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Abstract: Red-NIR luminescent polymers are principally obtained from petroleum-based derivatives
in which emitters, usually a critical raw material such as rare-earth or platinum group metal ions, are
embedded. Considering the strong ecological impact of their synthesis and the major risk of fossil
fuel energy shortage, there is an urgent need to find alternatives. We describe a luminescent nanocom-
posite based on red-NIR phosphorescent molybdenum nanoclusters, namely Cs2Mo6I8(OCOC2F5)6,
embedded in an eco-friendly cellulose biopolymer matrix that is obtained by a simple solvent casting
technique. While homogeneity is kept up to 20 wt% of cluster complex doping, annealing hybrids
leads to a large increase of their emission efficiency, as demonstrated by quantum yield measurements.

Keywords: NIR phosphorescence; metal atom clusters; biodegradable polymer

1. Introduction

The Earth’s overall pollution coming from petroleum-derived plastics can be reduced
by designing new materials based on low-cost, abundant, and renewable resources. In this
frame, eco-friendly biodegradable polymers will play a major role in replacing conventional
polymer composites for sustainable development [1–3]. Cellulose is one of the most abun-
dant and versatile natural biopolymers [4,5]. Cellulose is biocompatible, biodegradable,
and presents a high mechanical strength, which makes it an ideal candidate for applications
in biomedicine, optoelectronic, anti-counterfeiting, and integration in flexible devices [6–11].
To target optoelectronic applications, emissive dyes should be embedded in the cellulose
matrix. However, one drawback on processing cellulose is its high crystallinity, which does
not allow dissolution in most solvents, and thus, precludes the incorporation of dyes by
solution processes. Using cellulose ester derivatives, such as cellulose triacetate (CTA) or
cellulose acetate phthalate (CAP), is an efficient alternative in this case. Indeed, such deriva-
tives are well-known for their film coating properties [12,13], and appear as appealing
matrices to design functional nanocomposites. In particular, photoactive nanocompos-
ites combine the emission properties of inorganic dyes with the flexibility and optical
transparency of the cellulose matrix [14,15]. Examples of inorganic dyes incorporated
into cellulose or cellulose derivatives are based mainly on critical raw materials, such
as rare earth ions [16–19] and semiconductor nanoparticles based on CdSe/Zn [20–22],
CuInS2 [23], or more recently, ZnO [24]. Octahedral transition metal clusters compounds
(MC) of formula An[M6Q8

iL6
a] (A = alkali; M = metal atom; Q = inner ligand, halogen or

chalcogen; La = apical ligand, halogen, organic ligands, Figure 1) are an emerging class of
luminophores [25]. In particular, MC containing molybdenum, an abundant, non-toxic, and
cheap element compared to noble or rare earth metals, are highly emissive in the red NIR
region when excited in the UV-Vis range [26,27]. Recently, we showed that such emission
is also observed when MC are excited in the NIR via a two-photon absorption process [28].
They are obtained by high temperature synthesis as crystalline powders exhibiting a strong
ceramic-like behavior. Powder chemical compositions can be further modified to afford
highly soluble compounds. Molecular compounds built-up from cluster units are phos-
phorescent with emission lifetimes in the range of several tenths of a microsecond and
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show a considerable Stokes shift that minimizes reabsorption. Depending on Qi and La

ligands, MC quantum yield can be adjusted from a few percent to nearly unity [29–32]. MC
have been functionalized to be integrated in liquid crystals or polymers for applications
in anti-counterfeiting [33], solar concentrators [34], wave-guiding materials [35,36], inkjet
printing [37,38], or lightening [39,40]. As efficient singlet oxygen generators, they have also
been studied as an emissive probe for biological oriented applications, such as antibacterial
surfaces [41], in photodynamic therapy against various cancer cells [42–46] or as oxygen
sensors [47–50]. Hence, MC integration into an ecofriendly host matrix represents a new
step in the design of sustainable materials containing such emitter. However, light scat-
tering, which is primarily due to physical segregation between the inorganic and organic
components, is an issue that one must overcome when dealing with hybrid composites for
optoelectronic devices. That is the reason why most of the previously cited luminophores
were embedded at low content into their organic host. Here, we show that CAP is suitable
as polymer matrix to support the luminescent pentafluoropropionate octahedral molybde-
num cluster complex Cs2Mo6I8(OCOC2F5)6 (MoIP) for optoelectronic devices. Transparent,
robust films were obtained for concentrations of MoIP up to 20 wt%. The effect of MC
content embedded in the CAP matrix, on the thermal and the optical properties of hybrid
nanocomposites were investigated.

Nanomaterials 2023, 13, 580 2 of 12 
 

 

exhibiting a strong ceramic-like behavior. Powder chemical compositions can be further 
modified to afford highly soluble compounds. Molecular compounds built-up from clus-
ter units are phosphorescent with emission lifetimes in the range of several tenths of a 
microsecond and show a considerable Stokes shift that minimizes reabsorption. Depend-
ing on Qi and La ligands, MC quantum yield can be adjusted from a few percent to nearly 
unity [29–32]. MC have been functionalized to be integrated in liquid crystals or polymers 
for applications in anti-counterfeiting [33], solar concentrators [34], wave-guiding materi-
als [35,36], inkjet printing [37,38], or lightening [39,40]. As efficient singlet oxygen gener-
ators, they have also been studied as an emissive probe for biological oriented applica-
tions, such as antibacterial surfaces [41], in photodynamic therapy against various cancer 
cells [42–46] or as oxygen sensors [47–50]. Hence, MC integration into an ecofriendly host 
matrix represents a new step in the design of sustainable materials containing such emit-
ter. However, light scattering, which is primarily due to physical segregation between the 
inorganic and organic components, is an issue that one must overcome when dealing with 
hybrid composites for optoelectronic devices. That is the reason why most of the previ-
ously cited luminophores were embedded at low content into their organic host. Here, we 
show that CAP is suitable as polymer matrix to support the luminescent pentafluoro-
propionate octahedral molybdenum cluster complex Cs2Mo6I8(OCOC2F5)6 (MoIP) for op-
toelectronic devices. Transparent, robust films were obtained for concentrations of MoIP 
up to 20 wt%. The effect of MC content embedded in the CAP matrix, on the thermal and 
the optical properties of hybrid nanocomposites were investigated. 

 
Figure 1. (a) Structure of cellulose acetate phthalate. (b) Structure of the Mo6 metal nanocluster 
anion used in this work whose anionic charge is counterbalanced by two Cs+ cations. The symbol 
“*” represents the linking point of the R group. 

2. Materials and Methods 
Silverpentafluoropropionate was purchased from Aldrich (Aldrich, Darmstadt, Ger-

many, 98%, CAS 509-09-01). Cellulose acetate phthalate (CAP) was purchased from Al-
drich (Aldrich, Mw = 2534.12 g/mol, CAS 9004-38-0). The compound was obtained starting 
from Cs2Mo6I14 and silverpentafluoropropionate following published procedures [40]. In 
brief, a solution of silver pentafluoropropionate (0.935 g, 3.42 mmol) in 10 mL of acetone 
was added to a 20 mL solution of Cs2Mo6I14 (1.5 g, 0.52 mmol) in acetone, under argon and 
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Figure 1. (a) Structure of cellulose acetate phthalate. (b) Structure of the Mo6 metal nanocluster
anion used in this work whose anionic charge is counterbalanced by two Cs+ cations. The symbol “*”
represents the linking point of the R group.

2. Materials and Methods

Silverpentafluoropropionate was purchased from Aldrich (Aldrich, Darmstadt, Ger-
many, 98%, CAS 509-09-01). Cellulose acetate phthalate (CAP) was purchased from Aldrich
(Aldrich, Mw = 2534.12 g/mol, CAS 9004-38-0). The compound was obtained starting from
Cs2Mo6I14 and silverpentafluoropropionate following published procedures [40]. In brief,
a solution of silver pentafluoropropionate (0.935 g, 3.42 mmol) in 10 mL of acetone was
added to a 20 mL solution of Cs2Mo6I14 (1.5 g, 0.52 mmol) in acetone, under argon and in
the dark. The mixture was stirred for 48 h in the dark and filtered through a Celite® pad.
A red-orange powder was obtained after complete evaporation. 19F-NMR (acetone-d6):
δ (ppm) = −83 (3F), −120 (2F). EDAX: Cs 2, Mo 8, I 11, F 77, no Ag.

Cluster complex@CAP mixtures and film deposition. Amounts of cluster complex and
CAP were calculated to obtain 2 g of composite sample. A first solution containing 1, 10, 20,
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or 30 wt% of cluster complex dissolved in 5 mL of HPLC grade acetone was prepared by
mixing the right amount of cluster with acetone and stirring for 5 min at 25 ◦C. A second
one was obtained by dissolving CAP in 20 mL of HPLC grade acetone and heating at 50 ◦C
for 30 min under stirring. Once all CAP was dissolved, the corresponding solution of the
cluster complex was added to the CAP containing solution and the mixture was stirred for
1 h at 50 ◦C. Finally, the mixtures were poured into glass petri dishes and the solvent was
slowly evaporated. Films of 0.25 mm thickness were obtained.

FTIR spectroscopy. CAP, MoIP cluster complex, and composite films were all analyzed
by infrared spectroscopy using Universal Attenuated Total Reflectance Accessory FT-IR
Spectroscopy (Bruker, vertex 70, Billerica, MA, USA). Spectra were recorded in the range
from 500 to 5000 cm−1 and analyzed using OPUS 7 software (Bruker, Billerica, MA, USA).

Thermal analysis. DSC measurements were carried out in a DSC 25 differential scanning
calorimeter (TA Instruments, New Castle, DE, USA), calibrated using purified indium
(99.9%) as the standard reference material. Samples (3–4 mg) were cut off and placed in an
aluminum pan. They were heated at a constant rate of 10 K min−1 using dry atmosphere of
argon as carrier gas, in a temperature range of 30 to 200 ◦C. Thermograms were analyzed
by TRIOS 5.4 Software (Waters, TA Instruments, New Castle, DE, USA).

Thermogravimetric analyses were performed at 10 K min−1 on a TGA/DT Perkin
Pyris Diamond. (Perkin Elmer, Waltham, MA, USA).

Small Angle X-ray scattering (SAXS). X-ray diffraction patterns were collected with
Pilatus 300k detector (Dectris, Baden, Switzerland) mounted on home-made Guinier setup
based on a Cu Kα microsource (λ = 1.541 Å) from Xenocs (Grenoble, France). The sample to
detector distance (277 mm) has been calibrated by using silver behenate. The X-ray patterns
were therefore recorded for a range of reciprocal spacing q = 4πsinθ/λ from 0.01–1.75 Å−1

where θ is the diffraction angle. The experiments performed with the present set-up provide
accurate measurements of distances between 600 Å and 3.8 Å. The acquisition time was
1 h. Film samples were placed perpendicularly to the beam. The scattering intensities as a
function of the radial wave vector were determined by circular integration.

Photophysical properties. Transmission measurements were recorded on a Perking Elmer
Lambda 35 UV-vis spectrophotometer. Lifetime measurements and TRPL mapping were
realized using a picosecond laser diode (Jobin Yvon deltadiode, 375 nm, Horiba France SAS,
Palaiseau, France) and a Hamamatsu C10910-25 streak camera mounted with a slow single
sweep unit (Hamamatsu Photonics France, Massy, France). Signals were integrated on a
30 nm bandwidth. Fits were obtained using origin software and the goodness of fit judge
by the reduced χ2 value and residual plot shape. The luminescence spectra in deaerated
dichloromethane and absolute quantum yields in the solid state were measured with a
C9920–03 Hamamatsu system equipped with a 150 W xenonlamp, a monochromator, an
integrating sphere, and a red-NIR sensitive PMA-12 detector.

3. Results and Discussion

Homogeneous flexible films with 1, 10, 20, and 30 wt% of MC labelled MoIPx@CAP
(with x = 1, 10, 20, or 30, respectively), were prepared from mixtures of precursor solutions
by a simple solvent casting method, as described in the Section 2.

Infrared spectroscopy was used to observe the influence of metal cluster integration
on the organic backbone and vice versa. Figure 2 compares IR spectra recorded between
750 and 2000 cm−1 for neat CAP, MoIP, and nanocomposites. The most intense bands
for both neat compounds correspond to the C=O stretching vibrations and is located
at 1720 cm−1 for CAP and 1670 cm−1 for MoIP. Modifying the cluster content in CAP
modifies the intensity ratio between these two bands with no apparent shift (highlighted in
blue in Figure 2). Characteristic bands of CAP, at 1034 and 743 cm−1 corresponding to the
C-O-C stretching of the pyranose ring and to the o-phenyl, respectively, are observable in
all films and do not seem to be modified upon cluster integration.
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The most obvious effect is observed for the CAP bands located at 1598 and 1580 cm−1

corresponding to the C=C stretching of the conjugated aromatic ring of the phtalate moities
that merges in only one absorption band located at 1587 cm−1 when more than 20 wt% of
cluster is integrated (highlighted in yellow in Figure 2). For MoIP, interactions with the
host matrix induce a shift of several absorption bands located at 1388 cm−1, 1322 cm−1,
and 1026 cm−1 that correspond to the stretching of C-F and C-C bonds within the CF2-CF3
groups. Such bands shift to 1402 cm−1, 1303 cm−1, and 974 cm−1, respectively (highlighted
in red in Figure 2) [51]. These shifts indicate that the structural cohesion and organization
within the nanocomposites involve weak interactions between CAP and MoIP leading to a
high homogeneity of the hybrids at low cluster concentration, as depicted in Figure S1.

The small angle X-ray scattering (SAXS, Figure 3) technique was used to determine the
influence of cluster integration on the polymer chains packing. The absence of sharp signals
in all SAXS scattering patterns reflects the amorphous character of the nanocomposite and
indicates a uniform distribution of MC. All scattering patterns of CAP and MoIPx@CAP
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exhibit a correlation peak around 5 nm−1 corresponding to a CAP inter-chain distance of
about 1.18 nm. Increasing MoIP content slightly shifts this peak from q = 5.3 nm−1 for
CAP up to q = 4.9 nm−1 for MoIP30@CAP. This broad X-ray scattering, corresponding to
an interdistance of about 1.3 nm, is due to the host matrix and confirms its amorphous
character. In the meantime, a low q signal, whose position maximum decreases and whose
intensity increases, appears upon increasing the cluster complex content. This broad
scattering is well fitted by a liquid organization of the clusters with a mean interdistance
lying between 4.3 nm and 7.5 nm. Indeed, the cluster diameter being about 1.2 nm, such
large interdistance can only be exhibited when clusters show a very good dispersion.
The X-ray scattering intensity increase at very small angles could find origin in cluster
aggregation processes but only at high concentration.
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MoIP30@CAP (blue).

The influence of cluster concentration on the thermal properties of the host CAP matrix
was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis
(TGA). Glass transition temperatures (Tg) and degradation temperatures (Td) values are
gathered in Table 1 (ESI Figure S2 for DSC thermograms). The Tg observed for CAP film is
157 ◦C, which is lower than that described in the literature of around 171 ◦C. As described
by Sakellariou et al. and Roxin et al., the presence of residual solvent from the film casting
process, usually acetone, can affect greatly the Tg [37,52]. This is in good accordance with
TGA analysis, which shows, for all samples, a weight loss of around 3% ending at 100 ◦C
for CAP and around 125 ◦C for doped samples (Figure 3b). However, we wish to point out
that Tg values were measured during the second cooling cycle, when samples have already
been heated twice up to 200 ◦C. Therefore, no traces of residual solvent are expected after
such thermal treatment. For doped films, the Tg decreased from 153 ◦C for MoIP1@CAP
to 141 ◦C for MoIP30@CAP. This plasticizing effect is attributed to the introduction of the
bulky cluster core and the mobile pentafluoropropionate apical ligands that can disrupt the
organization of CAP chains in a glassy state, as already observed for PMMA doped with
the same cluster unit [40]. For all samples, two major decomposition steps were evidenced
by thermogravimetric investigations. The first step starts at around 150 ◦C and the second
one depends on the MoIP content within the nanocomposite. For neat CAP, all the acetyl
and phtalyl groups are lost between 150 and 300 ◦C, and the backbone chain decomposes
between 325 and 400 ◦C to afford only a carbon residue [4,53]. The first degradation step
occurs at lower temperatures for doped CAP samples: 270 ◦C for MoIP1@CAP and 250 ◦C
for MoIP10@CAP, MoIP20@CAP, and MoIP30@CAP. This slight decrease is imparted to
the degradation of cluster compound apical ligands that occurs around 250 ◦C [39,40]. The
final decomposition temperature decreases accordingly from 374 ◦C for neat CAP to 297 ◦C
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for MoIP30@CAP. The residual weight at 400 ◦C increases, as expected, from neat CAP,
12%, as the inorganic content increases to 36% for MoIP30@CAP (Table 1).

Table 1. Composition and thermal behavior of doped CAP films: Td: final decomposition temperature,
Tg: glass transition temperature determined from the second cooling cycle.

Sample MC (wt%) Td (◦C) Residue 400 ◦C
(wt%)

Calculated MC
Residue (wt%) Tg (◦C)

CAP 0 374 12 0 157
MoIP1@CAP 1 324 14 2 153
MoIP10@CAP 10 310 22 10 153
MoIP20@CAP 20 305 30 18 141
MoIP30@CAP 30 297 36 24 141

The introduction of MoIP in the CAP matrix leads to a composite exhibiting specific
absorption and emission properties. Transparent films were obtained for concentrations
of MoIP up to 20 wt% (see ESI Figure S1 and Figure 4). Figure 4a presents transmit-
tance spectra recorded for all samples while Figure 4b,c show the corresponding films
deposited on illustrations to show their transparency, as well as the bending ability of
MoIP1@CAP. Neat CAP film is colorless and highly transparent with a transmittance of
90% over the whole range of visible light. The hybrid nanocomposite films are transpar-
ent and colored. MoIP1@CAP is light yellow showing a transmittance of 89% at 600 nm
and a cut-off at around 430 nm. Cut-off at the edge of visible spectrum (400–430 nm)
has been reported for halogenated Mo cluster complexes (TBA)2Mo6Cl14 embedded in
low content (approx. 0.1 wt%) in acrylate blends and corresponds to the absorption of
cluster complex [34]. The coloration of films evolves to deep orange for MoIP10@CAP
and MoIP20@CAP that present both a similar behavior showing a transmittance of 85% at
600 nm and a cut-off at 550 nm. For MoIP30@CAP, the sample loses its transparency due
to light scattering caused by phase segregation. Hence, the weak interactions between the
CAP and MoIP allow up to 20 wt% of cluster complex content without segregation. At this
point, we wish to emphasize that such doping concentration in hybrid films, obtained by
simple mixing and solvent casting, is already high and demonstrate the potential of weak
interactions in the integration of inorganic components in organic matrices [54,55].
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When excited with UV-blue light, MoIP emits efficiently in the red NIR with an
emission centered at 650 nm and an absolute quantum yield (Φem) in the solid state of
0.35 [29–31,39,40,50]. As shown in Table 2, the MoIP quantum yield value (Φem) is poorly
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affected by the embedment in the CAP matrix. Interestingly, Φem does not decrease with
the increasing concentration of the cluster complex. Actually, particle–particle interactions
can lead to non-radiative excited state and thus to a quenching of the emission [34,39,40].
It is also well known that a modulation of the O2 concentration deeply affects the cluster
emission efficiency [47,48,50]. Indeed, as MC are phosphorescent, their excited triplet
state is efficiently quenched by triplet oxygen, thus generating singlet oxygen, which is
of particular interest for applications such as oxygen sensing, photodynamic therapy of
cancer, and antibacterial treatment [42,43,47,48,50,56]. Therefore, the emission efficiency of
MoIPx@CAP is essentially linked to the oxygen concentration within the host matrix that
is directly correlated to its gas permeability and to the power of the excitation beam [33].
Absolute quantum yield measurements, performed alternatively under air and N2 atmo-
sphere, demonstrate that at low MC content, hybrids are less sensitive to oxygen. Indeed,
before thermal annealing (vide infra), passing from an air to a N2 saturated atmosphere
leads to an AQY increase from 0.29 to 0.34 for MoIP1@CAP, while for MoIP30@CAP the
AQY value increases from 0.35 to 0.42. Hence, increasing MoIP content leads to a higher
oxygen sensitivity, which is assessed by the MC plasticizing effect on the host matrix. As
observed by SAXS experiments, increasing the cluster content induces an increase of the
polymer inter-chains distance, thus improving its gas permeability.

Table 2. Emission properties of the cluster complex and the doped CAP films.

Sample Φem
a λmax/nm FWHM/cm−1 τ d/µs (%) τav

e

air N2

MoIP 0.35 - 650 1920 5 (28)
50 (72) 48

MoIP1@CAP 29 b/45 c 34 b/47 c 653 2180 113 113

MoIP10@CAP 24 b/34 c 32 b/40 c 658 2128 113 113

MoIP20@CAP 23 b/19 c 32 b/27 c 650 2128 144 (41)
99 (59) 122

MoIP30@CAP 35 b/27 c 42 b/36 c 657 2156 123 (66)
67 (33) 111

a λexc= 365 nm; b before and c after annealing at 180 ◦C; d λexc = 375 nm; e average lifetime is calculated as
τ = (Σaiτi

2)/(Σaiτi).

Emission decay profiles recorded after excitation at 375 nm were fitted with one or two
components depending on the cluster concentration (see ESI Figures S3–S10 for emission
decay maps, profiles, and fits). For homogeneous samples, a monoexponential behavior is
observed, which shows, on one hand, that the cluster complex integrity is preserved in the
hybrid (no apical ligand exchange occurs with the residual hydroxyl groups contained in
CAP) and, on the other hand, that MC behave as molecular discrete species like in solution
which is in good accordance with SAXS observations. MoIPx@CAP; x =1, 10, show a
monoexponential behavior with calculated lifetime values close to 120 µs, indicating that
MoIP complexes are well protected from oxygen quenching when embedded in CAP
matrix. In contrast, the MoIP precursor lifetime value in deaerated acetone is 269 µs, while
it drops to 2 µs under air [57]. For MoIP20@CAP and MoIP30@CAP, the appearance of two
components may arise from isolated clusters and segregated ones. We further investigated
the hybrids photostability towards constant irradiation for 60 min at 25 ◦C and thermal
treatment after 30 min of annealing at 180 ◦C. Obtained results are gathered in Figure 5b,c for
MoIP10@CAP. We observed that the emission intensity of MoIP1@CAP or MoIP10@CAP
increases by 175% or 125%, and reaches a plateau after 10 or 5 min, respectively, during
continuous irradiation under our experimental conditions. This phenomenon is already
observed when the same cluster anion is embedded in PMMA or in liquid crystal matrices,
which is attributed to the time necessary to reach the equilibrium between the surrounding
triplet oxygen consumption and the matrix gas permeability [33,39,40,58]. Temperature
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dependent photostability was investigated after heating the samples to 180 ◦C (well above
their glass transition temperature) and cooling to 30 ◦C at a rate of 10 K min−1. Surprisingly,
the emission intensity at 30 ◦C is largely enhanced after a first heating and cooling cycle,
by 135, 210, and 125% for composites doped at 1, 10, and 20 wt%, respectively (see ESI
for temperature dependent photostability studies, Figures S11–S15). These results are
consistent with the AQY values calculated before and after annealing (Table 2) at a low
cluster content. For MoIP20@CAP, the difference is not observable in Φem values, and on
the contrary, MoIP30@CAP and the neat powdered MoIP complex show a loss of their
emission intensity of about 25 and 20%, respectively, after annealing at 180 ◦C. Hence, when
MoIP is homogeneously embedded in CAP, it becomes more emissive after annealing. This
might be attributed to some macromolecular reorganizations and to the loss of residual
solvent molecules coming from the casting process, as suggested by TGA, leading to a better
packing of the polymer chains that induces a lower gas permeability [59,60]. The cluster
complex plasticizing effect is then minimized until the cluster concentration becomes too
high to be compensated by the polymer chains packing. To the best of our knowledge, this
is the first time that such phenomenon is observed in cluster-doped hybrid systems.
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light (top) and MoIP1@CAP under UV-A irradiation (bottom).

4. Conclusions

In conclusion, this work presents highly red-NIR phosphorescent hybrid nanocompos-
ite materials containing stable molybdenum cluster inorganic dyes embedded within an
eco-friendly cellulose polymer. Homogeneous, transparent, and stable films are obtained
by a simple mixing of two solutions containing the individual component, followed by
drop casting and evaporation. As demonstrated by IR studies, the structural cohesion
between the cluster complex and the CAP matrix involves only weak interactions. Indeed,
the native bands corresponding to the stretching of carbonyl functions of the host and
inorganic moiety are poorly affected within the hybrid and only the phtalate moieties of
CAP seem affected by the MC integration.

SAXS experiments reveal that MC are in a liquid-like organization within CAP, mean-
ing that they are homogeneously distributed within the host matrix. Such assumption was
further confirmed by time-correlated emission studies for samples containing 1 and 10 wt%
of MC, which showed an emission decay that could be fitted with only one component.
However, nanocomposites lose their transparency for a MC content of 30 wt%, which
clearly indicates some phase segregation at such high concentration. The DSC and TGA
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analysis show that the glass transition temperature, together with the decomposition tem-
perature of the hybrid nanocomposites, decrease with the increase in MC content. These
phenomena are assessed by the MC plasticizing effect, which disrupts the organization
of the host chains and lowers the thermal stability of MC compared to the CAP host, re-
spectively. Emission studies show that clusters behave mostly like discrete species within
the nanocomposite with high absolute quantum yield values. A prolongated irradiation
induces a large increase of the emission intensity that is inversely proportional to the MC
content. Such increase is ascribed to the time needed to reach, under continuous irradiation,
a stationary regime between the O2 consumption and its diffusion within the host. These
already excellent emission abilities can be further improved by thermal annealing, which
allows better packing of the polymer chains and the removal of residual solvent traces,
in particular for a low MC content. This work opens wide perspectives in the design of
eco-friendly bio-based devices with bright red-NIR emission.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
3390/nano13030580/s1, Table S1: Wavenumbers in cm−1 of CAP, MoIP and hybrids MoIPx@CAP
in film form by ATR-FTIR, Figure S1. Pictures of the films (a) MoIP1@CAP and MoIP10@CAP under
day light and MoIP1@CAP under 365 nm light, (b) MoIP20@CAP and MoIP30@CAP under day
light and under 365 nm and (c) CAP doped at 1, 10 and 20 wt% under 365 nm light, Figure S2.
Thermograms of Cellulose films doped with Cs2Mo6I8(C2F5COO)6: CAP (straight), MoIP1@CAP
(dash), MoIP10@CAP (dot), MoIP20@CAP (dash dot), MoIP30@CAP (short dash) on cooling at
10 K.min−1, Figure S3. Thin film emission decay map of MoIP1@CAP, Figure S4. Thin film emission
decay map of MoIP10@CAP, Figure S5. Thin film emission decay map of MoIP20@CA, Figure S6.
Thin film emission decay map of MoIP30@CAP, Figure S7. Emission decay profile (black squares,
top), corresponding fitted curve (red line) and fit residuals (bottom) for MoIP1@CAP, Figure S8.
Emission decay profile (black squares, top), corresponding fitted curve (red line) and fit residuals
(bottom) for MoIP10@CAP, Figure S9. Emission decay profile (black squares, top), corresponding
fitted curve (red line) and fit residuals (bottom) for MoIP20@CAP, Figure S10. Emission decay profile
(black squares, top), corresponding fitted curve (red line) and fit residuals (bottom) for MoIP30@CAP,
Figure S11. Normalized emission intensity of MoIP1@CAP as function of temperature, (squares)
heating cycle, (triangles) cooling cycle, Figure S12. Normalized emission intensity of MoIP10@CAP
as function of temperature, (squares) heating cycle, (triangles) cooling cycle, Figure S13. Normalized
emission intensity of MoIP20@CAP as function of temperature, (squares) heating cycle, (triangles)
cooling cycle, Figure S14. Normalized emission intensity of MoIP30@CAP as function of temperature,
(squares) heating cycle, (triangles) cooling cycle, Figure S15. Normalized emission intensity of MoIP
as function of temperature, (squares) heating cycle, (triangles) cooling cycle.
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