed and showed an increase in conductivity and a decrease in activation energy between 

1 bar and 4.7 GPa (Figure 10). Further increase in pressure up to 9.6 GPa showed an essentially 
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semi-metallic behavior over the whole temperature range, with a RT = 16 S cm−1 and an 

activation energy divided by two down to 9 meV.  

 

 

Figure 10. Temperature dependence of resistivity of [NBu4]x[Ni(Me-thiazds)2]2 at different 

pressures. 

 

With these results in mind, we can understand the origin of the activated conductivity of the 

two salts. The energy difference between the localized and metallic states of the NEt4
+ salt is 

extremely small. Because of the non-stoichiometry, the filling of the (LU-LU)ab bands in 

[NBu4]x[Ni(Me-thiazds)2]2 decreases thus going out of the half-filled situation which is known 

to favor the localization. Thus, a better conductivity or even a metallic behavior is expected for 

the NBu4
+ salt. A simple chemical argument illustrates this point. The activated conductivity of 

a localized system essentially arises from the electronic repulsion (U) created when an electron 

jumps from one site (dimer) to the next one. When x ≈ 2/3, around one third of the dimers do 

not have any electron in the (LU-LU)ab level. Consequently, when one electron jumps to one of 

these empty levels, no electron repulsion is created and the jump is not associated with a strong 

energy penalty (activation energy). Whereas all jumps are activated in the NEt4
+ salt, a 

substantial number of them are non-activated in the NBu4
+ salt. So to speak, the non-

stoichiometry should introduce a kind of metallicity in the system resulting with a much better 

conductivity than for the NEt4
+ salt. However, our conductivity measurements do not agree with 

such expectation. Only under a substantial pressurization a semimetallic state is reached. 

 There are two basic mechanisms for the occurrence of an electron localization in layers 

such as those found in the present salts. First, an intrinsic mechanism where the electronic 
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repulsions drive the localization of electrons (Mott-type mechanism).29 Second, an extrinsic 

disorder induced localization (Anderson-type mechanism).30,31 Although both mechanisms 

must be simultaneously operative in these salts, the severe disorder in the cation sites and the 

absence of a clear preference for a localized state in the DFT calculations strongly advocate for 

the dominance of the cation disorder as the more plausible origin for the activated nature of the 

conductivity. We believe that the two salts would be metallic in agreement with the occurrence 

of very short inter-dimer Se…Se contacts if it were not for the severe cationic disorder. 

 

■ CONCLUSIONS  

In contrast with nickel bis(R-thiazdt) dithiolene complexes, which afford single-component 

neutral species, nickel bis(Me-thiazds) diselenolene complexes lead to rare multi-component, 

mixed-valence salts. Depending on the cation, salts with different stoichiometries were 

obtained. The PPh4
+ salt contains anionic layers with trimeric units associated through apical 

Ni−Se bonds leaving the central nickel atom in an octahedral coordination; it exhibits 

semiconducting behavior with an activation energy Eact of 203 meV. This activated conductivity 

is kept under pressures up to ~12 GPa although the conductivity increases by three orders of 

magnitude and Eact decreases to 68 meV. The Et4N
+ and Bu4N

+ salts contain strongly dimerized 

units with two intra-dimer Ni−Se bonds leading to a square-pyramidal nickel coordination. The 

cations in both salts are disordered and the stoichiometry is 1:2 for the Et4N
+ and 2/3:2 for the 

Bu4N
+ salts. The Et4N

+ compound exhibits a semiconducting behavior at ambient pressure, with 

a high conductivity (RT = 6 S cm−1) and very low Eact (12 meV). Based on a DFT study we 

suggest that the activated conductivity is mostly disorder-induced. The essentially isostructural 

NBu4
+ salt [NBu4]x[Ni(Me-thiazds)2]2 is characterized by an non-integer stoichiometry (x ≈ 

2/3) and exhibits a similar semi-conducting behavior, while turning semi-metallic under 

pressure. At variance with most other systems incorporating these R-thiazdt and R-thiazds 

ligands which provide the single-component neutral complexes, we demonstrate here that 

nickel complexes of the Me-thiazds diselenolene ligand are able to organize into highly 

conducting 2:1 mixed-valence systems with strongly dimerized complexes stabilized by short 

Ni•••Se intra-dimer bonds. This structural motif contrasts with the well-known [Pd(dmit)2] 2:1 

salts which exhibit a variety of ground states depending on the choice of cation,32 where the 

dimeric moieties are associated through metal-metal Pd−Pd intradimer bonds. The observed 

sensitivity to pressure effects lets us infer that chemical pressure could also be used here to tune 

their properties, by replacing for example the Et4N
+ cation by smaller (Me4N

+; Me4P
+, 

Et3MeN+, Et3MeP+) or larger ones (Et4P
+, Et4As+), as exemplified in the [Pd(dmit)2] series.32   
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■ EXPERIMENTAL SECTION 

 General. Chemicals and materials from commercial sources were used without further 

purification. All the reactions were performed under an argon atmosphere. Melting points were 

measured on a Kofler hot-stage apparatus and are uncorrected. Mass spectra were recorded by 

the CRMPO, Rennes. Methanol, acetonitrile and dichloromethane were dried using an Inert 

pure solvent column device. CVs were carried out on a 10–3 M solution of complex in CH2Cl2 

with NBu4PF6 0.1 M. Potentials were measured versus Saturated Calomel Electrode (SCE). The 

spectro-electrochemical setup was performed in CH2Cl2 with Bu4NPF6 0.2 M using a Pt grid as 

the working electrode, a Pt wire as the counter electrode and SCE reference electrode. A 

Shimatzu 3600 spectrophotometer was employed to record the UV-vis-NIR spectra. Proligand 

1 and [NEt4][Ni(Me-thiazds)2] were prepared as previously reported.9 

 

 Syntheses. [C][Ni(Me-thiazds)2]. Under inert atmosphere, a solution of sodium 

methanolate in MeOH (1.5 mmol, prepared from 35 mg of Na in 10 mL of dry MeOH) was 

added to the proligand 1 (200 mg, 0.5 mmol).  After complete dissolution, the solution was 

stirred at room temperature for 30 mn. Then a solution of NiCl2,6H2O  in MeOH (5 mL) was 

added, followed 6 hours later by the addition of C+Br- (0.5 mmol, 210 mg of PPh4Br and 161 

mg of NBu4Br) . After stirring for 15 h, the formed precipitate was filtered and recrystallized 

under an air atmosphere from CH2Cl2/MeOH 20/80 to afford the monoanion complex as dark 

crystals. 

 

[PPh4][Ni(Me-thiazds)2], C32H26N2NiPS4Se4, brown yellow crystals; Yield: 59% (143 mg); Mp 

= 178°C; HRMS (ESI) Calcd. for [C8H6N2S4
58Ni80Se4]

-: 635.54336 Found: 635.5434; Anal. 

calcd. for C32H26N2NiPS4Se4: C, 39.53; H, 2.70; N, 2.88; S, 13.19.Found: C, 39.53; H, 2.77; N, 

3.02; S, 13.54 

 

[NBu4][Ni(Me-thiazds)2], C24H42N3NiS4Se4, brown yellow crystals; Yield: 32% (70 mg); Mp 

= 190°C; HRMS (ESI) Calcd. for [C8H6N2S4
58Ni80Se4]

-: 635.54336 Found: 635.5425; Anal. 

calcd. for [C24H42N3NiS4Se4.CH2Cl2]: C, 31.27; H, 4.62; N, 4.38. Found: C, 31.51; H, 4.75; N, 

4.51. 

 

 Electrocrystallizations. They were systematically performed in two-compartment 

cells with Pt electrodes under inert atmosphere with degassed solvents.  
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[PPh4][Ni(Me-thiazds)2]3. A solution of PPh4Br (200 mg) dissolved in 10 mL. of 

CH2Cl2/CH3CN (3/7) was introduced in both compartments as supporting electrolyte. The 

nickel complex [PPh4][Ni(Me-thiazds)2] (10 mg) was introduced in the anodic compartment. 

The current intensity was adjusted to 0.6 μA, and the reaction was left during seven days. 

Crystals of [PPh4][Ni(Me-thiazds)2]3 were collected on the anode as long needles.  

 

[NEt4][Ni(Me-thiazds)2]2. A solution of Et4NBF4 (200 mg) dissolved in 10 mL of acetone was 

introduced in both compartments as supporting electrolyte. The nickel complex [NEt4][Ni(Me-

thiazds)2] (10 mg) was introduced in the anodic compartment. The current intensity was 

adjusted to 0.5 μA, and the reaction was left during seven days. Crystals of [NEt4][Ni(Me-

thiazds)2]2 were collected on the anode as long needles.  

 

[NBu4]x[Ni(Me-thiazds)2]2. A solution of Bu4NPF6 (200 mg) dissolved in 10 mL of CH3CN 

was introduced in both compartments as supporting electrolyte. The nickel complex 

[NBu4][Ni(Me-thiazds)2] (10 mg) was introduced in the anodic compartment. The current 

intensity was adjusted to 0.5 μA, and the reaction was left during seven days. Crystals of 

[NBu4][Ni(Me-thiazds)2]2 were collected on the anode as long needles.  

 

 X-Ray Crystallography. Data collections were performed on an APEXII Bruker-

AXS diffractometer equipped with a CCD camera for [Ni(Me-thiazds)2], on D8 VENTURE 

Bruker AXS diffractometer for and on XtaLAB AFC11 Rigaku diffractometer for 

[Ph4P][Pt(Me-thiazdt)2]. Structures were solved by direct methods using the SIR97 program,33 

and then refined with full-matrix least-square methods based on F2 (SHELXL-97)34 with the aid 

of the WINGX program.35 All non-hydrogen atoms were refined with anisotropic atomic 

displacement parameters. H atoms were finally included in their calculated positions. Details 

of the final refinements are summarized in Table 3. 
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Table 3. Crystallographic dataa,b  

 
[PPh4] 

[Ni(Me-thiazds)2] 

[PPh4] 

[Ni(Me-thiazds)2]3 

[Et4N] 

[Ni(Me-thiazds)2]2 

[nBu4N]0.66 

[Ni(Me-thiazds)2]2 

CCDC 2224750 2224751 2224748 2224749 

Formulae C32H26N2NiPS4Se4 C48H38N6Ni3PS12Se12 C12H16N2.5NiS4Se4 C8H6N2NiS4Se4 

FW (g.mol-1) 972.31 2238.18 698.06 632.94 

System monoclinic monoclinic triclinic triclinic 

Space group P21/n C2/c 𝑃1̅ 𝑃1̅ 

a (Å) 10.6095(8) 49.634(5) 6.4328(5) 6.4074(9)  

b (Å) 19.6820(14) 7.3788(7) 8.1900(3) 8.1303(11) 

c (Å) 16.5774(13) 20.312(2) 18.7194(13) 19.673(3) 

α (deg) 90 90 91.113(4) 82.976(5) 

β (deg) 99.828(3) 113.440(4) 99.767(6) 89.302(5) 

γ (deg) 90 90 91.548(5) 88.260(5) 

V (Å3) 3410.8(4) 6825.2(12) 971.29(11) 1016.6(3) 

T (K) 150(2) 150(2) 293(2) 150(2) 

Z 4 4 2 2 

Dcalc (g.cm-3) 1.893 2.178 2.387 2.068 

µ (mm-1) 5.157 7.649 8.923 8.513 

Total refls 48468 43482 12136 33238 

Abs corr multiscan multiscan  multiscan multiscan 

Uniq refls (Rint) 7818(0.0893) 7591 (0.1099) 4561 (0.0463) 4654 (0.0765) 

Uniq refls (I > 2σ(I)) 6314 6251 3067 3820 

R1, wR2 0.0575, 0.124 0.0597, 0.1174 0.0669, 0.14 0.0449, 0.1019 

R1, wR2 (all data) 0.0773, 0.133 0.0786, 0.1225 0.1139, 0.1621 0.0575, 0.1081 

GOF 1.109 1.136 1.075 1.025 

aR1 = ||Fo| − |Fc||/|Fo|. bwR2 = [w(Fo
2 − Fc

2)2]/[w(Fo2)2]1/2. 

 

 Transport measurements. Single crystals were mounted in the DAC by using the 

same technique as reported earlier.36 The sample was encapsulated with a mixture of epoxy and 

alumina. The diamond culet size was 0.7 mm. Electrical contacts were obtained by attaching 

four 10 μm gold wires with gold paint, and the four-probe DC method was used for all 

measurements. The contacts were made on the corners of the elongated plates. The stacking 

axis of the trimers/dimers in the three mixed-valence salts is located within this plane, as 

illustrated in Fig. S7 for [nBu4N]0.66[Ni(Me-thiazds)2]2. Daphne Oil 7373 was used as the 

pressure transmitting medium. The pressure was determined by the shift in the ruby 

fluorescence R1 lines at room temperature.  
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 Band structure calculations. The first-principles calculations for the solid were 

carried out using a numeric atomic orbitals density functional theory (DFT) approach37,38 

developed for efficient calculations in large systems and implemented in the SIESTA code.39 

We used the generalized gradient approximation (GGA) to DFT and, in particular, the 

functional of Perdew, Burke, and Ernzerhof.40 To study the relative energies of states with 

localized electrons, spin polarized band calculations for appropriate supercells have been 

undertaken. All calculations included a Hubbard correction term Ueff = 6.0 eV for the S 3p and 

Se 4p states.41 In previous work42 we have found that this U term on the chalcogen atoms is 

needed for appropriately describing the electronic structure of molecular conductors were 

accurate experimental information on the bandwidth and charge transfer is available. Only the 

valence electrons are considered in the calculation, with the core being replaced by norm-

conserving scalar relativistic pseudopotentials43 factorized in the Kleinman-Bylander form.44 

We have used a split-valence double- basis set including polarization orbitals with an energy 

shift of 10 meV for all atoms.45 The energy cutoff of the real space integration mesh was 350 

Ry. The Brillouin zone was sampled using grids46 of (10×10×5) k-points for the calculations 

using a single cell; those for larger unit cells were modified appropriately. The experimental 

crystal structures were used for the computations.  

 The tight-binding band structure calculations were of the extended Hückel type47 and 

used a modified Wolfsberg–Helmholtz formula48 to calculate the non-diagonal H values. All 

valence electrons were considered in the calculations and the basis set consisted of Slater-type 

orbitals of double- quality for Ni 3d and of single- quality for Ni 3s and 3p, C 2s and 2p, S 

3s and 3p, Se 4s and 4p and H 1s. The ionization potentials, contraction coefficients and 

exponents were taken from previous work.49  
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Synopsis 

Dimeric or trimeric associations are observed in highly conducting mixed-valence nickel 

bis(diselenolene) complexes, depending one the nature of the counter ion (Ph4P
+, Et4N

+, Bu4N
+) 

and the stoichiometry of the salt   


