
HAL Id: hal-04013770
https://hal.science/hal-04013770v1

Submitted on 6 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The place of fuzzy logic in AI
Didier Dubois, Henri Prade

To cite this version:
Didier Dubois, Henri Prade. The place of fuzzy logic in AI. Workshop on Fuzzy Logic in Artificial
Intelligence (FLAI 1997) @ IJCAI 1997, Aug 1997, Nagoya, Japan. pp.9–21, �10.1007/BFb0095068�.
�hal-04013770�

https://hal.science/hal-04013770v1
https://hal.archives-ouvertes.fr


The Place of Fuzzy Logic in AI 

Didier  DUBOIS - Henr i  PRADE 

Institut de Recherche en Informatique de Toulouse (IRIT), Universit6 Paul 
Sabatier, 118 route de Narbonne, 31062 Toulouse C6dex 4, France 

Abstract: Fuzzy logic is more than thirty years old and has a long- 
lasting misunderstanding with Artificial Intelligence (A.I.), although the 
formalization of some forms of commonsense reasoning has motivated 
the development of fuzzy logic. What fuzzy sets typically brings to AI is 
a mathematical framework for capturing gradedness in reasoning devices. 
Moveover gradedness can take various forms: similarity between 
propositions, levels of uncertainty, and degrees of preference. The paper 
provides a brief survey of the fuzzy set contribution to the modelling of 
various types of commonsense reasoning, and advocates the 
complementarity of fuzzy set methods, and more generally of soft 
computing techniques, with symbolic A.I. 

I Introduct ion  

To-date, the term "fuzzy logic" often refers to a particular control engineering 
methodology, that exploits a numerical representation of commonsense control rules, 
in order to synthetize, via interpolation, a control law. This approach has many 
common features with neural networks. It is now mainly concemed with the efficient 
encoding and approximation of numerical functions, and has currently less and less 
relationships to knowledge representation issues. This is however a very narrow view 
of fuzzy logic that has little to do with AI. Scanning the fuzzy set literature, one 
realizes that fuzzy logic may also refer to two other M-related topics: multiple-valued 
logics, and approximate reasoning. While the multiple-valued logic stream is very 
mathematically oriented, the notion of approximate reasoning as imagined by Zadeh is 
much more related to the mainstream program of AI research: he wrote in 1979 that 
"the theory of approximate reasoning is concemed with the deduction of possibly 
imprecise conclusions from a set of imprecise premises". In the following, we shall 
use the term 'Tuzzy logic" to refer to any kind of fuzzy set-based method intended to be 
used in reasoning machineries. 

Fuzzy logic methods have not been considered as belonging to mainstream AI tools 
until now, although an important part of fuzzy logic research concentrates on 
approximate reasoning and reasoning under uncertainty issues (e.g., Ralescu, 1994; 
Martin and Ralescu, 1997). Some reasons for this situation may be found in the 
antagonism which had existed for a long time between purely symbolic methods 
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advocated by AI and numerically-oriented approaches that were involved in fuzzy rule- 
based systems. Besides, fuzzy sets were a new emerging approach not yet firmly 
settled, but apparently challenging the monopoly of probability theory as being the 
unique proper framework for handling uncertainty. In spite of the fact that fuzzy sets 
have received a better recognition recently, there still exists a lack of appreciation of 
what fuzzy logic really is by AI researchers, as for instance recently exemplified by 
Elkan (1994). 

In the mid-seventies, at a time when MYCIN was becoming a landmark among rule- 
based expert systems deal!ng with uncertainty, the first fuzzy role-based system was 
designed by Mamdani's group at Queen Mary College in London following an idea 
suggested by Zadeh shortly before. This system is the direct ancestor of the most of 
the fuzzy control systems which have become so largely used in the early nineties. 
What is at work in role-based fuzzy control is a simple device for interpolating 
between numerically-valued conclusions of parallel rules. This interpolation is made 
on the basis of degrees of matching of the current situation with respect to the fuzzy 
condition parts of the rules. These degrees estimate the similarity between the current 
situation and prototypical values which constitute the core of the fuzzy sets describing 
the firing conditions of the rules. Such coefficients obtained through a matching 
procedure were quite different from the certainty factors attached to facts and rules in 
MYCIN-like expert system. However, AI expert systems and fuzzy mle-based 
controllers did share the idea that the rules were encoding expert knowledge. This view 
has more or less disappeared in the recent neuro-fuzzy based methods where fuzzy rules 
are just a convenient format for synthesizing control laws from sets of inputs/outputs 
pairs and thus for approximating functions and tuning them locally. Then the 
knowledge representation and approximate reasoning aspects are no longer the main 
features of the approach in its present development. However, the basic notions of 
similarity and interpolation might be useful in other, more M-oriented, applications 
such as case-based reasoning, for retrieving cases and extrapolating from them by 
means of gradual rules of the type "the more x is A, the more y is B" (Dubois md 
Prade, 1996a). Similarity reasoning should encode commonsense inferences of the 
form if "p is close to p' ", and "p implies q" then "q is not far from being true". Fuzzy 
set theory is a natural framework for modelling such inference patterns. 

Apart from similarity, two other basic semantics can be addressed by fuzzy set-based 
methods, namely uncertainty and preference: uncertainty pervading available 
information in reasoning problems, preference among more or less acceptable values in 
a decision-oriented perspective (Dubois and Prade, 1997). Possibility theory (Zadeh, 
1978) offers a framework for dealing with uncertainty when the available information 
is no longer precise and certain, but represented by means of fuzzy sets. Using fuzzy 
sets, uncertainty is estimated by means of two dual measures of possibility and 
necessity. This framework has merits for the representation of states of partial or total 
ignorance. Another interesting feature of possibility theory is that it only requires 
purely ordinal scales for the assessing of uncertainty. It provides a very qualitative 
approach and facilitates the elicitation of the uncertainty levels. Based on possibility 
theory, a possibilistic logic (which should not be confused with the fully 
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compositional calculus of fuzzy set membership degrees) has been developed, both at 
the syntactic and semantic level. In this logic, classical logic formulas are associated 
with lower bounds of necessity measures expressing the level of certainty, or 
equivalently of epistemic entrenchment of the formulas. It has been established that 
rational nonmonotonic inference relation (in the sense of Lehmann) can be represented 
in possibilistic logic, where a default rule "if p then q generally" is understood as the 
constraint that the possibility measure of "p and q" is strictly greater than the 
possibility of "p and not q". Connections with other approaches to nonmonotonic 
reasoning including the one based on infinitesimal probabilities have been laid bare. 
Possibilistic logic is a genuine extension of classical logic that encodes an uncertainty 
calculus. Possibilistic assumption-based truth maintenance systems provides simple 
implementations of nonmonotonic reasoning. Possibilistic logic can be used as well 
for reasoning from multiple sources of information having different reliability levels. 
The corresponding data fusion tools have been developed. 

When fuzzy sets model preference among values according to flexible constraints, 
rather than imprecise and uncertain information, possibility theory often a natural 
framework for extending the constraint satisfaction problem paradigm to soft and 
prioritized constraints. Scheduling provides a good example of application of these 
techniques where, for instance, due dates are often somewhat elastic. Moreover, some 
parameters like the duration of operations (which are not under our control) may be 
pervaded with uncertainty. In this situation a trade-off has to be achieved between a 
high level of satisfaction of constraints and the necessity to cope with unlikely but 
potentially dangerous states of the world. Possibility theory can be used as the basis 
for a qualitative utility theory (Dubois and Prade, 1995a) that tackles such a decision 
problem (including computation with ill-known numerical quantities). 

Finally, an important feature of fuzzy sets is to provide a framework for interfacing in 
a non-rigid way classes with numerical values. In classification problems the use of 
fuzzy classes obviates the need for arbitrarily classifying borderline cases at the 
beginning of a reasoning stage. Numerical data can be summarized by means of 
linguistically labelled fuzzy sets, so as to feed a symbolic reasoning machinery. These 
issues come close to learning, another subfield of AI where this aspect of fuzzy sets 
might be particularly interesting. 

The contents of this paper largely borrow to the ones of three previous articles by the 
authors (Dubois and Prade, 1995b, 1996b, 1998). See Yager (1995, 1997) for a 
complementary point of view. 

2 Fuzzy logic in commonsense and approximate reasoning 

Fuzzy sets offer a powerful tool for the modelling of various kinds of commonsense 
reasoning, where membership functions are used for expressing graded notions such as 
uncertainty, preference and similarity, interfere. Such a theory of gradedness is not 
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necessarily numerical, contrary to what many people tend to believe to-date, but can be 
purely ordinal (lattice-based). Let us review some of them, after a brief recall of some 
formal background. 

2.1 Logical Embeddings 

Very different extensions of classical logic that exploit the notion of a fuzzy set have 
been proposed. Some are truth-functional, while others are not. We may distinguish 
between: 

�9 many-valued logics that were proposed before fuzzy set theory came to light. They 
are exclusively devoted to the handling of 'k, ague" propositions "p, i.e., 
propositions which may be partially true (e.g., propositions involving properties 
whose satisfaction is a matter of degree). The underlying algebraic structure is then 
weaker than a Boolean algebra. Such logics can handle truth-values t('p) that lie in 
the unit interval and remain truth-functional. There are two families of "fuzzy logics 
that cope with graded truth. A first family relies on residuated lattice-like structures, 
and their extensions such as MV-algebras. The syntax is based on related 
conjunction and implication connectives, and deduction is based on modus ponens 
in the settting of a Hilbert-like axiomatization. See, e.g., (Hajek, 1995) for an 
introduction and (Novak, 1996) for a discussion. A very different family of fuzzy 
logics uses only a clausal language based on a De Morgan algebra, typically the 
(max, min, 1 - .) triple for modeling disjunction, conjunction and negation. This 
trend, initiated by Lee (1972), has blossomed in the framework of logic 
programming. There are to-date a lot of such fuzzy programming language 
proposals (for instance Mukaidono et al., 1989; Li and Liu, 1990). 

�9 possibilistic logic that is built on top of classical logic, and where each crisp 
proposition is attached a lower bound of a degree of necessity N(p) expressing the 
certainty of p given the available information. N(p) = 1 iff p is surely true and N(p) 
= 0 expresses the complete lack of certainty that p is true (either p is false when 
N(~p) = 1, or it is unknown if p is true or false and then N(~p) = 0). The degree 
N(p) is compositional for conjunction only (N(p ^ q) = min (N(p),N(q)), and N(p v 
q) _> max (N(p),N(q)) generally. For instance, if q = ~p, p v q is tautological,hence 
surely true (N(p v q) = 1), but p may be unknown (N(p) = N(~p) = 0). Moreover 
N(~p) = 1 - I-I (p) where I-l(p) is the degree of possibility of proposition p. 
Functions N and I-I stem from the existence of a fuzzy set of more or less possible 
worlds, one of which is the actual one. It is described by means of a possibility 
distribution 7t on the interpretations of the language, and N(p) -= 1 - sup {x(to), t~ 
�9 ~p},= 1 - I](~p), i.e., N(p) is computed as the degree of impossibility of the 
proposition ~p.  A possibitistic logic formula (p,c0 understood as N(p) _> cz, is 
represented by a fuzzy set such that interpretations which makes p false have degree 
1 - ct > r i(~p) (i.e., the possibility that p is false is upper bounded by l - o0, 
while the interpretations which makes p true have degree 1. Then, the possibility 
distribution x representing a set of possibilistic formulas is obtained by the min- 
conjunction of the fuzzy sets representing the formulas (Dubois, Lang and Prade, 
1994). 
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In possibilistic logic a fuzzy set describes incomplete knowledge about where the 
actual world is, and a weighted formula has a fuzzy set of models. In many-valued 
logics, fuzzy sets describe the extensions of vague predicates, and a weighted formula 
has a crisp extension (corresponding to a level cut). The truth-functionality is not 
compulsory however when dealing with vagueness. In similarity logics it is supposed 
that the vagueness of predicates stems from a closeness relation (Ruspini, 1991) that 
equips the set of interpretations of  the language. Then a Boolean proposition p is 
actually understood as a fuzzy proposition "p whose models are close to models of p. 
Let [p] be the set of models of p and R(p) = [p] 6 R the fuzzy set of models close (in 
the sense of fuzzy relation R) to models of p. Then generally, R(p ^ q) c R(p) n R(q), 
without equality, so that truth-values are not truth-functional with respect to 
conjunction. 

In classical logic, a proposition p entails another proposition q whenever each 
situation where p is true is a situation where q is true. Entailment is denoted., and p .  
q means [p] c [q] where [p] is the set of models of p. In possiblitistic logic, the type 
of inference which is at work is plausible inference. The possibility distribution n on 
the set of interpretations encodes an ordering relation that ranks possible worlds co in 
terms of plausibility. Then p plausibly entails q if and only if q is true in the most 
plausible situations where p is true, i.e., max[p] c_ [q], where max[p] ~ (co e [p], 
n(co) maximal). This type of inference is also called "preferential inference" in 
nonmonotonic reasoning. In contrast, inference in similarity logics is dual to 
preferential inference. The set of interpretations of the language is equipped with a 
similarity relation R. Then p entails approximately q in similarity logic if all the 
situations where p is true are close to situations where q is true, i.e., [p] c_ 
support[R(q)]. More generally, a degree of strength of the entailment can be computed 
as I(q I p) = infco~[p] supco,~[q] l.tR(co,co' ). It plays in similarity logic the same role 

as a degree of confirmation in inductive logic. In possibilistic logic the counterpart of 
I(q I p) is the conditional necessity N(q I p) computed from ~z, i.e., N(q I p) = N (~p v 
q) > 0 if rl(q ^ p) > l-I (~q ^ p), and N(q I p) ~ 0 otherwise. 

These newly emerged notions of fuzzy set-based inference certainly deserve further 
developments, and lead to very different types of logic. Of interest is the study of their 
links to the usual entailment principle of Zadeh (defined as a fuzzy set inclusion), ~ad 
various extensions of consequence relations in multiple-valued logic, as studied by 
Chakraborty 0988), Castro et al. (1994). 

2.2 Fuzzy deductive inference 

This type of approximate reasoning has been advocated by Zadeh in the mid-seventies, 
as a calculus of fuzzy restrictions (Zadeh, 1979; Dubois and Prade, 1991). The 
principles of this approach rely on the conjunctive combination of possibility 
distributions and their projection on suitable subspaces. A particular case of the 
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combination/projection procedure, named "generalized modus ponens", has been 
emphasized, where from a fact of the form "X is A' "and a rule "if X is A then Y is B" 
(where X and Y are variables, A', A and B are fuzzy sets), a conclusion Y is B' is 
computed. The generalized modus ponens can be also understood in terms of fuzzy 
truth-values (Zadeh, 1979; Baldwin, 1979), where the truth-value of a proposition '9( 
is A" is viewed as its compatibility with respect to what is actually known, say, "X is 
A' " (this compatibility is computed as the fuzzy set of possible values of the 
membership ktA(U ) when the fuzzy range of u is A').This conjunction/projection 

method is at work in the POSSINFER system of Kruse et al. (1994). This type of 
inference is also a generalization of constraint propagation to flexible constraints, 
provided that one interprets each statement as a requirement that some controllable 
variable must satisfy. Then the possibility distributions model preference, and 
inference come down to consistency analysis (such as arc-consistency, path- 
consistency, etc.) in the terminology of constraint-directed reasoning. The advantage of 
fuzzy deductive inference is to directly account for flexible constraints and prioritized 
constraints, where the priorities are modelled by means of necessity functions (see 
Dubois, Fargier and Prade, 1994). 

2.3 Reasoning under uncertainty and inconsistency 

A possibilistic knowledge base K is a set of pairs (p, s) where p is a classical logic 
formula and s is a lower bound of a degree of necessity (N(p) > s). It can be viewed as 
a stratified deductive data base where the higher s, the safer the piece of knowledge p. 
Reasoning from K means using the safest part of K to make inference, whenever 
possible. Denoting Kc~ = {p, (p,s) ~ K, s > cQ, the entailment K ; (p,~) means that 

K~ ; p. K can be inconsistent and its inconsistency degree is inc(K) = sup{m, K ; 

(_l_,~)} where _L denotes the contradiction. In contrast with classical logic, inference in 
the presence of inconsistency becomes non-trivial. This is the case when K ; (p,~) 
where ~ > inc(K). Then it means that p follows from a consistent and safe part of K 
(at least at level ~). This kind of syntactic non-trivial inference is sound and complete 
with respect to the above defined preferential entailment. Moreover adding p to K axt 
nontrivially entailing q from K u {p} corresponds to revising K upon learning p, and 
having q as a consequence of the revised knowledge base. This notion of revision is 
exactly the one studied by G~irdenfors (1988) at the axiomatic level. 

2.4 Nonmonotonic plausible inference using generic knowledge 

Possibilistic logic does not allow for a direct encoding of pieces of genetic knowledge 
such as '~oirds fly". However, it provides a target language in which plausible infererice 
from genetic knowledge can be achieved in the face of incomplete evidence. In 
possibility theory "p generally entails q" is understood as "p ^ q is a more plausible 
situation than p A ~q". It defines a constraintof the form II(p A q) > I-[(p ^ --,q) that 
restricts a set of possibility distributions. Given a set S of generic knowledge 
statements of the form "Pi generally entails qi", a possibilistic base can be computed 
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as follows. For each interpretation t~ of the language, the maximal possibility degree 
~(o~) is computed, that obeys the set of contraints in S. This is done by virtue of the 
principle of minimal specificity (or commitment) that assumes each situation as a 
possible one insofar as it has not been ruled out. Then each generic statement is tinned 
into a material implication ~Pi v qi, to which N(~Pi v qi) isattached. It comes down, 

as shown in Benferhat et al. (1992) to rank-order the generic rules giving priority to 
the most specific ones, as done in Pearl (1990)'s system Z. A very important property 
of this approach is that it is exception-tolerant. It offers a convenient framework for 
implementing a basic form of nonmonotonic system called "rational closure" 
(Lehmann and Magidor, 1992), and addresses a basic problem in the expert system 
literature, that is, handling exceptions in uncertain rules. 

2.5 Hypothetical reasoning 

The idea is to cope with incomplete information by explicitly handling assumptions 
under which conclusions can be derived. To this end some literals in the language are 
distinguished as being asssumptions. Possibilistic logic offers a tool for reasoning 
with assumptions. It is based on the fact that in possibilistic logic a clause (~h v q, 
~) is semantically equivalent to the formula with a symbolic weight (q, min (c~, t(h)) 
where t(h) is the (possibly unknown) truth value of h. The set of environments in 
which a proposition p is true can thus be calculated by putting all assumptions in the 
weight slots, carrying out possibilistic inference so as to derive p. The subsets of 
assumptions under which p is true with more or less certainty can be retrieved from the 
weight attached to p. This technique can be used to detect minimal inconsistent subsets 
of a propositional knowledge base (see Benferhat et al., 1994). 

2.6 Interpolative Reasoning 

This type of reasoning is at work in fuzzy control applications, albeit without clear 
logical foundations. Klawonn and Kruse (1993) have shown that a set of fuzzy rules 
can be viewed as a set of crisp rules along with a set of similarity relations. Moreover 
an interpolation-dedicated fuzzy rule 'if is A then Y is B" can be understood as "the 
more x is A the more Y is B" and the corresponding inference means that if X = x ~ d  
r = lXA(X) then Y lies in the level cut B~. When two rules are at work, such that c~ 1 

--- lXAl(X), r = ~tA2(X), then the conclusion Y ~ (B1)~I n (B2)r 2 lies between the 

cores of B 1 and B 2, i.e., on ordered universes, an interpolation effect is obtained. It can 

be proved that Sugeno's fuzzy reasoning method for control can be cast in this 
framework (Dubois, Grabisch, Prade, 1994). More generally interpolation is clearly a 
kind of reasoning based on similarity (rather than uncertainty) and it should be related 
to current research on similarity logics (Dubois et al., 1997). More generally 
similarity relations and fuzzy interpolation methods should impact on current research 
in case-based reasoning. 
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2.7 Abductive reasoning 

Abductive reasoning is viewed as the task of retrieving plausible explanations of 
available observations on the basis of causal knowledge. In fuzzy set theory causal 
knowledge has often been represented by means of fuzzy relations relating a set of 
causes C to a set of observations S. However the problem of the semantics of this 
relation has often been overlooked. ~R(c,s) may be viewed either as a degree of 

intensity or a degree of uncertainty. Namely, when observations are not binary, 
liR(C,S) can be understood as the intensity of presence of observed symptom s when 

the cause c is present. This is the traditional view in fuzzy set theory. It leads to 
Sanchez (1977) approach to abduction, based on fuzzy relational equations. Another 
view has been recently proposed by the authors, where by I.tR(C,S) is understood as the 

degree of certainty that a binary symptom s is present when c is present. A dual causal 
matrix R' must be used where ~tR,(C,S ) is the degree of certainty that a binary symptom 

s is absent when c is present. On such a basis the theory of parsimonious covering for 
causal diagnosis by Peng and Reggia (1990) can be extended to the case of uncertain 
causal knowledge and incomplete observations. This method is currently applied to 
satellite failure diagnosis (Cayrac et al., 1994). 

3 Soft Comput ing  should not be antagonist ic  to symbol ic  AI 

Perhaps due to the intermediary, bridging position of fuzzy logic between symbolic 
and numerical processing, a significant deviation from original motivations and 
practice of fuzzy logic has been observed in the fuzzy set community in the last five 
years. Namely, fuzzy role-based systems are more and more considered as standard, very 
powerful universal approximators of functions, and less and less as a means of 
building numerical function from heuristic knowledge, nor of linguistic summarization 
of data. This trend raises several questions for fuzzy logic. First, if fuzzy logic is to 
compete alternative methods in approximation theory, it faces a big challenge because 
approximation theory is a well-established field in which many results exist. 
Approximate representation of functions should be general enough to capture a large 
class of functions, should be simple enough (especially the primitive objects, here the 
fuzzy rules) to achieve efficient computation and economical storage, and should be 
amenable to capabilities of exploiting data. Are fuzzy rules capable of competing on 
its own with standard approximation methods on such grounds? the answer is far from 
clear. On the one hand the universal approximation results for fuzzy rule-based systems 
presuppose a large number of rules. This is good neither for the economy of 
representation nor for linguistic relevance. On the other hand the identification between 
fuzzy rule-based systems with neural nets or variants thereof (radial basis functions ~1  
the like, see Mendel, 1995) has created a lot of confusion as to the actual contribution 
of fuzzy logic. To some extent it is not clear that fuzzy logic-based approximations 
methods for modeling and control needs fuzzy set theory any longer (Bersini and 
Bontempi, 1997). Moreover the connection to knowledge representation, part of which 
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relies on the "readability" of fuzzy rules as knowledge chunks, is lost. Actually, from 
the point of view of approximation capabilities, the good performance of a fuzzy rule- 
based system seems to be incompatible with the linguistic relevance of the rules. This 
incompatibility leads systems engineers into cutting off the links between fuzzy logic 
and Artificial Intelligence, hence with fuzzy set theory itself. This is very surprizing a 
posteriori since the incompatibility between high precision and linguistic 
meaningfulness in the description of complex systems behavior is exactly what 
prompted Zadeh (1973) into introducing fuzzy sets as a tool for exploiting human 
knowledge in controlling such systems. 

It is questionable whether the present trend in fuzzy engineering, that immerses fuzzy 
logic inside the jungle of function approximation methods will produce path breaking 
results that puts fuzzy rule-based systems well over already existing tools. It is not 
clear either that it will accelerate the recognition of fuzzy set theory, since there is a 
clear trend to keep the name "fuzzy" and forget the contents of the theory. 

The reason for this overfocus on fuzzy rules as numerical approximation methods is 
because control engineers are more concerned with modeling than explaining. Yet, it 
seems that system engineering practice and soft computing at large can benefit from 
the readability of fuzzy rule-based systems. Fuzzy rules are easier to modify, they can 
serve as tools for integrating heuristic, symbolic knowledge about systems, and 
numerical functions issued from mathematical modeling. Interestingly, the original 
motivation of fuzzy logic in control engineering (Mamdani and Assilian, 1975) was to 
represent expert knowledge in a rule-based style and to build a standard control law that 
faithfully reflects this knowledge. Fuzzy logic control was thus put from the start in 
the perspective of Artificial Intelligence (Assilian, 1994) because it did not use the 
classical control engineering paradigm of modeling a physical system and deriving the 
control law from the model. As such fuzzy logic control is viewed as an application of 
the approximate reasoning methodology proposed by Zadeh (1973), that exploits 
formal models of commonsense reasoning. Following this path might have sounded 
promising, even for control engineers, since they do employ heuristic knowledge in 
practice, be it when they specify objectives to attain. Supervision also involves a lot 
of know-how, despite the existing sophisticated control theory, and some interesting 
works have also been done in fuzzy rule-based tuning of PID controllers. More 
generally the ranges of applicability of fuzzy controllers and classical control theory are 
complementary (Verbruggen and Bruijn, 1997). Whenever mathematical modeling is 
possible, control theory offers a safer approach, although a lot of work is sometimes 
necessary to bridge the gap with practical problems. Fuzzy logic sounds reasonable 
when modeling is difficult or costly, but knowledge is available in order to derive 
fuzzy rules. This philosophy, which has led to successful applications in Europe 
before fuzzy logic become worldwide popular (for instance the cement kilns controllers 
of Holmblad and Ostergaard (1997)), tends to disappear from the literature of fuzzy 
control, when one looks at the recent literature. 

It must be noticed that while in the beginning of fuzzy control, fuzzy role-based 
systems were construed as part of Artificial Intelligence, Artificial Intelligence had 
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rejected fuzzy control as a non-orthodox approach that was not purely symbolic 
processing. To-date, some fuzzy logic advocates tend to reject symbolic Artificial 
Intelligence as not capable of dealing with real complex systems analysis tasks. Doing 
so there is a danger of cutting fuzzy logic from its roots and making fuzzy set theory 
obsolete as well. Zadeh (1996) himself recently advocated the idea of computing with 
words as being the ultimate purpose of fuzzy logic and he also insists on the role of 
fuzzy logic for information granulation (Zadeh, 1997a). In order to achieve this 
program that repositions fuzzy logic in the perspective of automated explanation tasks, 
it seems that part of fuzzy logic research should go back to Artificial Intelligence 
problems, and that fuzzy logic should again serve as a bridge between Systems 
Engineering and Artificial Intelligence research. Needless to say that in that 
perspective, control engineers should receive some education in logic, and Artificial 
Intelligence researchers interested in systems engineering should be aware of control 
theory. Such a shift in education and concerns would open the road to addressing, in a 
less ad hoc way, issues in the supervision of complex systems, a problem whose 
solution requires a blending between knowledge and control engineering, namely 
computerized tools for automatically explaining the current situation to human 
operators, and not only tools for approximating real functions, be they non-linear. 

4 Conc lus ion  

Reducing soft computing to the simultaneous use of neural nets, genetic algorithms 
and fuzzy rule-based systems seems to propose a very narrow and heterogeneous view 
of intelligent computers that may endanger the future of fuzzy set and Artificial 
Intelligence research. The merits of fuzzy set theory is to offer a bridge between 
symbolic and numerical processing, while neural nets, as of to-date, fully belong to 
the numerical processing area, and genetic algorithms are just one among other 
families of meta-heuristics for combinatorial approximation. What we propose is 
rather to consider soft computing as a field dedicated to problem-solving methods 
capable of simultaneously exploiting numerical data and human knowledge, using 
mathematical modelling and symbolic reasoning systems. A soft computing package 
is then one that could at the same time learn to solve a problem accurately (such as 
classification, control, diagnosis and the like) possibly via modeling and optimization 
techniques, and supply explanations about how it can be solved by moving up to a 
symbolic level. A fusion of methodologies, why not, but then, of symbolic AI 
numerical methods at large, letting fuzzy set theory, neural nets and other fields 
develop their own paradigms, occasionally helping one another in specific applications 
where their complementarity is needed. 
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