
HAL Id: hal-04013673
https://hal.science/hal-04013673

Submitted on 3 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PointCloudSlicer: Gesture-based segmentation of point
clouds

Hari Hara Gowtham, Amal Dev Parakkat, Marie-Paule Cani

To cite this version:
Hari Hara Gowtham, Amal Dev Parakkat, Marie-Paule Cani. PointCloudSlicer: Gesture-based seg-
mentation of point clouds. 44th Annual Conference of the European Association for Computer Graph-
ics (EUROGRAPHICS 2023), European Association for Computer Graphic, May 2023, Saarbruck,
Germany. �hal-04013673�

https://hal.science/hal-04013673
https://hal.archives-ouvertes.fr


PointCloudSlicer: Gesture-based segmentation of point clouds

Hari Hara Gowtham1,2, Amal Dev Parakkat1, Marie-Paule Cani2

1 LTCI - Telecom Paris, 2 LIX - Ecole Polytechnique
Institut Polytechnquie de Paris, France

Abstract
Segmentation is a fundamental problem in point-cloud processing, addressing points classification into consistent regions, the
criteria for consistency being based on the application. In this paper, we introduce a simple, interactive framework enabling
the user to quickly segment a point cloud in a few cutting gestures in a perceptually consistent way. As the user perceives the
limit of a shape part, they draw a simple separation stroke over the current 2D view. The point cloud is then segmented without
needing any intermediate meshing step. Technically, we find an optimal, perceptually consistent cutting plane constrained by
user stroke and use it for segmentation while automatically restricting the extent of the cut to the closest shape part from the
current viewpoint. This enables users to effortlessly segment complex point clouds from an arbitrary viewpoint with a possibility
of handling self-occlusions. Author’s copy - Not for redistribution.
CCS Concepts
• Human-centered computing → Interaction design; • Computing methodologies → Shape modeling;

1. Introduction and related work

The spread of 3D scanning devices such as LiDAR systems and re-
cent advances in machine/deep learning techniques that make their
direct manipulation possible [GWH∗20] increased the popularity
of point clouds, which are now used in many applications, from
cultural heritage to robotics and automatization. In this context,
segmenting the input points, i.e., partitioning them into distinct, se-
mantically meaningful regions or clusters, is a fundamental prob-
lem essential for scene understanding and editing, object detection,
and robot navigation.

Considering that the related mesh segmentation problem is a
well-explored area in Computer Graphics [Sha08], where the in-
put is a mesh rather than a point cloud, a trivial solution would
be to create a mesh from the point cloud and then reuse any mesh
segmentation algorithm. Mesh segmentation can be made simpler
and more accurate by incorporating user inputs (e.g. through a
simple sketching paradigm) that encode user perception and guide
segmentation [JLCW06]. Though sketches improve the quality of
mesh segmentation, creating a 3D mesh from point clouds is chal-
lenging, especially since the point clouds can have various artefacts
like incomplete data, outliers, and heavily varying density.

Many methods, therefore, addressed the direct segmentation of
point clouds. They can be broadly classified into two categories:
learning-based and non-learning-based methods. The learning-
based methods use machine/deep learning algorithms to learn pat-
terns and features from annotated point clouds and predict the clas-
sification (see [GWH∗20] for a survey). The works under this cate-
gory span from using traditional machine learning approaches such

as K-means and spectral clustering [ZCD20] to more sophisticated
methods using CNNs [QSMG17, WSL∗19], 2D convolution on
projected 3D data [LDT∗17], and creating unique structures like
Superpoint graph or GCNs [LS18, LHW21]. Non-learning-based
methods, on the other hand, such as region-based [VTHLB15] and
graph-based methods [NL13], do not require annotated data since
they rely on explicit hand-crafted features and algorithms to parti-
tion the point cloud. Unfortunately, the latter does not always meet
the user intent.

The main objective of this work is to allow interactive point-
cloud segmentation as in [SRS∗19], but based on simple, intuitive
slicing gestures defined over any 2D view of the point cloud. This
enables us to benefit from powerful user perception while allowing
the use of any segmentation criteria.

Our current preliminary solution is limited to straight slicing ges-
tures, depicted as line strokes. Each of them is interpreted in 3D as
a perceptual slicing plane, which is optimized to better match the
local arrangement of 3D points. This plane is then used to partition
the point cloud into two consistent sub-parts while robustly han-
dling the case of multiple self-occlusions of the point cloud from
the slicing viewpoint. To achieve this, we focus on two main chal-
lenges:

• How to adjust the cutting plane without worrying about aligning
the point cloud to make an optimal cut?

• How to stop the cutting process from blindly segmenting the
whole point cloud based only on the relative position and in-
stead intelligently segment only the intended region of the point
cloud?



H.H. Gowtham, A.D. Parakkat, & M.P. Cani / PointCloudSlicer: Gesture-based segmentation of point clouds

The proposed method facilitates quick "drawing over point clouds,"
allowing the user to define the segments wherever they want with-
out requiring additional information (such as normal or texture) or
complex and time-consuming mesh reconstruction.

2. Methodology

PointCloudSlicer works as follows: the user iteratively uses slicing
gestures over the point cloud to define the two end-points of a line
stroke (see Figure 1); for each such stroke, our algorithm starts by
creating a cutting plane, initialized from the viewing angle and the
line segment. Since no notion of intersection exists, this plane can
intersect with multiple regions of our input point cloud. To avoid
this, local clustering is applied on the points near the cutting plane
to identify the intended region. We further refine the latter using
an optimized, tilted plane to ignore the effect of viewpoint, which
directly impacts the cutting plane. Finally, we use local geometri-
cal cues from the optimized region to apply the relevant, localized
segmentation to the point cloud. Our technical contributions are,
therefore, two-fold:

• An optimization-based framework that uses a width measure de-
pending on the local point distribution to define the optimal cut-
ting plane.

• Using a local Delaunay-triangulation-based method as a geomet-
ric cue for identifying the point cluster that best matches user
perception.

Figure 1: A user cut
(in red color) on an
arbitrarily oriented
point cloud

Figure 2 compares the results of a
naive segmentation (based on the rela-
tive orientation of points w.r.to the initial
plane) with those of PointCloudSlicer,
given the simple slicing gesture in Fig-
ure 1. Note that the point cloud was ar-
bitrarily aligned, making the naive seg-
mentation (based on the initial plane
parallel to the viewing direction) fail
to segment the shape as intended (into
points belonging to the head and the body) by having wrongly seg-
mented points on the ears and making a titled cut on the head.
Thanks to the underlying intelligent optimization, PointCloud-
Slicer was able to capture the expected partition. The remainder
of this section details the main steps of our method.

2.1. Intelligent clustering

Given the initial slicing plane defined to include the user line stroke
and the viewing direction, we first identify the region of the point
cloud where the segmentation takes place. Therefore, we define the
slice of interest as the set of the points that lie at a smaller distance
than a predefined threshold δ to the cutting plane.

Since there is no available connectivity information, this slice
blindly extends to the whole point cloud, in depth as well as side-
ways. To only select the perceptually relevant part, i.e. the closest
to the user’s stroke, we do a local reconstruction. Inspired by the
literature [OPP∗21], we start with computing the 3D Delaunay tri-
angulation (which is proven to be useful for curve/surface recon-
struction from point clouds since it can create non-overlapping tri-
angles that represent the underlying shape of the point set, while

Figure 2: Left: Segmentation result from the user-input of Figure 1,
based on a naive cutting plane. Right: PointCloudSlicer result. Ap-
propriate planes are shown in green, and points that participated
in width measure computation are shown in the inset (values of M
are 16.3199 and 11.4438, respectively).

also minimizing distortions and other artefacts) of the points ly-
ing inside the slice, and do a simple pruning on its edges based on
their length (we remove all the edges longer than the average edge
length in the Delaunay triangulation). Please note that this simple
strategy could easily be replaced by any sophisticated algorithm,
such as in [OPP∗21]. The pruning process segments the graph of
connected points into different connected components or clusters,
enabling us to pick the closest cluster to the centre of the line stroke
to define the cut.

2.2. Cutting plane optimization

As shown in Figure 2, the cutting plane may need to be tilted to
better match the local geometry of the shape and get the expected
segmentation. To do this, we associate a width measure M to the
cutting plane CP, defined as follows:

M(CP) = ∑
i=1,...,k

d(pi,A)

Where p0, ..., pk are the points belonging to the selected cluster, A
is the average of the points in the cluster, and d() is the Euclidean
distance.

Intuitively, while still matching the user’s stroke, minimizing
the width measure helps us identify the region with minimal girth
(which acts as a good perceptual measure for segmentation). Satis-
fying the constraint that the plane passes through the user-defined
line segment, we minimize the width measure by tilting the cut-
ting plane. This effect is salient near the neck region in Figure 2.
At the end of this optimization, we get an "Optimal cluster", which
can be used to segment the point cloud. In this preliminary imple-
mentation, we use a greedy optimization in a binary search fashion,
where the maximum and minimum possible tilt is set to ±15◦.

2.3. Segmenting the point cloud

The point cloud is finally segmented based on the optimal cutting
plane while restricting the process to the region corresponding to
the selected point cluster. Again, since there is no available struc-
ture other than plain coordinate information, direct segmentation
is non-trivial. Therefore, we rely on the minimal spanning tree to
achieve this segmentation.

We start by computing a minimal spanning tree (MST) of the
point cloud to create an initial structure (as a pre-processing step



H.H. Gowtham, A.D. Parakkat, & M.P. Cani / PointCloudSlicer: Gesture-based segmentation of point clouds

Figure 3: Left to Right: (a) Input point cloud with the user cut in red color, (b) Points lying inside the slice (in red color) and the naive plane
in green color, (c) Delaunay triangulation of points inside the slice, (d) Result after pruning, (e) Points in the selected cluster (in red color),
(f) Minimal spanning tree used to bipartite the point cloud, (g) Final segmentation with the optimized plane in green color

computed only once). The edges of the MST that belong to the
optimal cluster and cross the optimal cutting plane are identified
and removed. This removal of edges splits the MST into several
disconnected components. We then segment the input point cloud
based on the relative position of the points (the side of the plane on
which it lies) belonging to the optimal cluster and their presence
in a connected component. Here, we assume the MST captures the
overall structure nicely so that the points in a connected component
belong to a single perceptual bi-partition.

The segmentation process is given in Algorithm 1, Where
Relative_Position(Point,Plane) computes the relative po-
sition (left or right) of the point w.r.to the plane, and
Compute_Connected_Components(Graph) computes all con-
nected components present in the Graph.

Putting it all together: The full pipeline of our method is shown
in Figure 3. Since each user’s slicing gesture only segments the
cloud into two parts, this process has to be repeated until the cloud
is fully segmented. To ease this iterative process, we label and then
discarded the smallest of these parts in term of the number of points
to keep only the larger region which may require further segmenta-
tion. This enables us to assign segment labels to the points, in the
order of the segmentation steps.

Algorithm 1 Segmenting the Point Cloud
1: procedure SEGMENT(Point cloud P, Optimal cluster C, Opti-

mal cutting plane OCP)
2: MST = Minimal_Spanning_Tree(P)
3: for each tuple (pi, p j): pi ∈C, p j ∈C do
4: if (pi, p j) is an edge in MST then
5: pos1=Relative_Position(pi,OCP)
6: pos2=Relative_Position(p j,OCP)
7: if pos1 ̸= pos2 then
8: MST=MST - (pi, p j)

9: CC = Compute_Connected_Components(MST)
10: for each component con ∈CC do
11: if pi ∈C and pi ∈ con then
12: Label(pi)=Relative_Position(pi,OCP)

return labelled points

3. Results & Discussion

We implemented PointCloudSlicer in C++ using libIGL library and
tested on a 8-core MacBook M1 Pro with 16GB memory. Figure 4
shows a few results generated using PointCloudSlicer in less than
3 minutes (including all the computations). As can be seen, our

Figure 4: Point clouds segmented using PointCloudSlicer. Courtesy: aim@shape and Kalogerakis et al. [KHS]



H.H. Gowtham, A.D. Parakkat, & M.P. Cani / PointCloudSlicer: Gesture-based segmentation of point clouds

Figure 5: A simplified RGB-scan segmented using our method

method could directly segment the point clouds without worrying
about the occlusions and could generate visually pleasing results.
Note that naively using a cutting plane to segment the point clouds
(without our algorithm) would have been a failure in most of the
examples shown in Figure 4 since, in most cases, we cannot draw
a cutting plane without intersecting other parts of the model.

Thanks to our gesture-based inputs, the user
may freely decide where to segment a shape
to best fit their needs and perception. In con-
trast with former rule-based and knowledge-
based segmentation methods, as shown in the
inset on the right, the user could segment the
point cloud to separate semantically meaning-
ful parts without the presence of any sharp fea-
ture. Similarly, Pliers in Figure 4 shows vari-
ous segmentation options that can be generated
from the same point cloud.

Finally, Figure 5 shows the result of PointCloudSlicer on a
simple downsampled RGB-D scan taken from http://redwood-
data.org/3dscan/index.html. As shown, our simple method could
segment the scene satisfactorily.

4. Limitations & Future work

We have presented a simple and efficient point cloud segmentation
method, which does not require any intermediate meshing scheme
(saving us from possible errors related to meshing) and keeps the
user in the loop, enabling any perceptual criteria to be used. The
user interacts using straight-through slicing gestures, interpreted
into a cutting plane, which is optimized and used to segment a rel-
evant subpart of the point cloud.

Though the proposed method can achieve good visual results,
PointCloudSlicer has three main shortcomings, which we aim to
address in future work:

• Choice of planar cutting planes: Our method uses cutting planes
to segment point clouds, which might not always be the right
choice since the boundary of a perceptually salient region might
be curved. However, this cutting plane could act as a base from
which a better segmentation could be computed. In future, we
intend to borrow the idea of snakes to curve the boundary defined
by our cutting plane.

• Point clouds with genus>0: The segmentation process assumes

that the input point cloud represents a genus=0 surface, mean-
ing that each slicing gesture segments the current cloud into two
parts. The method could be extended to surfaces with genus>0
by intelligently propagating labels and relating points to multiple
cutting planes.

• Assumptions on MST: We assume the point cloud is densely
sampled to avoid any connected component from having points
that belong to the optimal cluster that lies on both sides of the
cutting plane.

The current implementation of the PointCloudSlicer uses structures
that require heavy computation (especially the pre-processing for
computing MST, which took around 2 minutes for 20k points),
restricting us from testing on point clouds having more than 20k
points in interactive rates. So, in addition to the aforementioned
algorithmic improvements, we plan to improve/optimize the under-
lying structures to further deploy and test our method for the inter-
active segmentation of complex scenes/scans, which we initiated
with the example in Figure 5.

References
[GWH∗20] GUO Y., WANG H., HU Q., LIU H., LIU L., BENNAMOUN

M.: Deep learning for 3d point clouds: A survey. IEEE TPAMI 43, 12
(2020). 1

[JLCW06] JI Z., LIU L., CHEN Z., WANG G.: Easy mesh cutting. In
Computer Graphics Forum (2006), vol. 25, Wiley Online Library. 1

[KHS] KALOGERAKIS E., HERTZMANN A., SINGH K.: Learning 3d
mesh segmentation and labeling. In ACM SIGGRAPH 2010 papers. 3

[LDT∗17] LAWIN F. J., DANELLJAN M., TOSTEBERG P., BHAT G.,
KHAN F. S., FELSBERG M.: Deep projective 3d semantic segmentation.
In CAIP (2017), Springer. 1

[LHW21] LIN Z.-H., HUANG S.-Y., WANG Y.-C. F.: Learning of 3d
graph convolution networks for point cloud analysis. IEEE TPAMI 44, 8
(2021). 1

[LS18] LANDRIEU L., SIMONOVSKY M.: Large-scale point cloud se-
mantic segmentation with superpoint graphs. In Proceedings of the IEEE
CVPR (2018). 1

[NL13] NGUYEN A., LE B.: 3d point cloud segmentation: A survey. In
2013 6th IEEE ICARM (2013). 1

[OPP∗21] OHRHALLINGER S., PEETHAMBARAN J., PARAKKAT A. D.,
DEY T. K., MUTHUGANAPATHY R.: 2d points curve reconstruction
survey and benchmark. In Computer Graphics Forum (2021), no. 2. 2

[QSMG17] QI C. R., SU H., MO K., GUIBAS L. J.: Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Pro-
ceedings of the IEEE CVPR (2017). 1

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques. In
Computer graphics forum (2008), vol. 27, Wiley Online Library. 1

[SRS∗19] STEINLECHNER H., RAINER B., SCHWÄRZLER M.,
HAASER G., SZABO A., MAIERHOFER S., WIMMER M.: Adaptive
pointcloud segmentation for assisted interactions. In Proceedings of the
ACM SIGGRAPH Symposium on I3D (2019). 1

[VTHLB15] VO A.-V., TRUONG-HONG L., LAEFER D. F.,
BERTOLOTTO M.: Octree-based region growing for point cloud
segmentation. ISPRS Journal of Photogrammetry and Remote Sensing
104 (2015). 1

[WSL∗19] WANG Y., SUN Y., LIU Z., SARMA S. E., BRONSTEIN
M. M., SOLOMON J. M.: Dynamic graph cnn for learning on point
clouds. Acm Transactions On Graphics (tog) 38, 5 (2019). 1

[ZCD20] ZHANG S., CUI S., DING Z.: Hypergraph spectral clustering
for point cloud segmentation. IEEE Signal Processing Letters (2020). 1

http://redwood-data.org/3dscan/index.html
http://redwood-data.org/3dscan/index.html

