JOB-VS: JOINT BRAIN-VESSEL SEGMENTATION IN TOF-MRA IMAGES - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

JOB-VS: JOINT BRAIN-VESSEL SEGMENTATION IN TOF-MRA IMAGES

Résumé

We propose the first joint-task learning framework for brain and vessel segmentation (JoB-VS) from Time-of-Flight Magnetic Resonance images. Unlike state-of-the-art vessel segmentation methods, our approach avoids the pre-processing step of implementing a model to extract the brain from the volumetric input data. Skipping this additional step makes our method an end-to-end vessel segmentation framework. JoB-VS uses a lattice architecture that favors the segmentation of structures of different scales (e.g., the brain and vessels). Its segmentation head allows the simultaneous prediction of the brain and vessel mask. Moreover, we generate data augmentation with adversarial examples, which our results demonstrate to enhance the performance. JoB-VS achieves 70.03% mean AP and 69.09% F1-score in the OASIS-3 dataset and is capable of generalizing the segmentation in the IXI dataset. These results show the adequacy of JoB-VS for the challenging task of vessel segmentation in complete TOF-MRA images.
Fichier principal
Vignette du fichier
vessel_seg_isbi-3.pdf (5.85 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04013658 , version 1 (03-03-2023)

Identifiants

  • HAL Id : hal-04013658 , version 1

Citer

Natalia Valderrama, Ioannis Pitsiorlas, Luisa Vargas, Pablo Arbeláez, Maria A. Zuluaga. JOB-VS: JOINT BRAIN-VESSEL SEGMENTATION IN TOF-MRA IMAGES. ISBI 2023, IEEE International Symposium on Biomedical Imaging, 18-21 April 2023, Cartagena de Indias, Colombia, IEEE, Apr 2023, Cartagena de Indias, Colombia. ⟨hal-04013658⟩
93 Consultations
36 Téléchargements

Partager

More