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We theoretically study spin pumping from a ferromagnetic insulator (FI) into a carbon nanotube
(CNT). By employing the bosonization method, we formulate the Gilbert damping induced by the
FI/CNT junction, which can be measured by ferromagnetic resonance. We show that the increase
in the Gilbert damping has a temperature dependence characteristic of a Luttinger liquid and is
highly sensitive to the Luttinger parameter of the spin sector for a clean interface. We also discuss
the experimental relevance of our findings based on numerical estimates, using realistic parameters.

I. INTRODUCTION

Spin pumping induced by ferromagnetic resonance
(FMR)1,2 is a fundamental technique in spintronics for
generating spin current from a ferromagnet to an adja-
cent material3,4. While spin pumping has been used for
injecting spin into various materials, it can also be uti-
lized for detecting spin excitations in various systems5–17.
Compared with bulk measurement techniques, such as
nuclear magnetic resonance (NMR) and neutron scatter-
ing experiments, spin pumping has an advantage in sen-
sitivity for nanostructured systems such as surfaces, thin
films and atomic-layer compounds5.

The study of exotic spin excitations which emerge in
specific materials is one of the forefront topics of con-
densed matter physics. A typical example is spin exci-
tation in quasi-one-dimensional interacting electron sys-
tems, whose low-energy excitation can be described by
the Tomonaga-Luttinger liquid18–20. Spin excitations in-
herent to the Tomonaga-Luttinger liquid have been stud-
ied in carbon nanotubes (CNTs) by using NMR21–23.
While NMR can detect the local spin susceptibility in
CNTs, the use of spin pumping to detect spin excitations
in CNTs is expected to provide useful information reflect-
ing the exotic character of the Luttinger liquid, which
cannot be captured by NMR.

In this work, we theoretically formulate the increase
in the Gilbert damping due to spin pumping in a setup
in which spin is injected into CNTs. We consider a
magnetic junction composed of a ferromagnetic insula-
tor (FI) and a single-wall CNT (see Fig. 1) and take in-
terfacial randomness into account with a simple model.
We derive an analytic expression for the increase in the
Gilbert damping by utilizing the bosonization method
and second-order perturbation with respect to the in-
terfacial exchange coupling. We also estimate it using
realistic experimental parameters for two limiting cases
of junctions, i.e., clean and dirty junctions.

Our paper is organized as follows. We introduce the
microscopic model of the FI/CNT magnetic junction in

FIG. 1. Magnetic junction composed of a ferromagnetic in-
sulator (FI) and a single-wall carbon nanotube (CNT). The
dimension of the FI is W ×W ′ × d′.

Sec. II. We analytically calculate the increase in the
Gilbert damping in Sec. III and subsequently estimate
it with realistic parameters in Sec. IV. Finally, we briefly
discuss the experimental relevance of our findings in
Sec. V and summarize our results in Sec. VI. A detailed
derivation of the analytic expressions is given in the two
Appendices.

II. MODEL

Let us consider a bilayer system composed of a CNT
and FI, whose Hamiltonian is given by H = HCNT +
HFI + Hint. Here, HCNT and HFI describe electrons in
the CNT and FI, respectively, and Hint represents the
interfacial exchange interaction between the CNT and
FI. We will give their explicit forms in the subsections
that follow.
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A. Carbon nanotube

The low-energy Hamiltonian of electrons in CNTs is
given by

HCNT = HK +HC, (1)

where HK and HC represent the kinetic energy and the
forward scattering potential due to the screened Coulomb
interaction, respectively. Using standard conventions24,
the Hamiltonians describing these energies of electrons in
CNTs are given by

HK = −ivF
∫
dx
∑
rασ

rψ+
rασ(x)∂xψrασ(x), (2)

HC =
1

2

∫
dx dy ρ(x)V (x− y)ρ(y), (3)

where ψrασ(x) is the slowly varying part of the
field operator of electrons, vF is the Fermi velocity,
V (x) is the screened Coulomb potential, and ρ(x) =∑
rασ ψ

†
rασ(x)ψrασ(x) is the electron density operator.

The subscripts, r (= ±), α (= ±), and σ (= ±), repre-
sent the direction of propagation, the nanotube branch
(the valley), and the spin orientation, respectively. Using
the bosonization method19,24, the annihilation operator
describing fermions in the CNT can be expressed in terms
of bosonic fields, θασ(x) and φασ(x), as

ψrασ(x) =
ηrασ√

2πa
ei(−rθασ(x)+φασ(x)), (4)

where ηrασ is the Klein factor, and a is a short-length
cutoff which can be identified with the lattice constant of
the CNT. To diagonalize the Hamiltonian, we introduce
new bosonic fields for the charge and spin sectors, θjδ(x)
and φjδ(x) as

θασ(x) =
1

2

∑
jδ

hjδ(α, σ)θjδ(x), (5)

φασ(x) =
1

2

∑
jδ

hjδ(α, σ)φjδ(x), (6)

where δ (= ±) represents symmetric/antisymmetric
modes, j (= c, s) indicates the charge/spin mode, hc+ =
1, hc− = α, hs+ = σ, and hs− = ασ. The Hamiltonian
of the CNTs can be written as

HCNT =
∑
j,δ

vjδ
2π

∫
dx[K−1jδ (∂xθjδ)

2 +Kjδ(∂xφjδ)
2], (7)

where Kjδ is the Luttinger parameter and vjδ = vF /Kjδ.

B. Ferromagnetic insulator

We consider a bulk FI described by the quantum
Heisenberg model and employ the spin-wave approxi-
mation assuming that the temperature is much lower

than the magnetic transition temperature and the mag-
nitude of the localized spin, S0, is much larger than
one8,11,15–17,25,26. In this situation, the Hamiltonian for
the FI is approximately written as a superposition of
magnon modes:

HFI =
∑
k

~ωkb
†
kbk, (8)

where bk is the annihilation operator of magnons, ~ωk =
Dk2+~γghdc is the magnon dispersion, D is spin stiffness,
γg is the gyromagnetic ratio, and hdc is the static mag-
netic field. We will only focus on uniform spin precession
induced by external microwaves. For this purpose, it is
sufficient to consider the magnon mode of k = 0 with the
simplified Hamiltonian

HFI = ~ω0b
†
0b0. (9)

Microwave absorption in FMR can be related to the
imaginary part of the retarded spin correlation function,
which is defined as

GR(ω) = − i
~

∫ ∞
0

dt ei(ω+iδ)t〈[S+
0 (t), S−0 ]〉, (10)

where S+
0 =

√
2S0b0 and S−0 =

√
2S0b

†
0 are spin

ladder operators of the FI for k = 0 and S+
0 (t) =

eiHt/~S+
0 e
−iHt/~. For an isolated bulk FI, the spin sus-

ceptibility is calculated as:

GR0 (ω) =
2S0/~

ω − ω0 + iδ
. (11)

In real experiments, the FMR linewidth is finite due to
the the Gilbert damping. To represent this finite spin
relaxation in the bulk FI, we introduce a phenomeno-
logical dimensionless parameter αG and express the spin
correlation function as

GR0 (ω) =
2S0/~

ω − ω0 + iαGω
. (12)

C. Interfacial exchange interaction

Now let us consider the interfacial exchange interaction
between the FI and the CNT with the Hamiltonian,

Hint = S+
0 s
− + S−0 s

+, (13)

where s± is the spin ladder operator of the CNT, defined
as

s− =

√
1

NFI

∑
r,r′

∑
α,α′

∫ W

0

dx J(x)

× e−i(α−α
′)kFx−i(r−r′)qFxψ†rα−(x)ψr′α′+(x), (14)

and s+ = (s−)†. Here, W is the length of the interface,
J(x) is the interfacial exchange coupling, NFI is the num-
ber of unit cells in the FI, kF is the Fermi wavenumber,
and qF (� kF) is the momentum mismatch associated
with the two modes. A simplified model for randomness
in J(x) will be accounted for in the next section.
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III. FORMULATION

A. Gilbert damping

Using second-order perturbation with respect to the
interfacial exchange coupling, the spin susceptibility is
calculated as

G(k, iωn) =
1

G0(k, iωn)−1 − Σ(k, iωn)
(15)

Σ(iωn) = −1

~

∫ ~β

0

dτeiωnτ 〈Tτs+(τ)s−(0)〉 (16)

where s±k (τ) = eHCNTτ/~s±k e
−HCNTτ/~. For uniform pre-

cession (k = 0), the retarded Green’s correlation function
is obtained by analytic continuation iωn → ω + iδ as

GR(0, ω) =
2S0/~

ω − (ω0 + δω0) + i(αG + δαG)ω0
, (17)

δω0

ω0
' 2S0

~ω0
Re ΣR(ω0), (18)

δαG ' −
2S0

~ω0
Im ΣR(ω0), (19)

where ΣR(ω) is the retarded self-energy defined by

ΣR(ω) =

∫
dt eiωtΣR(t), (20)

ΣR(t) = − iθ(t)
~
〈[s+(t), s−(0)]〉, (21)

θ(t) is the step function, and αG + δαG � 1 has been
assumed. In our work, we focus on the increase in the
Gilbert damping due to the junction, δαG, which is writ-
ten in terms of the dynamic spin susceptibility of CNTs.

B. Self-energy of electrons in CNTs

By substituting Eq. (14) into Eq. (21), we obtain

ΣR(t) = − i
~
θ(t)

2S0

NFI

∑
r,r′

∑
α,α′

∫ W

0

dx

∫ W

0

dy〈J(x)J(y)〉imp

× e−i(kF(α−α
′)+qF(r−r′))(x−y)Crαr′α′(x, y, t), (22)

Crαr′α′(x, y, t) = 〈[ψ†rα,+(x, t)ψr′α′,−(x, t),

ψ†r′α′,−(y, 0)ψrα,+(y, 0)]〉0. (23)

Here, 〈· · · 〉imp indicates a random average for the in-
terfacial exchange coupling. For simplicity, we assume
that the exchange coupling follows a Gaussian distribu-
tion whose average and variance are given by

〈J(x)〉imp = J1, (24)

〈δJ(x)δJ(y)〉imp = J2
2aδ(x− y), (25)

where δJ(x) = J(x) − 〈J(x)〉imp. Accordingly, the self-
energy is calculated as

ΣR(t) = ΣR1 (t) + ΣR2 (t), (26)

ΣR1 (t) = −iθ(t)2S0J
2
1

~NFI

∑
r,r′,α,α′

∫ W

0

dx

∫ W

0

dy

× e−i(kF(α−α
′)+qF(r−r′))(x−y)Crαr′α′(x, y, t), (27)

ΣR2 (t) = −iθ(t)2S0J
2
2a

~NFI

∑
r,r′,α,α′

∫ W

0

dxCrαr′α′(x, x, t).

(28)

Since the integrand of ΣR1 (t) includes a rapidly oscillating
part as a function of (x − y), the integral is negligibly
small except for the case of α = α′ and r = r′. There,
we obtain

ΣR1 (t) = −iθ(t)2S0J
2
1

~NFI

∑
r,α

∫ W

0

dx

∫ W

0

dy Crαrα(x, y, t).

(29)

We should note that ΣR1 (t) corresponds to the process
of electron creation and annihilation in the same branch
and represents momentum-conserving spin relaxation for
a clean junction. In contrast, ΣR2 (t) represents spin re-
laxation for a “dirty” junction that is independent of the
electron momentum. Here, the word “dirty” means that
during spin exchange process the momentum of electrons
in the CNT is not conserved and transitions between dif-
ferent branches of valleys and propagation directions are
allowed. The following discussion will consider two lim-
iting cases for the interface. For the clean interface limit
(J1 � J2), the magnon self-energy is represented with
ΣR1 (t), while in the dirty interface limit (J1 � J2), it is
represented with ΣR2 (t).

C. Clean interface

Since the correlation function Crαr′α′(x, y, t) can be
calculated using the bosonization method (see Ap-
pendix A), the self-energy ΣR1 (t) can be obtained ana-
lytically. Therefore, the corresponding increase in the
Gilbert damping is obtained as

δαG,1 = − 2S0

~ω0
Im ΣR1 (ω0)

= − 4S0J
2
1

~2ω0(2πa)2NFI

∫ W

0

dx

∫ W

0

dy

∫ ∞
0

dt sinω0t

× Im

[(
sinh(iπa/β~vF)

sinh(π(ia− (x− y)− vFt)/β~vF)

)γ−1
×
(

sinh(iπa/β~vF)

sinh(π(ia+ (x− y)− vFt)/β~vF)

)γ+1
]
, (30)

γ ≡ Ks+

4
+
Ks−

4
+

1

4Ks+
+

1

4Ks−
. (31)
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After analytic integration with respect to t (see Ap-
pendix B for details), we obtain

δαG,1 =
2

π

Γ(γ)2

Γ(2γ)

S0J
2
1Wa

~2v2FNFI

(
2πa

β~vF

)2γ−3

× I(πW/β~vF, γ), (32)

I(w, γ) =
1

w

∫ w

0

dz′
∫ z′

0

dz e−2(γ−1)z

× F (γ − 1, γ, 2γ; 1− e−4z), (33)

where F (a, b, c;x) is the hypergeometric function.

D. Dirty interface

The self-energy ΣR2 (t) can be obtained in a similar
way as above. The corresponding increase in the Gilbert
damping is given by

δαG,2 = − 2S0

~ω0
Im ΣR2 (ω0)

= − S0J
2
2aW

~2ω0(πa)2NFI

∑
r,r′,α,α′

∫ ∞
0

dt sinω0t

× Im

[(
sinh(iπa/β~vF)

sinh(π(ia− vFt)/β~vF)

)2γrαr′α′
]
, (34)

γrαr′α′ = γ1δr,r′δα,α′ + γ2δr,−r′δα,α′

+ γ3δr,r′δα,−α′ + γ4δr,−r′δα,−α′ , (35)

γ1 = (Ks+ +Ks− + 1/Ks+ + 1/Ks−)/4, (36)

γ2 = (Kc+ +Kc− + 1/Ks+ + 1/Ks−)/4, (37)

γ3 = (Ks+ +Kc− + 1/Kc+ + 1/Ks−)/4, (38)

γ4 = (Kc+ +Ks− + 1/Ks+ + 1/Kc−)/4. (39)

We should note that δαG,2 is proportional to W , since the
spin relaxation rate is determined through spatially-local
spin exchange in the dirty interface and is proportional
to the number of spin-exchange channels. After analytic
integration with respect to t (see Appendix B for details),
we obtain

δαG,2 =
1

2π

S0J
2
2aW

~2v2FNFI

×
∑

r,r′,α,α′

Γ(γrαr′α′)2

Γ(2γrαr′α′)

(
2πa

β~vF

)2γrαr′α′−2

. (40)

IV. NUMERICAL ESTIMATE

Next, we evaluate numerically the increase in the
Gilbert damping by using realistic experimental parame-
ters. While the increase was formulated for a single CNT
in the previous section, to increase the signal, it would be
more useful if we considered a junction with a bundle of
CNTs. Thus, in the following, we will consider a junction

TABLE I. Parameters used for the numerical estimate.

Microwave frequency ω0 1 GHz

Fermi velocity of CNT vF 106 m/s

Lattice constant of CNT a 2.46 Å

Diameter of CNT d 1.5 nm

Amplitude of spins of FI S0 10

Lattice constant of FI a′ 12.376 Å

Thickness of FI d′ 10 nm

Interfacial exchange couplings J1 2 K

J2 1, 2, 3 K

Luttinger parameters Kc+ 0.20

Ks+ 1.07

Kc−, Ks− 1

10010

10-2

10-5

10-3

10-4

3 300

FIG. 2. Temperature dependence of increase in the Gilbert
damping, δαG,1, for a clean interface (J1 � J2).

composed of a FI and a bundle of CNTs with an area of
W ×W ′ (see Fig. 1) and multiply δαG,1 and δαG,2 by
the number of CNTs in the junction, NCNT = W ′/d (d:
the diameter of CNTs).

The parameters are given in Table I. The Fermi ve-
locity vF, lattice constant a, diameter d, Luttinger pa-
rameters of CNTs, Kc+, Kc−, and Ks−, are taken from
Refs.20,24,27. The value of Ks+ is an experiment result22

under a magnetic field of 3.6 T28. The spin amplitude S0

and the lattice constant a′ are determined by assuming
that the FI is made from yttrium iron garnet (YIG). The
interfacial exchange coupling (J1 or J2) is roughly esti-
mated to be 2 K29. The number of unit cells is estimated
as NFI = WW ′d′/a′3, where d′ is the thickness of the FI.

A. Clean interface

The estimated increase in the Gilbert damping for a
clean interface (J1 = 2 K � J2) is shown in Fig. 2 as
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3K
10K
30K

100K
300K

10-310-410-510-6

10-2

10-5

10-3

10-4

FIG. 3. Junction-length dependence of increase in the Gilbert
damping, δαG,1, for a clean interface (J1 � J2).

a function of temperature. While δαG,1 is proportional
to 1/T at high temperatures, it is almost constant at
low temperatures. The crossover temperature for a fixed
length W is given by T ∗ = g(γ)~vF/(kBW ) (kB: Boltz-
mann constant), which is proportional to 1/W . The fac-
tor g(γ), which depends only on γ, is explicitly shown
later. The increase in the Gilbert damping is shown as a
function of the junction length W in Fig. 3. While δαG,1
is proportional to W for a short junction, it is almost
constant for a long junction. The crossover length for a
fixed temperature T is given by W ∗ = g(γ)~vF/(kBT ).

In the present estimate, the condition Lth � vF/ω0

always holds, where Lth = ~vF/kBT is a thermal length.
Under this condition, the increase in the Gilbert damping
becomes independent of ω0 and is approximately given
by

δαG,1 =
Γ(γ)2

Γ(2γ)

S0J
2
1a
′3a

(~vF)2dd′

(
2πa

Lth

)2γ−3

f(γ, πW/Lth),

(41)

f(γ,w) =

{
w/π, (w/π � g(γ)),

g(γ), (w/π � g(γ)),
(42)

g(γ) =
2

π

∫ ∞
0

dz e−2(γ−1)zF (γ − 1, γ, 2γ; 1− e−4z).

(43)

From this analytic expression, we obtain

δαG,1 ∝

{
T 2γ−2W, (W � g(γ)Lth),

T 2γ−3g(γ), (W � g(γ)Lth).
(44)

The exponent γ = (Ks+ + Ks− + K−1s+ + K−1s− )/4 cor-
responds to unity when Ks+ = Ks− = 1. Even in the
present estimate employing Ks+ = 1.07, the exponent is
almost unity (γ = 1.00114). By setting γ = 1, we can

10010

10-5

10-8

10-6

10-7

3 300

FIG. 4. Temperature dependence of increase in the Gilbert
damping, δαG,2, for a dirty interface (J2 � J1). The three
lines correspond to J2 = 1, 2, and 3 K, respectively.

reproduce the power in the temperature and junction-
length dependence of δαG,1 shown in Figs. 2 and 3.

Finally, let us discuss the factor g(γ). If γ is slightly
larger than 1 as in the present estimate, the geometric
function is approximated as F (γ−1, γ, 2γ;x) ' 1. Then,
the factor g(γ) is approximately given as

g(γ) =
1

π(γ − 1)
. (45)

This expression indicates that the increase in the Gilbert
damping in the high-temperature limit (T � T ∗) or the
long-junction limit (W � W ∗) is highly sensitive to the
deviation of γ from unity. The crossover temperature
T ∗ and the crossover length W ∗ also include the factor
g(γ) ∝ (γ−1)−1. Thus, the increase in the Gilbert damp-
ing can be used to investigate small deviations from unity
of the Luttinger parameter Ks,+ in the spin sector.

B. Dirty interface

Next, we consider a dirty interface (J2 � J1). Figure 4
shows the increase of the Gilbert damping, δαG,2, as a
function of the temperature for J2 = 1, 2, and 3 K. In
this case, δαG,2 is proportional to T−0.43 in the whole
temperature range and shows a nontrivial exponent in-
herent to the Tomonaga-Luttinger liquid.

The condition Lth � vF/ω0 also holds for a dirty in-
terface. Therefore, δαG,2 can be approximated as

δαG,2 =
1

2π

S0J
2
2aa

′3

(~vF)2dd′

×
∑

r,r′,α,α′

Γ(γrαr′α′)2

Γ(2γrαr′α′)

(
2πa

Lth

)2γrαr′α′−2

. (46)
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Noting that a � Lth, the factor (2πa/Lth)2γrαr′α′ in
Eq. (46) is largely reduced as γrαr′α′ increases. There-
fore, in the sum of Eq. (46), it is sufficient to keep the
terms in which γrαr′α′ takes a minimum value. In the
present estimate, γrαr′α′ is given by Eq. (35) with

(γ1, γ2, γ3, γ4) = (1.001, 0.784, 1.001.0.784). (47)

Upon setting the minimum exponent to be γmin = 0.784,
we obtain δαG,2 ∝ T 2γmin−2 = T−0.432, which is consis-
tent with the numerical results shown in Fig. 4. There-
fore, the nontrivial exponent inherent to the Tomonaga-
Luttinger liquid appears in spin pumping through a dirty
junction. Note that the approximate expression is inde-
pendent of the junction length W for a fixed thickness,
since the W -linear factor in NFI = WW ′d/a′3 cancels
out the factor of W in Eq. (34).

The equation for the increase in the Gilbert damping
for the dirty interface has almost the same form as that
for 1/T1T in NMR experiments where T1 is the longitudi-
nal relaxation time of nuclear spins21–23. Therefore, the
power law of the temperature dependence for the dirty
interface is the same as in NMR experiments. This is
because the spin transfer occurs at a spatially localized
point due to the impurity average at the dirty interface,
leading to the same situation as the NMR experiment in
which 1/T1T is related to the local dynamic spin suscep-
tibility.

V. EXPERIMENTAL RELEVANCE

We estimated the increase in the Gilbert damping δαG

in two limiting situations, i.e., clean and dirty interfaces.
If we choose YIG as the ferromagnet, δαG should be
roughly in the range 10−5–10−2, because it should be
comparable to the Gilbert damping of bulk YIG, αG,
which is of order of 10−5–10−3. For a clean interface,
δαG is large enough to be measured in FMR experiments
(see Figs. 2 and 3). Note that δαG can be reduced by in-
creasing the thickness of YIG (denoted by d′). On the
other hand, for a dirty interface, δαG is too small for it to
be observable by spin pumping (see Fig. 4). However, we
will moderate judgement on the possibility of observing
δαG for a dirty interface, because detailed information
on the interfacial exchange coupling is still lacking. We
should note that in the present modeling of randomness,
the increase in the Gilbert damping is given by a sum of
these two contributions, i.e., δαG = δαG,1 +δαG,2, for an
arbitrary strength of interfacial randomness.

Our calculation can be applied straightforwardly to
other one-dimensional electron systems such as quasi-
one-dimensional magnets, whose low-energy states are
also described by the Tomonaga-Luttinger liquid model.
In particular, the low-energy states of spin systems with
in-plane anisotropy are characterized by a Luttinger pa-
rameter Ks smaller than 1. If Ks is sufficiently smaller
than 1, δαG should show nontrivial power-law behavior

with respect to the temperature even for a clean inter-
face.

VI. SUMMARY

We theoretically studied spin pumping from a ferro-
magnetic insulator into carbon nanotubes. First, we for-
mulated the increase in the Gilbert damping in terms
of the spin susceptibility and described the interfacial
exchange coupling with a simple model, in which two
types of spin-flip process, i.e., momentum-conserving and
momentum-nonconserving processes, coexist. Then, we
analytically calculated the increase in the Gilbert damp-
ing by treating electrons in carbon nanotubes in the
framework of the Luttinger liquid. For a clean interface,
the increase in damping is proportional to the inverse of
the temperature at high temperatures while it is almost
constant at low temperatures. The crossover tempera-
ture includes information on the Fermi velocity in carbon
nanotubes. We also found that the increase in damping is
highly sensitive to the deviation of the Luttinger param-
eter in the spin sector from unity. For a dirty interface,
the increase in damping shows a power-law dependence
on the temperature with a nontrivial exponent reflecting
the nature of the Tomonaga-Luttinger liquid. We also
estimated the increase of the Gilbert damping using re-
alistic parameters. Our results indicate a possible appli-
cation of spin pumping for detecting power-law behavior
of spin excitation in low-dimensional systems. Detection
of other types of spin excitation in exotic many-body
states will be left as a future study.
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Appendix A: Correlation functions

Here, we briefly summarize the calculation of the corre-
lation function Crαr′α′(x, y, t) defined in Eq. (23). Using
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the bosonic fields, the correlation function is written as

Crαr′α′(x, y, t)

=
1

(2πa)2
[
〈eAeBeCeD〉0 − 〈eCeDeAeB〉0

]
, (A1)

A = −i(−rθα+(x, t) + φα+(x, t)), (A2)

B = i(−r′θα′−(x, t) + φα′−(x, t)), (A3)

C = −i(−r′θα′−(y, 0) + φα′−(y, 0)), (A4)

D = i(−rθα+(y, 0) + φα+(y, 0)), (A5)

where we set r = +1 (r = −1) for the left-going (right-
going) branch. Using the formula,

〈eA1eA2 · · · eAN 〉 = exp

1

2

∑
i

〈A2
i 〉+

∑
i<j

〈AiAj〉

 ,
(A6)

which holds when [Ai, Aj ] is a c-number, we obtain

〈eAeBeCeD〉0 ≡ eFrαr′α′ (x−y,t)

= exp
[1

2
〈(A2 +B2 + C2 +D2)〉+ 〈AB〉+ 〈CD〉

+ 〈AC〉+ 〈AD〉+ 〈BC〉+ 〈BD〉
]
, (A7)

〈eCeDeAeB〉0 = eFr′α′rα(y−x,−t). (A8)

The correlation functions of the bosonic fields, which are
defined as GXYjδ = 〈X(x, t)Y (y, 0)〉, are calculated as19

Gθθjδ (x, t) =
Kjδ

4
(I(x, t) + I(−x, t)), (A9)

Gφφjδ (x, t) =
1

4Kjδ
(I(x, t) + I(−x, t)), (A10)

Gθφjδ (x, t) = Gφθjδ (x, t) =
1

4
(I(x, t)− I(−x, t)), (A11)

I(x, t) = − log

[
2iβ~vF
L

sinh

(
π(ia− x− vFt)

β~vF

)]
.

(A12)

Using these correlation functions, we obtain

Frαr′α′(x, t) = F1δr,r′δα,α′ + F2δr,−r′δα,α′

+ F3δr,r′δα,−α′ + F4δr,−r′δα,−α′ , (A13)

F1(x, t) = G̃θθs+ + G̃θθs− + G̃φφs+ + G̃φφs−

− r(G̃θφs+ + G̃θφs− + G̃φθs+ + G̃φθs−), (A14)

F2(x, t) = G̃θθc+ + G̃θθc− + G̃φφs+ + G̃φφs−, (A15)

F3(x, t) = G̃θθs+ + G̃θθc− + G̃φφs+ + G̃φφc−

− r(G̃θφs+ + G̃θφc− + G̃φθs+ + G̃φθc−), (A16)

F4(x, t) = G̃θθc+ + G̃θθs− + G̃φφs+ + G̃φφc−, (A17)

where G̃XYjδ (x, t) ≡ GXYjδ (x, t) − GXYjδ (0, 0). Com-
bining these results enables the correlation function
Crαr′α′(x, y, t) to be obtained analytically.

Appendix B: Analytic expressions of integrals

For a clean interface, the increase in damping is given
as

δαG,1 = − 4S0J
2
1

~2ω0(2πa)2NFI
Iγ , (B1)

Iγ = v2F

(
β~
π

)3 ∫ w

0

dx′
∫ w

0

dy′
∫ ∞
0

du sin(ω̃0u)

× Im

{[
sinh(iα)

sinh(iα+ x− y − u)

]γ+1

×
[

sinh(iα)

sinh(iα− x+ y − u)

]γ−1}
, (B2)

where ω̃0 = β~ω0/π, u = πt/β~, w = πW/β~vF, x′ =
πx/β~vF, y′ = πy/β~vF, and α = πa/β~vF. Changing
variables from x′ and y′ with Z = (x+y)/2 and z = x−y,
the integral is modified as

Iγ = v2F

(
β~
π

)3 ∫ ∞
0

du sin(ω̃0u)

×

[∫ w/2

0

dZ

∫ 2Z

−2Z
dz +

∫ w

w/2

dZ

∫ 2(w−Z)

−2(w−Z)

dz

]

× Im

{[
sinh(iα)

sinh(iα+ z − u)

]γ+1

×
[

sinh(iα)

sinh(iα− z − u)

]γ−1}

= −v
2
F

4

(
β~
π

)3 ∫ w/2

0

dZ

∫ −2z
2z

dz

∫ ∞
−∞

du

× (eiω̃0u − e−iω̃0u)

×
[

sinh(iα)

sinh(iα+ z − u)

]γ+1 [
sinh(iα)

sinh(iα− z − u)

]γ−1
.

(B3)

In the last equation, we have used the relation(
sinh(iα)

sinh(iα± z − u)

)∗
=

sinh(iα)

sinh(iα∓ z + u)
(B4)

and the symmetry of the integrand with respect to Z ↔
w−Z and z ↔ −z. At this stage, it is useful to introduce

Bγ(ζ, z) =

∫ ∞
−∞

du eiζu
[

sinh(iα)

sinh(iα+ z − u)

]γ+1

×
[

sinh(iα)

sinh(iα− z − u)

]γ−1
, (B5)

so that

Iγ = −v
2
F

2

(
β~
π

)3 ∫ w/2

0

dZ

∫ 2Z

−2Z
dz

× [Bγ(ω̃0, z)− Bγ(−ω̃0, z)]. (B6)
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Setting v = 2u and rearranging the hyperbolic sine func-
tion, we obtain

Bγ(ζ, z) =
1

2
(1− e−2iα)2γe−2z

∫ ∞
−∞

dv

× e−v(γ−iζ/2)

[e−v + e−2z+i(π−2α)]γ+1[e−v + e−2z+i(π−2α)]γ−1
,

(B7)

which can be computed analytically, invoking the formula
3.315.1 in Ref.30 as

Bγ(ζ, z)

=
1

2
(1− e−2iα)2γe−i(π−2α)(γ+iζ/2)e−2z(γ−1−iζ/2)

× |Γ(γ + iζ/2)|2

Γ(2γ)
F (γ − 1, γ, 2γ; 1− e−4z), (B8)

where F (a, b, c;x) is the Gauss hypergeometric function.
To leading order in the small parameter α (� 1), this
reduces to

Bγ(ζ, z) =
1

2
(2α)2γeπζ/2+iζze−2z(γ−1)

× |Γ(γ + iζ/2)|2

Γ(2γ)
F (γ − 1, γ, 2γ; 1− e−4z). (B9)

In practice, we are mostly interested in the regime where
ω̃0 = β~ω0 � 1 so we can focus on values of ζ such
that |ζ| � 1. This allows us to expand Bγ(ζ, z) for small
values of ζ, which yields, after substituting back into the
expression for Iγ ,

Iγ = −π
2
v2Fω0

(
β~
π

)4

(2α)2γ
Γ(γ)2

Γ(2γ)

∫ w/2

0

dZ

×
∫ 2Z

0

dze−2z(γ−1)F (γ − 1, γ, 2γ; 1− e−4z), (B10)

where we have used the symmetry of the integrand with
respect to z ↔ −z. Combining this result with Eq. (B1),
Eqs. (32) and (33) can be derived, after rewriting the
integral variable as z′ = 2Z.

In the limiting case, the integral I(w, γ) given in
Eq. (33) can be approximated into a simple form. For the
short-junction limit (w/π = W/β~vF = W/Lth � g(γ)),
we obtain

I(w, γ) ' 1

w

∫ w

0

dz′
∫ z′

0

dz,e−2z(γ−1) =
w

2
. (B11)

For the long-junction limit (w/π � g(γ)),

I(w, γ)

' 1

w

∫ w

0

dz′
∫ ∞
0

dz,e−2z(γ−1)F (γ − 1, γ, 2γ; 1− e−4z)

=
π

2
g(γ), (B12)

where g(γ) is defined by Eq. (43). These analytical ex-
pressions lead to Eqs. (41) and (42) in the main text.

For a dirty interface, the increase in damping is ex-
pressed as

δαG,2 = − S0J
2
2aW

~2ω0(πa)2NFI

∑
r,r′,α,α′

I ′γrαr′α′ , (B13)

I ′γ =
β~
π

∫ ∞
0

du sin(ω̃0u)Im

{[
sinh(iα)

sinh(iα− u)

]2γ}
,

(B14)

with the same dimensionless variables as for a clean in-
terface. By a similar way as the clean case, the integral
I ′γ is modified as

I ′γ = −β~
4π

[Aγ(−ω̃0)−Aγ(−ω̃0)], (B15)

Aγ(ζ) =

∫ ∞
−∞

du e−iζu
[

sinh(iα)

sinh(iα− u)

]2γ
. (B16)

Setting v = 2u and rearranging the hyperbolic sine func-
tion, we obtain

Aγ(ζ) =
1

2
(1− e−2iα)2γ

∫ ∞
−∞

dv
e−(γ+iζ/2)v

(e−v + ei(π−2α))2γ
.

(B17)

Invoking the formula 3.314 in Ref.30, this can be com-
puted as

Aγ(ζ) =
1

2
(2 sinα)2γeαζe−πζ/2

|Γ(γ + iζ/2)|2

Γ(2γ)
, (B18)

which then yields, to leading order in α (� 1),

I ′γ = −β~
4π

(2α)2γ
|Γ(γ + iζ/2)|2

Γ(2γ)
sinh(πω̃0/2). (B19)

Assuming ω̃0 = β~ω0/π � 1, this is further simplified as

I ′γ = −β
2~2

8π
ω0

(
2πa

β~vF

)2γ
Γ(γ)2

Γ(2γ)
, (B20)

which finally leads to Eq. (46) in the main text.
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