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Figure 1: Top row - Our interactive process (Left to Right): Input pixel art can be automatically vectorized by our method. Yet, the original
pixel art allows for different interpretations. Our solution enables users to interactively disambiguate connectivity between pixels. Finally, the
user can annotate sharp corners (blue points) and smooth connections (pink nodes) [note that these operations require only a single mouse
click each] to optimize the final output. Bottom row - Comparison to the state of the art (Left to Right): Results of Depixelizing Pixel Art
(DPA) [KL11], InkScape [Ink], Adobe AutoTrace [Ado], [HDS∗18], [LLGRK20] and PolyFit [DSG∗20]

Abstract
We introduce an approach for converting pixel art into high-quality vector images. While much progress has been made on
automatic conversion, there is an inherent ambiguity in pixel art, which can lead to a mismatch with the artist’s original intent.
Further, there is room for incorporating aesthetic preferences during the conversion. In consequence, this work introduces an
interactive framework to enable users to guide the conversion process towards high-quality vector illustrations. A key idea of
the method is to cast the conversion process into a spring-system optimization that can be influenced by the user. Hereby, it is
possible to resolve various ambiguities that cannot be handled by an automatic algorithm. Author’s copy - Not for redistribution.
CCS Concepts
• Applied computing → Fine arts; • Computing methodologies → Image manipulation; Shape modeling;

1. Introduction

Images are usually stored in raster format (a two-dimensional grid of
pixels). At low resolution, pixels are visible, an artefact known from
early video games (the first sprites appeared in the 1970s [Wir]).
Nowadays, such "pixel art" has gained significant popularity. One

benefit of pixel art is that it can be produced quickly and only with
a few resources [Sil15].

Vector images are composed of mathematical curves. These are
resolution-independent and lead to sharp and crisp shapes. This is
a particularly interesting property given that most graphical output
is shown on various display modalities, including high-resolution
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screens, large projections or cell phones. However, creating vector
images requires skill and effort.

Various industry experts and researchers have attempted to bridge
this gap and create vector images from pixel art. They typically
target an automatic conversion, which seems beneficial at first but
such solutions cannot resolve all ambiguities that are inherent to the
simplicity of pixel art. We show that a user can steer the process
very easily to produce high-quality vector illustrations from very
coarse pixel art.

The applications for our solution are manifold. It is possible
to generate high-quality vector art for graphical illustrations or to
convert sprite sheets of retro games to be used in a remastered imple-
mentation. The generation of clipart or editable representations are
additional options that are available to artists, making our solution a
useful addition to their toolbox.

Our method relies on a user-controllable spring system that is piv-
otal to the conversion process. Initially, our method clusters pixels
based on their color. Next, nodes are placed along the boundary of
these clusters and connected to yield a network. Subsequently, the
connections in the network are interpreted as springs and a simu-
lation process drives the network away from the initial pixel art to
yield a smooth vector representation. Finally, after an optimization
step, layers are extracted to generate the final high-quality illustra-
tion. As shown in Figure Figure 1, having the user in the loop to
influence the conversion process is crucial for low-resolution pixel
art. Here, the final image was obtained by influencing the spring
forces, avoiding a blobby appearance and shrunken details.

Our solution produces comparable results to existing approaches
automatically but then allows for user interaction to define or rectify
the relationship between pixels and vector illustration. Hereby, sharp
features or local smoothness of the final curve representation can be
matched to the user’s interpretation.

In summary, we make two contributions:

• A custom-made spring system for depixelizing pixel art.
• A simple interactive framework to modify the vectorized results

(in terms of topology and shape) to match the user’s interpretation.

2. Related Works

Transforming discrete samples into a smooth representation is,
in fact, a problem in many domains (e.g., voxels to a surface
[Fri22]). Further, specialized vectorization approaches exist for
meshes [EWHS08] or isosurfaces [SEH08]. Nevertheless, most
vector conversion addresses image content, which is also the focus
of our method.

The related work for image content can be classified into two
categories: upsampling (techniques that increase the resolution of
the image/pixel art) and vectorization (techniques to obtain a vector
output from a raster image).

Image upsampling or super-resolution techniques in their simplest
form focus on interpolation schemes [Key81,FMS98,TM96], which
were later replaced by more sophisticated techniques [Fat07, TC04].
A large leap in quality was enabled through learning-based methods.
Some techniques rely on internal similarities [CCS∗14, FF11] or

involve priors [WPM∗18, DLHT14]. It is not possible to cover all
approaches in this paper but a plethora of works can be found in
recent surveys [AKB20, WCH21].

Vectorization leads to a set of vector primitives that can even
be effective for representing natural images (via curves [OBB∗13,
JCW09], gradient meshes [LHM09], or regions [LL06]). Besides
natural images, inputs can be digital illustrations, such as cartoons,
clipart, and logos [YCZ∗16] or textures [RL16]. The first step is
typically to create a polygonal representation of the input shape
and then replace it with a set of best-fitting vector curves. Research
in this line of work mainly concentrates on finding a good polygo-
nal approximation [SBZ05, ZCZ∗09], or a good vector approxima-
tion [YCZ∗16, DSG∗20]. Recently researchers have been looking
at integrating machine learning to create such vector illustrations
automatically [RGLM21, VPB∗22]. Due to the extreme downsam-
pling, handling pixel art requires specialized solutions. Interestingly,
the same holds for converting images into pixel art, which is not
equivalent to downsampling and represents a very challenging prob-
lem [IVK13,GDA∗13]. In this work, we are interested in the conver-
sion of pixel to vector art. Motivated by the large amount of available
pixel art derived from games, the topic received a lot of attention in
online communities. As a consequence, many conversion strategies
or new image upscaling techniques [SB19] have been made avail-
able as (open-source) software implementations [hqx, eag, sca] or
commercial tools for clip art vectorization, e.g., Adobe Illustrator,
Autotrace, Coreldraw, Potrace, and Vector Magic.

In the research community, Kopf and Lischinski [KL11] intro-
duced a fundamental method. It is based on perceptually-motivated
rules to disambiguate pixels and group them accordingly, which
provided a significant improvement in terms of quality. Splines are
fitted on these pixel groups to create the final vector output. Though
the algorithm was widely accepted, it had the inherent problem
of not being able to capture sharp features. Using machine/deep
learning, researchers introduced new methods to rely on perceptual
aspects to identify such sharp corners [HDS∗18, DSG∗20].

It has to be noted all previous methods rely on an automatic
conversion - which means that a user does not have control over the
conversion process, which we show is crucial for resolving certain
ambiguities in the input. Hereby, we make it possible for a user to
integrate their own interpretation of often ambiguous pixel artwork.

3. Algorithm

The proposed method has four steps:

• Clustering: We extract a boundary representation of the pixel art
by grouping similar pixels.

• Path Generation: Along the pixel-cluster boundaries, nodes are
placed and connected to their direct neighbors.

• Spring simulation: The network node positions are optimized
according to an energy formulation to define the final shapes.

• Optimization: Optimal Bezier curves are fitted, adjusted, and
grouped to create easily editable vector graphics.

To enable control over the conversion, we will offer a user the
possibility to intervene in the clustering and simulation, which we
will describe along with the algorithmic steps of the method.
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Figure 2: Effect of manual disambiguation of edges. Left to right: Curve network with red crosses representing ambiguous connections,
network after manual disambiguation, and the corresponding result

Figure 3: Different results (bottom) from the same pixel art by
altering the connections (top)

Figure 4: Local effect of connections on the vectorization

3.1. Neighbor Clustering

We want to vectorize the boundaries of pixel areas that describe a
shape. First, we, therefore, need to estimate, which pixels should
be grouped. We involve a similarity graph, where we add a vertex
for each pixel. Edges are then established between adjacent pixels,
where adjacent is the 1-ring neighborhood of a pixel, based on
whether the color distance is below a given threshold. We found a
Euclidean distance in the RGB color space to be sufficient.

The resulting graph reveals the ambiguities that are inherent to
pixel art; Figure 2 shows this problem, where red crosses indicate
such places, which can be adjusted by the user to achieve different
results. It is possible to add/remove connections to indicate wanted
relations between pixels. Hereby, multiple outputs can be obtained
from the same input (Figure 3) by influencing the local interpretation
of the pixel art (Figure 4). To limit the necessary user interaction,
our solution follows an automatic scheme as follows by default:

After creating the similarity graph, for each diagonal edge, we

(a) (b)

(c) (d)

Figure 5: (a) Graph created based on similarity, (b) Ambiguous
edges marked in pink color, (c) Decomposed graph, (d) Final result
after disambiguation (colors are used to ease understanding)

check whether it is having an intersection with its anti-diagonal
counterpart. All such edges that cause an intersection are resolved.
In contrast to using multiple heuristics as in DPA [KL11], our solu-
tion uses a single rule, powerful enough to give satisfactory results
and resolve conflicts as follows: Let edge (a,b) and (c,d) be the
intersecting edges, we removed those two edges and compute the
cardinality of the vertices connected to all the four vertices a,b,c
and d. By assuming that it is always better not to leave sparse pixels,
which create small disconnected fragments, we place back the edge
containing the vertex with the least cardinality. In other words, let
the decomposed graph be GD, the updated graph be Gnew, and the
cardinality of the subgraph in GD containing x be |Cx|, then:

Gnew = GD +

{
(a,b), if |Ca| or |Cb| is the least
(c,d), if |Cc| or |Cd | is the least

If both edges have vertices with the same cardinality, we arbi-
trarily keep one of them - the user can always alter this choice if
required. The entire process is shown in Figure 5.

This simple way of addressing ambiguities is indeed often leading
to satisfactory results - some are shown in Figure 6. Yet, some cases
require additional input to reflect the artist’s intent, for example, the
connection between the eye and the eyebrow of the girl in Figure 7.
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Figure 6: A few results of our automatic disambiguation

Figure 7: Left to Right: Automatic results generated by Inkscape,
Adobe AutoTrace, and Our method, Interactively disambiguated
result using our method

This holds for several automatic systems, as illustrated, but ours
offers the freedom to edit connections directly.

3.2. Path Generation

Figure 8: Corner
and Edge nodes

In the next step of the algorithm, we will
generate a path around our pixel clusters
by adding nodes along the graph edges,
whose positions will be optimized to de-
rive the vector art later on.

First, each cluster receives a represen-
tative color (average of all its pixels). The
cluster’s boundary pixels are identified
by comparing the representative color of
each cluster pixel to the adjacent pixel
colors (horizontally and vertically). If
they differ, the border between them is
considered a boundary.

We create a chain of nodes that define paths along the cluster
boundaries. We distinguish two types of nodes: corner nodes (at
pixel corners) and edge nodes (along pixel edges) (Figure 8 - cor-
ner/edge nodes are red/blue). For all our experiments, we fixed the
number of edge nodes per pixel edge as three.

Figure 9: An example of a diagonal link at a corner node

Please note that this process leads to duplicated nodes - the same
nodes are created for both sides of a boundary. While we fuse edge
nodes immediately, corner nodes are processed later, considering
the following two cases:

Figure 10: A few standard cases for corner nodes.

Diagonal links: If at a corner node, an edge in the similarity graph
between the four surrounding pixels connects two adjacent pixels
diagonally, it means that they belong to a common shape; they
should not be separated by a border or path. Hence, we produce
two corner nodes, which reflect the separation by the common
shape. One corner node retains the edge-node connections on one
side of the common shape, and the other corner node the rest.
These two nodes will be pulled apart in the next step to establish
the indicated connectivity (see Figure 9).
Standard corners: In all other cases, we know that the adjacent
clusters meet in this one corner location. Thus, we fuse all corner
nodes and maintain the edge-node connections (Figure 10).

3.3. Spring Simulation

After the previous step, the nodes form a network, whose closed
paths surround the pixel clusters. These paths and the cluster col-
ors define the shapes in the final vector art but their node posi-
tions currently align with the original pixel art. We will rely on
a simulation step to optimize the node positions in a spring sys-
tem. Such a relaxation process is also often used for graph drawing
algorithms [Kob12]. To this extent, we define the following forces:

FO: Each node’s position P is connected to its original position
PO by a force FO to avoid its location to stray far from its origin.

F⃗O =
(

P⃗O − P⃗
)
·
∣∣∣P⃗O − P⃗

∣∣∣ ·KO, (1)

where KO is a stiffness value.
FNi: A pulling force contracts the edges at a node with location P
to each of the locations PNi of its neighbor nodes:

F⃗Ni =
(

P⃗Ni − P⃗
)
·KN , (2)

where KN is a global stiffness value for the connection to the
neighbor node. Hereby, short distances are preferred between
neighboring nodes, which will lead to a smoothing of the paths.
Area force FA: To avoid uncontrolled shrinking, a force is applied
to the node locations P surrounding a shape to maintain its area
Ai (computed using the shoelace formula):

F⃗Ai =
(

P⃗− P⃗Ai

)
·

(
1−

√
Ai

AiO

)
, (3)

Where PAi is the position of the centre of the area, Ai is the current
area and AiO is the original area.
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Figure 11: Various forces acting on a node "PN"

Figure 12: The effect of different origin spring stiffness. Blue is low
stiffness, red is high stiffness. Notice a sharp edge at the node with
high stiffness.

The resultant force F acting on a node location is the sum of
the above-defined forces involving all its neighbour nodes Ns and
adjacent areas As (see also Figure 11):

F⃗ = F⃗O + ∑
i∈Ns

F⃗Ni + ∑
i∈As

F⃗Ai (4)

An important observation is that for a consistent relation, the
stiffness value KO for keeping points close to their origin should be
linked to the number of neighbors. In practice, we thus define two
global stiffness values for corner nodes (KOC, 0.2 in practice) and
edge nodes (KOE , -0.1 in practice) and define:

KO = max
(

0,KOE +(KOC −KOE) ·
∣∣∣∣ 2 · i
N −1

−1
∣∣∣∣) (5)

Please note, while KOE is negative, KO is not, due to the use of a
maximum. The usefulness of the latter can be illustrated by consid-
ering a diagonal of pixels; a too-strong force on the isolated pixel
corners would result in staircase artifacts, which a lower KO avoids.

After defining all forces, we perform the spring simulation in an
iterative process as follows:

1. Calculate per-node forces (Eq. 4)
2. Calculate step size S:

S = Smax/max
(

1,
∣∣∣F⃗max

∣∣∣) (6)

where Smax is a max step size (we use 0.1) and Fmax is the largest
force applied to a node in Step 1.

Figure 13: The effect of different neighbour spring stiffness. Blue is
low stiffness, red is high stiffness. Notice that with no adjustments the
angles between branches are distributed uniformly, while the image
with low stiffness at the horizontal lines allows the two vertical lines
to appear smooth.

Figure 14: Left to Right: User interactions (blue points represent
sharp corners and points on paths that are to be smoothened are
shown in pink), Effect of interactions, Our final result after interac-
tion

3. Scale all forces by S
4. Update all node locations by adding the sum of forces acting
on the node to its current location.
5. If Fmax > t goto 1, where t is a threshold (0.03 in practice)

User control: Modifying the values of KN and KO on a per-
node basis provides easy and powerful control over the conversion
process.

Role of KO: Changing KO affects how much a node is pulled
towards its origin. If the stiffness is high, the node will be close
to its origin. Hereby, we can anchor a node in its original location
to produce sharp corners. (Shown in Figure 12)
Role of KN : KN controls tension, which causes nodes to tend
towards each other. If there are shapes connecting in one location,
changing the values for adjacent nodes can steer the smoothness
of the region boundaries. (Figure 13)

Our UI offers options to increase/decrease the values of KO and
KN . To leverage this concept and make it usable for both novice and
advanced users, we provide two modes of interaction.

The simple mode enables a user to use a brushing tool to sharpen
corners or smooth connections. This is achieved by assigning a
global fixed value to KN . Figure 14 shows a generated result (along
with the before and after results). The advanced mode enables a
user to individually edit the values of KN and KO, hereby changing
the forces acting on each node. The interface relies on a brush tool
that affects the forces. They are either set to a fixed value or a
multiplicative factor is applied while brushing over nodes. Hereby,
each brush pass, in/decreases forces locally. Figure 15 shows a result
of these controls, including an explanation of the user interaction.
The supplementary video shows the ease with which a user can
interact with the result.
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Figure 15: Left to Right: Our result (Automatic), User interactions, Effect of interaction, Our final result (Interactive)

3.4. Output Optimization

After the spring simulation, a vector image can be generated by
creating polylines connecting adjacent nodes. Though this already
gives a visually pleasing result, editing it in a dedicated software
will be a difficult task because of the presence of many small line
segments. To overcome this issue and to generate an easily-editable
vector image, these polylines are further replaced by best-fitting
Bezier curves. The overall procedure (Figure 16) is as follows:

Bezier fitting: We start by replacing the boundaries of each region
with a set of best-fitting splines that approximate the polylines. As
in [FLB16], we start by creating a curve network (V,E) using single-
pixel-width polylines, where V denotes junctions and end-points,
and E represents branches connecting two points in V . Then each
pixel chain corresponding to the edges of the curve network is
replaced with Bezier curves that minimize the following fitting
error:

ε(e) = ∑
p∈Se

|| Be(tp)− p ||22, (7)

where Se is the chain of pixels associated with the edge e, while
tp ∈ [0,1] is the normalized position of pixel p along Se, and Be

is the parameterized Bezier curve. With additional constraints for
connectivity, and continuity [FLB16] the curve can be solved for.

Curve grouping: In this step, the curves contouring a single
closed external boundary are identified and merged. Hereby, the
curves form a cycle, which is the boundary of a vectorial region.

Layering: Inspired by [PCS21,EPD09], we arrange the vectorial
regions in layers. This layering arranges the shapes and makes
it easier to edit them in standard vector applications. We follow
[PCS21] and create a tree structure encoding the containment of
vector shapes - contained regions form children of encompassing
regions. Based on this tree arrangement, we then generate the layered
output by stacking the regions accordingly (Figure 17).

Figure 17: A figure depicting the arrangement in layering

Figure 18: Need for the various forces in our spring system. From
left to right: Input pixel art, automatically generated results using
only forces from neighbors (FN ), with additional origin forces (FN
and FO), and our complete force system (with FN , FO and FA). Only
the rightmost result avoids regions that shrink too much and avoids
the blobby appearance simpler systems produce in concave regions.

Recoloring: The layered vector regions stem (by definition) from
pixel clusters. The pixel-cluster color can be used as a fill color to
provide a good match to the input pixel art.

4. Results and Discussion

Implementation details: Our interactive system is implemented
in C++ using OpenCV. We run it on an Intel Xeon(R) CPU E5-1630
(v4 at 3.70GHzx8, GeForce RTX 2080Ti, and 32GiB RAM) and
MacBook Pro 13” 2018 (2.3 GHz Quad-Core Intel Core i5 CPU,
Intel Iris Plus Graphics 655 1536 MB GPU and 16 GB RAM). The
resulting vector art can be stored in SVG format. It has to be noted
that our system runs in real-time, offering seamless interaction.

Results and Comparison: As indicated, Figure 15 illustrates an

Figure 16: Left to Right: Result after spring simulation, Bezier fitting, Curve grouping and Layering, Recoloring
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Figure 19: A few results generated using our solution. Our method is able to handle several challenging cases that depend highly on the
interpretation of the shapes by the user. Top to bottom: Input pixel art, automatic result, and the result after interaction

Figure 20: State-of-the-art Comparison. The three rightmost examples are our results (automatic, interactive, splines)
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example of typical user intervention. Here, a user manipulates the
forces to adjust sharp corners or ensure smooth curves. In this
case, the user decided to make the eyes and pupils pointy in the
upper left corner. The head boundary is additionally smoothed to
remove unnecessary details on the silhouette. The interaction using
our brushing metaphor is very easy and a modification like the one
shown here, including some experimentation typically only takes 1-3
minutes (including time for processing along with visual inspection
and decision-making).

It has to be noted that a simple curve smoothing procedure or a
basic spring system is not enough for creating suitable conversions.
Figure 18 shows an example that illustrates the results with and
without various forces that our solution relies on. In the absence of
the origin force FO, the boundaries appear more blobby (especially
visible concave regions - e.g., the sideburns, the curve connecting
the legs or the moustache). Without the area force FA, several regions
shrink too strongly (e.g., the buttons and the gap between the cap
and the face). In contrast, our complete spring system captures
concavities well and preserves the area of important elements.

Figure 19 shows various very challenging results that show how
we can disambiguate connections and create aesthetically-pleasing
results. Starting on the left, we show that our solution handles regular
and fine structures very well (cloth on the back of the llama). It
is possible to maintain symmetry and even control the degree to
which the pattern is tapered off. Such a case is very challenging for
automatic approaches.

The frog shows a consistent outline. It is well captured in the vec-
torization and the controls enable us to maintain a smooth boundary.
The eye ovals are fused well and the tummy shows a clean boundary.
A particularly noteworthy part is the arm contour lines ending in the
interior of the body and the well-handled overlap with the legs.

The star shape is a good example of how shading is handled. In
this case, the smoothness of the exterior and interior contour work
together nicely to support the roundish surface of the star.

The Kong example illustrates that even complex shapes are easily
handled by our solution. Features such as the gaps between the teeth,
as well as the indications of fur, can be adjusted to the liking of the
user, here producing smoother shapes in the chest region.

The toadstool example exhibits the maintenance of a straight line
at the bottom and well-shaped dots. Further, even pixel-sized screws
are maintained.

The next illustration of the bird shows that smooth and pointy
features can be well combined. The outer contour is clean and the
feet overlap with the body, giving an impression of depth.

The flower has a round overall shape, yet the user opted for
underlining the flower petal shapes in the final vector illustration.
Four petals become visible, while the final output remains faithful
to the original pixel drawing. Further, the precise placement of the
flower on top of its pot (with its stripe and base being perfectly
aligned), shows that our method can maintain parallel lines.

The next example of a character shows how even complex pixel
combinations are handled. Here, the buttons are correctly integrated
into the trouser, despite being also adjacent to the collar region,
while the ear region is fused correctly with the face. Also, note how

the eye was disambiguated to increase the impression of a comic
character.

Finally, the signs combine straight boundary edges and a curvy
but well-recognizable question-mark character with shadow indi-
cation, which our approach handles well. Both signs are converted
identically, showing the consistency of our process.

To compare to other methods, we take a closer look at Figure 20.

DPA [KL11]: The state-of-the-art method gave an outstanding
result but lacked the option for user interaction. This drawback made
the algorithm perform slightly worse in some cases. Especially,
sharp corners and some ambiguities are not fully resolved. For
example, the calculator display appears round, the mouth in the
fourth row and the arms of the ghost below cannot be modified to
have pointy endpoints, the bow tie of the bear is broken, the white
dot below the orca fin, or the eye of the girl.

InkScape [Ink]: It contains one of the best open-source pixel-
art tracers available for professional usage, which was built upon
DPA. The results are comparatively neat and aesthetically pleasing
compared to the original DPA. It still fails at similar locations and
boundaries do not appear entirely clean.

Adobe AT [Ado]: This method stays very close to the original
pixel content. It is usually intended for natural images and struggles
with the pixel-art input for which it was not conceived.

Perception-driven semi-structured boundary vectorization
[HDS∗18]: The learning-based algorithm has a special focus on
perception-driven sharp feature detection. It struggles significantly
with the provided input. The paper indicates a focus on slightly
higher resolutions, where regions/structures are more pronounced,
which is not the case for low-resolution pixel art. This could explain
the poor results and that the algorithm would not accept one input.

PolyFit [DSG∗20]: The vectorization technique captures shapes
overall well but the polygonal appearance of the output shows the
difficulty of handling ambiguous low-resolution input.

Our: Our automatic results are visually comparable to the results
of InkScape. As all methods, our automated solution struggles with
some of the mentioned ambiguities. Further, our boundary is not
always as smooth as that of DPA. Yet, the fact that our method
also involves the region area had a positive benefit, e.g., for the
sparkles around the bottle, which many methods reduced. By in-
volving the user, we were able to alleviate all significant problems
other methods faced. Sharp features (e.g., calculator keys/display,
hair of the girl), local smoothness (e.g., the boundary of the bear
was made particularly smooth, including the outline, but also the
bottle or ghost appear smooth), and manual connections (the bow
tie, the stylistic choice for the bottle reflection, the orca outline) all
contributed positively and were designed in less than 3 minutes.

User evaluation: To evaluate the various aspects of our interface,
we invited ten users (with various levels of expertise from school
kids to design students aged between 14 and 45) to participate in
our user study. To access different features, we conducted the user
study in three parts, namely:

• User study 1 - Interactivity - Evaluating interface ease of use
• User study 2 - Editability - Evaluating ease of editing results

generated by various similar systems
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Figure 21: User scores on 1) Interactivity scores of our interface, 2) Editability scores of our results compared to other methods, 3) Visual
aesthetics and perceptual resemblance scores for results generated using various methods

• User study 3 - Visual quality - Evaluating how aesthetically pleas-
ing our results are compared to other methods.

User study 1 - Interactivity: In this part of the study, initially,
we showed the users a demo of our interface and briefed them on
controls and related effects. Based on the demo, they were asked
to vectorize a sample image to familiarize themselves with the
application. Later on, they were asked to randomly pick a few pixel
arts and use our interface to vectorize them. Finally, the users were
asked to rate the interface based on the following questions:

Q1:How easy is the interface to use?
Q2:How close is the final result compared to what they perceived?
Q3:How easy is it to control the output?
Q4:How time consuming is the vectorization process?
Q5:How predictable are the results (w.r.t. the user input)?

A few generic comments we received during the study are:

• There were only two options - left click to sharpen and right click
to smoothen, which were really easy to use

• The head [...] got smoothened exactly how I wanted it to be.
• Once we know, it is very easy to control.
• It was time-consuming when I had to [define] a lot of sharp points.

User study 2 - Editability: The users were asked to edit the final
results generated by various methods, and score the methods based
on how easy it is to edit to get the final result the user had in mind.
The scores were in the range of 1 to 10, where 1 being extremely
difficult, and 10 being extremely easy. Comments received during
the study included:

• Removing connections in the SVG files is extremely difficult (for
both InkScape and Adobe AutoTrace), whereas it was easy to
edit it in the image itself (the participant referred to the edge
disambiguation of our method).

• There was no layering in Inkscape, making it difficult to resize
the components.

• Adobe AutoTrace had large boundaries (most of them occluded
by other parts) making it non-intuitive to manipulate.

• There are a lot of points in the output making it extremely difficult
to move (referring to our unoptimized result).

• Having only a few control points and editing them was very easy
(referring to our optimized results using Bezier curves).

User study 3 - Visual quality: To compare the aesthetic beauty

of various methods, we showed the users-generated results side by
side involving different methods (the order was randomly shuffled
in each row to avoid bias). In other words, they could see all results
at once without knowing which method produced which result and
were asked to grade them twice (on a scale of 1-10) with respect to:

• Visual Aesthetics: How good are the results visually?
• Perceptual Resemblance: How well do the results perceptually

match the input?

Figure 21 summarizes the result of the evaluation. As can be seen,
our interface is easy to use, and it enabled the generation of results
that match the user’s expectations. Moreover, though slightly worse,
our automatic algorithm performs comparable to the state-of-the-art
methods and leads to better results after user interaction.

5. Conclusions and Future Work

We introduced a novel interactive vectorization algorithm building
upon a spring-simulation framework to vectorize pixel art. While
our algorithm can automatically generate results comparable to the
state of the art, we designed our approach to include the user in the
conversion process. Contrary to automatic solutions that depend on
heuristics, a very small effort can steer the conversion towards high-
quality results. Users resolved ambiguities, indicated sharp corners
and established smoothness, to meet their interpretation of the pixel
input. This core idea of using interaction to drive the conversion
could be easily incorporated into other systems like DPA [KL11].

In the future, we want to apply user inputs also for the vector
generation of natural raster images. Additionally, we would like
to extend our method to animation, which can be beneficial for
converting entire sprite sheets into games. Finally, we are consid-
ering integrating additional user annotations to control boundary
definitions with guiding strokes and want to include gradients in the
conversion as well.
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