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Abstract1

Variation in species richness across the tree of life, accompanied by the incredible variety of2

ecological and morphological characteristics found in nature, has inspired many studies to link3

traits with species diversification. Angiosperms are a highly diverse group that has fundamentally4

shaped life on earth since the Cretaceous, and illustrate how species diversification affects ecosystem5

functioning. Numerous traits and processes have been linked to differences in species richness within6

this group, but we know little about their relative importance and how they interact. Here, we7

synthesized data from 152 studies that used state-dependent speciation and extinction (SSE) models8

on angiosperm clades. Intrinsic traits related to reproduction and morphology were often linked to9

diversification but a set of universal drivers did not emerge as traits did not have consistent effects10

across clades. Importantly, SSE model results were correlated to dataset properties - trees that11

were larger, older, or less well-sampled tended to yield trait-dependent outcomes. We compared12

these properties to recommendations for SSE model use and provide a set of best practices to follow13

when designing studies and reporting results. Finally, we argue that SSE model inferences should14

be considered in a larger context incorporating species’ ecology, demography and genetics.15
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Introduction16

Species diversity is unevenly distributed across the tree of life and while substantial research has17

investigated why some clades are more species-rich than others, many fundamental questions remain18

unanswered. The causes behind this unevenness can be diverse from catastrophic mass extinctions19

that decimate diversity (Raup & Sepkoski, 1982) to key innovations that spur on rapid speciation20

(Hunter, 1998) or ecological factors such as competition that shape species co-existence (Drury21

et al., 2016; Rabosky, 2013). A greater understanding of the drivers of species diversification can22

provide insights into the assembly of communities and their phylogenetic structure, the evolution of23

functional traits that underpin a species’ role in its environment, the formation of species interaction24

networks, and simply how biodiversity has evolved through time (Morlon, 2014). In practice,25

phylogenetic diversity metrics can be used as a surrogate for functional diversity (Tucker et al.,26

2018), and both traits and diversification history can help predicting ecological processes, such as27

extinction threats and naturalization patterns (Schmidt et al., 2021).28

Traits can themselves affect speciation and extinction because they determine how species29

interact with their environment and with other species. Morphological and physiological traits30

can affect species’ competitive and colonization abilities, defence against predators, herbivores and31

parasites; reproductive success, gene flow and adaptation to certain environments. In a wider32

sense, extrinsic characteristics, such as species’ habitat, climatic zone or geographical area can33

also be considered traits (Jablonski, 2008). An important goal of modern macroevolutionary34

research is to discover which traits actually cause differences in diversification (through ecological35

processes) rather than being linked to species richness purely by common ancestry (phylogenetic36

inertia (Felsenstein, 1985)).37

This research has been boosted over the last decade by the increasing availability of large38

phylogenetic trees (Jetz et al., 2012; Rabosky et al., 2018; Smith & Brown, 2018; Upham et al.,39
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2019) and the continuing development of a range of statistical models to infer patterns in species40

diversification and the drivers behind them (see Box 1). The growing amount of empirical knowledge41

provides an opportunity to synthesise what we know so far about a wide range of ecologically diverse42

and species-rich clades to try to uncover how traits have driven their diversification. Here we focus43

on synthesizing results from state-dependent speciation and extinction (SSE) models (Fig. 1) used44

to investigate trait-dependent diversification (TDD) in flowering plants, or angiosperms. There45

have been more than 150 such studies, providing an opportunity for an updated perspective on the46

role different traits have played in angiosperm diversification (Vamosi et al., 2018). Angiosperms47

form a clade of more than 350,000 extant species, making it by far the most species-rich division48

of plants, even when compared to much older clades (Crepet & Niklas, 2009; Sauquet & Magallón,49

2018). Almost all of terrestrial life is linked, directly or indirectly, to angiosperms (Benton et al.,50

2022) and their success makes them an ideal study group for uncovering the intrinsic traits and51

extrinsic factors driving their diversification.52

Previous work has suggested that the origins of angiosperm diversity can neither be tied to53

major global events nor the evolution of a single key innovation (Sauquet & Magallón, 2018; Vamosi54

et al., 2018). Instead various combinations of traits, environment and ecology may have acted to55

stimulate diversification in different groups (Davies et al., 2004; Magallón & Castillo, 2009), creating56

a landscape of macroevolutionary dynamics that varies substantially across different angiosperm57

clades (Magallón et al., 2019). One hypothesis proposes that the traits driving the differences in58

diversification are a range of vegetative and reproductive characteristics, some of which are unique59

to angiosperms (Stebbins, 1974). For example, dioecy originated in 890-5000 independent instances60

(Renner, 2014) but these appear to have led to quite different macroevolutionary dynamics (Käfer61

et al., 2014; Sabath et al., 2016; Wang et al., 2021), probably because of their association with other62

traits (Renner & Ricklefs, 1995; Vamosi et al., 2003). However, we do not know how pervasive63
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such differences are: although most studies agree that angiosperm diversification is driven by a64

combination of traits, we know relatively little about which traits are most influential and the65

extent to which their effects on diversification are consistent across different clades.66

In this study we bring together the latest empirical knowledge on angiosperm diversification to67

compare the effects of traits in different contexts and identify those that have repeatedly stimulated68

diversification. Limiting our analysis to SSE approaches allows us to directly compare results69

across studies in a standardized framework, but does leave scope for the influence of known SSE70

model shortcomings (Davis et al., 2013; Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015).71

As a result, we also investigate the relationships between dataset properties (e.g. tree size and72

sampling fraction), methodological innovation (e.g. hidden states) and the results of published73

studies, highlighting how biases in our use of SSE models can affect our search for general trends.74

To help mitigate these effects we provide a set of best practices including recommendations for75

result-reporting. Finally, we identify gaps in our current knowledge and suggest how to better76

incorporate ecology into the study of trait-dependent diversification.77

Materials & Methods78

Data collection79

We collected published studies that cited SSE methods papers (Beaulieu & O’Meara, 2016;80

Caetano et al., 2018; FitzJohn, 2010, 2012; Freyman & Höhna, 2018; Goldberg & Igić, 2012;81

Goldberg et al., 2011; Herrera-Alsina et al., 2019; Maddison et al., 2007; Magnuson-Ford & Otto,82

2012; Nakov et al., 2018; Rabosky & Goldberg, 2017; Verboom et al., 2020) using Google Scholar,83

last accessed 18th May 2021. To facilitate data collection from papers using SSE models, we84

developed an R package called ‘papieRmache’ (https://github.com/ajhelmstetter/papieRmache).85
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This package has two main purposes (1) to classify papers into different categories based on the86

frequency of term use in the text and (2) to pull out sections of the main text that contain a keyword87

or a pair of keywords while highlighting relevant information. We identified the SSE studies on88

angiosperms by using the keywords ‘angiosperm’, ‘flowering’ and ‘plant’ subsequently validating89

the subset of papers by hand and removing any studies on groups other than angiosperms. We90

then collected up to 31 different properties from each paper relating to the trait investigated, the91

group studied, the phylogenetic tree and the outcome of the SSE model used (see appendix S1),92

incorporating previously collated information on these properties where available (Onstein, 2019).93

In cases where there was uncertainty in how to interpret or collect data from a study we contacted94

the authors for their assistance and clarification, where possible.95

Trait classification96

While some sets of character states were the same among studies (e.g. annual vs perennial;97

diploid vs polyploid), many of them did not overlap. The nature of a trait can be difficult to98

define so here we use the SSE convention that considers that traits or characters (e.g. pollination)99

have two or more states (e.g. biotic pollination, abiotic pollination, hummingbird pollination,100

etc). We classified traits into different categories to facilitate comparisons among different trait101

types. At the broadest classification these were intrinsic (traits belonging to the species), extrinsic102

(environmental or geographic traits), interaction (traits explicitly related to other species), and103

combination (multiple traits belonging to different categories that were grouped, e.g. species that104

have small fruits and are found on islands). To allow for analyses at different grouping levels we105

developed a trait ontology (Table S1) starting at the broadest level as just described and becoming106

more specific, up to level six.107
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Data analysis108

To examine the effect of particular traits on diversification we used the trait categories defined109

above and calculated the proportion of models in which TDD was inferred. Studies often consider110

the effect of a single trait of interest in several different clades, or the effect of several traits on111

diversification in a single clade of interest. We considered each combination of phylogenetic tree,112

SSE model type and trait separately here with an outcome of 1 (TDD detected) or 0 (no effect of113

trait detected). Whether or not TDD was detected was typically based on significance in model114

comparisons and/or posterior distributions of rates among states. However, if significance was not115

inferred or reported, we tried to follow the study narrative and statements made in the text. If116

model comparisons were conducted and reported, only the best-fitting model was considered, unless117

other models were explicitly referred to in the study. We examined patterns at different levels of118

trait categorization and among different model types. To facilitate comparison, we mainly consider119

whether or not a trait has an effect on diversification, irrespective of the direction of the effect, as120

the direction is only defined at the state level. When both the effect and the absence of an effect of121

a trait on diversification have been inferred in different models, we consider the effect of the trait122

‘inconsistent’. Note that inconsistency does not necessarily imply a contradiction, as the differences123

in the results of SSE models might be caused by differences in statistical power, type I errors, or124

biological differences between clades, as we will discuss.125

Where possible, we extracted net diversification rates (per lineage per million years) associated126

with each character state. Then, relative differences in net diversification rates were calculated as127

(rmax − rmin)/rmax (where rmax and rmin are the net diversification rates of the states with the128

highest and lowest rates respectively). These were used to represent the magnitude of the effect of129

a given trait on diversification, while taking into account general variation in diversification rates130

among clades. Comparisons were then made across the broadest trait categories, levels 1 and 2. For131
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ease of interpretation, these analyses were restricted to those models where all net diversification132

rates were positive. At a narrower scale, we identified eight traits for which there was enough133

replication to be able to assess whether one character state was consistently inferred to have higher134

net diversification rates than the other. We ensured these traits had been tested at least five times,135

in at least two different studies and two different clades.136

We examined the relationship between SSE model inferences and several dataset properties:137

number of tips in the tree, root age, number of genetic markers used to build the tree, sampling138

fraction (here referring to global sampling fraction unless stated otherwise) and tip bias (here139

calculated as the number of tips with the most common state divided by the number of tips with140

rarest state). For each of these we constructed two density plots representing the distributions of141

values in cases where TDD was, and was not, inferred and compared the overlap between densities.142

We also fitted generalized additive models (GAM, Hastie and Tibshirani, 2017) to the continuous143

dataset properties with the SSE model result as a binary response variable (TDD vs no effect).144

Variables were log-transformed (or arcsine in the case of sampling fraction) to conform better to a145

normal distribution. Initially, we constructed a GAM using all five variables and assigned the mean146

of the known values to any missing values. We also assessed each variable individually to determine147

the shape of each relationship when examined in isolation. In all cases we used smoothing functions148

(cubic regression splines) and the dimension of the basis used to represent the smooth term was149

set to k = 5 to avoid overfitting.150

Predicting results based on dataset properties151

After collecting information from all studies, we found that the outcome of the SSE model,152

that is, whether TDD was inferred or not, was sometimes associated with the dataset properties.153

We therefore attempted to predict SSE model results (inference of TDD vs no effect) from dataset154
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properties alone, and identify those properties with the largest predictive power. We used all155

available dataset properties except for highly-specific categorical variables (e.g. trait levels 5-6,156

clade, family) and those that varied among different states (putative root state, sampling per state,157

samples per state). We used a machine learning approach, extreme gradient boosting, with the158

R package ‘xgboost’ (Chen & Guestrin, 2016), a supervised learning approach based on gradient159

boosting machines. It uses a labelled dataset (the outcome is known) and an ensemble of weak160

prediction models (e.g. decision trees) whereby new models are added on to existing models per161

iteration to minimize error. Categorical variables with more than two categories were converted into162

binary, dummy variables with one-hot encoding (i.e. categorical features in a column are converted163

into binary variables) to facilitate model building. We trained models on a random selection of 80%164

of our dataset and tested them on the other 20%. After a parameter optimisation step we repeated165

this process 500 times to produce a range of accuracy values, the percentage of cases where the real166

outcome matched the classification, to account for stochasticity in the test and training datasets.167

For each iteration we also recovered the relative importance of each variable, which allowed us to168

determine which dataset properties had the most influence on average. This method is specifically169

useful when there are many inter-dependent variables, i.e. when the inference of TDD depends170

on certain combinations of variables rather than major determinants. Given the inter-dependency171

of variables across the different decision trees, it is difficult to uncover whether a given property172

generally leads to TDD or not with xgboost. We avoid interpreting the results in this way, focusing173

on how accurate prediction can be and the types of variables that are most important to the model’s174

predictive ability.175
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Results176

Traits studied and their effects on diversification177

We collated information on trait-based diversification from 152 studies using a total of 629 SSE178

models to study angiosperm diversification. We found that 127 studies were conducted on a single179

clade, the rest examined diversification patterns across multiple, independent clades that were180

analysed separately. Variation in breadth of different traits investigated was also observed within181

studies. In total, 92 studies examined just a single trait (i.e. one level 6 category, see Table S1),182

while 40 studies looked at diversification patterns in sets of traits that belonged to more than one183

trait category at the highest level (e.g. extrinsic and intrinsic traits). In terms of taxonomic level,184

SSE models were most often run on genera or families (Fig. S1) and study clades were relatively185

evenly-distributed across the angiosperm tree of life (Fig. S2). Studies have focused on 36 out of186

64 angiosperm orders, and 81 out of 416 families. As expected, diversification interest is generally187

proportional to the amount of species diversity in different parts of the angiosperm tree of life.188

There was a clear, positive correlation between the number of species in a clade (order, family) and189

the number of TDD studies applied to species within the clade (Fig. S3, S4).190

At the highest level of classification, intrinsic traits (i.e. those belonging to the plant species191

itself) were tested more often (291 models or 46% of models run) than extrinsic traits (i.e. those192

related to the species’ habitat and geography, 260 models or 41%). Researchers tended to study193

intrinsic traits relating to reproduction (e.g. flower morphology, fruit morphology, breeding system),194

traits related to species’ biogeography (e.g. biome, geographic range) and vegetative traits (e.g. life195

form, leaf morphology), investigating less often those traits related to the genome (e.g. ploidy level)196

or species interactions (e.g. symbiosis, defense or dispersal) (Fig. 2). In general, intrinsic traits197

were found to be associated with diversification slightly more often than extrinsic traits (59.8% vs198
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52.7%).199

Our collation of data showed that results inferred with SSE models were inconsistent at both200

broad and narrow scales (grey vs coloured portions of bars in Fig. 2). For example, traits such as201

lifespan (Azani et al., 2019; Drummond et al., 2012; Salariato et al., 2016; Soltis et al., 2013) and202

ploidy level (Folk & Freudenstein, 2014; Han et al., 2020; Landis et al., 2018; Zenil-Ferguson et al.,203

2019) yielded different results depending on the angiosperm group studied. Among broad trait204

categories (level 2; see Table S1) that have been tested using >25 models, vegetative traits yielded205

TDD more often than any other trait type, while pollination traits had the lowest proportion of206

TDD (Fig. 2a).207

Given that we were assessing a range of SSE models, we wondered if using different models208

led to different patterns in TDD inference. Of those SSE models used frequently (> 30 times),209

MuSSE, GeoSSE and QuaSSE yielded TDD at high relative frequencies (> 60%) while BiSSE and210

HiSSE detected TDD less often (∼ 50%; Fig. S5). Models with hidden states will decrease the211

proportion of false positives so may provide more robust general trends. We compared results212

from only hidden-state models to those from the entire dataset and found that the proportion of213

trait-dependent outcomes decreased notably for vegetative, habitat and biogeography traits (Fig.214

S6). Outcomes for hidden state models remained inconsistent within categories that were tested215

five times or more, reflecting patterns in the entire dataset. We then took a closer look at results216

from HiSSE and BiSSE for three commonly-tested, narrow trait categories (level 4) and found217

mixed patterns. TDD was detected by BiSSE and HiSSE at about the same frequency in traits218

related to flower morphology (50% vs 42%), BiSSE detected TDD more often in traits related to219

life form (70% vs 25%) and HiSSE detected TDD more often in traits related to breeding system220

(75% vs 46%).221

We examined eight traits in detail, three of which (lifespan, sexual system and woodiness)222

11



Accepted manuscript

rarely exhibited TDD while in the other five (epiphytism, biome, ploidy, photosynthesis and223

self-compatibility) TDD was often detected (Fig. S7). We found conflict in which states increased224

diversification among different models in all traits except epiphyte form, photosynthesis and self-compatibility.225

Examining the absolute net diversification rates among states of seven traits (sexual system was226

not assessed as most rates were relative, i.e. not time-calibrated) we found that patterns across227

clades reflected those detailed above (Fig. S8). For example, net diversification rates in traits228

rarely associated with diversification (e.g. woodiness or lifespan) were generally similar among the229

different states. To understand the effect of major trait categories (levels 1 and 2) on diversification230

we plotted the distribution of relative differences in net diversification rates for 208 models from231

78 studies, grouping rates by trait category (Fig. S9). Generally we found that there was a wide232

range of relative differences in each trait category but no significant differences among categories.233

The evolution of SSE model use and methodological innovation234

As SSE models themselves have diversified, the relative frequency of model use has evolved.235

We collated data on the types of SSE model used in each study, and plotted their use by year236

of publication (Fig. 3). BiSSE has remained popular even as newer, more complex models have237

emerged. Models with multiple states, predominantly MuSSE, have also been commonly used238

showing that researchers are interested in the effects of more complex traits or trait groups with239

more than two states. There has also been a consistent focus on using SSE approaches related to240

geography in models like GeoSSE and GeoHiSSE. When examining the number of studies that use241

SSE models each year we find a rapid increase since the first study we found that used of BiSSE on242

angiosperms in 2009 until a conspicuous slowdown and slight drop in 2015 (Fig. 3). This appears to243

coincide with the publication of a number of influential papers that criticised the propensity of SSE244

methods for false positives (Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015) and pointed245
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out power limitations (Davis et al., 2013). After this, SSE model use continued with a greater246

variety of models owing to the development of models with hidden states (Beaulieu & O’Meara,247

2016), which have since spread to all aspects of SSE model use (Box 1; Fig. 1) becoming the248

dominant set of models by 2020 (Fig. 3).249

Dataset properties are highly influential250

The input data for macroevolutionary studies have grown in size and quality, in parallel with the251

innovations in the SSE models. For example, we found evidence that trees used with SSE models252

have gradually grown larger over time (Fig. S10). We then examined the relationship between tree253

size and whether or not TDD was inferred, regardless of the trait investigated. We found that,254

in general, TDD was detected less often when trees had smaller numbers of tips (Fig. 4a, S11a).255

The number of tips in a tree is important for robustness of SSE model results and guidelines for256

adequate power were put forward by Davis et al. (2013) who suggested that results from models257

using trees with fewer than 300 tips should be treated with caution. But has this recommendation258

shaped SSE model use? The proportion of models run on trees with fewer than 300 tips was initially259

very high (94% of 139 models for which we found information) in studies published up until 2013.260

It then decreased to 57% (277 of 482 models) in studies published from 2014 onwards. Despite this261

reduction, more than 60 models were run on trees with fewer than 50 tips after 2013.262

Tree size and root age are closely linked because trees with larger numbers of tips are generally263

older (Fig. S12). Indeed, we found that TDD was detected more often when trees with an older264

root age were used (Fig. 4b, S11b). Regardless of their size or age, trees that more accurately265

represent the true phylogeny of a group will allow us to more reliably estimate its diversification266

history. We used information on the total number of molecular markers as a proxy for tree quality.267

We found a difference in the distributions indicating that models with trait-dependent outcomes268
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usually had better quality trees than those that did not (Fig. 4c, S11c).269

Another issue that has been repeatedly brought up in simulation studies is the potential effect270

of inflated tip bias (Davis et al., 2013; Maddison et al., 2007). Tip bias increases when there is a271

higher frequency of one state than the others across the tips of the tree. Upon examining the data272

used with SSE models we found substantial overlap between densities (Fig. 4d) except for extreme273

values of tip bias where SSE models tended to find no effect of the trait studied (Fig. S11d). Tip274

ratio bias recommendations were also made by Davis et al. (2013), who cast doubt on inferences275

made when the ratio exceeds 10:1. Prior to 2014, 85% of SSE models (56 of 66) had suitable tip276

ratios and this figure remained similar (87%, 314 of 360) for the studies that came after.277

Global sampling fraction is the proportion of known species that are present in the tree. If278

the sampling fraction is low it can drastically affect diversification rate estimation (Chang et al.,279

2020; FitzJohn et al., 2009; Sun et al., 2020). The sampling fraction was explicitly modeled in280

SSE methods by FitzJohn et al. (2009), who recommended that the sampling fraction should be281

at least 25% to adequately capture diversification dynamics. Approximately 62% of 616 models282

had sampling fractions greater or equal to 25%. Sampling fractions were initially high but became283

more varied over time (Fig. S13), which probably reflects easing of assumptions on complete species284

sampling, but also indicates that high levels of incomplete sampling are not uncommon in recent285

literature.286

Furthermore, we found that models that used trees in which sampling fraction was low (< 50%)287

generally yielded TDD (Fig. 4e, Fig. S11e). Conversely, high sampling fraction was more often288

associated with a lack of TDD. Given that the inference of TDD varies with tree size (Fig. 4a),289

we wondered whether there might also be a relationship between sampling fraction and tree size.290

However, upon examination we found only a weak, negative trend where trees with more tips291

had slightly lower sampling fractions (Fig. S14). We then looked at the relationship between292
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sampling fraction and the total number of species in the clade and found a steeper, stronger293

negative relationship (Fig. S15) meaning that the larger the clade is, the less well-sampled it tends294

to be. Datasets of small clades with low sampling fraction generally do not exist (as they should295

not be studied) and large clades with high sampling are currently very rare (Figure S15). These296

negative trends remain similar regardless of whether TDD is inferred or not.297

Better quality data will lead to more robust results, so we compared trends taken from all298

studies, irrespective of dataset quality, to those from medium quality or better (at least 10% taxon299

sampling, 100 tips and a maximum tip bias ratio of 20:1) and high-quality datasets only (at least300

25% taxon sampling, 300 tips and a maximum tip bias ratio of 10:1; Davis et al., 2013; FitzJohn301

et al., 2009). We found that generally as data quality improves then the proportion of BiSSE models302

with TDD increases substantially (Fig. S16). Conversely, the proportion of HiSSE models with303

TDD remains relatively stable regardless of dataset quality. As HiSSE was conceived to leverage304

the issue of false positive rates in BiSSE, this could indicate that the higher TDD rates in BiSSE305

and MuSSE are due to false positives. However, we found a relatively low number of studies (20)306

with datasets that meet all recommendations, so more examples with high quality data are needed307

to determine whether these trends are robust. We then examined whether dataset quality affected308

general trends for major trait types (level 2 category). We found that increasing dataset quality309

had little effect on extrinsic and interaction traits (e.g. biogeography, habitat or pollination) while310

frequency of TDD for some intrinsic traits such as those related to reproduction tended to increase311

slightly with dataset quality (Fig. S17), but again the number of studies was low.312

How predictable is the inference of trait-dependent diversification?313

Empirical results in angiosperms clearly exhibit strong relationships between various dataset314

properties and whether TDD is inferred by the SSE model. To assess the importance of the315
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continuous dataset properties together we fit a GAM including the number of tips, root age, the316

number of markers, the sampling fraction and the tip bias (Fig. S18). We found that all variables317

except tree age were significant when predicting SSE model outcome (r2 = 0.211, see Table S2 for318

full details).319

If we had comprehensive information about studies and their data, including dataset properties,320

taxonomy and traits, could we predict whether TDD would be inferred? Using a machine learning321

approach, extreme gradient boosting (Chen & Guestrin, 2016), we were able to correctly predict,322

with approximately 71% accuracy (56-81%, Fig. S19), whether SSE models would infer TDD. The323

most important features were the information-dense, continuous variables (e.g. number of tips,324

tip bias, sampling fraction; Fig. 5), further reinforcing earlier observations about their potential325

influence on SSE model outcomes (Fig. 4, S11, Table S2). Generally, categorical variables, such as326

those related to the trait studied (e.g. biogeography or fruit morphology) or SSE model used (e.g.327

BiSSE or HiSSE), played a smaller role in the model’s predictive ability (Fig. 5).328

Discussion329

No consistent drivers of angiosperm diversification330

Previous broad-scale empirical studies (Davies et al., 2004; Hernández-Hernández & Wiens,331

2020; Magallón & Castillo, 2009) and reviews (de Queiroz, 2002; Donoghue, 2005; Donoghue332

& Sanderson, 2015) have proposed that diversity in different angiosperm groups may have been333

caused by various combinations of intrinsic and extrinsic traits. In our synthesis of studies using334

SSE models, we found that while there certainly are particular traits correlated with higher335

diversification rates, general trends are mostly limited. It may be unrealistic to expect that all336

angiosperm diversification has been driven by similar responses to a handful of traits but it is337
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useful and interesting to investigate the extent to which such traits exist. Indeed, our compilation338

of the results of 152 studies on TDD in angiosperms indicates that the factors driving angiosperm339

diversification are more complex than a set of universal drivers. When we compared studies340

investigating the same traits we found that conclusions generally differed, with some indicating341

that the trait does have an effect on diversification and others concluding there is no effect. When342

only considering results from models with hidden states, which should be more reliable, we found343

that the proportion of TDD changed substantially for some traits, though inconsistency was still344

common (Figs. 2, S6). As more studies with hidden states are conducted, we will find out whether345

these trends are general. We note that the inconsistency observed might reflect real trends in the346

data, or be due to dataset properties (lack of power, model mis-specification). In the following,347

we will first discuss the biological conclusions of our study, before considering dataset and model348

properties.349

Our analyses and results centered around how traits (e.g. pollination-related traits) rather350

than the character states of these traits (e.g. bee vs bird pollination) affect diversification. After351

grouping traits into several levels of categories (Table S1), we found that some types of traits were352

more often found to affect angiosperm diversification than others. It may come as no surprise that353

floral traits are among the most investigated and influential (Fig. 2). Indeed, the flower contains354

the organs needed for sexual reproduction, making it central to the biology, ecology and evolution355

of angiosperms, and flower characteristics certainly have a large role in determining differences in356

diversification (Vamosi et al., 2018). In particular, reproductive systems are highly variable in357

angiosperms (Barrett, 2013) and are again thought to be closely linked to their success (Barrett358

et al., 1996). Results from SSE models lend some support to this idea - for example, TDD was359

commonly inferred when mating system traits were investigated (e.g. self-compatibility; Fig. S7).360

Even so, we found that breeding system (the higher level trait classification including all aspects of361
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mating and sexual systems) did not yield TDD as often, due to variability in the effects of sexual362

systems. Other intrinsic traits including those related to photosynthesis, non-floral morphology363

and the genome have received less attention than traits related to reproduction (Fig. 2). However,364

they were regularly found to be associated with TDD in the limited number of studies in which365

they were assessed.366

Unfortunately, we could say little about which state was generally advantageous for a given367

trait because of a lack of overlap among states across the 152 studies. Nevertheless, we were able to368

examine how particular states affected diversification in eight traits. Five of these demonstrated how369

different states of the same trait (e.g. woody and herbaceous) can increase diversification in different370

groups (Fig. S7) while just three traits showed patterns where one state was consistently associated371

with elevated diversification rates (epiphytism, non-C3 photosynthesis and self-incompatibility).372

However, it is difficult to say whether these have truly consistent effects on diversification as they373

have only been investigated a handful of times in a relatively small proportion of angiosperm species.374

Despite some general patterns in those traits that are more often influencing angiosperm375

diversification, the overarching trend is that the effect of a trait on diversification is clade-dependent.376

Therefore, the main question remains open: what drives differences in diversification among angiosperms?377

The fact that a definitive answer has yet to be found suggests that it is the complex interplay378

between trait evolution, biotic interactions and geography that matters. For example, (Hernández-Hernández379

& Wiens, 2020) identified geography (range size, biome) as an important factor but they could not380

resolve whether this is a cause or a consequence of differences in diversification. Others have381

suggested that it is not the presence or absence of a trait that determines the evolutionary success382

of a clade, but rather the capacity to change (Onstein, 2019; Ricklefs & Renner, 1994). This could383

partly explain the inconsistency we observe, but again, trait diversity could be both a cause and a384

consequence of species richness. Furthermore, the choice of clades and traits, as well as the quality385
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of the input data, also influence whether or not differences in diversification are detected, and386

therefore our conclusions.387

The importance of evolutionary history and ecological context388

Users of models of trait-based diversification face an important challenge - choosing the context389

in which to conduct analyses. In the simplest scenario, where a trait only evolved once in the study390

clade, its effect on diversification cannot be tested (Maddison & FitzJohn, 2015) so this should391

be avoided. At the intermediate scale a trait may have evolved multiple times in closely-related392

clades but their shared evolutionary history makes them much more similar than distantly-related393

ones. So, associations between states and rates cannot be interpreted as a general pattern in this394

limited phylogenetic scope. Broadening the scope of the analysis, by way of either a larger tree, or395

multiple trees in a meta-analytic framework (Sabath et al., 2016) can help to reveal these general396

patterns but leads to different challenges. At larger phylogenetic scales, trees with many taxa are397

more likely to contain a range of branching patterns where lineage accumulation is faster in some398

parts of the tree than in others. In older clades there has been more time for macroevolutionary399

processes to have an impact on the trees we infer and the distribution of traits we observe today.400

As we found, larger, older trees more commonly yield TDD (Fig. 4).401

Yet at the same time, these trees often contain considerable variation in traits. Many of these402

traits could have effects on diversification, either contrasting or additive. Thus, the diversification403

rate of a clade with a certain trait also depends on the presence or absence of other traits. This leads404

to considerable heterogeneity in large trees that makes analyses more susceptible to false-positive405

errors caused by factors other than the focal trait (other traits, the environment, time) influencing406

diversification (Maddison & FitzJohn, 2015; Rabosky & Goldberg, 2015). While hidden-state407

models help to mitigate this issue, they still assume that any hidden states are categorical and408
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have constant transition rates, which does not capture all sources of heterogeneity. Furthermore,409

they cannot handle all cases of possibly misleading inferences, e.g. when the state impacting410

diversification has only evolved once or a handful of times (Beaulieu & O’Meara, 2016; Maddison411

& FitzJohn, 2015). These issues make the choice of study clade and how to apply SSE models412

to it an important consideration (Box 2). One way to deal with the oversimplification of reality413

inherent to SSE models (reducing diversification rate variation to a few categories) is to adopt a414

model averaging procedure as suggested by Caetano et al. (2018). Diversification rate estimates415

are calculated taking model uncertainty into account, and thus allow a richer interpretation of416

rate differences than simply whether or not there is a difference in the best fitting model. The417

estimation of branch-specific diversification rates (Maliet et al., 2019) would be another avenue to418

explore, but to our knowledge this has not yet been adapted to explicitly test for trait-dependent419

diversification.420

It is not only the evolutionary history of the species in the study clade and their traits that is421

important, but also how these species interact with their environment, and each other. The effect422

of each trait on diversification should be considered in its own ecological context - a trait may423

stimulate diversification but does it have the same effect in a temperate vs tropical environment?424

This ecological context can tell us more about why a trait affects diversification but is insufficiently425

taken into account as many studies test single traits, are limited to two traits (e.g Zenil-Ferguson426

et al., 2019), or use hidden states that are difficult to interpret biologically. Thus, to test in what427

contexts a trait affects diversification, several traits (intrinsic and extrinsic) must be assessed in428

tandem. Multi-state approaches (ideally including hidden states (e.g. Herrera-Alsina et al., 2019))429

could be useful for testing for the effect of ecological context (e.g. Onstein et al. (2017)). However,430

current models only allow the investigation of a small number of traits simultaneously before models431

become intractable due to the large number of parameters. This could be somewhat mitigated by432
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careful choice on which parameters, notably transition rates, are allowed to vary, which could also433

help with biological interpretation if unlikely and impossible transitions between states are limited.434

An alternative approach was used by O’Meara et al. (2016) who tested the effect of six binary traits435

by fitting binary models for all trait combinations separately.436

Best practices for SSE model use437

Though a number of recommendations have been made for accurate inference with SSE models,438

most empirical studies do not meet them. When using the strict thresholds suggested in the439

literature we found that just 20 studies (out of 127 for which we retrieved information about each440

property) involve datasets that meet all strict criteria. We also found that, in some cases, meeting441

recommendations can affect how often TDD is detected (Fig. S16) and general patterns when442

trying to determine which traits have been important for angiosperm diversification (Fig. S17) so443

we encourage users to meet recommendations when possible and to clearly report the properties of444

their dataset (Box 3). The apparent relationship between sampling fraction and inference of TDD445

(Fig. 4e) should invite us to be cautious when sampling fractions are low, particularly as better446

sampled trees yield more accurate estimates of diversification rates (Chang et al., 2020; FitzJohn447

et al., 2009). One explanation may be that as sampling fraction goes down, rate estimates become448

more reliant on the model rather than the data, though further work is needed to understand why449

this might favour TDD. Publication bias may also be playing a role. If no TDD is detected in a450

poorly sampled clade this may be attributed to a lack of power that ultimately prevents publication451

thereby inflating the number of studies with low sampling that detect TDD.452

To clarify these observations, simulation studies should be undertaken to investigate the influence453

of dataset properties (e.g. sampling fraction) and model inadequacy on SSE model inference454

simultaneously. While false-positive error rates have been explored for HiSSE (Caetano et al.,455
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2018; Rabosky & Goldberg, 2017), we still know little about how different dataset properties456

can affect the model’s inferences. A study similar to Davis et al. (2013) for HiSSE would be457

beneficial going forward, perhaps being extended to trees with thousands of tips to match the458

growing size of datasets. For the moment, the guidelines put forward for BiSSE are probably459

appropriate starting points to ensure that models are robust, though these may change in the460

future as the interaction between dataset properties and hidden states is better understood. In the461

light of these observations, we present recommendations for reporting dataset properties and model462

results in Box 3, which will help researchers assess the robustness of results, identify their possible463

limitations and better compare them to other studies. We have focused here on SSE models as464

they have been applied many times and have themselves been extensively studied. However, our465

recommendations apply to other diversification models as well because they typically use the same466

underlying birth-death model, and criticisms such as those in Maddison and FitzJohn (2015) apply467

to evolutionary correlation analyses in general, not just SSE models.468

Knowledge gaps and future avenues469

Our review allowed us to identify clades that are understudied and therefore good focal points470

for future research to gain a more well-rounded picture of angiosperm macroevolutionary dynamics.471

One of the most obvious is Asteraceae, species-rich yet subject to relatively few trait-based diversification472

studies (Fig. S4), or Alismatales, an order that has more than 4,500 species (Fig. S3) but just a473

single study on their trait-based diversification (Canal et al., 2019). In addition, some families with474

more than 1,000 species, such as Phyllanthaceae or Orobanchaceae have yet to be studied in this475

way.476

High-quality phylogenetic trees are not the only ingredient for SSE studies; trait data also need477

to be available. We highlight understudied traits related to lifespan, dispersal and symbiosis as478
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ripe avenues for future work that have potential to unearth important patterns in TDD. However,479

apart from a few traits such as geographical range or climatic preferences, gathering high-quality480

data for several traits in large numbers of species is a time-consuming activity. We encourage the481

integration of trait data generated from SSE studies (and others) into large, global trait databases482

such as eFLOWER (Sauquet et al., 2017), TRY (Kattge et al., 2020) or more focused databases483

(e.g. AusTraits (Falster et al., 2021)). These will act as important resources as researchers consider484

several traits in tandem when testing for context-dependent effects of traits. Most importantly,485

studies should be conducted on traits where clear hypotheses can be generated about their effect486

on diversification in the chosen study clade.487

SSE methods are statistical tools that are used to uncover correlations, and cannot themselves488

discover causal relationships. By definition, macroevolutionary models try to capture the result of489

many aggregated small-scale processes in a few high-level parameters. Speciation is an instantaneous490

split of one branch into two in most macroevolutionary models, although in reality there might be a491

wide range of different dynamics depending on environmental heterogeneity, biotic interactions, and492

intrinsic traits (e.g. breeding systems, genomic incompatibilities) (Coyne & Orr, 2004). Thus, if a493

trait is predicted to affect speciation and extinction, high-quality inferences of diversification rates,494

for which our synthesis provides some guidelines, should be able to detect any signal. However, this495

signal is only a piece of the puzzle, and the various underlying ecological and genetic processes can496

also be put to the test. For example, Park et al. (2018) compared sister species with contrasted497

mating systems (selfing vs. outcrossing) and showed that niche breadth tended to decline over time498

in selfing lineages, in agreement with the dead-end scenario proposed for this trait and detected in499

macroevolutionary analyses (Freyman & Höhna, 2019; Goldberg & Igić, 2012). Additionally, we500

can identify traits that have an effect on ecological and genetic mechanisms that control speciation501

and extinction, such as traits affecting coexistence and niche partitioning (Adler et al., 2013) (e.g.502
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specific leaf area or seed mass), genetic differentiation between populations or species (Gamba503

& Muchhala, 2020) (e.g. pollination mode, mating system, growth form) or those associated with504

commonness and rarity (Murray et al., 2002) (e.g. seed production). Such traits come with a priori505

hypotheses and could be ideal candidates for macroevolutionary studies exploring their effect on506

diversification.507

Furthermore, in SSE methods, information about interactions between species is taken into508

account via the traits that species possess. There is no direct consideration of ecological context509

(Morlon, 2014), i.e., whether species actually interact, or whether the diversification of a clade510

in a certain area is influenced by the diversity of other clades that are present there. Recently,511

an integrated model including trait evolution, species interaction (competition) and diversification512

has been studied in the context of evolutionary radiation (Aristide & Morlon, 2019) and showed513

that competition can partly decouple trait diversity and species richness. The effect of competition514

and diversity-dependence in SSE models has also recently been analysed theoretically (Kaj et al.,515

2021). However, inference tools based on these more integrated models still remain to be developed.516

This would require integrating multiple types of data, such as species’ distributions and ecological517

preferences, possibly from different kingdoms (plants, animals) and it requires closer collaboration518

between modellers, statisticians, data analysts and specialists of the studied taxa.519

Conclusions520

When bringing together more than a decade of study on TDD in angiosperms, it is the521

inconsistent effects of traits that stand out, rather than the importance of a particular set of522

universal drivers. The absence of consistent effects highlights the important role the evolutionary523

history and ecological context of a clade play in determining how a particular trait affects diversification.524

Future research will need to focus on how traits interact to influence diversification and identify the525
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ecological, genetic and demographic processes that these traits affect with the help of promising526

new models that are in development. We have only touched the surface of what we can learn about527

TDD in angiosperms. The production of new datasets that meet recommendations for robust528

inference, future methodological developments enabling studies at wider scopes and the potential529

for new discoveries in understudied traits and clades will continue to shape our understanding of530

angiosperm diversification. Though our study focused on angiosperms, the conclusions we draw531

about consistency, context dependence and diversification model use apply to studies of TDD across532

the entire tree of life.533
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Figure 1: The development of state-dependent speciation and extinction (SSE) models.

The original binary-state speciation and extinction model (BiSSE) model (Maddison et al.,

2007) is shown at the top of the diagram with all other models depicted below, in the

order of their publication. Acronyms are defined as follows: Binary-State Speciation and

Extinction–node enhanced state shift (BiSSE-ness; Magnuson-Ford and Otto, 2012), Cladogenetic

and Anagenetic Models of Chromosome Number Evolution (ChromoSSE; Freyman and Höhna,

2018), Character-Independent Diversification (CID Beaulieu and O’Meara, 2016), Cladogenetic

State change Speciation and Extinction (ClaSSE; Goldberg and Igić, 2012), Fast, intuitive

State-dependent Speciation-Extinction (FiSSE; Rabosky and Goldberg, 2017, Geographic State

Speciation and Extinction (GeoSSE; Goldberg et al., 2011), Hidden Geographic State Speciation

and Extinction (GeoHiSSE; Caetano et al., 2018), Hidden State Speciation and Extinction

(HiSSE; Beaulieu and O’Meara, 2016), Multi-State Speciation and Extinction (MuSSE; FitzJohn,

2012), Multicharacter Hidden State Speciation and Extinction (Mu-HiSSE; Nakov et al., 2018),

Quantitative State Speciation and Extinction (QuaSSE; FitzJohn, 2010; Verboom et al.,

2020), Several Examined and Concealed States-dependent Speciation and Extinction (SecSSE;

Herrera-Alsina et al., 2019). Each box shows the name of the model and the associated citation.

Models that share similar attributes (e.g. those with hidden states) are colour coded and grouped

with boxes. This is not an exhaustive list of SSE models and does not include, for example, models

used in epidemiology that allow tips to be sampled at various points in time (Scire et al., 2020).
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Figure 2: Stacked barplots showing how often particularly trait types were tested with

state-dependent speciation and extinction (SSE) models. Bars are coloured to depict how often

Trait-dependent diversification was detected per trait type. If results from multiple SSE models

were reported in a single study they were considered separately i.e. each model contributed one

result to the totals for each trait category. Two plots are shown, (a) one with relatively broad

trait categories (level 2) and (b) one with narrower categories (level 4). An ontology depicting how

different trait classification levels are connected can be found in Table S1.
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Figure 3: A stacked barplot showing the change in state-dependent speciation and extinction (SSE)

models used on angiosperm clades over time. Each bar indicates the number of unique SSE model

types per study totaled over the publication year. Bars are coloured according to the proportion of

each SSE model type published in that year (see legend on the right of the plot). If the same SSE

model was used multiple times in a single study it is only counted once (e.g. if BiSSE was used

four times in a study published in 2012 this contributes an increase of one to the BiSSE portion of

the 2012 bar). The black line shows the total number of studies using SSE models on angiosperms

per year. Note that the year 2021 is incomplete.
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Figure 4: A set of densities depicting the distribution of values for five dataset properties in SSE

models that infer trait dependent diversification (coloured densities) and those that do not (grey

densities). The dataset properties shown are (a) number of tips in the phylogenetic tree used with

the SSE model (data taken from n = 621 models), (b) the age of the tree used with the SSE model

(n = 529), (c) the total number of genetic markers (nuclear + plastid + mitochondrial) used to

infer the phylogenetic tree used with the SSE model (n = 615), (d) the tip bias, here calculated as

the largest tip frequency divided by the smallest (n = 426) and (e) the global sampling fraction (n

= 616).
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Figure 5: A horizontal barplot showing the relative influence of the 20 most important features

included in the xgboost model used to predict the outcomes of SSE models, whether or not

trait-dependent diversification is inferred, using input data properties and other characteristics

of each study. All categorical variables are binary (e.g. ‘Intrinsic’ provides the information that

traits that are intrinsic (1) and not intrinsic (0)). Points are the mean gain values calculated from

the 500 iterations that were run. Error bars represent one standard deviation around the mean.

Bars are coloured based on the type of variable they represent.
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Box 1: Studying trait-dependent diversification with SSE models542

There are many different ways to explore differences in diversification (Ricklefs, 2007). The simplest543

way is to quantify species richness, but as species richness is highly dependent on time, either one should544

only compare equally old clades (sister clade comparisons) or correct for the ages of the clades (e.g. the545

method-of-moments estimator (Magallon & Sanderson, 2001)). More information can be obtained by546

modelling the shape of the phylogenetic tree (see Morlon, 2014). Some methods are aimed at identifying547

shifts in the diversification rate along the phylogenetic tree (e.g. Rabosky, 2014) after which it is up to the548

user to interpret these shifts and test whether they correlate with species’ characteristics. Other more recent549

methods allow users to estimate diversification rates at the tips of the tree and then to test whether rate550

differences are associated with species’ traits (Rabosky & Huang, 2016).551

Species diversification can be explicitly linked to traits via state-dependent speciation and extinction552

(SSE) models. This popular family of models is based on birth-death processes where the diversification553

rates (birth is speciation, and death is extinction) are dependent on character states, and where transition554

rates between states define how state changes occur. The simplest SSE model is the Binary-State Speciation555

and Extinction (BiSSE) model (Maddison et al., 2007) that takes as input a phylogenetic tree and state556

values (0 or 1) for each species in the tree. This allows users to uncover whether lineages with one state557

diversify faster than those with the other. SSE models can also be used to test whether the transition rates558

between states in one direction (0 to 1) are faster than the other (1 to 0). A first important extension to559

BiSSE was the possibility to use incomplete trees (FitzJohn et al., 2009).560

The original model has been extended in various ways to address different types of macroevolutionary561

questions, as depicted in Fig. 1. ClaSSE (Goldberg & Igić, 2012) and BiSSE-ness (Magnuson-Ford & Otto,562

2012) are extensions of BiSSE that include cladogenetic events (speciation simultaneously associated with563

change in state). ChromoSSE (Freyman & Höhna, 2018) is an extension of ClaSSE specially designed to564

study changes in chromosome numbers such as polyploidization. GeoSSE (Goldberg et al., 2011) explicitly565

models how diversification differs between geographic regions. Other developments include the extension to566

more than two character states in MuSSE (FitzJohn, 2012), and QuaSSE (FitzJohn, 2010; Verboom et al.,567

2020), which can examine the effect of quantitative traits such as mean temperature.568

Early SSE models were criticised for their propensity to infer false positives due to model inadequacy:569

the models were based on the assumption that only the trait of interest would influence diversification, so570

any kind of heterogeneity would lead to the rejection of the null hypothesis (Maddison & FitzJohn, 2015;571

Rabosky & Goldberg, 2015). FiSSE (Rabosky & Goldberg, 2017) is one solution for that problem, but572

perhaps the most important innovation after the initial wave of SSE models is the introduction of hidden573

states. These allowed diversification rates to be influenced by the focal traits as well as unobserved factors574

and provided a new set of more complex null hypotheses: the character independent diversification (CID)575

models (Beaulieu & O’Meara, 2016)). Hidden states have been incorporated into most initial SSE methods:576
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HiSSE (Beaulieu & O’Meara, 2016) as an extension to BiSSE, Mu-HiSSE (Nakov et al., 2018), GeoHiSSE577

(Caetano et al., 2018) and SecSSE (Herrera-Alsina et al., 2019).578
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Box 2: Choosing appropriate clades and traits579

Given that dataset properties, evolutionary history and ecological context appear to be important for580

understanding TDD, what strategies can be used to select clades and traits that will produce the most reliable581

results? Trait choice can be helped by preliminary knowledge of the phylogenetic tree and ancestral state582

reconstruction, which could be used to ensure that the derived state(s) arose multiple times and that the583

ratio among different states is not extreme (<10:1). However, exactly how many times a trait needs to evolve584

to be suitable for study remains a difficult question (Maddison & FitzJohn, 2015) that should be further585

investigated with simulations. With the uncertainties inherent to many studies due to less-than-optimal586

datasets, we argue there is a large avenue for the investigation of the effect of previously studied traits on587

diversification using high-quality data and the most powerful methods. Although our expectation is that588

the results will still be inconsistent due to context dependence, precise knowledge about which traits are589

most often important, and in which clades, will set the stage for more detailed studies on the causes of590

inconsistency.591

In terms of choosing a clade, it is first important to adhere, as best as possible, to the recommendations592

for using SSE models e.g. avoid clades much smaller than 300 taxa and focus on those that are well sampled593

(> 25%). If recommendations cannot be followed, because of natural limitations in clade size, for example,594

these should be stated clearly as caveats. Working at a large scale, e.g. angiosperm-level analyses, is certainly595

appealing but creates a range of issues related to confounding factors that current models will find difficult to596

disentangle. These range from evolutionary history and ecological context, as discussed above, but also other597

analytical issues such as molecular clock rate variation (Shafir et al., 2020). To better learn about the factors598

that influence angiosperm diversity, we suggest that studies focus on multiple intermediate-sized clades, i.e.599

large, well-defined genera, families or tractable orders. However, if these clades are well-sampled they would600

approach the limit of our current computational feasibility (but see Louca and Pennell, 2020b). Working601

with many smaller clades may therefore be more feasible in the near future and also yield important insights602

via the comparison of diversification patterns among many different groups (e.g. Sabath et al., 2016), which603

we think is an acceptable tradeoff for reduced power in standalone analyses.604

Focusing on many smaller clades can also help to study rare traits, i.e. those that would lead to strong605

tip ratio bias (> 10 : 1) in large clades, by selecting a subset of smaller clades with a higher frequency of606

the trait. Care should be taken that this could potentially bias the results, as those clades could be the ones607

where the trait is most successful. However, in the case of dioecy, which has an angiosperm-wide frequency608

of ∼ 5%, this SSE approach applied to ∼ 40 genera by Sabath et al. (2016) lead to similar conclusions609

as angiosperm-wide sister clade comparisons (Käfer et al., 2014). In general, examining the effect of the610

same trait in multiple clades would allow researchers to account for the unique and shared aspects of their611

biology (e.g. through the use of hidden states or trait combinations), and then to combine results (Rabosky612

& Goldberg, 2015) to uncover broad patterns about the trait of interest.613
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Box 3: Recommendations for reporting SSE model results614

In most studies, at least part of the information we consider crucial for the interpretation of the results615

was lacking, or it was difficult to access. Collecting data for many properties required us to count from figures616

or extract statistics from archived raw data, which were not always available. For example, even if the tree617

has been published in a different study, we recommend that SSE model users clearly and succinctly describe618

it in their own study, notably the number and nature of the markers used to construct it, the number of tips,619

the sampling fraction and the age of the root. An estimation of the total number of species in each state620

would allow users to assess whether there are differences in tip state frequencies or state-specific sampling621

fraction that could bias results. Knowledge about the root state or assumptions made about it when running622

the model should also be reported. Surprisingly, the results about diversification and transition rates were623

often not reported in an easily-accessible and standardized manner, or in some cases, not at all. These should624

be reported, preferably with confidence metrics around rate estimates e.g. Bayesian credible intervals.625

We were unable to extract and use the number of independent origins of each character state. Robust626

estimates of associations between traits and diversification rates necessitate multiple independent origins627

(but not too many (Rabosky & Goldberg, 2015)) and corresponding rate changes (Maddison & FitzJohn,628

2015), so an idea of this value per study, inferred using ancestral state reconstructions, would be useful for629

interpretation of the robustness of results. This could be done by combining stochastic mapping of traits630

with an SSE model (Freyman & Höhna, 2019), though this is generally not available for SSE approaches.631

Louca and Pennell (2020a) recently pointed out how diversification rate estimation can be susceptible632

to issues of unidentifiability. Though SSE models are not directly implicated (Helmstetter et al., 2021), it is633

known that extinction rate is especially difficult to estimate correctly (Beaulieu & O’Meara, 2016; Maddison634

et al., 2007). One potential way to help ‘future proof’ analyses from unidentifiability caused by overfitting635

would be to avoid reporting and assessing speciation and extinction rates separately, focusing instead on636

compound parameters such as net diversification rate (λ − µ), turnover rate (λ + µ) and extinction fraction637

(µ/λ) that are typically used in more recent SSE models (Beaulieu & O’Meara, 2016). However, testing638

explicitly whether diversification rates, which can be robustly estimated and are often the focus of the studies,639

are significantly different (irrespective of the exact values of the speciation and extinction rates) is not often640

done explicitly. Researchers should thus carefully inspect (and report) the bootstrap, confidence, or credible641

intervals of the state-dependent diversification rates they obtain in order to conclude whether or not they642

are really different. To encourage standardized result reporting we propose an initial set of characteristics643

that should be made available in all future studies using SSE models (Supplementary Data 1).644
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